151
|
Akbari Jonous Z, Shayeh JS, Yazdian F, Yadegari A, Hashemi M, Omidi M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide-gold nanostructures. Eng Life Sci 2019; 19:206-216. [PMID: 32625003 DOI: 10.1002/elsc.201800093] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/30/2018] [Accepted: 01/17/2019] [Indexed: 01/28/2023] Open
Abstract
In this paper, a most sensitive electrochemical biosensor for detection of prostate-specific antigen (PSA) was designed. To reach the goal, a sandwich type electrode composed of reduced graphene oxide/ gold nanoparticles (GO/AuNPs), Anti-Total PSA monoclonal antibody, and anti-Free PSA antibody was assembled. The functionalized materials were thoroughly characterized by atomic force microscope spectroscopy, transmission electron microscopy, and X-ray diffraction techniques. The electrochemical properties of each of the modification step were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The results presented that the proposed biosensor possesses high sensitivity toward total and free PSA. Furthermore, the fabricated biosensor revealed an excellent selectivity for PSA in comparison to the other tumor markers such as BHCG, Alb, CEA, CA125, and CA19-9. The limit of detection for the proposed electrochemical biosensor was estimated to be around 0.2 and 0.07 ng/mL for total and free PSA antigen, respectively.
Collapse
Affiliation(s)
- Zahra Akbari Jonous
- Department of Immunology Shahid Sadoughi University of Medical Sciences Yazd Iran
| | | | - Fatemeh Yazdian
- Department of Life Science Engineering Faculty of New Science and Technologies University of Tehran Tehran Iran
| | - Amir Yadegari
- Protein Research Center Shahid Beheshti University GC Tehran Iran
| | - Mohadeseh Hashemi
- Biomedical Engineering Department University of Texas at Austin Austin TX USA.,Protein Research Center Shahid Beheshti University GC Tehran Iran
| | - Meisam Omidi
- Protein Research Center Shahid Beheshti University GC Tehran Iran
| |
Collapse
|
152
|
Grafting of silica nanoparticles on incompletely-graphitized HCNFs for application in bound rubber. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
153
|
Zhou Y, Fang Y, Ramasamy RP. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. SENSORS (BASEL, SWITZERLAND) 2019; 19:E392. [PMID: 30669367 PMCID: PMC6358788 DOI: 10.3390/s19020392] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Carbon nanotubes (CNTs) have been widely studied and used for the construction of electrochemical biosensors owing to their small size, cylindrical shape, large surface-to-volume ratio, high conductivity and good biocompatibility. In electrochemical biosensors, CNTs serve a dual purpose: they act as immobilization support for biomolecules as well as provide the necessary electrical conductivity for electrochemical transduction. The ability of a recognition molecule to detect the analyte is highly dependent on the type of immobilization used for the attachment of the biomolecule to the CNT surface, a process also known as biofunctionalization. A variety of biofunctionalization methods have been studied and reported including physical adsorption, covalent cross-linking, polymer encapsulation etc. Each method carries its own advantages and limitations. In this review we provide a comprehensive review of non-covalent functionalization of carbon nanotubes with a variety of biomolecules for the development of electrochemical biosensors. This method of immobilization is increasingly being used in bioelectrode development using enzymes for biosensor and biofuel cell applications.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Yi Fang
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Ramaraja P Ramasamy
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
154
|
Safaee MM, Gravely M, Rocchio C, Simmeth M, Roxbury D. DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2225-2233. [PMID: 30575397 DOI: 10.1021/acsami.8b16478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) functionalized with short single-stranded DNA have been extensively studied within the last decade for biomedical applications due to the high dispersion efficiency and intrinsic biocompatibility of DNA as well as the photostable and tunable fluorescence of SWCNTs. Characterization of their physical properties, particularly their length distribution, is of great importance regarding their application as a bioengineered research tool and clinical diagnostic agent. Conventionally, atomic force microscopy (AFM) has been used to quantify the length of DNA-SWCNTs by depositing the hybrids onto an electrostatically charged flat surface. Here, we demonstrate that hybrids of DNA-SWCNTs with different oligomeric DNA sequences ((GT)6 and (GT)30) differentially deposit on the AFM substrate, resulting in significant inaccuracies in the reported length distributions of the parent solutions. Using a solution-based surfactant exchange technique, we placed both samples into a common surfactant wrapping and found identical SWCNT length distributions upon surface deposition. Additionally, by spin-coating the surfactant-wrapped SWCNTs onto a substrate, thus mitigating effects of electrostatic interactions, we found length distributions that did not depend on DNA sequence but were significantly longer than electrostatic deposition methods, illuminating the inherent bias of the surface deposition method. Quantifying the coverage of DNA molecules on each SWCNT through both absorbance spectroscopy and direct observation, we found that the density of DNA per SWCNT was significantly higher in short (GT)6-SWCNTs (length < 100 nm) compared to long (GT)6-SWCNTs (length > 100 nm). In contrast, we found no dependence of the DNA density on SWCNT length in (GT)30-SWCNT hybrids. Thus, we attribute differences in the observed length distributions of DNA-SWCNTs to variations in electrostatic repulsion induced by sequence-dependent DNA density.
Collapse
Affiliation(s)
- Mohammad Moein Safaee
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Mitchell Gravely
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Caroline Rocchio
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Matthew Simmeth
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Daniel Roxbury
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| |
Collapse
|
155
|
Abstract
Carbon nanotubes (CNTs) promise to advance a number of real-world technologies. Of these applications, they are particularly attractive for uses in chemical sensors for environmental and health monitoring. However, chemical sensors based on CNTs are often lacking in selectivity, and the elucidation of their sensing mechanisms remains challenging. This review is a comprehensive description of the parameters that give rise to the sensing capabilities of CNT-based sensors and the application of CNT-based devices in chemical sensing. This review begins with the discussion of the sensing mechanisms in CNT-based devices, the chemical methods of CNT functionalization, architectures of sensors, performance parameters, and theoretical models used to describe CNT sensors. It then discusses the expansive applications of CNT-based sensors to multiple areas including environmental monitoring, food and agriculture applications, biological sensors, and national security. The discussion of each analyte focuses on the strategies used to impart selectivity and the molecular interactions between the selector and the analyte. Finally, the review concludes with a brief outlook over future developments in the field of chemical sensors and their prospects for commercialization.
Collapse
Affiliation(s)
- Vera Schroeder
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Maggie He
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Sibo Lin
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
156
|
Surface Modification/Functionalization of Carbon Materials by Different Techniques: An Overview. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2019. [DOI: 10.1007/978-981-13-2688-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
157
|
Aumaitre C, Fong D, Adronov A, Morin JF. Anthanthrene-based conjugated polymers for the dispersion of single-walled carbon nanotubes. Polym Chem 2019. [DOI: 10.1039/c9py01603a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Four new copolymers based on anthanthrene for the dispersion of semiconducting SWNTs of various diameters have been synthesized.
