151
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
152
|
Wang L, Lin H, Chi X, Sun C, Huang J, Tang X, Chen H, Luo X, Yin Z, Gao J. A Self-Assembled Biocompatible Nanoplatform for Multimodal MR/Fluorescence Imaging Assisted Photothermal Therapy and Prognosis Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801612. [PMID: 30084540 DOI: 10.1002/smll.201801612] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/17/2018] [Indexed: 05/13/2023]
Abstract
The need for better imaging assisted cancer therapy calls for new biocompatible agents with excellent imaging and therapeutic capabilities. This study successfully fabricates albumin-cooperated human serum albumin (HSA)-GGD-ICG nanoparticles (NPs), which are comprised of a magnetic resonance (MR) contrast agent, glycyrrhetinic-acid-modified gadolinium (III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (GGD), and a fluorescence (FL) dye, indocyanine green (ICG), for multimodal MR/FL imaging assisted cancer therapy. These HSA-GGD-ICG NPs with excellent biocompatibility are stable under physiological conditions, and exhibit enhanced T1 contrast capability and improved fluorescence imaging capacity. In vitro experiments reveal an apparent effect of the NPs in killing tumor cells under low laser irradiation, due to the enhanced photothermal conversion efficiency (≈85.1%). Importantly, multimodal MR/FL imaging clearly shows the in vivo behaviors and the efficiency of tumor accumulation of HSA-GGD-ICG NPs, as confirmed by a pharmacokinetic study. With the guidance of multimodal imaging, photothermal therapy is subsequently conducted, which demonstrates again high photothermal conversion capability for eliminating tumors without relapse. Notably, real-time monitoring of tumor ablation for prognosis and therapy evaluation is also achieved by MR imaging. This strategy of constructing nanoplatforms through albumin-mediated methods is both convenient and efficient, which would enlighten the design of multimodal imaging assisted cancer therapy for potential clinical translation.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiaqi Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
153
|
Zhang CJ, Wang CX, Gao ZY, Ke C, Fu LM, Zhang Z, Wang Y, Zhang JP. Wide field of view, real time bioimaging apparatus for noninvasive analysis of nanocarrier pharmacokinetics in living model animals. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:085105. [PMID: 30184676 DOI: 10.1063/1.5026852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Understanding nanocarrier pharmacokinetics is crucial for the emerging nanopharmacy, which highly demands noninvasive and real-time visualization of the in vivo dynamics of nanocarriers. To this end, we have developed a 2-photon excitation and time-resolved (TPE-TR) bioimaging apparatus for the analysis of the spatial distribution and temporal evolution of nanocarriers in living model animals. The specific polymeric nanocarrier, Eu@pmma-maa doped with Eu-complexes luminescing in long persistence at ∼615 nm upon near-infrared 2-photon excitation, allows the complete rejection of tissue autofluorescence by selective luminescence detection. This together with a unique beam shaping scheme for homogeneous line excitation, a delicate timing strategy for single-shot line scanning, and an equal optical path design for in-plane scan endows the TPE-TR apparatus with the following prominent features: an imaging depth of ∼10 mm, a field of view (FOV) of 32 × 32 mm2 along with a horizontal resolution of ∼60 μm, a sub-10 s frame time, and negligible laser heating effect. In addition, a combination of the in-plane line scan with the 3D scan of a model animal offers the convenience for examining an interested FOV with a millimeter vertical resolution. Application of TPE-TR bioimaging to a living mouse reveals rich information on the dynamics of nanocarriers including the spatial distribution and temporal evolution and the kinetics of domains of interest. The noninvasive TPE-TR bioimaging instrumentation with a wide FOV and a large imaging depth will find applications in the pharmaceutical development of nanocarriers and relevant research fields.
Collapse
Affiliation(s)
- Chao-Jie Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Chuan-Xi Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhi-Yue Gao
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Can Ke
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhuo Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
154
|
Gan S, Lin Y, Feng Y, Shui L, Li H, Zhou G. Magnetic polymeric nanoassemblies for magnetic resonance imaging-combined cancer theranostics. Int J Nanomedicine 2018; 13:4263-4281. [PMID: 30087559 PMCID: PMC6061201 DOI: 10.2147/ijn.s164817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer has become one of the primary causes of death worldwide. Current cancer-therapy schemes are progressing relatively slowly in terms of reducing mortality, prolonging survival, time and enhancing cure rate, owing to the enormous obstacles of cancer pathophysiology. Therefore, specific diagnosis and therapy for malignant tumors are becoming more and more crucial and urgent, especially for early cancer diagnosis and cancer-targeted therapy. Derived theranostics that combine several functions into one "package" could further overcome undesirable differences in biodistribution and selectivity between distinct imaging and therapeutic agents. In this article, we discuss a chief clinical diagnosis tool - MRI - focusing on recent progress in magnetic agents or systems in multifunctional polymer nanoassemblies for combing cancer theranostics. We describe abundant polymeric MRI-contrast agents integrated with chemotherapy, gene therapy, thermotherapy, and radiotherapy, as well as other developing directions.
