151
|
|
152
|
Jones SA, Duncan J, Aitken SG, Coxon JM, Abell AD. The Preparation of Macrocyclic Calpain Inhibitors by Ring Closing Metathesis and Cross Metathesis. Aust J Chem 2014. [DOI: 10.1071/ch14121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ring closing metathesis and cross metathesis approaches to a new macrocyclic peptidomimetic aldehyde 2 have been developed, with the former route being the most convenient. Aldehyde 2 is a potent inhibitor of calpain II (IC50 of 45 nM) with comparable activity to the benchmark acyclic inhibitor SJA6017 4. Both compounds contain an N-terminal 4-fluorophenylsulfonyl group. The P2 Ile analogue of 2 (16) is significantly less active (IC50 of 2000 nM) which reflects an unusually subtle importance of the P2 residue for active site binding.
Collapse
|
153
|
Abstract
Stabilized alpha-helical (SAH) peptides are valuable laboratory tools to explore important protein-protein interactions. Whereas most peptides lose their secondary structure when isolated from the host protein, stapled peptides incorporate an all-hydrocarbon "staple" that reinforces their natural alpha-helical structure. Thus, stapled peptides retain their functional ability to bind their native protein targets and serve multiple experimental uses. First, they are useful for structural studies such as NMR or crystal structures that map and better define binding sites. Second, they can be used to identify small molecules that specifically target that interaction site. Third, stapled peptides can be used to test the importance of specific amino acid residues or posttranslational modifications to the binding. Fourth, they can serve as structurally competent bait to identify novel binding partners to specific alpha-helical motifs. In addition to markedly improved alpha-helicity, stapled peptides also display resistance to protease cleavage and enhanced cell permeability. Most importantly, they are useful for intracellular experiments that explore the functional consequences of blocking particular protein interactions. Because of their remarkable stability, stapled peptides can be applied to whole-animal, in vivo studies. Here we describe a protocol for the synthesis of a peptide that incorporates an all-hydrocarbon "staple" employing a ring-closing olefin metathesis reaction. With proper optimization, stapled peptides can be a fundamental, accurate laboratory tool in the modern chemical biologist's armory.
Collapse
|
154
|
Quesne MG, Ward RA, de Visser SP. Cysteine protease inhibition by nitrile-based inhibitors: a computational study. Front Chem 2013; 1:39. [PMID: 24790966 PMCID: PMC3982517 DOI: 10.3389/fchem.2013.00039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/15/2013] [Indexed: 12/31/2022] Open
Abstract
Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical vs. electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.
Collapse
Affiliation(s)
- Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester Manchester, UK
| | | | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester Manchester, UK
| |
Collapse
|
155
|
Paetzel M. Structure and mechanism of Escherichia coli type I signal peptidase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1497-508. [PMID: 24333859 DOI: 10.1016/j.bbamcr.2013.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 12/16/2022]
Abstract
Type I signal peptidase is the enzyme responsible for cleaving off the amino-terminal signal peptide from proteins that are secreted across the bacterial cytoplasmic membrane. It is an essential membrane bound enzyme whose serine/lysine catalytic dyad resides on the exo-cytoplasmic surface of the bacterial membrane. This review discusses the progress that has been made in the structural and mechanistic characterization of Escherichia coli type I signal peptidase (SPase I) as well as efforts to develop a novel class of antibiotics based on SPase I inhibition. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
156
|
Truncated and constrained helical analogs of antimicrobial esculentin-2EM. Bioorg Med Chem Lett 2013; 23:6717-20. [DOI: 10.1016/j.bmcl.2013.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/07/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022]
|
157
|
Jones SA, Neilsen PM, Siew L, Callen DF, Goldfarb NE, Dunn BM, Abell AD. A template-based approach to inhibitors of calpain 2, 20S proteasome, and HIV-1 protease. ChemMedChem 2013; 8:1918-21. [PMID: 24130198 DOI: 10.1002/cmdc.201300387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/07/2013] [Indexed: 01/14/2023]
Abstract
Specificity counts: A template-based approach to protease inhibitors is presented using a core macrocycle that presents a generic β-strand template for binding to protease active sites. This is then specifically functionalized at P2 , and the C and N termini to give inhibitors of calpain 2, 20S proteasome, and HIV-1 protease.
Collapse
Affiliation(s)
- Seth A Jones
- School Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005 (Australia)
| | | | | | | | | | | | | |
Collapse
|
158
|
Pham TK, Yoo J, Kim YW. Comparison of Oct-2-enyl and Oct-4-enyl Staples for Their Formation and α-Helix Stabilizing Effects. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.9.2640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
159
|
Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. Proc Natl Acad Sci U S A 2013; 110:15602-7. [PMID: 24019500 DOI: 10.1073/pnas.1312473110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Selective blockade of gene expression by designed small molecules is a fundamental challenge at the interface of chemistry, biology, and medicine. Transcription factors have been among the most elusive targets in genetics and drug discovery, but the fields of chemical biology and genetics have evolved to a point where this task can be addressed. Herein we report the design, synthesis, and in vivo efficacy evaluation of a protein domain mimetic targeting the interaction of the p300/CBP coactivator with the transcription factor hypoxia-inducible factor-1α. Our results indicate that disrupting this interaction results in a rapid down-regulation of hypoxia-inducible genes critical for cancer progression. The observed effects were compound-specific and dose-dependent. Gene expression profiling with oligonucleotide microarrays revealed effective inhibition of hypoxia-inducible genes with relatively minimal perturbation of nontargeted signaling pathways. We observed remarkable efficacy of the compound HBS 1 in suppressing tumor growth in the fully established murine xenograft models of renal cell carcinoma of the clear cell type. Our results suggest that rationally designed synthetic mimics of protein subdomains that target the transcription factor-coactivator interfaces represent a unique approach for in vivo modulation of oncogenic signaling and arresting tumor growth.