Collapse
Affiliation(s)
- Cyril Aumaitre
- Département de chimie and Centre de recherche sur les matériaux avancés (CERMA)
- 1045 Avenue de la Médecine
- Université Laval
- Québec
- Canada
| | - Darryl Fong
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Jean-François Morin
- Département de chimie and Centre de recherche sur les matériaux avancés (CERMA)
- 1045 Avenue de la Médecine
- Université Laval
- Québec
- Canada
| |
Collapse
|
158
|
Mena-Hernando S, Pérez EM. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem Soc Rev 2019; 48:5016-5032. [DOI: 10.1039/c8cs00888d] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An overview of the progress in mechanically interlocked materials is presented. In particular, we focus on polycatenanes, polyrotaxanes, metal–organic rotaxane frameworks (MORFs), and mechanically interlocked derivatives of carbon nanotubes (MINTs).
Collapse
|
159
|
Pyrene and its selected 1-substituted derivatives revisited: A combined spectroscopic and computational investigation. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
160
|
Adeel M, Bilal M, Rasheed T, Sharma A, Iqbal HMN. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. Int J Biol Macromol 2018; 120:1430-1440. [PMID: 30261251 DOI: 10.1016/j.ijbiomac.2018.09.144] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials have gained high research interest in different fields related to proteins and thus are rapidly becoming the most widely investigated carbon-based materials. Their exceptional physiochemical properties such as electrical, optical, thermal and mechanical strength enable graphene to render graphene-based nanostructured materials suitable for applications in different fields such as electroanalytical chemistry, electrochemical sensors and immobilization of biomolecules and enzymes. The structural feature of oxygenated graphene, i.e., graphene oxide (GO) covered with different functionalities such as epoxy, hydroxyl, and carboxylic group, open a new direction of chemical modification of GO with desired properties. This review describes the recent progress related to the structural geometry, physiochemical characteristics, and functionalization of GO, and the development of graphene-based novel carriers as host for enzyme immobilization. Graphene derivatives-based applications are progressively increasing, in recent years. Therefore, from the bio-catalysis and biotransformation viewpoint, the biotechnological perspective of graphene-immobilized nano-bio-catalysts is of supreme interest. The structural geometry, unique properties, and functionalization of graphene derivatives and graphene-based nanomaterials as host for enzyme immobilization are highlighted in this review. Also, the role of GO-based catalytic systems such as microfluidic bio-catalysis, enzyme-based biofuel cells, and biosensors are also discussed with potential future perspectives of these multifaceted materials.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Campus Queretaro, School of Engineering and Sciences, Epigmenio Gonzalez 500, CP 76130 Queretaro, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Campus Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
161
|
Kim DH, Oh HG, Park WH, Jeon DC, Lim KM, Kim HJ, Jang BK, Song KS. Detection of Alpha-Fetoprotein in Hepatocellular Carcinoma Patient Plasma with Graphene Field-Effect Transistor. SENSORS 2018; 18:s18114032. [PMID: 30463232 PMCID: PMC6263997 DOI: 10.3390/s18114032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
The detection of alpha-fetoprotein (AFP) in plasma is important in the diagnosis of hepatocellular carcinoma (HCC) in humans. We developed a biosensor to detect AFP in HCC patient plasma and in a phosphate buffer saline (PBS) solution using a graphene field-effect transistor (G-FET). The G-FET was functionalized with 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE) for immobilization of an anti-AFP antibody. AFP was detected by assessing the shift in the voltage of the Dirac point (ΔVDirac) after binding of AFP to the anti-AFP-immobilized G-FET channel surface. This anti-AFP-immobilized G-FET biosensor was able to detect AFP at a concentration of 0.1 ng mL−1 in PBS, and the detection sensitivity was 16.91 mV. In HCC patient plasma, the biosensor was able to detect AFP at a concentration of 12.9 ng mL−1, with a detection sensitivity of 5.68 mV. The sensitivity (ΔVDirac) depended on the concentration of AFP in either PBS or HCC patient plasma. These data suggest that G-FET biosensors could have practical applications in diagnostics.
Collapse
Affiliation(s)
- Dae Hoon Kim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Hong Gi Oh
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Woo Hwan Park
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Dong Cheol Jeon
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Ki Moo Lim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Hyung Jin Kim
- Biomedical IT Convergence Center, Gumi Electronics and Information Technology Research Institute, Gumi, Gyeongbuk 39171, Korea.
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 41931, Korea.
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| |
Collapse
|
162
|
Xiao L, Sun H. Novel properties and applications of carbon nanodots. NANOSCALE HORIZONS 2018; 3:565-597. [PMID: 32254112 DOI: 10.1039/c8nh00106e] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the most recent decade, carbon dots have drawn intensive attention and triggered substantial investigation. Carbon dots manifest superior merits, including excellent biocompatibility both in vitro and in vivo, resistance to photobleaching, easy surface functionalization and bio-conjugation, outstanding colloidal stability, eco-friendly synthesis, and low cost. All of these endow them with the great potential to replace conventional unsatisfactory fluorescent heavy metal-containing semiconductor quantum dots or organic dyes. Even though the understanding of their photoluminescence mechanism is still controversial, carbon dots have already exhibited many versatile applications. In this article, we summarize and review the recent progress achieved in the field of carbon dots, and provide a comprehensive summary and discussion on their synthesis methods and emission mechanisms. We also present the applications of carbon dots in bioimaging, drug delivery, microfluidics, light emitting diode (LED), sensing, logic gates, and chiral photonics, etc. Some unaddressed issues, challenges, and future prospects of carbon dots are also discussed. We envision that carbon dots will eventually have great commercial utilization and will become a strong competitor to some currently used fluorescent materials. It is our hope that this review will provide insights into both the fundamental research and practical applications of carbon dots.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|
163
|
Shamshoom C, Fong D, Li K, Kardelis V, Adronov A. Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. ACS OMEGA 2018; 3:13935-13943. [PMID: 31458090 PMCID: PMC6645158 DOI: 10.1021/acsomega.8b02091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
Control of single-walled carbon nanotube dispersion properties is of substantial interest to the scientific community. In this work, we sought to investigate the effect of a macrocycle, pillar[5]arene, on the dispersion properties of a polymer-nanotube complex. Pillar[5]arenes are a class of electron-rich macrocyclic hosts capable of forming inclusion complexes with electron-poor guests, such as alkyl nitriles. A hydroxyl-functionalized pillar[5]arene derivative was coupled to the alkyl bromide side chains of a polyfluorene, which was then used to coat the surface of single-walled carbon nanotubes. Noncovalent functionalization of carbon nanotubes with the macrocycle-containing conjugated polymer significantly enhanced nanotube solubility, resulting in dark and concentrated nanotube dispersions (600 μg mL-1), as evidenced by UV-vis-NIR spectroscopy and thermogravimetric analysis. Differentiation of semiconducting and metallic single-walled carbon nanotube species was analyzed by a combination of UV-vis-NIR, Raman, and fluorescence spectroscopy. Raman spectroscopy confirmed that the concentrated nanotube dispersion produced by the macrocycle-containing polymer was due to well-exfoliated nanotubes, rather than bundle formation. The polymer-nanotube dispersion was investigated using 1H NMR spectroscopy, and it was found that host-guest chemistry between pillar[5]arene and 1,6-dicyanohexane occurred in the presence of the polymer-nanotube complex. Utilizing the host-guest capability of pillar[5]arene, the polymer-nanotube complex was incorporated into a supramolecular organogel.