Collapse
Affiliation(s)
- Shenglong Gan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Yisheng Lin
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Yancong Feng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| |
Collapse
|
155
|
Phukan B, Malikidogo KP, Bonnet CS, Tóth É, Mondal S, Mukherjee C. A Bishydrated, Eight–Coordinate Gd(III) Complex with Very Fast Water Exchange: Synthesis, Characterization, and Phantom MR Imaging. ChemistrySelect 2018. [DOI: 10.1002/slct.201801629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bedika Phukan
- Department of ChemistryIndian Institute of Technology Guwahati, Guwahati 781039, Assam India
| | - Kyangwi P. Malikidogo
- Centre de Biophysique MoléculaireCNRS, UPR 4301Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Célia S. Bonnet
- Centre de Biophysique MoléculaireCNRS, UPR 4301Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Éva Tóth
- Centre de Biophysique MoléculaireCNRS, UPR 4301Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Samsuzzoha Mondal
- Department of Chemical SciencesTata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba, Mumbai 400005 India
| | - Chandan Mukherjee
- Department of ChemistryIndian Institute of Technology Guwahati, Guwahati 781039, Assam India
| |
Collapse
|
156
|
Chen XJ, Zhang XQ, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology 2018; 16:52. [PMID: 29890977 PMCID: PMC5994839 DOI: 10.1186/s12951-018-0378-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Oral cancer is a common and aggressive cancer with high morbidity, mortality, and recurrence rate globally. Early detection is of utmost importance for cancer prevention and disease management. Currently, tissue biopsy remains the gold standard for oral cancer diagnosis, but it is invasive, which may cause patient discomfort. The application of traditional noninvasive methods-such as vital staining, exfoliative cytology, and molecular imaging-is limited by insufficient sensitivity and specificity. Thus, there is an urgent need for exploring noninvasive, highly sensitive, and specific diagnostic techniques. Nano detection systems are known as new emerging noninvasive strategies that bring the detection sensitivity of biomarkers to nano-scale. Moreover, compared to current imaging contrast agents, nanoparticles are more biocompatible, easier to synthesize, and able to target specific surface molecules. Nanoparticles generate localized surface plasmon resonances at near-infrared wavelengths, providing higher image contrast and resolution. Therefore, using nano-based techniques can help clinicians to detect and better monitor diseases during different phases of oral malignancy. Here, we review the progress of nanotechnology-based methods in oral cancer detection and diagnosis.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
| | - Xue-Qiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
| |
Collapse
|
157
|
Aparicio-Blanco J, Torres-Suárez AI. Towards tailored management of malignant brain tumors with nanotheranostics. Acta Biomater 2018; 73:52-63. [PMID: 29678675 DOI: 10.1016/j.actbio.2018.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
Malignant brain tumors still represent an unmet medical need given their rapid progression and often fatal outcome within months of diagnosis. Given their extremely heterogeneous nature, the assumption that a single therapy could be beneficial for all patients is no longer plausible. Hence, early feedback on drug accumulation at the tumor site and on tumor response to treatment would help tailor therapies to each patient's individual needs for personalized medicine. In this context, at the intersection between imaging and therapy, theranostic nanomedicine is a promising new technique for individualized management of malignant brain tumors. Although brain nanotheranostics has yet to be translated into clinical practice, this field is now a research hotspot due to the growing demand for personalized therapies. In this review, the barriers to the clinical implementation of theranostic nanomedicine for tracking tumor responses to treatment and for guiding stimulus-activated therapies and surgical resection of malignant brain tumors are discussed. Likewise, the criteria that nanotheranostic systems need to fulfil to become clinically relevant formulations are analyzed in depth, focusing on theranostic agents already tested in vivo. Currently, magnetic nanoparticles exploiting brain targeting strategies represent the first generation of preclinical theranostic nanomedicines for the management of malignant brain tumors. STATEMENT OF SIGNIFICANCE The development of nanocarriers that can be used both in imaging studies and the treatment of brain tumors could help identify which patients are most and least likely to respond to a given treatment. This will enable clinicians to adapt the therapy to the needs of the patient and avoid overdosing non-responders. Given the many different approaches to non-invasive techniques for imaging and treating brain tumors, it is important to focus on the strategies most likely to be implemented and to design the most feasible theranostic biomaterials that will bring nanotheranostics one step closer to clinical practice.
Collapse
|
158
|
Le Fur M, Molnár E, Beyler M, Fougère O, Esteban-Gómez D, Rousseaux O, Tripier R, Tircsó G, Platas-Iglesias C. Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorg Chem 2018; 57:6932-6945. [DOI: 10.1021/acs.inorgchem.8b00598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mariane Le Fur
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Enikő Molnár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Maryline Beyler
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Olivier Fougère
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Olivier Rousseaux
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
159
|
Yang L, Wang Z, Ma L, Li A, Xin J, Wei R, Lin H, Wang R, Chen Z, Gao J. The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. ACS NANO 2018; 12:4605-4614. [PMID: 29672022 DOI: 10.1021/acsnano.8b01048] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The shape of magnetic nanoparticles is of great importance in determining their contrast abilities for magnetic resonance imaging. Various magnetic nanoparticles have been developed to achieve high T1 or T2 relaxivities, but the mechanism on how morphology influences the water proton relaxation process is still unrevealed. Herein we synthesize manganese-doped iron oxide (MnIO) nanoparticles of the same volume with six different shapes and reveal the relationship between morphologies and T1/ T2 relaxation rates. The morphology of magnetic nanoparticles largely determines the effective radius and the gradient of stray field, which in turn affects the transverse relaxation rate. The longitudinal relaxivity has positive correlation with the surface-area-to-volume ratio and the occupancy rate of effective metal ions on exposed surfaces of magnetic nanoparticles. These findings together with the summary of r2/ r1 ratios could help to guide the screening for the optimal shapes of promising T1 or T2 contrast agents. Varying effective radii could be utilized to change negative contrast abilities. The surface-area-to-volume ratio and the amount of effective metal ions on exposed surface are instrumental for tuning positive contrast abilities. These principles could serve as guidelines for design and development of high-performance nanoparticle-based contrast agents.
Collapse
|
160
|
Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018; 8:3284-3307. [PMID: 29930730 PMCID: PMC6010979 DOI: 10.7150/thno.25220] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022] Open
Abstract
In the past decade, iron oxide nanoparticles (IONPs) have attracted more and more attention for their excellent physicochemical properties and promising biomedical applications. In this review, we summarize and highlight recent progress in the design, synthesis, biocompatibility evaluation and magnetic theranostic applications of IONPs, with a special focus on cancer treatment. Firstly, we provide an overview of the controlling synthesis strategies for fabricating zero-, one- and three-dimensional IONPs with different shapes, sizes and structures. Then, the in vitro and in vivo biocompatibility evaluation and biotranslocation of IONPs are discussed in relation to their chemo-physical properties including particle size, surface properties, shape and structure. Finally, we also highlight significant achievements in magnetic theranostic applications including magnetic resonance imaging (MRI), magnetic hyperthermia and targeted drug delivery. This review provides a background on the controlled synthesis, biocompatibility evaluation and applications of IONPs as cancer theranostic agents and an overview of the most up-to-date developments in this area.