Collapse
|
160
|
Taguchi Y, Hohsfield LA, Hollister JR, Baron GS. Effects of FlAsH/tetracysteine (TC) Tag on PrP proteolysis and PrPres formation by TC-scanning. Chembiochem 2013; 14:1597-610, 1510. [PMID: 23943295 DOI: 10.1002/cbic.201300255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions associated with proteolytic processing and aggregation are integral to normal and pathological aspects of prion protein (PrP) biology. Characterization of these interactions requires the identification of amino acid residues involved. The FlAsH/tetracysteine (FlAsH/TC) tag is a small fluorescent tag amenable to insertion at internal sites in proteins. In this study, we used serial FlAsH/TC insertions (TC-scanning) as a probe to characterize sites of protein-protein interaction between PrP and other molecules. To explore this application in the context of substrate-protease interactions, we analyzed the effect of FlAsH/TC insertions on proteolysis of cellular prion protein (PrPsen) in in vitro reactions and generation of the C1 metabolic fragment of PrPsen in live neuroblastoma cells. The influence of FlAsH/TC insertion was evaluated by TC-scanning across the cleavage sites of each protease. The results showed that FlAsH/TC inhibited protease cleavage only within limited ranges of the cleavage sites, which varied from about one to six residues in width, depending on the protease, providing an estimate of the PrP residues interacting with each protease. TC-scanning was also used to probe a different type of protein-protein interaction: the conformational conversion of FlAsH-PrPsen to the prion disease-associated isoform, PrPres. PrP constructs with FlAsH/TC insertions at residues 90-96 but not 97-101 were converted to FlAsH-PrPres, identifying a boundary separating loosely versus compactly folded regions of PrPres. Our observations demonstrate that TC-scanning with the FlAsH/TC tag can be a versatile method for probing protein-protein interactions and folding processes.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Rocky Mountain Laboratories, NIAID, NIH, Laboratory of Persistent Viral Diseases, 903 S. 4th St., Hamilton, MT 59840 (USA); Currently at the Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6 (Canada).
| | | | | | | |
Collapse
|
161
|
Mandadapu SR, Weerawarna PM, Prior AM, Uy RAZ, Aravapalli S, Alliston KR, Lushington GH, Kim Y, Hua DH, Chang KO, Groutas WC. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorg Med Chem Lett 2013; 23:3709-12. [PMID: 23727045 PMCID: PMC3750990 DOI: 10.1016/j.bmcl.2013.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 μM, respectively.
Collapse
Affiliation(s)
| | | | - Allan M. Prior
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | - Sridhar Aravapalli
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Kevin R. Alliston
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
162
|
Jiang Y, Li BQ, Zhang Y, Feng YM, Gao YF, Zhang N, Cai YD. Prediction and Analysis of Post-Translational Pyruvoyl Residue Modification Sites from Internal Serines in Proteins. PLoS One 2013; 8:e66678. [PMID: 23805260 PMCID: PMC3689656 DOI: 10.1371/journal.pone.0066678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/09/2013] [Indexed: 12/28/2022] Open
Abstract
Most of pyruvoyl-dependent proteins observed in prokaryotes and eukaryotes are critical regulatory enzymes, which are primary targets of inhibitors for anti-cancer and anti-parasitic therapy. These proteins undergo an autocatalytic, intramolecular self-cleavage reaction in which a covalently bound pyruvoyl group is generated on a conserved serine residue. Traditional detections of the modified serine sites are performed by experimental approaches, which are often labor-intensive and time-consuming. In this study, we initiated in an attempt for the computational predictions of such serine sites with Feature Selection based on a Random Forest. Since only a small number of experimentally verified pyruvoyl-modified proteins are collected in the protein database at its current version, we only used a small dataset in this study. After removing proteins with sequence identities >60%, a non-redundant dataset was generated and was used, which contained only 46 proteins, with one pyruvoyl serine site for each protein. Several types of features were considered in our method including PSSM conservation scores, disorders, secondary structures, solvent accessibilities, amino acid factors and amino acid occurrence frequencies. As a result, a pretty good performance was achieved in our dataset. The best 100.00% accuracy and 1.0000 MCC value were obtained from the training dataset, and 93.75% accuracy and 0.8441 MCC value from the testing dataset. The optimal feature set contained 9 features. Analysis of the optimal feature set indicated the important roles of some specific features in determining the pyruvoyl-group-serine sites, which were consistent with several results of earlier experimental studies. These selected features may shed some light on the in-depth understanding of the mechanism of the post-translational self-maturation process, providing guidelines for experimental validation. Future work should be made as more pyruvoyl-modified proteins are found and the method should be evaluated on larger datasets. At last, the predicting software can be downloaded from http://www.nkbiox.com/sub/pyrupred/index.html.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, P. R. China
| | - Bi-Qing Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yuchao Zhang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese, Academy of Sciences, Shanghai, P.R. China
| | - Yuan-Ming Feng
- Department of Biomedical Engineering, Tianjin University, Tianjin Key Lab of Biomedical Engineering Measurement, Tianjin, P.R.China
| | - Yu-Fei Gao
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, P. R. China
- * E-mail: (YFG); (NZ); (YDC)
| | - Ning Zhang
- Department of Biomedical Engineering, Tianjin University, Tianjin Key Lab of Biomedical Engineering Measurement, Tianjin, P.R.China
- * E-mail: (YFG); (NZ); (YDC)
| | - Yu-Dong Cai
- Institiute of Systems Biology, Shanghai University, Shanghai, P. R. China
- * E-mail: (YFG); (NZ); (YDC)
| |
Collapse
|
163
|
Gros G, Martinez L, Gimenez AS, Adler P, Maurin P, Wolkowicz R, Falson P, Hasserodt J. Modular construction of quaternary hemiaminal-based inhibitor candidates and their in cellulo assessment with HIV-1 protease. Bioorg Med Chem 2013; 21:5407-13. [PMID: 23911197 DOI: 10.1016/j.bmc.2013.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 01/25/2023]
Abstract
Non-peptidomimetic drug-like protease inhibitors have potential for circumventing drug resistance. We developed a much-improved synthetic route to our previously reported inhibitor candidate displaying an unusual quaternized hemi-aminal. This functional group forms from a linear precursor upon passage into physiological media. Seven variants were prepared and tested in cellulo with our HIV-1 fusion-protein technology that result in an eGFP-based fluorescent readout. Three candidates showed inhibition potency above 20μM and toxicity at higher concentrations, making them attractive targets for further refinement. Importantly, our class of original inhibitor candidates is not recognized by two major multidrug resistance pumps, quite in contrast to most clinically applied HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- Guillaume Gros
- Laboratoire de Chimie, Université de Lyon - ENS, 46 allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Eckhard U, Schönauer E, Brandstetter H. Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T. J Biol Chem 2013; 288:20184-94. [PMID: 23703618 PMCID: PMC3711286 DOI: 10.1074/jbc.m112.448548] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clostridial collagenases are among the most efficient enzymes to degrade by far the most predominant protein in the biosphere. Here we present crystal structures of the peptidases of three clostridial collagenase isoforms (ColG, ColH, and ColT). The comparison of unliganded and liganded structures reveals a quaternary subdomain dynamics. In the unliganded ColH structure, this globular dynamics is modulated by an aspartate switch motion that binds to the catalytic zinc. We further identified a calcium binding site in proximity to the catalytic zinc. Both ions are required for full activity, explaining why calcium critically affects the enzymatic activity of clostridial collagenases. Our studies further reveal that loops close to the active site thus serve as characteristic substrate selectivity filter. These elements explain the distinct peptidolytic and collagenolytic activities of these enzymes and provide a rational framework to engineer collagenases with customized substrate specificity as well as for inhibitor design.