Collapse
Affiliation(s)
- Christina Shamshoom
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Darryl Fong
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Kelvin Li
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Vladimir Kardelis
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| |
Collapse
|
164
|
Yu X, Sreenivasan S, Tian K, Zheng T, Lawrence JG, Pilla S. Sustainable Animal Protein-Intermeshed Epoxy Hybrid Polymers: From Conquering Challenges to Engineering Properties. ACS OMEGA 2018; 3:14361-14370. [PMID: 31458124 PMCID: PMC6644357 DOI: 10.1021/acsomega.8b01336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/10/2018] [Indexed: 06/10/2023]
Abstract
The presence of highly modifiable chemical functional groups, abundance of functional groups, and their biological origin make proteins an important class of biomaterials from a fundamental science and applied engineering perspective. Hence, the utilization of proteins from the animal rendering industry (animal protein, AP) for high-value, nonfeed, and nonfertilizer applications is intensely pursued. Although this leads to the exploration of protein-derived plastics as a plausible alternative, the proposed methods are energy-intensive and not based on protein in its native form, which leads to high processing and production costs. Here, we propose, for the first time, novel pathways to develop engineered hybrid systems utilizing AP in its native form and epoxy resins with mechanical properties ranging from toughened thermosets to elastic epoxy-based systems. Furthermore, we demonstrate the capability to engineer the properties of epoxy-AP hybrids from high-strength hybrids to elastic films through controlling the interaction, hydrophilicity, as well as the extent of cross-linking and network density. Through the facile introduction of cochemicals, a sevenfold increase in the mechanical properties of the conventional epoxy-AP hybrid is achieved. Similarly, because of better compatibility afforded by the similar hydrophilicity, AP demonstrated higher cross-linking capability with a water-soluble epoxy (WEP) matrix, resulting in an elastic WEP-AP hybrid without any external aid.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department
of Automotive Engineering and Clemson Composites Center, Clemson University, 4 Research Dr, Greenville, South Carolina 29607, United States
| | - Sreeprasad Sreenivasan
- Department
of Automotive Engineering and Clemson Composites Center, Clemson University, 4 Research Dr, Greenville, South Carolina 29607, United States
- Polymer
Institute, The University of Toledo, 2801 W Bancroft Street, Toledo, Ohio 43606, United States
| | - Kevin Tian
- Department
of Automotive Engineering and Clemson Composites Center, Clemson University, 4 Research Dr, Greenville, South Carolina 29607, United States
- Southside
High School, Greenville, SC 29605, United
States
| | - Ting Zheng
- Department
of Automotive Engineering and Clemson Composites Center, Clemson University, 4 Research Dr, Greenville, South Carolina 29607, United States
| | - Joseph G. Lawrence
- Polymer
Institute, The University of Toledo, 2801 W Bancroft Street, Toledo, Ohio 43606, United States
| | - Srikanth Pilla
- Department
of Automotive Engineering and Clemson Composites Center, Clemson University, 4 Research Dr, Greenville, South Carolina 29607, United States
- Department
of Materials Science and Engineering, Clemson
University, Sirrine Hall, Clemson, SC 29634, United States
| |
Collapse
|
165
|
Kwon OS, Song HS, Park TH, Jang J. Conducting Nanomaterial Sensor Using Natural Receptors. Chem Rev 2018; 119:36-93. [DOI: 10.1021/acs.chemrev.8b00159] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oh Seok Kwon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejon 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
166
|
An electrochemical ceruloplasmin aptasensor using a glassy carbon electrode modified by diazonium-functionalized multiwalled carbon nanotubes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1533-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
167
|
The Chemistry behind Catechol-Based Adhesion. Angew Chem Int Ed Engl 2018; 58:696-714. [DOI: 10.1002/anie.201801063] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/12/2018] [Indexed: 11/07/2022]
|
168
|
Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busqué F, Ruiz-Molina D. Die chemischen Grundlagen der Adhäsion von Catechol. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Saiz-Poseu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST; Campus UAB, Bellaterra 08193 Barcelona Spanien
| | - J. Mancebo-Aracil
- Instituto de Química del Sur-INQUISUR (UNS-CONICET); Universidad Nacional del Sur; Av. Alem 1253 8000 Bahía Blanca Buenos Aires Argentinien
| | - F. Nador
- Instituto de Química del Sur-INQUISUR (UNS-CONICET); Universidad Nacional del Sur; Av. Alem 1253 8000 Bahía Blanca Buenos Aires Argentinien
| | - F. Busqué
- Dpto. de Química (Unidad Química Orgánica); UniversidadAutónoma de Barcelona, Edificio C-Facultad de Ciencias; 08193 Cerdanyola del Vallès Barcelona Spanien
| | - D. Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST; Campus UAB, Bellaterra 08193 Barcelona Spanien
| |
Collapse
|
169
|
Lee Y, Trocchia SM, Warren SB, Young EF, Vernick S, Shepard KL. Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays. ACS NANO 2018; 12:9922-9930. [PMID: 30260623 PMCID: PMC6887518 DOI: 10.1021/acsnano.8b03073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally deliver higher stability but have traditionally been more difficult to control, resulting in low yield. Here, we present a single-point-functionalization method for CNTFET arrays based on electrochemical control of a diazonium reaction to create sp3 defects, combined with a scalable spin-casting method for fabricating large arrays of devices on arbitrary substrates. Attachment of probe DNA to the functionalized device enables single-molecule detection of DNA hybridization with complementary target, verifying the single-point functionalization. Overall, this method enables single-point defect generation with 80% yield.