Collapse
Affiliation(s)
- Wensheng Xie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenhu Guo
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 10083, China
| | - Fei Gao
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi 710069, China
| | - Qin Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Bor-shuang Liaw
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Cai
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
161
|
Belleza OJV, Naraga AMB, Villaraza AJL. Relative Ligand Exchange Rates in Gd-based MRI Contrast Agent Formation as Probed by Gd-XO Complex. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Oliver John V. Belleza
- Institute of Chemistry, College of Science; University of the Philippines - Diliman; Quezon City 1101 Metro Manila, Philippines
| | - Ansyl Marie B. Naraga
- Institute of Chemistry, College of Science; University of the Philippines - Diliman; Quezon City 1101 Metro Manila, Philippines
| | - Aaron Joseph L. Villaraza
- Institute of Chemistry, College of Science; University of the Philippines - Diliman; Quezon City 1101 Metro Manila, Philippines
| |
Collapse
|
162
|
Patra D, Mukherjee S, Chakraborty I, Dash TK, Senapati S, Bhattacharyya R, Shunmugam R. Iron(III) Coordinated Polymeric Nanomaterial: A Next-Generation Theranostic Agent for High-Resolution T1-Weighted Magnetic Resonance Imaging and Anticancer Drug Delivery. ACS Biomater Sci Eng 2018; 4:1738-1749. [DOI: 10.1021/acsbiomaterials.8b00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | | | | |
Collapse
|
163
|
Aime S, Baroni S, Delli Castelli D, Brücher E, Fábián I, Serra SC, Fringuello Mingo A, Napolitano R, Lattuada L, Tedoldi F, Baranyai Z. Exploiting the Proton Exchange as an Additional Route to Enhance the Relaxivity of Paramagnetic MRI Contrast Agents. Inorg Chem 2018; 57:5567-5574. [DOI: 10.1021/acs.inorgchem.8b00521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simona Baroni
- Department of Molecular Biotechnologies and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Daniela Delli Castelli
- Department of Molecular Biotechnologies and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | | | | | - Sonia Colombo Serra
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | | | - Roberta Napolitano
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - Fabio Tedoldi
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| |
Collapse
|
164
|
Carniato F, Tei L, Martinelli J, Botta M. Relaxivity Enhancement of Ditopic Bishydrated Gadolinium(III) Complexes Conjugated to Mesoporous Silica Nanoparticles. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica Università degli Studi del Piemonte Orientale Viale T. Michel 11 I‐15121 Alessandria Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica Università degli Studi del Piemonte Orientale Viale T. Michel 11 I‐15121 Alessandria Italy
| | - Jonathan Martinelli
- Dipartimento di Scienze e Innovazione Tecnologica Università degli Studi del Piemonte Orientale Viale T. Michel 11 I‐15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica Università degli Studi del Piemonte Orientale Viale T. Michel 11 I‐15121 Alessandria Italy
| |
Collapse
|
165
|
Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018; 8:2521-2548. [PMID: 29721097 PMCID: PMC5928907 DOI: 10.7150/thno.23789] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact.
Collapse
Affiliation(s)
- Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Lin Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
166
|
La Cava F, Fringuello Mingo A, Miragoli L, Terreno E, Cappelletti E, Lattuada L, Poggi L, Colombo Serra S. Synthesis, Characterization, and Biodistribution of a Dinuclear Gadolinium Complex with Improved Properties as a Blood Pool MRI Agent. ChemMedChem 2018; 13:824-834. [DOI: 10.1002/cmdc.201800052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/12/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Francesca La Cava
- Center of Excellence for Preclinical Imaging (CEIP), Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | | | - Luigi Miragoli
- Bracco Research Centre; Bracco Imaging SpA; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Enzo Terreno
- Center of Excellence for Preclinical Imaging (CEIP), Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Enrico Cappelletti
- Bracco Research Centre; Bracco Imaging SpA; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Luciano Lattuada
- Bracco Research Centre; Bracco Imaging SpA; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Luisa Poggi
- Bracco Research Centre; Bracco Imaging SpA; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Sonia Colombo Serra
- Bracco Research Centre; Bracco Imaging SpA; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| |
Collapse
|
167
|
Kerridge A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem Commun (Camb) 2018; 53:6685-6695. [PMID: 28569895 DOI: 10.1039/c7cc00962c] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The electronic structure of f-element compounds is complex due to a combination of relativistic effects, strong electron correlation and weak crystal field environments. However, a quantitative understanding of bonding in these compounds is becoming increasingly technologically relevant. Recently, bonding interpretations based on analyses of the physically observable electronic density have gained popularity and, in this Feature Article, the utility of such density-based approaches is demonstrated. Application of Bader's Quantum Theory of Atoms in Molecules (QTAIM) is shown to elucidate many properties including bonding trends, orbital overlap and energy degeneracy-driven covalency, oxidation state identification and bond stability, demonstrating the increasingly important role that simulation and analysis play in the area of f-element bond characterisation.
Collapse
Affiliation(s)
- A Kerridge
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
168
|
Sun W, Zhang J, Zhang C, Wang P, Peng C, Shen M, Shi X. Construction of Hybrid Alginate Nanogels Loaded with Manganese Oxide Nanoparticles for Enhanced Tumor Magnetic Resonance Imaging. ACS Macro Lett 2018; 7:137-142. [PMID: 35610908 DOI: 10.1021/acsmacrolett.7b00999] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of sensitive contrast agents for positive magnetic resonance (MR) imaging of biosystems still remains a great challenge. Herein, we report a facile process to construct hybrid alginate (AG) nanogels (NGs) loaded with manganese oxide (Mn3O4) nanoparticles (NPs) for enhanced tumor MR imaging. The obtained AG/PEI-Mn3O4 NGs with a mean size of 141.6 nm display excellent colloidal stability in aqueous solution and good cytocompatibility in the studied concentration range. Moreover, the hybrid NGs have a high r1 relaxivity of 26.12 mM-1 s-1, which is about 19.5 times higher than that of PEI-Mn3O4 NPs with PEI surface amine acetylated (PEI.Ac-Mn3O4 NPs). Furthermore, the AG/PEI-Mn3O4 NGs presented longer blood circulation time and better tumor MR imaging performances in vivo than PEI.Ac-Mn3O4 NPs. With the good biosafety confirmed by histological examinations, the developed AG/PEI-Mn3O4 NGs may be potentially used as an efficient contrast agent for enhanced MR imaging of different biosystems.
Collapse
Affiliation(s)
- Wenjie Sun
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jiulong Zhang
- Department
of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
| | - Changchang Zhang
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Peng Wang
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Chen Peng
- Department
of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
| | - Mingwu Shen
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro
de Química da Madeira, Universidade da Madeira, Campus da
Penteada, 9000-390 Funchal, Portugal
| |
Collapse
|
169
|
Granato L, Vander Elst L, Henoumont C, Muller RN, Laurent S. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI. Chem Biodivers 2018; 15. [PMID: 29460387 DOI: 10.1002/cbdv.201700487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/13/2017] [Indexed: 11/07/2022]
Abstract
Thanks to the understanding of the relationships between the residence lifetime τM of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τR of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL1 )x with intent to slow down the rotational correlation time (τR ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL1 ) showed a slight decrease of the τM value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL1 complex (τR = 33,700 ps), which results in an enhanced proton relaxivity.
