151
|
Homsi J, Simon GR, Garrett CR, Springett G, De Conti R, Chiappori AA, Munster PN, Burton MK, Stromatt S, Allievi C, Angiuli P, Eisenfeld A, Sullivan DM, Daud AI. Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin Cancer Res 2007; 13:5855-61. [PMID: 17908979 DOI: 10.1158/1078-0432.ccr-06-2821] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CT-2106 is a 20(S)-camptothecin poly-L-glutamate conjugate. This linkage stabilizes the active lactone form of camptothecin and enhances aqueous solubility. In addition, poly-L-glutamate is postulated to increase tumor delivery of the active compound through enhanced permeability and retention effect in tumor. We studied a weekly schedule of CT-2106 in patients with refractory solid tumor malignancies. EXPERIMENTAL DESIGN CT-2106 was infused (10 min i.v. infusion) on days 1, 8, and 15 of each 28-day cycle. Plasma and urine were analyzed for total and unconjugated camptothecin by high-performance liquid chromatography equipped with a fluorescence detector. Toxicity and response assessments were done with Common Toxicity Criteria for Adverse Events version 3 and Response Evaluation Criteria in Solid Tumors, respectively. RESULTS Twenty-six patients were enrolled. Median age was 58 years (range, 36-83) and median number of doses was 6 (range, 1-9). The most frequent tumor type (50%) was melanoma. Dose limiting toxicities were thrombocytopenia and fatigue. A weekly dose of 25 mg/m2 given every 3 of 4 weeks was the maximum tolerated dose. The majority of grade 3 and 4 toxicities were hematologic. The pharmacokinetic profile of conjugated and unconjugated camptothecin showed a polyexponential decline with similar terminal half life (t1/2 range was 44-63 and 31-48 h for conjugated and unconjugated, respectively). Pharmacokinetics of conjugated and unconjugated camptothecin were dose and time independent in the tested dose range. Urinary excretion of conjugated and unconjugated camptothecin accounted for about 30% and 4% of the administered dose, respectively. CONCLUSIONS CT-2106 has a more manageable toxicity profile compared with unconjugated camptothecin. The maximum tolerated dose is 25 mg/m2 weekly given 3 of 4 weeks. This compound results in prolonged release of unconjugated camptothecin.
Collapse
Affiliation(s)
- Jade Homsi
- H. Lee Moffitt Cancer Center, Tampa, Florida 33612-9497, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Liu XM, Thakur A, Wang D. Efficient synthesis of linear multifunctional poly(ethylene glycol) by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Biomacromolecules 2007; 8:2653-8. [PMID: 17688321 DOI: 10.1021/bm070430i] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ethylene glycol) (PEG) is a versatile biocompatible polymer. Improvement of its limited functionality (two chain termini) may significantly expand its current applications. In this communication, a simple and yet highly efficient strategy for the synthesis of linear multifunctional PEGs with "click" chemistry is reported. A short acetylene-terminated PEG was linked by 2,2-bis(azidomethyl)propane-1,3-diol using Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition in water at room temperature. High-molecular-weight PEGs with pendant hydroxyl groups were obtained and characterized by 1H NMR and size-exclusion chromatography. A prototype bone-targeting polymeric drug delivery system was also successfully synthesized based on this new method. It demonstrates strong biomineral-binding ability and the ease of incorporating therapeutic agents into the delivery system. This simple "click" reaction approach provides a useful tool for the development of novel functional polymers and their conjugates for biomedical applications.
Collapse
Affiliation(s)
- Xin-Ming Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, COP 3026, Omaha, Nebraska 68198-6025, USA
| | | | | |
Collapse
|
153
|
Villalonga R, Cao R, Fragoso A. Supramolecular Chemistry of Cyclodextrins in Enzyme Technology. Chem Rev 2007; 107:3088-116. [PMID: 17590054 DOI: 10.1021/cr050253g] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
154
|
Abstract
Cyclodextrins, cyclic oligomers of glucose, have been used in pharmaceutical formulations for decades as a result to their biocompatibilities, low toxicities and their abilities to solubilise organic small molecules via inclusion complex formation. The incorporation of cyclodextrins within polymers of numerous types, for use as drug delivery agents, has been explored. Illustrative of the flexibility in polymer chemistry and delivery application that is possible with these materials, two linear cyclodextrin-containing polymers are in preclinical and clinical development for the non-covalent delivery of nucleic acid therapeutics and covalent delivery of a small-molecule drug, respectively. This document provides an overview of the background and progress that has been made with these materials thus far, as well as suggestions for their future development and characterisation.