Collapse
Affiliation(s)
- Yoonhee Lee
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Scott M. Trocchia
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Erik F. Young
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Sefi Vernick
- Agricultural Research Organization, Volcani Center, Institute of Agricultural Engineering, Bet Dagan, Israel
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
170
|
Meran M, Akkus PD, Kurkcuoglu O, Baysak E, Hizal G, Haciosmanoglu E, Unlu A, Karatepe N, Güner FS. Noncovalent Pyrene-Polyethylene Glycol Coatings of Carbon Nanotubes Achieve in Vitro Biocompatibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12071-12082. [PMID: 30231197 DOI: 10.1021/acs.langmuir.8b00971] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) have become increasingly exploited in biological applications, such as imaging and drug delivery. The application of SWNTs in biological settings requires the surface chemistry to remain through the low solubility in aqueous media. In this research, a facile approach for the preparation of a polyethylene glycol (PEG)-coated SWNT-based nanocarrier was reported. We focused on the effect of PEG chain length and SWNT size on the cytotoxicity of PEG-coated SWNTs as a superior drug delivery nanovector. First, all-atom molecular dynamics (MD) simulations were employed to explore the stability and behavior of SWNT/pyrene-PEG (SWNT/Pyr-PEG) structures at a molecular level that is not attainable with experiments. The MD studies revealed that (i) π-π stacking interactions between the pyrene bearing PEG molecules and SWNTs are maintained in bulky situations, regardless of PEG molecular weight or SWNT size; (ii) pyrene molecules diffuse over the SWNT surface without detaching; and (iii) both short and long dynamic Pyr-PEG chains have the capability of effectively coating the SWNT surface. In light of the simulations, noncovalent (π-π stacking) assemblies of SWNT/Pyr-PEG with different molecular weights of PEG ( Mw = 2000, 5000, and 12000) were successfully fabricated and characterized. For longer PEG chains, more effective coating of SWNTs was obtained, resulting in more biocompatible SWNT/Pyr-PEG nanomaterials. The number of SWNTs coated by Pyr-PEG was highly dependent on the length of pyrene bearing PEG polymers. Moreover, the short SWNTs showed a higher amount of PEG coating with respect to the long SWNTs. Cell viability results demonstrated a dose-dependent cytotoxicity of coated SWNTs. Short SWNTs coated with longer PEG chains have low cytotoxicity to be used in in vivo studies.
Collapse
Affiliation(s)
- Mehdi Meran
- Department of Chemical Engineering , Istanbul Technical University , 34469 Istanbul , Turkey
| | - Pelin Deniz Akkus
- Department of Chemical Engineering , Istanbul Technical University , 34469 Istanbul , Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering , Istanbul Technical University , 34469 Istanbul , Turkey
| | - Elif Baysak
- Department of Chemistry , Istanbul Technical University , 34469 Istanbul , Turkey
| | - Gurkan Hizal
- Department of Chemistry , Istanbul Technical University , 34469 Istanbul , Turkey
| | - Ebru Haciosmanoglu
- Department of Physiology, Faculty of Medicine , Istanbul Bilim University , 34394 Istanbul , Turkey
| | - Ayhan Unlu
- Department of Biophysics, Faculty of Medicine , Trakya University , 22030 Edirne , Turkey
| | - Nilgun Karatepe
- Energy Institute, Renewable Energy Division , Istanbul Technical University , 34469 Istanbul , Turkey
| | - F Seniha Güner
- Department of Chemical Engineering , Istanbul Technical University , 34469 Istanbul , Turkey
| |
Collapse
|
171
|
Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Nanotechnology is a rapidly evolving field, as evidenced by the large number of publications on the synthesis, characterization, and biological/environmental effects of new nano-sized materials. The unique, size-dependent properties of nanomaterials have been exploited in a diverse range of applications and in many examples of nano-enabled consumer products. In this account we focus on Engineered Nanomaterials (ENM), a class of deliberately designed and constructed nano-sized materials. Due to the large volume of publications, we separated the preparation and characterisation of ENM from applications and toxicity into two interconnected documents. Part 1 summarizes nanomaterial terminology and provides an overview of the best practices for their preparation, surface functionalization, and analytical characterization. Part 2 (this issue, Pure Appl. Chem. 2018; 90(8): 1325–1356) focuses on ENM that are used in products that are expected to come in close contact with consumers. It reviews nanomaterials used in therapeutics, diagnostics, and consumer goods and summarizes current nanotoxicology challenges and the current state of nanomaterial regulation, providing insight on the growing public debate on whether the environmental and social costs of nanotechnology outweigh its potential benefits.
Collapse
|
172
|
Farzanegan A, Roudbary M, Falahati M, Khoobi M, Gholibegloo E, Farahyar S, Karimi P, Khanmohammadi M. Synthesis, characterization and antifungal activity of a novel formulated nanocomposite containing Indolicidin and Graphene oxide against disseminated candidiasis. J Mycol Med 2018; 28:628-636. [PMID: 30126717 DOI: 10.1016/j.mycmed.2018.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/29/2018] [Accepted: 07/31/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Candidiasis is one of the most opportunistic fungal infections in immunocompromised patients. The emergence of multidrug-resistant Candida species necessitates the development of novel antifungal agents. Seeking to the discovery of natural antifungal agents, this study aimed to synthesize a novel formulated nanocomposite containing Indolicidin (IN), antimicrobial peptide, and Graphene oxide (GO), kind of nanomaterial, against Candida growth using in vitro and in vivo experiments for the first time. METHODS The formulated nanocomposite (GO-IN) synthetized and was characterized using scanning electron microscopy, X-ray power diffraction, and fourier transform infrared method analysis. The in vitro antifungal activity of fluconazole (FLU), GO, IN, and GO-IN was determined against Candida albicans (C. albicans) compared to control groups, cell cytotoxicity assay on human intestinal epithelial cells (IEP) and hemolytic activities were performed. Moreover, in vivo experiments of nanocomposite were assessed in BALB/c mice. RESULTS Our results showed that nanocomposite had the highest inhibitory effect against C. albicans (MIC 3.12μg/mL) compared with flu (MIC 4μg/mL), IN (MIC 12.5μg/mL), and GO (MIC 6.25μg/mL). Viability of human intestinal cell line at the MIC concentration (3.12μg/mL) of nanocomposite (GO-IN) was detected as 60% (P<0.05). The results of hemolytic activity showed that nanocomposite cause 2.73% of red blood cell membrane damage. For in vivo experiments, infected mice were successfully treated with GO-IN once a day within 7 days. GO-IN treated group eliminated the Candida infection in the spleen and liver of BALB/c mice (P=0.001) similar to fluconazole. There was no significant difference in histological manifestations between flu and GO-IN groups. CONCLUSION This study suggests that synergistic combination of GO and IN provide a new option, representing a potential therapeutic efficiency against disseminated candidiasis in an animal model as well as might be used as adjunct therapy in the management of candidiasis. However, further investigation is needed to evaluate the efficacy of the nanocomposite.
Collapse
Affiliation(s)
- A Farzanegan
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| | - M Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran.
| | - M Falahati
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| | - M Khoobi
- Nanobiomaterials group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, 141761411 Tehran, Iran; Department of Organic Chemistry, University of Zanjan, Zanjan, Iran
| | - E Gholibegloo
- Department of Chemistry, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - S Farahyar
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| | - P Karimi
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| | - M Khanmohammadi
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| |
Collapse
|
173
|
Tu J, Gan Y, Liang T, Hu Q, Wang Q, Ren T, Sun Q, Wan H, Wang P. Graphene FET Array Biosensor Based on ssDNA Aptamer for Ultrasensitive Hg 2+ Detection in Environmental Pollutants. Front Chem 2018; 6:333. [PMID: 30155458 PMCID: PMC6102327 DOI: 10.3389/fchem.2018.00333] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 01/27/2023] Open
Abstract
Invisible mercury ion is an extremely poisonous environmental pollutant, therefore, a fast and highly sensitive detection method is of significant importance. In this study, a liquid-gated graphene field-effect transistor (GFET) array biosensor (6 × 6 GFETs on the chip) was fabricated and applied for Hg2+ quantitate detection based on single-stranded DNA (ssDNA) aptamer. The biosensor showed outstanding selectivity to Hg2+ in mixed solutions containing various metal ions. Moreover, the sensing capability of the biosensor was demonstrated by real-time responses and showed a fairly low detection limit of 40 pM, a wide detection ranged from 100 pM to 100 nM and rapid response time below one second. These results suggest that the GFET array biosensor based on ssDNA aptamer offers a simple fabrication procedure and quite fast method for mercury ion contaminant detection and are promising for various analytical applications.