Collapse
Affiliation(s)
- Luigi Granato
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium
| | - Luce Vander Elst
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium
| | - Celine Henoumont
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium
| | - Robert N Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8, B-6041, Gosselies, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8, B-6041, Gosselies, Belgium
| |
Collapse
|
170
|
Phukan B, Mukherjee C, Goswami U, Sarmah A, Mukherjee S, Sahoo SK, Moi SC. A New Bis(aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent. Inorg Chem 2018; 57:2631-2638. [PMID: 29424537 DOI: 10.1021/acs.inorgchem.7b03039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disclosed here are a piperazine, a pyridine, and two carboxylate groups containing pentadentate ligand H2pmpa and its corresponding water-soluble Mn(II) complex (1). DFT-based structural optimization implied that the complex had pentagonal bipyramidal geometry where the axial positions were occupied by two water molecules, and the equatorial plane was constituted by the ligand ON3O donor set. Thus, a bis(aquated) disc-like Mn(II) complex has been synthesized. The complex showed higher stability compared with Mn(II)-EDTA complex [log KMnL = 14.29(3)] and showed a very high r1 relaxivity value of 5.88 mM-1 s-1 at 1.41 T, 25 °C, and pH = 7.4. The relaxivity value remained almost unaffected by the pH of the medium in the range of 6-10. Although the presence of 200 equiv of fluoride and bicarbonate anions did not affect the relaxivity value appreciably, an increase in the value was noticed in the presence of phosphate anion due to slow tumbling of the complex. Cell viability measurements, as well as phantom MR images using clinical MRI imager, consolidated the possible candidature of complex 1 as a positive contrast agent.
Collapse
Affiliation(s)
- Bedika Phukan
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| | - Chandan Mukherjee
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| | - Upashi Goswami
- Centre for Nanotechnology , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| | - Amrit Sarmah
- Department of Molecular Modelling , Institute of Organic Chemistry and Biochemistry ASCR , Flemingovo nám. 2 , CZ-166 10 Prague 6 , Czech Republic
| | - Subhajit Mukherjee
- Department of Chemistry , National Institute of Technology , Durgapur 713209 , West Bengal , India
| | - Suban K Sahoo
- Department of Applied Chemistry , S.V. National Institute of Technology , Surat 395007 , Gujarat , India
| | - Sankar Ch Moi
- Department of Chemistry , National Institute of Technology , Durgapur 713209 , West Bengal , India
| |
Collapse
|
171
|
Liu K, Zang S, Xue R, Yang J, Wang L, Huang J, Yan Y. Coordination-Triggered Hierarchical Folate/Zinc Supramolecular Hydrogels Leading to Printable Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4530-4539. [PMID: 29336146 DOI: 10.1021/acsami.7b18155] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Printable hydrogels desired in bioengineering have extremely high demands on biocompatibility and mechanic strength, which can hardly be achieved in conventional hydrogels made with biopolymers. Here, we show that on employment of the strategy of coordination-triggered hierarchical self-assembly of naturally occurring small-molecule folic acid, supramolecular hydrogels with robust mechanical elastic modulus comparable to synthetic double-network polymer gels can be made at concentrations below 1%. A sequence of hierarchical steps are involved in the formation of this extraordinary hydrogel: petrin rings on folate form tetramers through hydrogen bonding, tetramers stack into nanofibers by π-π stacking, and zinc ions cross-link the nanofibers into larger-scale fibrils and further cross-link the fibril network to gel water. These supramolecular qualities endow the hydrogel with shear-thinning and instant healing ability, which makes the robust gel injectable and printable into various three-dimensional structures. Owing to the excellent biocompatibility, the gel can support cells three-dimensionally and can be used as an ideal carrier for imaging agent (Gd3+), as well as chemodrugs. In combination with its easy formation and abundant sources, this newly discovered metallo-folate supramolecular hydrogel is promising in various bioengineering technological applications.
Collapse
Affiliation(s)
- Kaerdun Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Shihao Zang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Rongrong Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Jinghui Yang
- College of Chemistry and Chemical Engineering, Xinjiang University , Urumqi 830046, P. R. China
| | - Lizhi Wang
- College of Chemistry and Chemical Engineering, Xinjiang University , Urumqi 830046, P. R. China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| |
Collapse
|
172
|
Ocsoy I, Tasdemir D, Mazicioglu S, Celik C, Katı A, Ulgen F. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. MATERIALS LETTERS 2018; 212:45-50. [DOI: 10.1016/j.matlet.2017.10.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
173
|
Huang Z, Chen Y, Liu D, Lu C, Shen Z, Zhong S, Shi G. Gadolinium-conjugated star-block copolymer polylysine-modified polyethylenimine as high-performance T 1 MR imaging blood pool contrast agents. RSC Adv 2018; 8:5005-5012. [PMID: 35539565 PMCID: PMC9078030 DOI: 10.1039/c7ra08820e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Core-shell copolymers have received widespread attention because of their unique properties, such as suitable for surface modification and increasing the functionality. Thus, they have been increasingly used in many fields including biomedical, pharmaceutical, electronics and optics. Here, a new core-shell copolymer system was developed to synthesize potential blood pool contrast agent (CA) for magnetic resonance imaging (MRI). The novel CA with high T 1 relaxivity was synthesized by conjugating gadolinium (Gd) chelators onto star-block copolymer polyethylenimine-grafted poly(l-lysine) (PEI-PLL) nanoparticles (NPs). The T 1 relaxivity of PEI-PLL-DTPA-Gd NPs measured on a 7.0 T small animal MRI scanner was 8.289 mM-1 s-1, higher than that of T 1 contrast agents widely used in the clinic, such as Gd-DTPA (also known as Magnevist, r 1 = 4.273 mM-1 s-1). These results show that PEI-PLL-DTPA-Gd exhibits more efficient T 1 MR contrast enhancement compared to Gd-DTPA. More importantly, the PEI-PLL-DTPA-Gd core-shell NPs exhibited extremely low toxicity when measured against the HepG2 cell line over a similar concentration rang of Magnevist. In in vivo experiments, PEI-PLL-DTPA-Gd not only displayed good T 1 contrast enhancement for the abdominal aorta, but also showed prolonged blood circulation time compared with Gd-DTPA, which should enable longer acquisition time, for MR and MR angiographic images, with high resolution in clinical practice. PEI-PLL-DTPA-Gd NPs have potential to serve as high T 1 relaxivity blood pool MRI CA in the clinic.