Collapse
Affiliation(s)
- Ulrich Eckhard
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | | | |
Collapse
|
165
|
Abstract
The suite of currently used drugs can be divided into two categories - traditional 'small molecule' drugs with typical molecular weights of <500 Da but with oral bioavailability, and much larger 'biologics' typically >5000 Da that are not orally bioavailable and need to be delivered via injection. Due to their small size, conventional small molecule drugs may suffer from reduced target selectivity that often ultimately manifests in human side-effects, whereas protein therapeutics tend to be exquisitely specific for their targets due to many more interactions with them, but this comes at a cost of low bioavailability, poor membrane permeability, and metabolic instability. The time has now come to reinvestigate new drug leads that fit between these two molecular weight extremes, with the goal of combining advantages of small molecules (cost, conformational restriction, membrane permeability, metabolic stability, oral bioavailability) with those of proteins (natural components, target specificity, high potency). This article uses selected examples of peptides to highlight the importance of peptide drugs, some potential new opportunities for their exploitation, and some difficult challenges ahead in this field.
Collapse
Affiliation(s)
- David J Craik
- Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | | | |
Collapse
|
166
|
Fuchs JE, von Grafenstein S, Huber RG, Margreiter MA, Spitzer GM, Wallnoefer HG, Liedl KR. Cleavage entropy as quantitative measure of protease specificity. PLoS Comput Biol 2013; 9:e1003007. [PMID: 23637583 PMCID: PMC3630115 DOI: 10.1371/journal.pcbi.1003007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/07/2013] [Indexed: 01/05/2023] Open
Abstract
A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. Proteases show a broad range of cleavage specificities. Promiscuous proteases as digestive enzymes unspecifically degrade peptides, whereas highly specific proteases are involved in signaling cascades. As a quantitative index of substrate specificity was lacking, we introduce cleavage entropy as a measure of substrate specificity of proteases. This quantitative score allows for straight-forward rationalization of substrate recognition by a subpocket-wise assessment of substrate readout leading to specificity profiles of individual proteases as well as an estimate of overall substrate promiscuity. We present an exemplary application of the descriptor ‘cleavage entropy’ to trace substrate specificity through the evolution of different protease folds. Our score highlights the diversity of substrate specificity within evolutionary related proteases and hence the complex relationship between sequence, structure and substrate recognition. By taking into account the whole distribution of known substrates rather than simple substrate counting, cleavage entropy provides the unique opportunity to dissect the molecular origins of protease substrate specificity.
Collapse
Affiliation(s)
- Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Susanne von Grafenstein
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Roland G. Huber
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Michael A. Margreiter
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Gudrun M. Spitzer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hannes G. Wallnoefer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
167
|
Syrén PO. The solution of nitrogen inversion in amidases. FEBS J 2013; 280:3069-83. [DOI: 10.1111/febs.12241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Per-Olof Syrén
- Institute of Technical Biochemistry; University of Stuttgart; Germany
| |
Collapse
|
168
|
Truncated and helix-constrained peptides with high affinity and specificity for the cFos coiled-coil of AP-1. PLoS One 2013; 8:e59415. [PMID: 23544065 PMCID: PMC3609778 DOI: 10.1371/journal.pone.0059415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/14/2013] [Indexed: 01/20/2023] Open
Abstract
Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i→i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, α-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable α-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ∼9 kcal/mol, but this was compensated by increased conformational entropy (TΔS ≤7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by α-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases.