Collapse
|
155
|
Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B, Davis ME. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res 2006; 12:1606-14. [PMID: 16533788 DOI: 10.1158/1078-0432.ccr-05-1566] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preclinical efficacy of i.v. IT-101, a nanoparticulate conjugate of 20(S)-camptothecin and a cyclodextrin-based polymer, was investigated in several mouse xenografts. The effects of different multiple dosing schedules on tumor growth of LS174T colon carcinoma xenografts are elucidated. All multiple dosing schedules administered over 15 to 19 days resulted in enhanced efficacy compared with untreated or single-dose groups. Further improvements in antitumor efficacy were not observed when the dosing frequency was increased from three weekly doses to five doses at 4-day intervals or 5 days of daily dosing followed by 2 days without dosing repeated in three cycles using similar cumulative doses. This observation was attributed to the extended release characteristics of camptothecin from the polymer. Antitumor efficacy was further evaluated in mice bearing six different s.c. xenografts (LS174T and HT29 colorectal cancer, H1299 non-small-cell lung cancer, H69 small-cell lung cancer, Panc-1 pancreatic cancer, and MDA-MB-231 breast cancer) and one disseminated xenograft (TC71-luc Ewing's sarcoma). In all cases, a single treatment cycle of three weekly doses of IT-101 resulted in a significant antitumor effect. Complete tumor regression was observed in all animals bearing H1299 tumors and in the majority of animals with disseminated Ewing's sarcoma tumors. Importantly, IT-101 is effective in a number of tumors that are resistant to treatment with irinotecan (MDA-MB-231, Panc-1, and HT29), consistent with the hypothesis that polymeric drug conjugates may be able to overcome certain kinds of multidrug resistance. Taken together, these results indicate that IT-101 has good tolerability and antitumor activity against a wide range of tumors.
Collapse
|
156
|
Hagiwara Y, Arima H, Miyamoto Y, Hirayama F, Uekama K. Preparation and Pharmaceutical Evaluation of Liposomes Entrapping Salicylic Acid/.GAMMA.-Cyclodextrin Conjugate. Chem Pharm Bull (Tokyo) 2006; 54:26-32. [PMID: 16394544 DOI: 10.1248/cpb.54.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the potential use of a drug/cyclodextrin (CyD) conjugate for efficient entrapment in liposomes and prolonged residence of a drug in tissues, we synthesized a salicylic acid (SA) conjugate bound covalently with gamma-cyclodextrin (SA/gamma-CyD conjugate), a model drug/CyD conjugate, and then liposomes entrapping the conjugate (conjugate-in-liposome) were prepared by a freezing-thawing method. The chemical and physicochemical properties of the SA/gamma-CyD conjugate in solution and solid state were investigated and then the physicochemical properties of conjugate-in-liposome, in vitro cellular uptake/release and in vivo disposition of SA/gamma-CyD conjugate after intravenous administration of aqueous suspension containing conjugate-in-liposome in rats, were evaluated, comparing with those of the liposome-entrapped SA alone (SA-in-liposome) or the liposome-entrapped noncovalent SA/gamma-CyD complex (complex-in-liposome). As a result, it was found that the conjugate was amorphous powder and the release of SA from the conjugate in phosphate-buffered saline (PBS) was tolerated to chemical and enzymatic degradation. Meanwhile, the particle sizes and stability of these liposomes were almost identical, and the entrapment ratio of SA/gamma-CyD conjugate in liposomes was higher than those of SA alone and SA/gamma-CyD complex. The cellular uptake of these liposomes was almost equivalent, but the release of SA/gamma-CyD conjugate from RAW264.7 cells was markedly slower, compared with that of SA from cells following cellular uptake of the SA-in-liposome and complex-in-liposome. The disposition of SA or SA/gamma-CyD conjugate following intravenous administration of aqueous suspensions containing each liposome system in rats was comparable, but the residence time of the conjugate in tissues significantly prolonged, compared with that of the SA-in-liposome and complex-in-liposome systems. These results suggest the potential use of SA/gamma-CyD conjugate for efficient entrapment in liposomes as well as of liposomes containing SA/gamma-CyD conjugates for prolonged residence of drugs in tissues.