Collapse
Affiliation(s)
- Zhongjie Huang
- Department of Radiology, The First Affiliated Hospital, Shantou University Medical College Shantou 515041 China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College Shantou 515041 China
| | - Daojun Liu
- Department of Chemistry, Shantou University Medical College Shantou 515041 China
| | - Chao Lu
- Department of Chemistry, Shantou University Medical College Shantou 515041 China
| | - Zhiwei Shen
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College Shantou 515041 China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California Los Angeles California 90033 USA
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College Shantou 515041 China
| |
Collapse
|
174
|
Zhang L, Liu Y, Zhang Q, Li T, Yang M, Yao Q, Xie X, Hu HY. Gadolinium-Labeled Aminoglycoside and Its Potential Application as a Bacteria-Targeting Magnetic Resonance Imaging Contrast Agent. Anal Chem 2018; 90:1934-1940. [PMID: 29293308 DOI: 10.1021/acs.analchem.7b04029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful diagnostic technique that can penetrate deep into tissue providing excellent spatial resolution without the need for ionizing radiation or harmful radionuclides. However, diagnosing bacterial infections in vivo with clinical MRI is severely hampered by the lack of contrast agents with high relaxivity, targeting capabilities, and bacterial penetration and specificity. Here, we report the development of the first gadolinium (Gd)-based bacteria-specific targeting MRI contrast agent, probe 1, by conjugating neomycin, an aminoglycoside antibiotic, with Dotarem (Gd-DOTA, an FDA approved T1-weighted MRI contrast agent). The T1 relaxivity of probe 1 was found to be comparable to that of Gd-DOTA; additionally, probe 1-treated bacteria generated a significantly brighter T1-weighted MR signal than Gd-DOTA-treated bacteria. More importantly, in vitro cellular studies and preliminary in vivo MRI demonstrated probe 1 exhibits the ability to efficiently target bacteria over macrophage-like cells, indicating its great potential for high-resolution imaging of bacterial infections in vivo.
Collapse
Affiliation(s)
| | - Yun Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences , Jinan, Shandong 250200, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan, Shandong 250062, China
| | | | | | | | - Qingqiang Yao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan, Shandong 250062, China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University , Jinan 250014, China
| | | |
Collapse
|
175
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [PMID: 32254164 DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Water-soluble, nano-sized crosslinked polymer networks, or nanogels, are delivery vehicles, which have highly interesting properties for therapeutic delivery and imaging. Nanogels may also possess responsive properties, depending on the employed polymers, allowing controlled release of therapeutics or image contrast generation upon exposure to physical or (bio)chemical cues. In this review, polymer nanogels are explored for application in imaging as well as for controlled drug and gene delivery. Moreover, nanogels are explored as responsive biomaterials and future applications are highlighted.
Collapse
Affiliation(s)
- Antonie E Ekkelenkamp
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
176
|
Reduction of T2 Relaxation Rates due to Large Volume Fractions of Magnetic Nanoparticles for All Motional Regimes. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
177
|
Luo Q, Xiao X, Dai X, Duan Z, Pan D, Zhu H, Li X, Sun L, Luo K, Gong Q. Cross-Linked and Biodegradable Polymeric System as a Safe Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1575-1588. [PMID: 29260844 DOI: 10.1021/acsami.7b16345] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Owing to the low efficacy of clinically used small-molecule gadolinium (Gd)-based magnetic resonance imaging (MRI) agents, we designed and explored biodegradable macromolecular conjugates as MRI contrast agents. The linear polymeric structure and core-cross-linked formulation possessed different characteristics and features, so we prepared and comparatively studied the two kinds of Gd-based N-(2-hydroxypropyl) methacrylamide (HPMA) polymeric systems (the core-cross-linked pHPMA-DOTA-Gd and the linear one) using the clinical agent diethylene-triamine pentaacetic acid-Gd(III) (DTPA-Gd) as a control. This study was aimed to find the optimal polymeric formulation as a biocompatible and efficient MRI contrast agent. The high molecular weight (MW, 181 kDa) and core-cross-linked copolymer was obtained via the cross-linked block linear copolymer and could be degraded to low-MW segments (29 kDa) in the presence of glutathione (GSH) and cleaned from the body. Both core-cross-linked and linear pHPMA-DOTA-Gd copolymers displayed 2-3-fold increased relaxivity (r1 value) than that of DTPA-Gd. Animal studies demonstrated that two kinds of macromolecular systems led to much longer blood circulation time, higher tumor accumulation, and much higher signal intensity compared with the linear and clinical ones. Finally, in vivo and in vitro toxicity studies indicated that the two macromolecular agents had great biocompatibility. Therefore, we performed preliminary but important studies on the Gd-based HPMA polymeric systems as biocompatible and efficient MRI contrast agents and found that the biodegradable core-cross-linked pHPMA-DOTA-Gd copolymer might have greater benefits for the foreground.
Collapse
Affiliation(s)
- Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Xueyang Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Xinghang Dai
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Xue Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Ling Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| |
Collapse
|
178
|
Safaei-Ghomi J, Tavazo M, Mahdavinia GH. Ultrasound promoted one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones using dendrimer-attached phosphotungstic acid nanoparticles immobilized on nanosilica. ULTRASONICS SONOCHEMISTRY 2018; 40:230-237. [PMID: 28946420 DOI: 10.1016/j.ultsonch.2017.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/08/2017] [Accepted: 07/08/2017] [Indexed: 05/09/2023]
Abstract
A highly efficient and improved synthetic methodology for the preparation of 3,4-dihydropyrimidin-2(1H)-ones and thiones in the Biginelli reaction by condensation of β-dicarbonyl compounds, urea/thiourea and aromatic aldehydes using Dendrimer-PWAn as a nanocatalyst under ultrasonic irradiation is reported. Compared with classical Biginelli reaction conditions, this new method has the advantage of easy reaction condition, short reaction time, excellent yields, recyclable green catalyst, reduced environmental impacts and absence of any tedious workup or purification. The catalyst can be easily recovered by filtration and reused for eight consecutive reaction cycles without significant loss of activity. Also, SEM and DLS images of the catalyst after reaction cycle were investigated.
Collapse
Affiliation(s)
- Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran.
| | - Maryam Tavazo
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran
| | - Gholam Hossein Mahdavinia
- Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Islamic Republic of Iran
| |
Collapse
|
179
|
Rolla G, De Biasio V, Giovenzana GB, Botta M, Tei L. Supramolecular assemblies based on amphiphilic Mn2+-complexes as high relaxivity MRI probes. Dalton Trans 2018; 47:10660-10670. [DOI: 10.1039/c8dt01250d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Mn2+ complexes of amphiphilic derivatives of EDTA and 1,4-DO2A ligands show a strong increase in relaxivity upon micellar aggregation and human serum albumin binding.