Collapse
Affiliation(s)
- Jiawei Tu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Tao Liang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Qiongwen Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Qian Wang
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Tianling Ren
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Qiyong Sun
- Key Laboratory of Healthy & Intelligent Kitchen System Integration of Zhejiang Province, Ningbo, China.,Ningbo Fotile Kitchenware CO. LTD., Bodi Centre, Hangzhou, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
174
|
Blout A, Billon F, Calers C, Méthivier C, Pailleret A, Perrot H, Jolivalt C. Orientation of a Trametes versicolor laccase on amorphous carbon nitride coated graphite electrodes for improved electroreduction of dioxygen to water. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
175
|
Hussein MA, Albeladi HK, Elsherbiny AS, El-Shishtawy RM, Al-romaizan AN. Cross-linked poly(methyl methacrylate)/multiwall carbon nanotube nanocomposites for environmental treatment. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mahmoud A. Hussein
- Chemistry Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Chemistry Department; Faculty of Science; Polymer Chemistry Lab.; Assiut University; Assiut Egypt
| | - Hasinah K. Albeladi
- Chemistry Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Abeer S. Elsherbiny
- Department of Chemistry; Faculty of Science; Tanta University; Tanta Egypt
- Department of Chemistry, Science and Art College; King Abdulaziz University; Rabigh Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Dyeing, Printing and Textile Auxiliaries Department; Textile Research Division; National Research Centre; Dokki Cairo Egypt
| | - Abeer N. Al-romaizan
- Chemistry Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
176
|
Nagai Y, Tsutsumi Y, Nakashima N, Fujigaya T. Synthesis of Single-Walled Carbon Nanotubes Coated with Thiol-Reactive Gel via Emulsion Polymerization. J Am Chem Soc 2018; 140:8544-8550. [DOI: 10.1021/jacs.8b03873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yukiko Nagai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Tsutsumi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naotoshi Nakashima
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency-Precursory Research for Embryonic Science and Technology (JST-PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Center for Molecular Systems(CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
177
|
Gao Z, Xia H, Zauberman J, Tomaiuolo M, Ping J, Zhang Q, Ducos P, Ye H, Wang S, Yang X, Lubna F, Luo Z, Ren L, Johnson ATC. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors. NANO LETTERS 2018; 18:3509-3515. [PMID: 29768011 PMCID: PMC6002779 DOI: 10.1021/acs.nanolett.8b00572] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/05/2018] [Indexed: 05/18/2023]
Abstract
All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.
Collapse
Affiliation(s)
- Zhaoli Gao
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Han Xia
- Department of Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Department of Laboratory Medicine, Southwest Hospital , Third Military Medical University (Army Medical University) , Chongqing 400038 , P. R. China
| | - Jonathan Zauberman
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jinglei Ping
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Qicheng Zhang
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Department of Chemical and Biomolecular Engineering , Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| | - Pedro Ducos
- Departamento de Física , Universidad San Francisco de Quito , Quito 170901 , Ecuador
| | - Huacheng Ye
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Sheng Wang
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Xinping Yang
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Fahmida Lubna
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Zhengtang Luo
- Department of Chemical and Biomolecular Engineering , Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| | - Li Ren
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
178
|
Krishnan S, Frazis M, Premaratne G, Niroula J, Echeverria E, McIlroy DN. Pyrenyl-carbon nanostructures for scalable enzyme electrocatalysis and biological fuel cells. Analyst 2018; 143:2876-2882. [PMID: 29790506 DOI: 10.1039/c8an00703a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The objective of this article is to demonstrate the electrode geometric area-based scalability of pyrenyl-carbon nanostructure modification for enzyme electrocatalysis and fuel cell power output using hydrogenase anode and bilirubin oxidase cathode as the model system.
Collapse
Affiliation(s)
- Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
179
|
The potential impact of carboxylic-functionalized multi-walled carbon nanotubes on trypsin: A Comprehensive spectroscopic and molecular dynamics simulation study. PLoS One 2018; 13:e0198519. [PMID: 29856868 PMCID: PMC5983559 DOI: 10.1371/journal.pone.0198519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/21/2018] [Indexed: 01/03/2023] Open
Abstract
In this study, we report a detailed experimental, binding free energy calculation and molecular dynamics (MD) simulation investigation of the interactions of carboxylic-functionalized multi-walled carbon nanotubes (COOH-f-MWCNTs) with porcine trypsin (pTry). The enzyme exhibits decreased thermostability at 330K in the presence of COOH-f-MWCNTs. Furthermore, the activity of pTry also decreases in the presence of COOH-f-MWCNTs. The restricted diffusion of the substrate to the active site of the enzyme was observed in the experiment. The MD simulation analysis suggested that this could be because of the blocking of the S1 pocket of pTry, which plays a vital role in the substrate selectivity. The intrinsic fluorescence of pTry is quenched with increase in the COOH-f-MWCNTs concentration. Circular dichroism (CD) and UV–visible absorption spectroscopies indicate the ability of COOH-f-MWCNTs to experience conformational change in the native structure of the enzyme. The binding free energy calculations also show that electrostatics, π-cation, and π-π stacking interactions play important roles in the binding of the carboxylated CNTs with pTry. The MD simulation results demonstrated that the carboxylated CNTs adsorb to the enzyme stronger than the CNT without the–COOH groups. Our observations can provide an example of the nanoscale toxicity of COOH-f-MWCNTs for proteins, which is a critical issue for in vivo application of COOH-f-MWCNTs.
Collapse
|
180
|
Ping J, Vishnubhotla R, Xi J, Ducos P, Saven JG, Liu R, Johnson ATC. All-Electronic Quantification of Neuropeptide-Receptor Interaction Using a Bias-Free Functionalized Graphene Microelectrode. ACS NANO 2018; 12:4218-4223. [PMID: 29634231 PMCID: PMC6068397 DOI: 10.1021/acsnano.7b07474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opioid neuropeptides play a significant role in pain perception, appetite regulation, sleep, memory, and learning. Advances in understanding of opioid peptide physiology are held back by the lack of methodologies for real-time quantification of affinities and kinetics of the opioid neuropeptide-receptor interaction at levels typical of endogenous secretion (<50 pM) in biosolutions with physiological ionic strength. To address this challenge, we developed all-electronic opioid-neuropeptide biosensors based on graphene microelectrodes functionalized with a computationally redesigned water-soluble μ-opioid receptor. We used the functionalized microelectrode in a bias-free charge measurement configuration to measure the binding kinetics and equilibrium binding properties of the engineered receptor with [d-Ala2, N-MePhe4, Gly-ol]-enkephalin and β-endorphin at picomolar levels in real time.
