151
|
Garg S, Wang K, Waite TD. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5500-5510. [PMID: 28412817 DOI: 10.1021/acs.est.7b00660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.
Collapse
Affiliation(s)
- Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Kai Wang
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
152
|
McBriarty ME, Soltis JA, Kerisit S, Qafoku O, Bowden ME, Bylaska EJ, De Yoreo JJ, Ilton ES. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4970-4977. [PMID: 28407467 DOI: 10.1021/acs.est.7b00432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH)3] to nanoparticulate iron oxyhydroxide minerals in the presence of uranyl (UO2)2+(aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.
Collapse
Affiliation(s)
- Martin E McBriarty
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jennifer A Soltis
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Sebastien Kerisit
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Odeta Qafoku
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Mark E Bowden
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eric J Bylaska
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - James J De Yoreo
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eugene S Ilton
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
153
|
Zhang P, Yao W, Yuan S. Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions. WATER RESEARCH 2017; 109:245-252. [PMID: 27912099 DOI: 10.1016/j.watres.2016.11.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
The release of arsenic (As) from the oxidation of As-rich pyrite is an important source of the high arsenic in groundwater. As a widespread low-molecular-weight organic acid, citrate plays an important role on the cycling of Fe(II)/Fe(III) through complexation in circumneutral subsurface environments, while the influence of citrate on the release of As from the oxidation of As-rich pyrite is poorly understood. In this study, As was loaded onto pyrite particles under anoxic conditions, and its release was investigated in the presence of 0-1 mM citrate at pH 7.4 under oxic conditions. As-loaded pyrite suspension was prepared by the equilibrium of 2.67 μM As(III) in 10 g/L pyrite under anoxic conditions with the decrease in dissolved As(III) concentration to 1 μM. The suspension was subsequently exposed to air for oxygenation. In the absence of citrate, the oxygenation decreased the partitioning of As in the solution because of the re-adsorption of aqueous As by the in situ generated Fe(III) oxyhydroxides. However, with the increase in citrate concentration from 0.1 to 1 mM, the As partitioned in the solution increased from 0.3 to 2.67 μM. In the presence of 1 mM citrate, the As(III) was almost completely oxidized to As(V) during the oxygenation. The mechanisms of citrate-enhanced release of As were mainly attributed to the ligand exchange of citrate with As for pyrite surface sites, the competitive adsorption of citrate with As on Fe(III) oxyhydroxides and pyrite, and the partitioning of As on the newly formed Fe(III) colloids. This finding presents an overlooked mechanism of the release of pyrite-associated As under oxic and circumneutral conditions.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, PR China
| | - Weiyu Yao
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, PR China.
| |
Collapse
|
154
|
Liu A, Liu J, Han J, Zhang WX. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:129-135. [PMID: 26777108 DOI: 10.1016/j.jhazmat.2015.12.070] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/25/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Knowledge on the transformation of nanoscale zero-valent iron (nZVI) in water is essential to predict its surface chemistry including surface charge, colloidal stability and aggregation, reduction and sorption of organic contaminants, heavy metal ions and other pollutants in the environment. In this work, transmission electronic microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy are applied to study the compositional and structural evolution of nZVI under oxic and anoxic conditions. Under anoxic conditions, the core-shell structure of nZVI is well maintained even after 72h, and the corrosion products usually contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). Under oxic conditions, the core-shell structure quickly collapses to flakes or acicular-shaped structures with crystalline lepidocrocite (γ-FeOOH) as the primary end product. This work provides detailed information and fills an important knowledge gap on the physicochemical characteristics and structural evolution of engineered nanomaterials in the environment.