Collapse
Affiliation(s)
- Gabriele Rolla
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Valeria De Biasio
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro”
- I-28100 Novara
- Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro”
- I-28100 Novara
- Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| |
Collapse
|
180
|
Dzhardimalieva GI, E. Uflyand I. Polymer Complexes Based on Metal Chelate Monomers. SPRINGER SERIES IN MATERIALS SCIENCE 2018:367-501. [DOI: 10.1007/978-3-319-56024-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
181
|
Ocsoy I, Tasdemir D, Mazicioglu S, Tan W. Nanotechnology in Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 164:263-275. [DOI: 10.1007/10_2017_53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
182
|
Naveed KUR, Wang L, Yu H, Ullah RS, Haroon M, Fahad S, Li J, Elshaarani T, Khan RU, Nazir A. Recent progress in the electron paramagnetic resonance study of polymers. Polym Chem 2018. [DOI: 10.1039/c8py00689j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review article provides an overview of the contemporary research based on a tailor-made technique to understand the paramagnetic behavior of different polymer classes.
Collapse
Affiliation(s)
| | - Li Wang
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| | - Haojie Yu
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| | - Raja Summe Ullah
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| | - Muhammad Haroon
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| | - Shah Fahad
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| | - Jiyang Li
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| | - Tarig Elshaarani
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| | - Rizwan Ullah Khan
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| | - Ahsan Nazir
- College of Chemical and Biological Engineering
- Zhejiang University
- Zhejiang
- China
| |
Collapse
|
183
|
Hansen KA, Blinco JP. Nitroxide radical polymers – a versatile material class for high-tech applications. Polym Chem 2018. [DOI: 10.1039/c7py02001e] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A comprehensive summary of synthetic strategies for the preparation of nitroxide radical polymer materials and a state-of-the-art perspective on their latest and most exciting applications.
Collapse
Affiliation(s)
- Kai-Anders Hansen
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
184
|
Peller M, Böll K, Zimpel A, Wuttke S. Metal–organic framework nanoparticles for magnetic resonance imaging. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00149a] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review aims to integrate the state-of-the-art of MOF nanoparticles and their use in MRI. It gives an overview of the work done so far, focusing especially on the clinical applicability. Furthermore, it summarises the different factors for MR signal formation mechanisms important for the development of MR active nanoparticles and provides suggestions for a better comparison between different studies.
Collapse
Affiliation(s)
- Michael Peller
- Department of Radiology
- University Hospital of Munich
- University of Munich (LMU)
- 81377 Munich
- Germany
| | - Konstantin Böll
- Department of Radiology
- University Hospital of Munich
- University of Munich (LMU)
- 81377 Munich
- Germany
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS)
- University of Munich (LMU)
- 81377 Munich
- Germany
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)
- University of Munich (LMU)
- 81377 Munich
- Germany
- School of Chemistry
| |
Collapse
|
185
|
Phukan B, Mukherjee C, Varshney R. A new heptadentate picolinate-based ligand and its corresponding Gd(iii) complex: the effect of pendant picolinate versus acetate on complex properties. Dalton Trans 2018; 47:135-142. [DOI: 10.1039/c7dt04150k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing one picolinate pendant by acetate group in H4bpeda ligand, the synthesised bis(aquated) Gd(iii) complex of ligand H4peada showed better stability and r1 relaxivity for its potential use as MRI contrast agent.
Collapse
Affiliation(s)
- Bedika Phukan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Chandan Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Raunak Varshney
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-100054
- India
| |
Collapse
|
186
|
Harris M, Henoumont C, Peeters W, Toyouchi S, Vander Elst L, Parac-Vogt TN. Amphiphilic complexes of Ho(iii), Dy(iii), Tb(iii) and Eu(iii) for optical and high field magnetic resonance imaging. Dalton Trans 2018; 47:10646-10653. [DOI: 10.1039/c8dt01227j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic lanthanide(iii) complexes self-assemble into monodisperse micelles with favourable properties for optical and high field magnetic resonance imaging.
Collapse
Affiliation(s)
| | - Céline Henoumont
- General, Organic and Biomedical Chemistry
- NMR and Molecular Imaging Laboratory
- University of Mons
- 7000 Mons
- Belgium
| | | | | | - Luce Vander Elst
- General, Organic and Biomedical Chemistry
- NMR and Molecular Imaging Laboratory
- University of Mons
- 7000 Mons
- Belgium
| | | |
Collapse
|
187
|
Abd-El-Aziz AS, Agatemor C. Emerging Opportunities in the Biomedical Applications of Dendrimers. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0768-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
188
|
Qin L, Sun ZY, Cheng K, Liu SW, Pang JX, Xia LM, Chen WH, Cheng Z, Chen JX. Zwitterionic Manganese and Gadolinium Metal-Organic Frameworks as Efficient Contrast Agents for in Vivo Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41378-41386. [PMID: 29144731 DOI: 10.1021/acsami.7b09608] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two water-stable three-dimensional Mn- and Gd-based metal-organic frameworks (MOFs), {[Mn2(Cmdcp)2(H2O)2]·H2O}n (1) and {[Gd(Cmdcp)(H2O)3](NO3)·3H2O}n (2, H3CmdcpBr = N-(4-carboxy benzyl)-(3,5-dicarboxyl)pyridinium bromide), have been prepared and analyzed. In vitro magnetic resonance imaging indicated that MOFs 1 and 2 possess relaxivity r1 values of 17.50 and 13.46 mM-1·S-1, respectively, which are superior to that of the control Gd-DTPA (r1 = 4.87 mM-1·S-1, DTPA = diethylene triamine pentaacetate). MOFs 1 and 2 also possessed good biocompatibility and low cytotoxicity against a model cell line. In vivo magnetic resonance images of treated Kunming mice indicated that kidneys showed remarkably positive signal enhancement after 15 min with intravenous administration of MOF 1 and the hyperintensity of both kidneys persisted for about 240 min with no obvious tissue damage. MOF 1 is therefore promising in vivo probes for imaging intravascular diseases and renal dysfunction.