Collapse
|
169
|
Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J 2013; 280:1579-603. [PMID: 23432912 DOI: 10.1111/febs.12199] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/11/2013] [Accepted: 02/18/2013] [Indexed: 02/03/2023]
Abstract
Intramembrane proteases cleave membrane proteins in their transmembrane helices to regulate a wide range of biological processes. They catalyse hydrolytic reactions within the hydrophobic environment of lipid membranes where water is normally excluded. How? Do the different classes of intramembrane proteases share any mechanistic principles? In this review these questions will be discussed in view of the crystal structures of prokaryotic members of the three known catalytic types of intramembrane proteases published over the past 7 years. Rhomboids, the intramembrane serine proteases that are the best understood family, will be the initial area of focus, and the principles that have arisen from a number of structural and biochemical studies will be considered. The site-2 metalloprotease and GXGD-type aspartyl protease structures will then be discussed, with parallels drawn and differences highlighted between these enzymes and the rhomboids. Despite the significant advances achieved so far, to obtain a detailed understanding of the mechanism of any intramembrane protease, high-resolution structural information on the substrate-enzyme complex is required. This remains a major challenge for the field.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
170
|
Fujita Y, Fujita S, Okada Y, Chiba K. Soluble Tag-Assisted Peptide Head-to-Tail Cyclization: Total Synthesis of Mahafacyclin B. Org Lett 2013; 15:1155-7. [DOI: 10.1021/ol4003477] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuko Fujita
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan, and Research and Development Division, JITSUBO Co., Ltd., 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Shuji Fujita
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan, and Research and Development Division, JITSUBO Co., Ltd., 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan, and Research and Development Division, JITSUBO Co., Ltd., 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan, and Research and Development Division, JITSUBO Co., Ltd., 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| |
Collapse
|
171
|
Design and synthesis of bicyclic pyrazinone and pyrimidinone amides as potent TF–FVIIa inhibitors. Bioorg Med Chem Lett 2013; 23:1604-7. [DOI: 10.1016/j.bmcl.2013.01.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 11/20/2022]
|
172
|
Abstract
Interstitial collagen mechanical and biological properties are altered by proteases that catalyze the hydrolysis of the collagen triple-helical structure. Collagenolysis is critical in development and homeostasis but also contributes to numerous pathologies. Mammalian collagenolytic enzymes include matrix metalloproteinases, cathepsin K, and neutrophil elastase, and a variety of invertebrates and pathogens possess collagenolytic enzymes. Components of the mechanism of action for the collagenolytic enzyme MMP-1 have been defined experimentally, and insights into other collagenolytic mechanisms have been provided. Ancillary biomolecules may modulate the action of collagenolytic enzymes.
Collapse
Affiliation(s)
- Gregg B Fields
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|
173
|
Okamoto T, Zobel K, Fedorova A, Quan C, Yang H, Fairbrother WJ, Huang DCS, Smith BJ, Deshayes K, Czabotar PE. Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem Biol 2013; 8:297-302. [PMID: 23151250 DOI: 10.1021/cb3005403] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An attractive approach for developing therapeutic peptides is to enhance binding to their targets by stabilizing their α-helical conformation, for example, stabilized BimBH3 peptides (BimSAHB) designed to induce apoptosis. Unexpectedly, we found that such modified peptides have reduced affinity for their targets, the pro-survival Bcl-2 proteins. We attribute this loss in affinity to disruption of a network of stabilizing intramolecular interactions present in the bound state of the native peptide. Altering this network may compromise binding affinity, as in the case of the BimBH3 stapled peptide studied here. Moreover, cells exposed to these peptides do not readily undergo apoptosis, strongly indicating that BimSAHB is not inherently cell permeable.
Collapse
Affiliation(s)
- Toru Okamoto
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010,
Australia
| | - Kerry Zobel
- Departments of
Early Discovery
Biochemistry and Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Anna Fedorova
- Departments of
Early Discovery
Biochemistry and Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Clifford Quan
- Departments of
Early Discovery
Biochemistry and Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hong Yang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010,
Australia
| | - Wayne J. Fairbrother
- Departments of
Early Discovery
Biochemistry and Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010,
Australia
| | - Brian J. Smith
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010,
Australia
- Department of Chemistry, La
Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Kurt Deshayes
- Departments of
Early Discovery
Biochemistry and Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter E. Czabotar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010,
Australia
| |
Collapse
|
174
|
Gillner DM, Becker DP, Holz RC. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. J Biol Inorg Chem 2013; 18:155-163. [PMID: 23223968 PMCID: PMC3862034 DOI: 10.1007/s00775-012-0965-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/15/2012] [Indexed: 01/12/2023]
Abstract
In this review, we summarize the recent literature on dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure-function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.
Collapse
Affiliation(s)
- Danuta M Gillner
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
- Department of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA
| | - Richard C Holz
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
| |
Collapse
|
175
|
Jia F, Fan J, Zhang B, Yuan Z. Mutagenesis of D80-82 and G83 residues in West Nile Virus NS2B: effects on NS2B-NS3 activity and viral replication. Virol Sin 2013; 28:16-23. [PMID: 23325418 DOI: 10.1007/s12250-013-3276-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/28/2012] [Indexed: 12/01/2022] Open
Abstract
Flaviviral NS2B is a required cofactor for NS3 serine protease activity and plays an important role in promoting functional NS2B-NS3 protease configuration and maintaining critical interactions with protease catalysis substrates. The residues D(80)DDG in West Nile virus (WNV) NS2B are important for protease activity. To investigate the effects of D(80)DDG in NS2B on protease activity and viral replication, the negatively charged region D(80)DD and the conserved residue G83 of NS2B were mutated (D(80)DD/E(80)EE, D(80)DD/K(80)KK, D(80)DD/A(80)AA, G83F, G83S, G83D, G83K, and G83A), and NS3 D75A was designated as the negative control. The effects of the mutations on NS2B-NS3 activity, viral translation, and viral RNA replication were analyzed using kinetic analysis of site-directed enzymes and a transient replicon assay. All substitutions resulted in significantly decreased enzyme activity and blocked RNA replication. The negative charge of D(80)DD is not important for maintaining NS2B function, but side chain changes in G83 have dramatic effects on protease activity and RNA replication. These results demonstrate that NS2B is important for viral replication and that D(80)DD and G83 substitutions prevent replication; they will be useful for understanding the relationship between NS2B and NS3.