Collapse
Affiliation(s)
- Airong Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jing Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinhao Han
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
155
|
Zhang D, Guo H, Xiu W, Ni P, Zheng H, Wei C. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:228-237. [PMID: 27631685 DOI: 10.1016/j.jhazmat.2016.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/28/2016] [Accepted: 09/08/2016] [Indexed: 05/12/2023]
Abstract
Although reductive dissolution of Fe(III) oxides has been well accepted for As mobilization in alluvial aquifers, the key factors controlling this process are poorly understood. Arsenic(V)-adsorbing ferrihydrite, goethite and hematite were used to examine in-situ mobilization and transformation of adsorbed As(V) and Fe(III) oxides. In the Hetao basin, seven wells with wide ranges of groundwater As were selected to host As(V)-Fe(III) oxides sand. During 80 d experiments, As was firstly desorbed and then released via reductive dissolution of iron oxide from ferrihydrite, while only desorption was observed from goethite/hematite sand. Desorbed As was predominantly controlled by groundwater HCO3- and DOC, while reductive dissolution-related As release was mainly regulated by ORP values, DOC and Fe(II) concentrations. Mineral transformation from ferrihydrite to lepidocrocite and goethite/or mackinawite would also contribute to As release. Arsenic species was transformed from As(V) to As(III) on ferrihydrite, but remained unchanged on goethite and hematite. Arsenic partition between As-Fe(III) oxide sand and real groundwater ranged between 0.012 and 0.102L/g. Kd-sand between As-goethite sand/As-hematite sand and groundwater fell within the ranges observed between sediments and groundwater. This study suggests that As desorption, reductive dissolution and mineral transformation of ferrihydrite would be the major processes controlling As mobility.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Ping Ni
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hao Zheng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Cao Wei
- The National Institute of Metrology, Beijing 100013, PR China
| |
Collapse
|
156
|
Ma J, He D, Collins RN, He C, Waite TD. The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants. WATER RESEARCH 2016; 105:331-340. [PMID: 27639342 DOI: 10.1016/j.watres.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
A comparative study of the ability of microparticulate zerovalent iron (mZVI) and nanoparticulate zerovalent iron (nZVI) to oxidize a target compound (in this study, 14C-labelled formate) under aerobic conditions has been conducted with specific consideration given to differences in reaction mechanisms. Results of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy showed that mZVI underwent a slow transformation to ferrihydrite while nZVI, in contrast, rapidly transformed into lepidocrocite. The behavior of mZVI (compared to nZVI) could be attributed to either (i) a lower reactivity with oxygen and/or water, (ii) surface passivation by ferrihydrite resulting in reduced electron conductivity, and/or (iii) the relatively low concentration of Fe(II) which, in the case of nZVI, catalyzed the transformation of ferrihydrite to lepidocrocite. The influence of these structural transformations on contaminant removal was profound with the ferrihydrite that formed on mZVI inducing rapid adsorption of formate and moderating reactions of mZVI with oxygen and/or water. Although surface passivation of mZVI was significant, the effectiveness of the ensuing heterogeneous redox reactions in the mZVI/O2 system, as characterized by the molar ratio of oxidized formate to consumed Fe(0) (i.e., 13.7 ± 0.8 μM/M), was comparable to that for nZVI (16.5 ± 1.4 μM/M). The results of this study highlight the potential of mZVI for the oxidative degradation of target organics in preference to nZVI despite its lower intrinsic reactivity though some means (either natural or engineered) of inducing continual depassivation of the iron oxyhydroxide-coated mZVI would be required in order to maintain ongoing oxidant production.
Collapse
Affiliation(s)
- Jinxing Ma
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Di He
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Richard N Collins
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Chuanshu He
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
157
|
Liao P, Yuan S, Wang D. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10968-10977. [PMID: 27654458 DOI: 10.1021/acs.est.6b02542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.
Collapse
Affiliation(s)
- Peng Liao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , 388 Lumo Road, Wuhan 430074, P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , 388 Lumo Road, Wuhan 430074, P. R. China
| | - Dengjun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , 71 East Beijing Road, Nanjing 210008, P. R. China
| |
Collapse
|
158
|