Collapse
Affiliation(s)
- Liang Qin
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
- School of Chemistry and Chemical Engineering, Zhaoqing University , Zhaoqing 526061, China
| | - Zi-Yan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , 1095 Jiefang Avenue, Wuhan 430030, China
- Department of Radiology, School of Medicine, Stanford University , 1201 Welch Road, Lucas Center, Stanford, California 94305-5484, United States
| | - Kai Cheng
- Department of Radiology, School of Medicine, Stanford University , 1201 Welch Road, Lucas Center, Stanford, California 94305-5484, United States
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Jian-Xin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Li-Ming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , 1095 Jiefang Avenue, Wuhan 430030, China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Zhen Cheng
- Department of Radiology, School of Medicine, Stanford University , 1201 Welch Road, Lucas Center, Stanford, California 94305-5484, United States
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| |
Collapse
|
189
|
Xu M, Guo C, Hu G, Xu S, Wang L. Organic Nanoprobes for Fluorescence and 19
F Magnetic Resonance Dual-Modality Imaging. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Minmin Xu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
190
|
Wang Z, Carniato F, Xie Y, Huang Y, Li Y, He S, Zang N, Rinehart JD, Botta M, Gianneschi NC. High Relaxivity Gadolinium-Polydopamine Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701830. [PMID: 29024478 DOI: 10.1002/smll.201701830] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/04/2017] [Indexed: 06/07/2023]
Abstract
This study reports the preparation of a series of gadolinium-polydopamine nanoparticles (GdPD-NPs) with tunable metal loadings. GdPD-NPs are analyzed by nuclear magnetic relaxation dispersion and with a 7-tesla (T) magnetic resonance imaging (MRI) scanner. A relaxivity of 75 and 10.3 mM-1 s-1 at 1.4 and 7 T is observed, respectively. Furthermore, superconducting quantum interference device magnetometry is used to study intraparticle magnetic interactions and determine the GdPD-NPs consist of isolated metal ions even at maximum metal loadings. From these data, it is concluded that the observed high relaxivities arise from a high hydration state of the Gd(III) at the particle surface, fast rate of water exchange, and negligible antiferromagnetic coupling between Gd(III) centers throughout the particles. This study highlights design parameters and a robust synthetic approach that aid in the development of this scaffold for T1 -weighted, high relaxivity MRI contrast agents.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale Teresa Michel 11, 15120, Alessandria, AL, Italy
| | - Yijun Xie
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yuran Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yiwen Li
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sha He
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nanzhi Zang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeffrey D Rinehart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale Teresa Michel 11, 15120, Alessandria, AL, Italy
| | - Nathan C Gianneschi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
191
|
Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains. Polym J 2017. [DOI: 10.1038/pj.2017.60] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
192
|
Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Sci Rep 2017; 7:14010. [PMID: 29070882 PMCID: PMC5656664 DOI: 10.1038/s41598-017-14409-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 12/28/2022] Open
Abstract
Today, nanostructure-based contrast agents (CA) are emerging in the field of magnetic resonance imaging (MRI). Their sensitivity is reported as greatly improved in comparison to commercially used chelate-based ones. The present work is aimed at revealing the factors governing the efficiency of longitudinal magnetic relaxivity (r1) in aqueous colloids of core-shell Gd(III)-based nanoparticles. We report for the first time on hydration number (q) of gadolinium(III) as a substantial factor in controlling r1 values of polyelectrolyte-stabilized nanoparticles built from water insoluble complexes of Gd(III). The use of specific complex structure enables to reveal the impact of the inner-sphere hydration number on both r1 values for the Gd(III)-based nanoparticles and the photophysical properties of their luminescent Tb(III) and Eu(III) counterparts. The low hydration of TTA-based Gd(III) complexes (q ≈ 1) agrees well with the poor relaxivity values (r1 = 2.82 mM-1s-1 and r2 = 3.95 mM-1s-1), while these values tend to increase substantially (r1 = 12.41 mM-1s-1, r2 = 14.36 mM-1s-1) for aqueous Gd(III)-based colloids, when macrocyclic 1,3-diketonate is applied as the ligand (q ≈ 3). The regularities obtained in this work are fundamental in understanding the efficiency of MRI probes in the fast growing field of nanoparticulate contrast agents.
Collapse
|
193
|
Mechanically linked supramolecular polymer architectures derived from macromolecular [2]rotaxanes: Synthesis and topology transformation. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
194
|
Wan C, Xue R, Zhan Y, Wu Y, Li X, Pei F. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:540-549. [PMID: 28934030 DOI: 10.1089/omi.2017.0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg-1 body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the injury induced by gadolinium-based contrast agents.
Collapse
Affiliation(s)
- Chuanling Wan
- 1 Changchun Institute of Applied Chemistry , Chinese Academy of Sciences, Changchun, People's Republic of China .,2 University of Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Rong Xue
- 1 Changchun Institute of Applied Chemistry , Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Youyang Zhan
- 1 Changchun Institute of Applied Chemistry , Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Yijie Wu
- 1 Changchun Institute of Applied Chemistry , Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Xiaojing Li
- 1 Changchun Institute of Applied Chemistry , Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Fengkui Pei
- 1 Changchun Institute of Applied Chemistry , Chinese Academy of Sciences, Changchun, People's Republic of China
| |
Collapse
|
195
|
Nguyen HVT, Chen Q, Paletta JT, Harvey P, Jiang Y, Zhang H, Boska MD, Ottaviani MF, Jasanoff A, Rajca A, Johnson JA. Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors. ACS CENTRAL SCIENCE 2017; 3:800-811. [PMID: 28776023 PMCID: PMC5532724 DOI: 10.1021/acscentsci.7b00253] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 05/18/2023]
Abstract
Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxide-functionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques.
Collapse
Affiliation(s)
- Hung V.-T. Nguyen
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qixian Chen
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joseph T. Paletta
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Peter Harvey
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hui Zhang
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Michael D. Boska
- Department
of Radiology, University of Nebraska Medical
Center, Omaha, Nebraska 68198, United
States
| | | | - Alan Jasanoff
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrzej Rajca
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Jeremiah A. Johnson
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
196
|
Taabache S, Bertin A. Vesicles from Amphiphilic Dumbbells and Janus Dendrimers: Bioinspired Self-Assembled Structures for Biomedical Applications. Polymers (Basel) 2017; 9:E280. [PMID: 30970958 PMCID: PMC6432481 DOI: 10.3390/polym9070280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The current review focuses on vesicles obtained from the self-assembly of two types of dendritic macromolecules, namely amphiphilic Janus dendrimers (forming dendrimersomes) and amphiphilic dumbbells. In the first part, we will present some synthetic strategies and the various building blocks that can be used to obtain dendritic-based macromolecules, thereby showing their structural versatility. We put our focus on amphiphilic Janus dendrimers and amphiphilic dumbbells that form vesicles in water but we also encompass vesicles formed thereof in organic solvents. The second part of this review deals with the production methods of these vesicles at the nanoscale but also at the microscale. Furthermore, the influence of various parameters (intrinsic to the amphiphilic JD and extrinsic-from the environment) on the type of vesicle formed will be discussed. In the third part, we will review the numerous biomedical applications of these vesicles of nano- or micron-size.