Collapse
Affiliation(s)
- Jinglei Ping
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ramya Vishnubhotla
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Xi
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pedro Ducos
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors ., .
| | - Alan T. Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors ., .
| |
Collapse
|
181
|
Singh VK, Kumar S, Pandey SK, Srivastava S, Mishra M, Gupta G, Malhotra B, Tiwari R, Srivastava A. Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosens Bioelectron 2018; 105:173-181. [DOI: 10.1016/j.bios.2018.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/07/2023]
|
182
|
Ates M, El-Kady M, Kaner RB. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. NANOTECHNOLOGY 2018; 29:175402. [PMID: 29424710 DOI: 10.1088/1361-6528/aaae44] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene/polyaniline composite hydrogels (GH/PANI) were chemically synthesized by in situ polymerization of aniline monomer. Graphene hydrogels were obtained by a hydrothermal method and used in supercapacitors. The graphene/polyaniline composite hydrogel exhibits better electrochemical performance than the pure individual components as determined by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopic measurements. A remarkable specific capacitance (C sp) of 323.9 F g-1 was measured using CV at a scan rate of 2 mV s-1 at 25 °C. GCD measurements (311.3 F g-1) and electrochemical impedance analysis also support these results. The numbers were obtained at extremely high loading masses: 7.14 mg cm-2 for GH and GH/PANI synthesized at 0 °C, and 8.93 mg cm-2 for GH/PANI synthesized at 25 °C. The corresponding areal capacitances are 1.14, 1.75 and 2.78 F cm-2 for GH, and GH/PANI composite hydrogels synthesized at 0 °C and 25 °C, respectively. These values in F cm-2 are 3.80, 5.83 and 9.27 times higher than commercially available activated carbon supercapacitors (∼0.3 F cm-2 for a two electrode system). Moreover, the GH/PANI composite synthesized at 25 °C exhibits excellent stability with 99% initial capacitance retention after 1000 charge/discharge cycles. GH/PANI composites synthesized at 0 °C and 25 °C therefore hold promise for use in supercapacitor device applications.
Collapse
Affiliation(s)
- Murat Ates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America. Physical Chemistry Division, Department of Chemistry, Faculty of Arts and Sciences, Namik Kemal University, Degirmenalti Campus, 59030, Tekirdag, Turkey
| | | | | |
Collapse
|
183
|
Chen J, Eraghi Kazzaz A, AlipoorMazandarani N, Hosseinpour Feizi Z, Fatehi P. Production of Flocculants, Adsorbents, and Dispersants from Lignin. Molecules 2018; 23:molecules23040868. [PMID: 29642602 PMCID: PMC6017259 DOI: 10.3390/molecules23040868] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022] Open
Abstract
Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.
Collapse
Affiliation(s)
- Jiachuan Chen
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Armin Eraghi Kazzaz
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | | | - Zahra Hosseinpour Feizi
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Pedram Fatehi
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
184
|
Jin H, Zhao C, Gui R, Gao X, Wang Z. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal Chim Acta 2018; 1025:154-162. [PMID: 29801604 DOI: 10.1016/j.aca.2018.03.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
In this work, glassy carbon electrode (GCE) surface was modified by drop-coating graphene oxide (GO) and nile blue (NB) to form GO/NB/GCE. By using a one-step coreduction treatment under cyclic voltammetry (CV) scanning, gold nanoparticles (AuNPs) were electrodeposited onto GO/NB/GCE surface, simultaneously generating reduced GO (rGO). AuNPs from the prepared rGO/NB/AuNPs/GCE was combined with 5'-SH-terminated aptamer of dopamine (DA) via Au-S coupling to fabricate aptamer-rGO/NB/AuNPs/GCE system. DA specifically combined with its aptamer modified on rGO/NB/AuNPs/GCE surface. CV, electrochemical impedance spectroscopy, square wave voltammetry responses of this system as the working electrode were measured. With the addition of DA, the peak current intensities located at -0.45 V (INB) and 0.15 V (IDA) showed gradually decreased and increased changes, respectively. There was a good linear (R2 = 0.9922) relationship between lg(IDA/INB) and the logarithm of DA concentration (lgCDA) in the CDA range from 10 nM to 0.2 mM, showing a low detection limit of 1 nM. This system as a novel, sensitive and label-free aptasensor was used for ratiometric electrochemical sensing of DA. Experimental results verified that this aptasensor possessed high stability, selectivity and sensitivity towards DA detection, over potential interferents. This aptasensor efficiently determined DA in real biological samples, together with high detection recoveries of 97.0-104.0%.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Chunqin Zhao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China.
| | - Xiaohui Gao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China.
| |
Collapse
|
185
|
Ghosh S, Khan NI, Tsavalas JG, Song E. Selective Detection of Lysozyme Biomarker Utilizing Large Area Chemical Vapor Deposition-Grown Graphene-Based Field-Effect Transistor. Front Bioeng Biotechnol 2018; 6:29. [PMID: 29662878 PMCID: PMC5890177 DOI: 10.3389/fbioe.2018.00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/08/2018] [Indexed: 01/23/2023] Open
Abstract
Selective and rapid detection of biomarkers is of utmost importance in modern day health care for early stage diagnosis to prevent fatal diseases and infections. Among several protein biomarkers, the role of lysozyme has been found to be especially important in human immune system to prevent several bacterial infections and other chronic disease such as bronchopulmonary dysplasia. Thus, real-time monitoring of lysozyme concentration in a human body can pave a facile route for early warning for potential bacterial infections. Here, we present for the first time a label-free lysozyme protein sensor that is rapid and selective based on a graphene field-effect transistor (GFET) functionalized with selectively designed single-stranded probe DNA (pDNA) with high binding affinity toward lysozyme molecules. When the target lysozyme molecules bind to the surface-immobilized pDNAs, the resulting shift of the charge neutrality points of the GFET device, also known as the Dirac voltage, varied systematically with the concentration of target lysozyme molecules. The experimental results show that the GFET-based biosensor is capable of detecting lysozyme molecules in the concentration range from 10 nM to 1 µM.