Collapse
Affiliation(s)
- Fan Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | |
Collapse
|
176
|
Ottersbach PA, Schmitz J, Schnakenburg G, Gütschow M. An access to aza-Freidinger lactams and E-locked analogs. Org Lett 2013; 15:448-51. [PMID: 23320486 DOI: 10.1021/ol3030583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Freidinger lactams, possessing a peptide bond configuration locked to Z, are important key elements of conformationally restricted peptidomimetics. In the present work, the C(α)H(i+1) unit has been replaced by N, leading to novel aza-Freidinger lactams. A synthesis to corresponding building blocks and their E-locked analogs is introduced. The versatile buildings blocks reported here are expected to serve as useful elements in peptide synthesis.
Collapse
Affiliation(s)
- Philipp A Ottersbach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | |
Collapse
|
177
|
Chung BKW, Hickey JL, Scully CCG, Zaretsky S, Yudin AK. Bicycle synthesis through peptide macrocyclization using aziridine aldehydes followed by late stage disulfide bond installation. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00054k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present a method that can be applied to generate medium-sized peptidomimetic macrocycles equipped with disulfide bonds.
Collapse
Affiliation(s)
| | | | | | - Serge Zaretsky
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | |
Collapse
|
178
|
Angelini A, Morales-Sanfrutos J, Diderich P, Chen S, Heinis C. Bicyclization and Tethering to Albumin Yields Long-Acting Peptide Antagonists. J Med Chem 2012; 55:10187-97. [DOI: 10.1021/jm301276e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessandro Angelini
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Julia Morales-Sanfrutos
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Diderich
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Shiyu Chen
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
179
|
Micheletti C. Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments. Phys Life Rev 2012. [PMID: 23199577 DOI: 10.1016/j.plrev.2012.10.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The growing interest for comparing protein internal dynamics owes much to the realisation that protein function can be accompanied or assisted by structural fluctuations and conformational changes. Analogously to the case of functional structural elements, those aspects of protein flexibility and dynamics that are functionally oriented should be subject to evolutionary conservation. Accordingly, dynamics-based protein comparisons or alignments could be used to detect protein relationships that are more elusive to sequence and structural alignments. Here we provide an account of the progress that has been made in recent years towards developing and applying general methods for comparing proteins in terms of their internal dynamics and advance the understanding of the structure-function relationship.
Collapse
Affiliation(s)
- Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste, Italy.
| |
Collapse
|
180
|
Spolaore B, Raboni S, Ramos Molina A, Satwekar A, Damiano N, Fontana A. Local unfolding is required for the site-specific protein modification by transglutaminase. Biochemistry 2012; 51:8679-89. [PMID: 23083324 DOI: 10.1021/bi301005z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transglutaminase (TGase) from Streptomyces mobaraensis catalyzes transamidation reactions in a protein substrate leading to the modification of the side chains of Gln and Lys residues according to the A-CONH(2) + H(2)N-B → A-CONH-B + NH(3) reaction, where both A and B can be a protein or a ligand. A noteworthy property of TGase is its susbstrate specificity, so that often only a few specific Gln or Lys residues can be modified in a globular protein. The molecular features of a globular protein dictating the site-specific reactions mediated by TGase are yet poorly understood. Here, we have analyzed the reactivity toward TGase of apomyoglobin (apoMb), α-lactalbumin (α-LA), and fragment 205-316 of thermolysin. These proteins are models of protein structure and folding that have been studied previously using the limited proteolysis technique to unravel regions of local unfolding in their amino acid sequences. The three proteins were modified by TGase at the level of Gln or Lys residues with dansylcadaverine or carbobenzoxy-l-glutaminylglycine, respectively. Despite these model proteins containing several Gln and Lys residues, the sites of TGase derivatization occur over restricted chain regions of the protein substrates. In particular, the TGase-mediated modifications occur in the "helix F" region in apoMb, in the β-domain in apo-α-LA in its molten globule state, and in the N-terminal region in fragment 205-316 of thermolysin. Interestingly, the sites of limited proteolysis are located in the same chain regions of these proteins, thus providing a clear-cut demonstration that chain flexibility or local unfolding overwhelmingly dictates the site-specific modification by both TGase and a protease.
Collapse
Affiliation(s)
- Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
181
|
Reid VJ, Theron LW, du Toit M, Divol B. Identification and partial characterization of extracellular aspartic protease genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384. Appl Environ Microbiol 2012; 78:6838-49. [PMID: 22820332 PMCID: PMC3457490 DOI: 10.1128/aem.00505-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022] Open
Abstract
The extracellular acid proteases of non-Saccharomyces wine yeasts may fulfill a number of roles in winemaking, which include increasing the available nitrogen sources for the growth of fermentative microbes, affecting the aroma profile of the wine, and potentially reducing protein haze formation. These proteases, however, remain poorly characterized, especially at genetic level. In this study, two extracellular aspartic protease-encoding genes were identified and sequenced, from two yeast species of enological origin: one gene from Metschnikowia pulcherrima IWBT Y1123, named MpAPr1, and the other gene from Candida apicola IWBT Y1384, named CaAPr1. In silico analysis of these two genes revealed a number of features peculiar to aspartic protease genes, and both the MpAPr1 and CaAPr1 putative proteins showed homology to proteases of yeast genera. Heterologous expression of MpAPr1 in Saccharomyces cerevisiae YHUM272 confirmed that it encodes an aspartic protease. MpAPr1 production, which was shown to be constitutive, and secretion were confirmed in the presence of bovine serum albumin (BSA), casein, and grape juice proteins. The MpAPr1 gene was found to be present in 12 other M. pulcherrima strains; however, plate assays revealed that the intensity of protease activity was strain dependent and unrelated to the gene sequence.