Collapse
Affiliation(s)
- Soraya Taabache
- Federal Institute for Materials Research and Testing (BAM), Department 6.0, D-12205 Berlin, Germany.
- Fraunhofer ICT-IMM, D-55129 Mainz, Germany.
| | - Annabelle Bertin
- Federal Institute for Materials Research and Testing (BAM), Department 6.0, D-12205 Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
197
|
Guo C, Sun L, Cai H, Duan Z, Zhang S, Gong Q, Luo K, Gu Z. Gadolinium-Labeled Biodegradable Dendron-Hyaluronic Acid Hybrid and Its Subsequent Application as a Safe and Efficient Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23508-23519. [PMID: 28656751 DOI: 10.1021/acsami.7b06496] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel magnetic resonance imaging (MRI) contrast agents with high sensitivity and good biocompatibility are required for the diagnosis of cancer. Herein, we prepared and characterized the gadolinium [Gd(III)]-labeled peptide dendron-hyaluronic acid (HA) conjugate-based hybrid (dendronized-HA-DOTA-Gd) by combining the advantages of HA and the peptide dendron. The dendronized-HA-DOTA-Gd hybrid with 3.8% Gd(III) as weight percentage showed a negative zeta potential (-35 mV). The in vitro degradation results indicated that the dendronized-HA-DOTA-Gd hybrid degraded into products with low molecular weights in the presence of hyaluronidase. The dendronized-HA-DOTA-Gd hybrid showed a 3-fold increase in longitudinal relaxivity and much higher in vivo signal enhancement in 4T1 breast tumors of mice compared with clinical Magnevist (Gd-DTPA). The dendronized-HA-DOTA-Gd hybrid had a higher accumulation in tumors than Gd-DTPA; it was 2-3-fold after administration. Meanwhile, the polymeric hybrid resulted in low Gd(III) residue in the body compared with that of Gd-DTPA. The systematic biosafety evaluations, including blood compatibility and toxicity assessments, suggested that the dendronized-HA-DOTA-Gd hybrid exhibited good biocompatibility. Thus, the gadolinium-labeled and dendronized HA hybrid shows promise as a safe and efficient macromolecular MRI contrast agent based on high sensitivity, low residue content in the body, and good biosafety.
Collapse
Affiliation(s)
- Chunhua Guo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China.,National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Ling Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China
| | - Hao Cai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China.,National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China.,National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China.,National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
198
|
Zhou Z, Bai R, Munasinghe J, Nie L, Chen X. T 1-T 2 Dual-Modal Magnetic Resonance Imaging: From Molecular Basis to Contrast Agents. ACS NANO 2017; 11:5227-5232. [PMID: 28613821 PMCID: PMC9617470 DOI: 10.1021/acsnano.7b03075] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multimodal imaging strategies integrating manifold images have improved our ability to diagnose, to guide therapy, and to predict outcomes. Magnetic resonance imaging (MRI) is among the most widely used imaging technique in the clinic and can enable multiparameter anatomical demonstration of diagnosis. Due to the inherent black-and-white production of MR images, however, MRI detection is largely hampered by the occurrence of false-positive diagnoses. In this Perspective, we introduce the paradigm of manipulating the multiparameter MRI, T1-T2 dual-modal MRI, along with enhancement by specific contrast agents. We hope this discussion will promote emerging research interest in T1-T2 dual-modal MRI and provoke the rational design of contrast agents for sophisticated MRI applications.
Collapse
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Ruiliang Bai
- Section on Quantitative Imaging and Tissue Science, National Institute of Child Health and Human Development, National Institutes of Health
| | - Jeeva Munasinghe
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Corresponding Authors: Xiaoyuan Chen: , Liming Nie:
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
- Corresponding Authors: Xiaoyuan Chen: , Liming Nie:
| |
Collapse
|
199
|
Tei L, Gugliotta G, Gambino G, Fekete M, Botta M. Developing High Field MRI Contrast Agents by Tuning the Rotational Dynamics: Bisaqua GdAAZTA-based Dendrimers. Isr J Chem 2017. [DOI: 10.1002/ijch.201700041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica; Università del Piemonte Orientale “A. Avogadro”; Viale Teresa Michel 11 15121 Alessandria Italy
| | - Giuseppe Gugliotta
- Dipartimento di Scienze e Innovazione Tecnologica; Università del Piemonte Orientale “A. Avogadro”; Viale Teresa Michel 11 15121 Alessandria Italy
| | - Giuseppe Gambino
- Dipartimento di Scienze e Innovazione Tecnologica; Università del Piemonte Orientale “A. Avogadro”; Viale Teresa Michel 11 15121 Alessandria Italy
| | - Marianna Fekete
- Dipartimento di Scienze e Innovazione Tecnologica; Università del Piemonte Orientale “A. Avogadro”; Viale Teresa Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica; Università del Piemonte Orientale “A. Avogadro”; Viale Teresa Michel 11 15121 Alessandria Italy
| |
Collapse
|
200
|
Li Y, Hu X, Ding D, Zou Y, Xu Y, Wang X, Zhang Y, Chen L, Chen Z, Tan W. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules. Nat Commun 2017. [PMID: 28643777 PMCID: PMC5501158 DOI: 10.1038/ncomms15653] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori infection is implicated in the aetiology of many diseases. Despite numerous studies, a painless, fast and direct method for the in situ detection of H. pylori remains a challenge, mainly due to the strong acidic/enzymatic environment of the gastric mucosa. Herein, we report the use of stable magnetic graphitic nanocapsules (MGNs), for in situ targeted magnetic resonance imaging (MRI) detection of H. pylori. Several layers of graphene as the shell effectively protect the magnetic core from corrosion while retaining the superior contrast effect for MRI in the gastric environment. Boronic-polyethylene glycol molecules were synthesized and modified on the MGN surface for targeted MRI detection. In a mouse model of H. pylori-induced infection, H. pylori was specifically detected through both T2-weighted MR imaging and Raman gastric mucosa imaging using functionalized MGNs. These results indicated that enhancement of MRI using MGNs may be a promising diagnostic and bioimaging platform for very harsh conditions.
Collapse
Affiliation(s)
- Yunjie Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ding Ding
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yuxiu Zou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yiting Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Xuewei Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Long Chen
- Faculty of Science and Technology, University of Macau, Av. da Universidade, Taipa 999078, Macau
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China.,Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| |
Collapse
|