Collapse
Affiliation(s)
- Yoshiyuki Hagiwara
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Japan
| | | | | | | | | |
Collapse
|
157
|
The effect of β-CD polymers structure on the efficiency of copper(II) ion flotation. J INCL PHENOM MACRO 2005. [DOI: 10.1007/s10847-005-9020-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
158
|
Yu D, Peng P, Dharap SS, Wang Y, Mehlig M, Chandna P, Zhao H, Filpula D, Yang K, Borowski V, Borchard G, Zhang Z, Minko T. Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J Control Release 2005; 110:90-102. [PMID: 16271793 DOI: 10.1016/j.jconrel.2005.09.050] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 11/30/2022]
Abstract
Antitumor effect of poly(ethylene glycol)-camptothecin conjugate (PEG-CPT) was studied in the nude mouse model of human colon cancer xenografts. The animals were treated intravenously with 15 mg/kg of camptothecin (CPT) or PEG-CPT conjugate at equivalent CPT dose. Antitumor activity, apoptosis induction and caspase-dependent signaling pathways were studied 12, 24, 48 and 96 h after single injection. In addition, pharmacokinetics, tumor distribution and accumulation of PEG polymer labeled with green fluorescence protein (GFP) were studied. The data obtained showed that the conjugation of low molecular weight anticancer drug CPT with low solubility to high molecular weight water-soluble PEG polymer provides several advantages over the native drug. First, the conjugation improves drug pharmacokinetics in the blood and tumor. Second, such conjugation provides passive tumor targeting by the Enhanced Permeability and Retention (EPR) effect, increasing drug concentration in the tumor. Third, the coupling increases the bioavailability of CPT, induces apoptosis in tumor and, therefore, enhances anticancer activity of PEG-CPT. Thus, the use of macromolecular conjugate provided passive tumor targeting of the drug, improved pharmacokinetics and increased the stability of the drug during circulation. It offered better uptake by the targeted tumor cells and substantially enhanced apoptosis and antitumor activity of the conjugated drug in the tumor and decreased apoptosis in liver and kidney as compared with the native drug. All these characteristics make PEG-CPT conjugate an attractive anticancer drug for the effective chemotherapy of solid tumors.
Collapse
Affiliation(s)
- Deshan Yu
- Enzon Pharmaceuticals, Inc., Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Schluep T, Cheng J, Khin KT, Davis ME. Pharmacokinetics and biodistribution of the camptothecin–polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer Chemother Pharmacol 2005; 57:654-62. [PMID: 16133526 DOI: 10.1007/s00280-005-0091-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE IT-101 is a camptothecin-polymer conjugate prepared by linking camptothecin (CPT) to a hydrophilic, cyclodextrin-based, linear polymer through ester bonds. In previous studies, these polymer conjugates with high molecular weights (ca 90 kDa) have shown significant antitumor effects against human colon carcinoma xenografts. The pharmacokinetics of IT-101 in plasma of rats and its biodistribution in nude mice bearing human LS174T colon carcinoma tumors is reported here. METHODS Sprague-Dawley rats were injected intravenously with three different doses of IT-101. Serial plasma samples were analyzed for polymer-bound and unconjugated CPT by high-performance liquid chromatography (HPLC). Concentration vs time data were modeled using non-compartmentalized methods and compared to CPT alone injected intravenously at an equivalent dose. Tumor-bearing mice were injected intravenously with IT-101 and intraperitoneally with CPT alone, and sacrificed after 24 and 48 h, and serum, heart, liver, spleen, lungs and tumor collected. Tissue samples were extracted and analyzed for polymer-bound and unconjugated CPT by HPLC. RESULTS Plasma concentrations and the area under the curve for polymer-bound CPT are approximately 100-fold higher than those of unconjugated CPT or CPT alone, injected intravenously at an equivalent dose. The plasma half-life of IT-101 ranges from 17 -20 h and is significantly greater than that of CPT alone (1.3 h). When CPT is conjugated to polymer, the biodistribution pattern of CPT is different from that taken alone. At 24 h post injection, the total CPT per gram of tissue is the highest in tumor tissue when compared to all other tissues tested. Tumor concentrations of active CPT released from the conjugate are more than 160-fold higher when administered as a polymer conjugate rather than as CPT alone. CONCLUSIONS The studies presented here indicate that intravenous administration of IT-101, a cyclodextrin based polymer-CPT conjugate, gives prolonged plasma half-life and enhanced distribution to tumor tissue when compared to CPT alone. The data also show that active CPT is released from the conjugate within the tumor for an extended period of time. These effects likely play a significant role in the enhanced antitumor activity of IT-101 when compared to CPT alone or irinotecan.