Collapse
Affiliation(s)
- Vernita J Reid
- Institute for Wine Biotechnology, Stellenbosch University, Matieland, South Africa
| | | | | | | |
Collapse
|
182
|
Li BQ, Cai YD, Feng KY, Zhao GJ. Prediction of protein cleavage site with feature selection by random forest. PLoS One 2012; 7:e45854. [PMID: 23029276 PMCID: PMC3445488 DOI: 10.1371/journal.pone.0045854] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/23/2012] [Indexed: 11/24/2022] Open
Abstract
Proteinases play critical roles in both intra and extracellular processes by binding and cleaving their protein substrates. The cleavage can either be non-specific as part of degradation during protein catabolism or highly specific as part of proteolytic cascades and signal transduction events. Identification of these targets is extremely challenging. Current computational approaches for predicting cleavage sites are very limited since they mainly represent the amino acid sequences as patterns or frequency matrices. In this work, we developed a novel predictor based on Random Forest algorithm (RF) using maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). The features of physicochemical/biochemical properties, sequence conservation, residual disorder, amino acid occurrence frequency, secondary structure and solvent accessibility were utilized to represent the peptides concerned. Here, we compared existing prediction tools which are available for predicting possible cleavage sites in candidate substrates with ours. It is shown that our method makes much more reliable predictions in terms of the overall prediction accuracy. In addition, this predictor allows the use of a wide range of proteinases.
Collapse
Affiliation(s)
- Bi-Qing Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, P. R. China
- Shanghai Center for Bioinformation Technology, Shanghai, P. R. China
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, P. R. China
- * E-mail:
| | - Kai-Yan Feng
- Beijing Genomics Institute, Shenzhen Beishan Industrial Zone, Shenzhen, People's Republic of China
| | - Gui-Jun Zhao
- Children's Hospital of Shanghai, Shanghai Institute of Medical Genetics, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
- Key Lab of Embryo Molecular Biology, Ministry of Health, China, and Shanghai Lab of Embryo and Reproduction Engineering, Shanghai, P. R. China
| |
Collapse
|
183
|
Singam ERA, Balamurugan K, Gopalakrishnan R, Subramanian SR, Subramanian V, Ramasami T. Molecular dynamic simulation studies on the effect of one residue chain staggering on the structure and stability of heterotrimeric collagen-like peptides with interruption. Biopolymers 2012; 97:847-63. [DOI: 10.1002/bip.22085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
184
|
Ishchenko A, Liu Z, Lindblom P, Wu G, Jim KC, Gregg RD, Claremon DA, Singh SB. Structure-Based Design Technology Contour and Its Application to the Design of Renin Inhibitors. J Chem Inf Model 2012; 52:2089-97. [PMID: 22805048 DOI: 10.1021/ci200605k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexey Ishchenko
- Vitae Pharmaceuticals, 502
West Office Center Drive, Fort Washington, Pennsylvania 19034, United
States
| | - Zhijie Liu
- Vitae Pharmaceuticals, 502
West Office Center Drive, Fort Washington, Pennsylvania 19034, United
States
| | - Peter Lindblom
- Vitae Pharmaceuticals, 502
West Office Center Drive, Fort Washington, Pennsylvania 19034, United
States
| | - Guosheng Wu
- Vitae Pharmaceuticals, 502
West Office Center Drive, Fort Washington, Pennsylvania 19034, United
States
| | - Kam-Chuen Jim
- Vitae Pharmaceuticals, 502
West Office Center Drive, Fort Washington, Pennsylvania 19034, United
States
| | - Richard D. Gregg
- Vitae Pharmaceuticals, 502
West Office Center Drive, Fort Washington, Pennsylvania 19034, United
States
| | - David A. Claremon
- Vitae Pharmaceuticals, 502
West Office Center Drive, Fort Washington, Pennsylvania 19034, United
States
| | - Suresh B. Singh
- Vitae Pharmaceuticals, 502
West Office Center Drive, Fort Washington, Pennsylvania 19034, United
States
| |
Collapse
|
185
|
Londregan AT, Farley KA, Limberakis C, Mullins PB, Piotrowski DW. A new and useful method for the macrocyclization of linear peptides. Org Lett 2012; 14:2890-3. [PMID: 22612479 DOI: 10.1021/ol301173m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new and useful procedure for the macrocyclization of linear peptides is described. The natural amino acid side chains of tyrosine (phenol), lysine (alkylamine), and histidine (imidazole) react in an intramolecular fashion with a pendent pyridine-N-oxide-carboxamide, which is selectively activated by the phosphonium salt, PyBroP. The reaction is mild, rapid, and efficient with a potentially large substrate scope. Multiple examples are provided with full characterization and analyses, including a novel aza-variant of the C-O-D ring system of vancomycin.
Collapse
Affiliation(s)
- Allyn T Londregan
- CVMED Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, USA.
| | | | | | | | | |
Collapse
|
186
|
Meyer FM, Collins JC, Borin B, Bradow J, Liras S, Limberakis C, Mathiowetz AM, Philippe L, Price D, Song K, James K. Biaryl-bridged macrocyclic peptides: conformational constraint via carbogenic fusion of natural amino acid side chains. J Org Chem 2012; 77:3099-114. [PMID: 22352804 DOI: 10.1021/jo202105v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A general method for constraining peptide conformations via linkage of aromatic sidechains has been developed. Macrocyclization of suitably functionalized tri-, tetra- and pentapeptides via Suzuki-Miyaura cross-coupling has been used to generate side chain to side chain, biaryl-bridged 14- to 21-membered macrocyclic peptides. Biaryl bridges possessing three different configurations, meta-meta, meta-ortho, and ortho-meta, were systematically explored through regiochemical variation of the aryl halide and aryl boronate coupling partners, allowing fine-tuning of the resultant macrocycle conformation. Suzuki-Miyaura macrocyclizations were successfully achieved both in solution and on solid phase for all three sizes of peptide. This approach constitutes a means of constraining peptide conformation via direct carbogenic fusion of side chains of naturally occurring amino acids such as phenylalanine and tyrosine, and so is complementary to strategies involving non-natural, for example, hydrocarbon, bridges.