Yan W, Zhang J, Jing C. Enrofloxacin Transformation on Shewanella oneidensis MR-1 Reduced Goethite during Anaerobic-Aerobic Transition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11034-11040. [PMID: 27635981 DOI: 10.1021/acs.est.6b03054] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antibiotics pollution has become a critical environmental issue worldwide due to its high ecological risk. In this study, rapid degradation of enrofloxacin (ENR) was observed on goethite in the presence of Shewanella oneidensis MR-1 during the transition from anaerobic to aerobic conditions. The abiotic reactions also demonstrated that over 70% with initial concentration of 10 mg L-1 ENR was aerobically removed within 5 min by goethite with adsorbed Fe(II), without especial irradiation and strong oxidants. The results of spin trap electron spin resonance (ESR) experiments provide evidence that Fe(II)/Fe(III) complexes facilitate the generation of •OH. The electrophilic attack by •OH opens the quinolone ring of ENR and initiates further transformation reactions. Five transformation products were identified using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and the ENR degradation process was proposed accordingly. The identification of ENR transformation products also revealed that both the surface adsorption and the electron density distribution in the molecule determined the reactive site and transformation pathway. This study highlights an important, but often underappreciated, natural process for in situ degradation of antibiotics. With the easy migration of the goethite-MR-1 complex to the anaerobic/aerobic interface, the environmental fates of ENR and other antibiotics need to be seriously reconsidered.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Jianfeng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology , Xi'an 710055, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
159
|
He D, Ma J, Collins RN, Waite TD. Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3820-8. [PMID: 26958862 DOI: 10.1021/acs.est.5b04988] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While it has been recognized for some time that addition of nanoparticlate zerovalent iron (nZVI) to oxygen-containing water results in both corrosion of Fe(0) and oxidation of contaminants, there is limited understanding of either the relationship between transformation of nZVI and oxidant formation or the factors controlling the lifetime and extent of oxidant production. Using Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we show that while nZVI particles are transformed to ferrihydrite then lepidocrocite in less than 2 h, oxidant generation continues for up to 10 h. The major products (Fe(II) and H2O2) of the reaction of nZVI with oxygenated water are associated, for the most part, with the surface of particles present with these surface-associated Fenton reagents inducing oxidation of a target compound (in this study, (14)C-labeled formate). Effective oxidation of formate only occurred after formation of iron oxides on the nZVI surface with the initial formation of high surface area ferrihydrite facilitating rapid and extensive adsorption of formate with colocation of this target compound and surface-associated Fe(II) and H2O2 apparently critical to formate oxidation. Ongoing formate oxidation long after nZVI is consumed combined with the relatively slow consumption of Fe(II) and H2O2 suggest that these reactants are regenerated during the nZVI-initiated heterogeneous Fenton process.
Collapse
Affiliation(s)
- Di He
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Jinxing Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, People's Republic of China
| | - Richard N Collins
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
160
|
Mejia J, Roden EE, Ginder-Vogel M. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3580-8. [PMID: 26949922 PMCID: PMC5066396 DOI: 10.1021/acs.est.5b05519] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments.
Collapse
Affiliation(s)
- Jacqueline Mejia
- Environmental Chemistry and Technology Program, Department of Civil and Environmental Engineering, The University of Wisconsin–Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| | - Eric E. Roden
- Department of Geoscience, The University of Wisconsin–Madison, 1215 West Dayton Street, Madison, Wisconsin 53706, United States
| | - Matthew Ginder-Vogel
- Environmental Chemistry and Technology Program, Department of Civil and Environmental Engineering, The University of Wisconsin–Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
- Corresponding Author, Matthew Ginder-Vogel. . Phone: 608-262-0768. Fax: 608-262-0454
| |
Collapse
|
161
|
Chen C, Kukkadapu R, Sparks DL. Influence of Coprecipitated Organic Matter on Fe2+(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10927-36. [PMID: 26260047 DOI: 10.1021/acs.est.5b02448] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aqueous Fe(II) is known to catalyze the abiotic transformation of ferrihydrite to more stable Fe minerals. However, little is known about the impacts of coprecipitated OM on Fe(II)-catalyzed ferrihydrite transformation and its consequences for C dynamics. Accordingly, we investigated the extent and pathway of Fe(II)-induced transformation of OM-ferrihydrite coprecipitates as a function of C/Fe ratios and aqueous Fe(II) concentrations, and its implications for subsequent C dynamics. The coprecipitated OM resulted in a linear decrease in ferrihydrite transformation with increasing C/Fe ratios. The secondary mineral profiles upon Fe(II) reaction with OM-ferrihydrite coprecipitates depend on Fe(II) concentrations At 0.2 mM Fe(II), OM completely inhibited goethite formation and stimulated lepidocrocite formation. At 2 mM Fe(II), whereas goethite was formed in the presence of OM, OM reduced the amount of goethite and magnetite formation and increased the formation of lepidocrocite. The solid-phase C content remained unchanged after reaction, suggesting that OM remains associated with Fe minerals following ferrihydrite transformation to more stable Fe minerals. However, C desorbability by H2PO4(-) from the resulting Fe minerals following reaction was enhanced. The study indicates a "lepidocrocite favoring effect" by OM and suggests that Fe(II)-catalyzed transformation of ferrihydrite may decrease OM stability in natural environments under moderately reducing conditions.