Collapse
Affiliation(s)
- Sujoy Ghosh
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH, United States.,Center for Advanced Materials and Manufacturing Innovation, University of New Hampshire, Durham, NH, United States
| | - Niazul I Khan
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH, United States
| | - John G Tsavalas
- Center for Advanced Materials and Manufacturing Innovation, University of New Hampshire, Durham, NH, United States.,Department of Chemistry, University of New Hampshire, Durham, NH, United States
| | - Edward Song
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH, United States.,Center for Advanced Materials and Manufacturing Innovation, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
186
|
Fiegel V, Harlepp S, Begin-Colin S, Begin D, Mertz D. Design of Protein-Coated Carbon Nanotubes Loaded with Hydrophobic Drugs through Sacrificial Templating of Mesoporous Silica Shells. Chemistry 2018; 24:4662-4670. [PMID: 29369435 DOI: 10.1002/chem.201705845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Indexed: 01/19/2023]
Abstract
One key challenge in the fields of nanomedicine and tissue engineering is the design of theranostic nanoplatforms able to monitor their therapeutic effect by imaging. Among current developed nano-objects, carbon nanotubes (CNTs) were found suitable to combine imaging, photothermal therapy, and to be loaded with hydrophobic drugs. However, a main problem is their resulting low hydrophilicity. To face this problem, an innovative method is developed here, which consists in loading the surface of carbon nanotubes (CNTs) with drugs followed by a protein coating around them. The originality of this method relies on first covering CNTs with a sacrificial template mesoporous silica (MS) shell grafted with isobutyramide (IBAM) binders on which a protein nanofilm is strongly adhered through IBAM-mediated physical cross-linking. This concept is first demonstrated without drugs, and is further improved with the suitable loading of hydrophobic drugs, curcumin (CUR) and camptothecin (CPT), which are retained between the CNTs and human serum albumin (HSA) layer. Such novel nanocomposites with favorable photothermal properties are very promising for theranostic systems, drug delivery, and phototherapy applications.
Collapse
Affiliation(s)
- Vincent Fiegel
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504, CNRS-Université de Strasbourg, 23 rue du Loess, BP 34, 67034, Strasbourg Cedex 2, France.,Institut de Chimie et Procédés pour l'Energie, l'Environnement et la, Santé (ICPEES), UMR-7515, CNRS-Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 2, France
| | - Sebastien Harlepp
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504, CNRS-Université de Strasbourg, 23 rue du Loess, BP 34, 67034, Strasbourg Cedex 2, France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504, CNRS-Université de Strasbourg, 23 rue du Loess, BP 34, 67034, Strasbourg Cedex 2, France
| | - Dominique Begin
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la, Santé (ICPEES), UMR-7515, CNRS-Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 2, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504, CNRS-Université de Strasbourg, 23 rue du Loess, BP 34, 67034, Strasbourg Cedex 2, France
| |
Collapse
|
187
|
Mijangos E, Roy S, Pullen S, Lomoth R, Ott S. Evaluation of two- and three-dimensional electrode platforms for the electrochemical characterization of organometallic catalysts incorporated in non-conducting metal-organic frameworks. Dalton Trans 2018; 46:4907-4911. [PMID: 28345708 DOI: 10.1039/c7dt00578d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of a reliable platform for the electrochemical characterization of a redox-active molecular diiron complex, [FeFe], immobilized in a non-conducting metal organic framework (MOF), UiO-66, based on glassy-carbon electrodes is reported. Voltammetric data with appreciable current responses can be obtained by the use of multiwalled carbon nanotubes (MWCNT) or mesoporous carbon (CB) additives that function as conductive scaffolds to interface the MOF crystals in "three-dimensional" electrodes. In the investigated UiO-66-[FeFe] sample, the low abundance of [FeFe] in the MOF and the intrinsic insulating properties of UiO-66 prevent charge transport through the framework, and consequently, only [FeFe] units that are in direct physical contact with the electrode material are electrochemically addressable.
Collapse
Affiliation(s)
- Edgar Mijangos
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
188
|
The Effects of Zn Doping on the Interaction of a Single Walled Carbon Nanotube with Penicillamine Drug: A DFT Study. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0795-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
189
|
Niroula J, Premaratne G, Ali Shojaee S, Lucca DA, Krishnan S. Combined covalent and noncovalent carboxylation of carbon nanotubes for sensitivity enhancement of clinical immunosensors. Chem Commun (Camb) 2018; 52:13039-13042. [PMID: 27757453 DOI: 10.1039/c6cc07022a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report here for the first time with quantitative details that the combination of pi-pi stacking of pyrenecarboxylic acid with chemically carboxylated multiwalled carbon nanotubes (MWNT-COOH) offers superior sensitivity compared to MWNT-COOH alone for serum insulin measurements and that this combination is broadly applicable for biosensors, drug delivery, and catalytic systems.
Collapse
Affiliation(s)
- Jinesh Niroula
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Gayan Premaratne
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | - S Ali Shojaee
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Don A Lucca
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
190
|
Seki T, So CR, Page TR, Starkebaum D, Hayamizu Y, Sarikaya M. Electrochemical Control of Peptide Self-Organization on Atomically Flat Solid Surfaces: A Case Study with Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1819-1826. [PMID: 28968112 DOI: 10.1021/acs.langmuir.7b02231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.
Collapse
Affiliation(s)
- Takakazu Seki
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
| | - Christopher R So
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Tamon R Page
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - David Starkebaum
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Mehmet Sarikaya
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
191
|
Wang Y, Luo J, Liu J, Li X, Kong Z, Jin H, Cai X. Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. Biosens Bioelectron 2018; 107:47-53. [PMID: 29428366 DOI: 10.1016/j.bios.2018.02.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
17β-estradiol (17β-E2) plays a critical role in regulating reproduction in human, there is therefore an urgent need to detect it sensitively and precisely in a cost-effective and easy method. In this paper, a label-free integrated microfluidic paper-based analytical device was developed for highly sensitive electrochemical detection of 17β-E2. The microfluidic channel of the paper-based sensor was fabricated with wax printing and the three electrodes, including working, counter and reference electrode were screen-printed. Multi-walled carbon nanotubes (MWCNTs)/ thionine (THI)/ gold nanoparticles (AuNPs) Nano composites were synthesized and coated on screen-printed working electrode (SPWE) for the immobilization of anti-E2. In this electro-chemical system of paper-based immunoassay, THI molecules serving as an electrochemical mediator while MWCNTs and AuNPs, due to their excellent electrical conductivities, could accelerate electron transfer for the signal amplification. Experimental results revealed that the immunoassay is able to detect 17β-E2 as low as 10 pg mL-1, with a linear range from 0.01 to 100 ng mL-1. This microfluidic paper-based immunosensor would provide a new platform for low cost, sensitive, specific, and point-of-care diagnosis of 17β-E2.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Xinrong Li
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Zhuang Kong
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, First Hospital Peking University, Beijing 100034, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China.
| |
Collapse
|
192
|
Zaki AJ, Hartley AM, Reddington SC, Thomas SK, Watson P, Hayes A, Moskalenko AV, Craciun MF, Macdonald JE, Jones DD, Elliott M. Defined covalent assembly of protein molecules on graphene using a genetically encoded photochemical reaction handle. RSC Adv 2018; 8:5768-5775. [PMID: 35539607 PMCID: PMC9078156 DOI: 10.1039/c7ra11166e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/11/2018] [Indexed: 11/27/2022] Open
Abstract
We have created modified protein variants by introducing a non-canonical amino acid p-azido-l-phenylalanine (azF) into defined positions for photochemically-induced covalent attachment to graphene. Attachment of GFP, TEM and cyt b 562 proteins was verified through a combination of atomic force and scanning tunnelling microscopy, resistance measurements, Raman data and fluorescence measurements. This method can in principle be extended to any protein which can be engineered in this way without adversely affecting its structural stability.