Collapse
Affiliation(s)
- Thomas Schluep
- Insert Therapeutics, Inc., 3525 Nina Street, Pasadena, CA, 91107, USA
| | | | | | | |
Collapse
|
160
|
Cheng J, Khin KT, Davis ME. Antitumor activity of beta-cyclodextrin polymer-camptothecin conjugates. Mol Pharm 2005; 1:183-93. [PMID: 15981921 DOI: 10.1021/mp049966y] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antitumor activity of linear, beta-cyclodextrin polymer (CDP)-camptothecin (CPT) conjugates (HGGG6, LGGG10, HG6, and HGGG10) is investigated in nude mice bearing human LS174T colon carcinoma tumors. These conjugates differ in polymer molecular mass [97 kDa (H) or 35 kDa (L)], CDP-CPT linker structure [glycine (G) or triglycine (GGG)], and CPT loading [ca. 6 wt % (6) or 10 wt % (10)]. Maximum tolerable doses (MTDs) of the three conjugates, LGGG10, HG6, and HGGG10, are determined to be 36, 9, and 9 mg of CPT/kg, respectively, while the MTD of the CDP alone exceeds 240 mg/kg (highest value investigated). The three CDP-CPT conjugates with high polymer molecular masses (HGGG6, HG6, and HGGG10) demonstrate antitumor activity at their MTDs superior to that of CPT at the same amount and to that of irinotecan at its optimal dose. They also show tumor growth inhibition that is superior to that of the conjugate containing the low-molecular mass polymer (LGGG10) at the same dose of CPT. No significant effects of CPT weight loading or linker structure on tumor growth delay are observed. However, conjugates containing G appear to be less toxic than these with GGG. These antitumor studies demonstrate that the CDP-based conjugates of CPT exhibit tumor growth inhibition superior to that of CPT or irinotecan at the conditions employed in this study. The striking observation is that a short course of treatment with the polymer conjugates gives long-term control of tumor growth that does not occur with either CPT or irinotecan. Intracellular CDPs are demonstrated by analyzing cells that were cultured in the presence of rhodamine-labeled CDP (HRhod) containing medium using both confocal microscopy and flow cytometry. The long-term therapeutic efficacy of CDP-CPT conjugates observed in mice may in part be due to the sustained release of CPT from these conjugates in the acidic, intracellular compartments since these conjugates are shown to have significantly slower release rates at acidic pH than at physiological pH.
Collapse
Affiliation(s)
- Jianjun Cheng
- Insert Therapeutics, Inc., 2585 Nina Street, Pasadena, California 91107, USA
| | | | | |
Collapse
|
161
|
Zhang Z, Tanabe K, Hatta H, Nishimoto SI. Bioreduction activated prodrugs of camptothecin: molecular design, synthesis, activation mechanism and hypoxia selective cytotoxicity. Org Biomol Chem 2005; 3:1905-10. [PMID: 15889173 DOI: 10.1039/b502813b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several water-soluble derivatives (CPT3, CPT3a-d) of camptothecin (CPT) were synthesized, among which CPT3 bearing an N,N'-dimethyl-1-aminoethylcarbamate side-chain was further conjugated with reductively eliminating structural units of indolequinone, 4-nitrobenzyl alcohol and 4-nitrofuryl alcohol to produce novel prodrugs of camptothecin (CPT4-6). All CPT derivatives were of lower cytotoxicity than their parent compound of CPT. In contrast, CPT4 and CPT6 showed higher hypoxia selectivity of cytotoxicity towards tumor cells than CPT. A mechanism by which a representative prodrug CPT4 is activated in the presence of DT-diaphorase to release CPT was also discussed. The bioreduction activated CPT prodrugs including CPT4 and CPT6 are identified to be promising for application to the hypoxia targeting tumor chemotherapy.