Collapse
Affiliation(s)
- Falco-Magnus Meyer
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, UniteUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Heterocycles in peptidomimetics and pseudopeptides: design and synthesis. Pharmaceuticals (Basel) 2012; 5:297-316. [PMID: 24281380 PMCID: PMC3763636 DOI: 10.3390/ph5030297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/22/2012] [Accepted: 02/28/2012] [Indexed: 11/17/2022] Open
Abstract
This minireview provides a brief outline of the peculiar aspects of the preparation of peptidomimetic and pseudopeptidic structures containing heterocycles. In particular novel tricyclic structures are investigated as potential drugs.
Collapse
|
188
|
Syrén PO, Hendil-Forssell P, Aumailley L, Besenmatter W, Gounine F, Svendsen A, Martinelle M, Hult K. Esterases with an introduced amidase-like hydrogen bond in the transition state have increased amidase specificity. Chembiochem 2012; 13:645-8. [PMID: 22378481 DOI: 10.1002/cbic.201100779] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Per-Olof Syrén
- Department of Biochemistry, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Yoo TH, Pogson M, Iverson BL, Georgiou G. Directed evolution of highly selective proteases by using a novel FACS-based screen that capitalizes on the p53 regulator MDM2. Chembiochem 2012; 13:649-53. [PMID: 22334509 DOI: 10.1002/cbic.201100718] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Tae Hyeon Yoo
- Department of Molecular Science and Technology, Division of Applied Chemistry and Biological Engineering, Ajou University, Suwon 443-749, South Korea
| | | | | | | |
Collapse
|
190
|
Kore AR, Shanmugasundaram M. Efficient Synthesis of New Peptidyl Chloromethyl Ketones for the Application of Proteinase K Inhibitors. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2010.521290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Anilkumar R. Kore
- a Life Technologies Inc., Bioorganic Chemistry Division , Austin , Texas , USA
| | | |
Collapse
|
191
|
Mahon AB, Miller SE, Joy ST, Arora PS. Rational Design Strategies for Developing Synthetic Inhibitors of Helical Protein Interfaces. TOPICS IN MEDICINAL CHEMISTRY 2012. [DOI: 10.1007/978-3-642-28965-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
192
|
Fontana A, de Laureto PP, Spolaore B, Frare E. Identifying disordered regions in proteins by limited proteolysis. Methods Mol Biol 2012; 896:297-318. [PMID: 22821533 DOI: 10.1007/978-1-4614-3704-8_20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Limited proteolysis experiments can be successfully used to detect sites of disorder in otherwise folded globular proteins. The approach relies on the fact that the proteolysis of a polypeptide substrate requires its binding in an extended conformation at the protease's active site and thus an enhanced backbone flexibility or local unfolding of the site of proteolytic attack. A striking correlation was found between sites of limited proteolysis and sites of enhanced chain flexibility of the polypeptide chain, this last evaluated by the crystallographically determined B-factor. In numerous cases, it has been shown that limited proteolysis occurs at chain regions characterized by missing electron density and thus being disordered. Therefore, limited proteolysis is a simple and reliable experimental technique that can detect sites of disorder in proteins, thus complementing the results that can be obtained by the use of other physicochemical and computational approaches.
Collapse
Affiliation(s)
- Angelo Fontana
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy.
| | | | | | | |
Collapse
|
193
|
Dong H, Limberakis C, Liras S, Price D, James K. Peptidic macrocyclization via palladium-catalyzed chemoselective indole C-2 arylation. Chem Commun (Camb) 2012; 48:11644-6. [DOI: 10.1039/c2cc36962a] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
194
|
Ng NM, Pierce JD, Webb GI, Ratnikov BI, Wijeyewickrema LC, Duncan RC, Robertson AL, Bottomley SP, Boyd SE, Pike RN. Discovery of Amino Acid Motifs for Thrombin Cleavage and Validation Using a Model Substrate. Biochemistry 2011; 50:10499-507. [DOI: 10.1021/bi201333g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasha M. Ng
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - James D. Pierce
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037-1062,
United States
| | - Geoffrey I. Webb
- Clayton School
of Information
Technology, Monash University, Clayton,
Victoria 3800, Australia
| | - Boris I. Ratnikov
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037-1062,
United States
| | - Lakshmi C. Wijeyewickrema
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - Renee C. Duncan
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - Amy L. Robertson
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - Stephen P. Bottomley
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - Sarah E. Boyd
- School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Robert N. Pike
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| |
Collapse
|
195
|
Macromolecular assembly-driven processing of the 2/3 cleavage site in the alphavirus replicase polyprotein. J Virol 2011; 86:553-65. [PMID: 22031949 DOI: 10.1128/jvi.05195-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semliki Forest virus (SFV) is a member of the Alphavirus genus, which produces its replicase proteins in the form of a nonstructural (ns) polyprotein precursor P1234. The maturation of the replicase occurs in a temporally controlled manner by protease activity of nsP2. The template preference and enzymatic capabilities of the alphaviral replication complex have a very important connection with its composition, which is irreversibly altered by proteolysis. The final cleavage of the 2/3 site in the ns polyprotein apparently leads to significant rearrangements within the replication complex and thus denotes the "point of no return" for viral replication progression. Numerous studies have devised rules for when and how ns protease acts, but how the alphaviral 2/3 site is recognized remained largely unexplained. In contrast to the other two cleavage sites within the ns polyprotein, the 2/3 site evidently lacks primary sequence elements in the vicinity of the scissile bond sufficient for specific protease recognition. In this study, we sought to investigate the molecular details of the regulation of the 2/3 site processing in the SFV ns polyprotein. We present evidence that correct macromolecular assembly, presumably strengthened by exosite interactions rather than the functionality of the individual nsP2 protease, is the driving force for specific substrate targeting. We conclude that structural elements within the macrodomain of nsP3 are used for precise positioning of a substrate recognition sequence at the catalytic center of the protease and that this process is coordinated by the exact N-terminal end of nsP2, thus representing a unique regulation mechanism used by alphaviruses.