Collapse
Affiliation(s)
- Athraa J Zaki
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| | | | | | - Suzanne K Thomas
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| | - Peter Watson
- School of Biosciences, Cardiff University CF10 3AX UK
| | - Anthony Hayes
- School of Biosciences, Cardiff University CF10 3AX UK
| | - Andy V Moskalenko
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| | | | - J Emyr Macdonald
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| | | | - Martin Elliott
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| |
Collapse
|
193
|
Physicochemical characterization and cytotoxicity of chitosan-modified single walled carbon nanotubes as drug carriers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0384-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
194
|
Mishra NS, Kuila A, Nawaz A, Pichiah S, Leong KH, Jang M. Engineered Carbon Nanotubes: Review on the Role of Surface Chemistry, Mechanistic Features, and Toxicology in the Adsorptive Removal of Aquatic Pollutants. ChemistrySelect 2018. [DOI: 10.1002/slct.201702951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nirmalendu S. Mishra
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering; Indian Institute of Technology [ISM], Dhanbad; Dhanbad- 826004 Jharkhand India
| | - Aneek Kuila
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering; Indian Institute of Technology [ISM], Dhanbad; Dhanbad- 826004 Jharkhand India
| | - Ahmad Nawaz
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering; Indian Institute of Technology [ISM], Dhanbad; Dhanbad- 826004 Jharkhand India
| | - Saravanan Pichiah
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering; Indian Institute of Technology [ISM], Dhanbad; Dhanbad- 826004 Jharkhand India
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman; Jalan Universiti, Bandar Barat; 31900 Kampar, Perak Malaysia
| | - Min Jang
- Department of Environmental Engineering; Kwangwoon University, 447-1, Wolgye-dong Nowon-Gu; Seoul South Korea
| |
Collapse
|
195
|
Fong D, Yeung J, McNelles SA, Adronov A. Decoration of Polyfluorene-Wrapped Carbon Nanotubes via Strain-Promoted Azide–Alkyne Cycloaddition. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Darryl Fong
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S
4M1, Canada
| | - Jason Yeung
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S
4M1, Canada
| | - Stuart A. McNelles
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S
4M1, Canada
| | - Alex Adronov
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S
4M1, Canada
| |
Collapse
|
196
|
He Y, Fishman ZS, Yang KR, Ortiz B, Liu C, Goldsamt J, Batista VS, Pfefferle LD. Hydrophobic CuO Nanosheets Functionalized with Organic Adsorbates. J Am Chem Soc 2018; 140:1824-1833. [PMID: 29298055 DOI: 10.1021/jacs.7b11654] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new class of hydrophobic CuO nanosheets is introduced by functionalization of the cupric oxide surface with p-xylene, toluene, hexane, methylcyclohexane, and chlorobenzene. The resulting nanosheets exhibit a wide range of contact angles from 146° (p-xylene) to 27° (chlorobenzene) due to significant changes in surface composition induced by functionalization, as revealed by XPS and ATR-FTIR spectroscopies and computational modeling. Aromatic adsorbates are stable even up to 250-350 °C since they covalently bind to the surface as alkoxides, upon reaction with the surface as shown by DFT calculations and FTIR and 1H NMR spectroscopy. The resulting hydrophobicity correlates with H2 temperature-programmed reduction (H2-TPR) stability, which therefore provides a practical gauge of hydrophobicity.
Collapse
Affiliation(s)
- Yulian He
- Department of Chemical & Environmental Engineering, Yale University , New Haven, Connecticut 06520-8286, United States
| | - Zachary S Fishman
- Department of Chemical & Environmental Engineering, Yale University , New Haven, Connecticut 06520-8286, United States
| | - Ke R Yang
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States.,Energy Science Institute, Yale University , West Haven, Connecticut 06516-7394, United States
| | - Brandon Ortiz
- Department of Chemical & Environmental Engineering, Yale University , New Haven, Connecticut 06520-8286, United States
| | - Chaolun Liu
- Department of Chemistry, University of Hawaii at Manoa , Honolulu, Hawaii 96816, United States
| | - Julia Goldsamt
- Great Neck North High School , Great Neck, New York 11023, United States
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States.,Energy Science Institute, Yale University , West Haven, Connecticut 06516-7394, United States
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University , New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
197
|
Adu K, Ma D, Wang Y, Spencer M, Rajagopalan R, Wang CY, Randall C. Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application. NANOTECHNOLOGY 2018; 29:035605. [PMID: 29176049 DOI: 10.1088/1361-6528/aa9d31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm-3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ∼1.11 g cm-3 ± 0.03 g cm-3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ∼32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g-1 and increased to 100 F g-1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ∼100 nA cm-2 at 2.5 V when held for 72 h.
Collapse
Affiliation(s)
- Kofi Adu
- Department of Physics, Altoona College, The Pennsylvania State University, Altoona, PA 16601, United States of America. Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, United States of America
| | | | | | | | | | | | | |
Collapse
|
198
|
Cui X, Song B, Cheng S, Xie Y, Shao Y, Sun Y. Synthesis of carbon nanotube (CNT)-entangled CuO nanotube networks via CNT-catalytic growth and in situ thermal oxidation as additive-free anodes for lithium ion batteries. NANOTECHNOLOGY 2018; 29:035603. [PMID: 29130897 DOI: 10.1088/1361-6528/aa9a23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrated the utility of carbon nanotubes (CNTs) as a catalyst and conductive agent to synthesize CNT-entangled copper nanowire (CuNW-CNT) networks within a melted mixture of hexadecylamine and cetyltrimethy ammounium bromide. The CuNW-CNT networks were further in situ thermally oxidized into CuO nanotube-CNT (CuONT-CNT) with the high retention of network structure. The binder- and conducting-additive-free anodes constructed using the CuONT-CNT networks exhibited high performance, such as high capability (557.7 mAh g-1 at 0.2 °C after 200 cycles), high Coulombic efficiency (near 100%), good rate performance (385.5 mAh g-1 at 5 °C and 310.3 mAh g-1 at 10 °C), and long cycling life.
Collapse
Affiliation(s)
- Xia Cui
- Hefei Technology College, Hefei 238000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
199
|
Zhang D, Liu Z, Yang H, Liu A. Molecular dynamics study of core–shell structure from carbon nanotube and platinum nanowire. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1426854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Danhui Zhang
- College of Mechanical and Vehicle Engineering, Linyi Univeristy, Linyi, China
| | - Zhongkui Liu
- College of Mechanical and Vehicle Engineering, Linyi Univeristy, Linyi, China
| | - Houbo Yang
- College of Mechanical and Vehicle Engineering, Linyi Univeristy, Linyi, China
| | - Anmin Liu
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
200
|
Dehdashtian S, Behbahanian N, Taherzadeh KM. An ultrasensitive electrochemical sensor for direct determination of anticancer drug dacarbazine based on multiwall carbon nanotube-modified carbon paste electrode and application in pharmaceutical sample. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1291-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|