Collapse
Affiliation(s)
- Zhouen Zhang
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8510, Japan
| | | | | | | |
Collapse
|
162
|
Abstract
Cyclodextrins are cyclic oligomers of glucose that can form water-soluble inclusion complexes with small molecules and portions of large compounds. These biocompatible, cyclic oligosaccharides do not elicit immune responses and have low toxicities in animals and humans. Cyclodextrins are used in pharmaceutical applications for numerous purposes, including improving the bioavailability of drugs. Current cyclodextrin-based therapeutics are described and possible future applications discussed. Cyclodextrin-containing polymers are reviewed and their use in drug delivery presented. Of specific interest is the use of cyclodextrin-containing polymers to provide unique capabilities for the delivery of nucleic acids.
Collapse
Affiliation(s)
- Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
163
|
Paranjpe PV, Chen Y, Kholodovych V, Welsh W, Stein S, Sinko PJ. Tumor-targeted bioconjugate based delivery of camptothecin: design, synthesis and in vitro evaluation. J Control Release 2004; 100:275-92. [PMID: 15544875 DOI: 10.1016/j.jconrel.2004.08.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 08/30/2004] [Indexed: 11/20/2022]
Abstract
Camptothecin (CPT) presents numerous challenges associated with optimal transport and delivery including variability in clinically observed effects, low target tissue concentrations and severe and unpredictable toxicity. The objective of the present study was to optimize the delivery of CPT by targeting it to cancer cells using an endogenous receptor system. A novel CPT bioconjugate was synthesized using carbodiimide chemistry with a linear poly(ethylene glycol) (PEG) and amino acid glycine as the spacer and linker respectively. Folic acid was used as the targeting ligand to take advantage of folate receptor mediated endocytosis. The bioconjugate was extensively characterized using MALDI, proton NMR, FT-IR and amino acid analysis. Furthermore, the bioconjugate was evaluated in vitro for specific targeting to folate receptor-expressing KB cells, a human nasopharyngeal carcinoma. Finally, the delivery system was evaluated for cytotoxicity using a MTT based assay. The results indicate significantly higher efficacy of the bioconjugate in comparison to CPT. A control conjugate without PEG demonstrated no improvement in efficacy over untargeted CPT emphasizing the importance of spacer between the anticancer compounds and targeting moiety. This bioconjugate represents the 'first-in-series' of targeted bioconjugates and serves as prototype for improving tumor cell concentration and efficacy.
Collapse
Affiliation(s)
- Pankaj V Paranjpe
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
164
|
Arima H. Polyfection as Nonviral Gene Transfer Method —Design of Novel Nonviral Vector Using α-Cyclodextrin—. YAKUGAKU ZASSHI 2004; 124:451-64. [PMID: 15235229 DOI: 10.1248/yakushi.124.451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to the growing concerns over the toxicity and immunogenicity of viral DNA delivery systems, DNA delivery via nonviral routes has become more desirable and advantageous. In particular, polycation complexes with DNA (polyplex) are attractive nonviral vectors. To design novel polycationic vectors, we prepared polyamidoamine starburst dendrimer (dendrimer) conjugates with three cyclodextrins (CDE conjugates) and three generations (G2, G3, and G4) of dendrimers. Of seven CDE conjugates, an alpha-CDE conjugate (G3) with an average degree of substitution (DS) of alpha-CyD of 2.4 [alpha-CDE conjugate (G3, DS 2.4)] showed greater gene transfer activity than dendrimers and other alpha-CDE conjugates with less cytotoxicity. These results suggest the potential use of alpha-CDE conjugate (G3, DS 2.4) as a polycationic vector in vitro and in vivo. Herein, I review a recent polyfection method, with special focus on alpha-CDE conjugate (G3, DS 2.4).
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.
| |
Collapse
|