Collapse
|
196
|
Internally quenched fluorescent peptide libraries with randomized sequences designed to detect endopeptidases. Anal Biochem 2011; 421:299-307. [PMID: 22067978 DOI: 10.1016/j.ab.2011.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 11/23/2022]
Abstract
Identification of synthetic peptide substrates for novel peptidases is an essential step for their study. With this purpose we synthesized fluorescence resonance energy transfer (FRET) peptide libraries Abz (or MCA)-GXXXXXQ-EDDnp and Abz (or MCA)-GXXZXXQ-EDDnp, where X consists of an equimolar mixture of all amino acids, the Z position is fixed with one of the proteinogenic amino acids (cysteine was excluded), Abz (ortho-aminobenzoic acid) or MCA ([7-amino-4-methyl]coumarin) is the fluorescence donor and Q-EDDnp (glutamine-[N-(2,4-dinitrophenyl)-ethylenediamine]) is the fluorescence acceptor. The peptide libraries MCA-GXXX↓XXQ-EDDnp and MCA-GXXZ↓XXQ-EDDnp were cleaved as indicated (↓) by trypsin, chymotrypsin, cathepsin L, pepsin A, and Eqolisin as confirmed by Edman degradation of the products derived from the digestion of these libraries. The best hydrolyzed Abz-GXXZXXQ-EDDnp sublibraries by these proteases, including Dengue 2 virus NS2B-NS3 protease, contained amino acids at the Z position that are reported to be well accepted by their S(1) subsite. The pH profiles of the hydrolytic activities of these canonical proteases on the libraries were similar to those reported for typical substrates. The FRET peptide libraries provide an efficient and simple approach for detecting nanomolar concentrations of endopeptidases and are useful for initial specificity characterization as performed for two proteases secreted by a Bacillus subtilis.
Collapse
|
197
|
Rotstein BH, Mourtada R, Kelley SO, Yudin AK. Solvatochromic reagents for multicomponent reactions and their utility in the development of cell-permeable macrocyclic peptide vectors. Chemistry 2011; 17:12257-61. [PMID: 21932287 DOI: 10.1002/chem.201102096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Indexed: 01/05/2023]
Affiliation(s)
- Benjamin H Rotstein
- Department of Chemistry, University of Toronto, Toronto, ON, M5H 3H5, Canada
| | | | | | | |
Collapse
|
198
|
Sánchez-Hidalgo M, Montalbán-López M, Cebrián R, Valdivia E, Martínez-Bueno M, Maqueda M. AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 2011; 68:2845-57. [PMID: 21590312 PMCID: PMC11115006 DOI: 10.1007/s00018-011-0724-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/06/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Bacteriocin AS-48 is an intriguing molecule because of its unique structural characteristics, genetic regulation, broad activity spectrum, and potential biotechnological applications. It was the first reported circular bacteriocin and has been undoubtedly the best characterized for the last 25 years. Thus, AS-48 is the prototype of circular bacteriocins (class IV), for which the structure and genetic regulation have been elucidated. This review discusses the state-of-the-art in genetic engineering with regard to this circular protein, with the use of site-directed mutagenesis and circular permutation. Mutagenesis studies have been used to unravel the role of (a) different residues in the biological activity, underlining the relevance of several residues involved in membrane interaction and the low correlation between stability and activity and (b) three amino acids involved in maturation, providing information on the specificity of the leader peptidase and the circularization process itself. To investigate the role of circularity in the stability and biological properties of the enterocin AS-48, two different ways of linearization have been attempted: in vitro by limited proteolysis experiments and in vivo by circular permutation in the structural gene as-48A. The results summarized here show the significance of circularization on the secondary structure, potency and, especially, the stability of AS-48 and point as well to a putative role of the leader peptide as a protecting moiety in the pre-proprotein. Taken all together, the data available on circular bacteriocins support the idea that AS-48 has been engineered by nature to make a remarkably active and stable protein with a broad spectrum of activity.
Collapse
Affiliation(s)
| | - Manuel Montalbán-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
199
|
Gebreslasie HG, Jacobsen Ø, Görbitz CH. N-(tert-butoxycarbonyl)-α-aminoisobutyryl-α-aminoisobutyric acid methyl ester: two polymorphic forms in the space group P2(1)/n. Acta Crystallogr C 2011; 67:o283-7. [PMID: 21817793 DOI: 10.1107/s0108270111024322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/21/2011] [Indexed: 11/11/2022] Open
Abstract
The title compound (systematic name: methyl 2-{2-[(tert-butoxycarbonyl)amino]-2-methylpropanamido}-2-methylpropanoate), C(14)H(26)N(2)O(5), (I), crystallizes in the monoclinic space group P2(1)/n in two polymorphic forms, each with one molecule in the asymmetric unit. The molecular conformation is essentially the same in both polymorphs, with the α-aminoisobutyric acid (Aib) residues adopting ϕ and ψ values characteristic of α-helical and mixed 3(10)- and α-helical conformations. The helical handedness of the C-terminal residue (Aib2) is opposite to that of the N-terminal residue (Aib1). In contrast to (I), the closely related peptide Boc-Aib-Aib-OBn (Boc is tert-butoxycarbonyl and Bn is benzyl) adopts an α(L)-P(II) backbone conformation (or the mirror image conformation). Compound (I) forms hydrogen-bonded parallel β-sheet-like tapes, with the carbonyl groups of Aib1 and Aib2 acting as hydrogen-bond acceptors. This seems to represent an unusual packing for a protected dipeptide containing at least one α,α-disubstituted residue.
Collapse
|
200
|
Abstract
Peptide macrocycles have found applications that range from drug discovery to nanomaterials. These ring-shaped molecules have shown remarkable capacity for functional fine-tuning. Such capacity is enabled by the possibility of adjusting the peptide conformation using the techniques of chemical synthesis. Cyclic peptides have been difficult, and often impossible, to prepare using traditional synthetic methods. For macrocyclization to occur, the activated peptide must adopt an entropically disfavoured pre-cyclization conformation before forming the desired product. Here, we review recent solutions to some of the major challenges in this important area of contemporary synthesis.
Collapse
|