Collapse
Affiliation(s)
- Chunmei Chen
- Department of Plant and Soil Sciences, Delaware Environmental Institute, University of Delaware , Newark, Delaware 19711, United States
| | - Ravi Kukkadapu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Donald L Sparks
- Department of Plant and Soil Sciences, Delaware Environmental Institute, University of Delaware , Newark, Delaware 19711, United States
| |
Collapse
|
162
|
Wu H, Ikeda-Ohno A, Wang Y, Waite TD. Iron and phosphorus speciation in Fe-conditioned membrane bioreactor activated sludge. WATER RESEARCH 2015; 76:213-226. [PMID: 25900910 DOI: 10.1016/j.watres.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Iron dosing of membrane bioreactors (MBRs) is widely used as a means of meeting effluent phosphorus targets but there is limited understanding of the nature of iron and phosphorus-containing solids that are formed within the bioreactor (an important issue in view of the increasing interest in recovering phosphorus from wastewaters). Of particular challenge is the complexity of the MBR system and the variety of reactions that can occur on addition of iron salts to a membrane bioreactor. In this study, the performances of bench scale MBRs with dosing of either ferrous or ferric salts were monitored for a period of four months. The distributions of Fe and P-species in the Fe-conditioned sludges were determined using X-ray absorption spectroscopy (XAS) at the Fe K-edge and the P K-edge. Regardless of whether iron was dosed to the anoxic or aerobic chambers and regardless of whether ferrous (Fe(II)) or ferric (Fe(III)) iron was dosed, iron present in the minerals in the conditioned sludges was consistently in the +III oxidation state. Fitting of the Fe K-edge EXAFS spectra revealed that an Fe(III)-phosphate species was the main Fe species present in all cases with the remaining fraction dominated by lepidocrocite (γ-FeOOH) in the Fe(II)-dosed case and ferrihydrite (am-FeOOH) in the Fe(III)-dosed case. Approximately half the phosphorus in the activated sludge samples was present as a distinct Fe-PO4 mineral (such as strengite or an amorphous ferric hydroxyl phosphate analogue of strengite) and half as phosphorus adsorbed to an iron oxyhydroxide mineral phase indicating that both co-precipitation and adsorption of phosphorus by iron contribute to removal of phosphorus from the MBR supernatant.
Collapse
Affiliation(s)
- Hao Wu
- Water Research Centre, School of Civil & Environmental Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Atsushi Ikeda-Ohno
- Water Research Centre, School of Civil & Environmental Engineering, The University of New South Wales, Sydney 2052, Australia; Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia; Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Yuan Wang
- Water Research Centre, School of Civil & Environmental Engineering, The University of New South Wales, Sydney 2052, Australia; UNESCO Centre for Membrane Science & Technology, School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil & Environmental Engineering, The University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
163
|
Boland DD, Collins RN, Glover CJ, Payne TE, Waite TD. Reduction of U(VI) by Fe(II) during the Fe(II)-accelerated transformation of ferrihydrite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9086-9093. [PMID: 25014507 DOI: 10.1021/es501750z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
X-ray absorption spectroscopy has been used to study the reduction of adsorbed U(VI) during the Fe(II)-accelerated transformation of ferrihydrite to goethite. The fate of U(VI) was examined across a variety of pH values and Fe(II) concentrations, with results suggesting that, in all cases, it was reduced over the course of the Fe(III) phase transformation to a U(V) species incorporated in goethite. A positive correlation between U(VI) reduction and ferrihydrite transformation rate constants implies that U(VI) reduction was driven by the production of goethite under the conditions used in these studies. This interpretation was supported by additional experimental evidence that demonstrated the (fast) reduction of U(VI) to U(V) by Fe(II) in the presence of goethite only. Theoretical redox potential calculations clearly indicate that the reduction of U(VI) by Fe(II) in the presence of goethite is thermodynamically favorable. In contrast, reduction of U(VI) by Fe(II) in the presence of ferrihydrite is largely thermodynamically unfavorable within the range of conditions examined in this study.
Collapse
Affiliation(s)
- Daniel D Boland
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
164
|
Liu A, Liu J, Pan B, Zhang WX. Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Adv 2014. [DOI: 10.1039/c4ra08988j] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aging of nZVI in oxygenated water yields stable sheet-shaped and well-formed lepidocrocite crystals.
Collapse
Affiliation(s)
- Airong Liu
- State Key Laboratory for Pollution Control and Resource Reuse
- Tongji University
- Shanghai, China
- College of Environmental Science and Engineering
- Tongji University
| | - Jing Liu
- State Key Laboratory for Pollution Control and Resource Reuse
- Tongji University
- Shanghai, China
- College of Environmental Science and Engineering
- Tongji University
| | - Bingcai Pan
- State Key Laboratory for Pollution Control and Resource Reuse
- Tongji University
- Shanghai, China
- School of the Environment
- Nanjing University
| | - Wei-xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse
- Tongji University
- Shanghai, China
- College of Environmental Science and Engineering
- Tongji University
| |
Collapse
|