151
|
Endophytism and bioactivity of endophytic fungi isolated from Combretum lanceolatum Pohl ex Eichler. Symbiosis 2016. [DOI: 10.1007/s13199-016-0427-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
152
|
Biggs BW, Rouck JE, Kambalyal A, Arnold W, Lim CG, De Mey M, O’Neil-Johnson M, Starks CM, Das A, Ajikumar PK. Orthogonal Assays Clarify the Oxidative Biochemistry of Taxol P450 CYP725A4. ACS Chem Biol 2016; 11:1445-51. [PMID: 26930136 DOI: 10.1021/acschembio.5b00968] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Natural product metabolic engineering potentially offers sustainable and affordable access to numerous valuable molecules. However, challenges in characterizing and assembling complex biosynthetic pathways have prevented more rapid progress in this field. The anticancer agent Taxol represents an excellent case study. Assembly of a biosynthetic pathway for Taxol has long been stalled at its first functionalization, putatively an oxygenation performed by the cytochrome P450 CYP725A4, due to confounding characterizations. Here, through combined in vivo (Escherichia coli), in vitro (lipid nanodisc), and metabolite stability assays, we verify the presence and likely cause of this enzyme's inherent promiscuity. Thereby, we remove the possibility that promiscuity simply existed as an artifact of previous metabolic engineering approaches. Further, spontaneous rearrangement and the stabilizing effect of a hydrophobic overlay suggest a potential role for nonenzymatic chemistry in Taxol's biosynthesis. Taken together, this work confirms taxadiene-5α-ol as a primary enzymatic product of CYP725A4 and provides direction for future Taxol metabolic and protein engineering efforts.
Collapse
Affiliation(s)
- Bradley Walters Biggs
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
- Department
of Chemical and Biological Engineering (Masters in Biotechnology Program), Northwestern University, Evanston, Illinois 60208, United States
| | - John Edward Rouck
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Amogh Kambalyal
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - William Arnold
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chin Giaw Lim
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
| | - Marjan De Mey
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
- Centre
for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
Links 653, B-9000, Ghent, Belgium
| | - Mark O’Neil-Johnson
- Sequoia Sciences, 1912 Innerbelt
Business Center Dr., Saint Louis, Missouri 63114, United States
| | - Courtney M. Starks
- Sequoia Sciences, 1912 Innerbelt
Business Center Dr., Saint Louis, Missouri 63114, United States
| | - Aditi Das
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Parayil Kumaran Ajikumar
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
153
|
Complete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00337-16. [PMID: 27151802 PMCID: PMC4859184 DOI: 10.1128/genomea.00337-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters.
Collapse
|
154
|
Wu LF, Meng S, Tang GL. Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:453-70. [DOI: 10.1016/j.bbapap.2016.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023]
|
155
|
Khater S, Anand S, Mohanty D. In silico methods for linking genes and secondary metabolites: The way forward. Synth Syst Biotechnol 2016; 1:80-88. [PMID: 29062931 PMCID: PMC5640692 DOI: 10.1016/j.synbio.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 11/26/2022] Open
Abstract
In silico methods for linking genomic space to chemical space have played a crucial role in genomics driven discovery of new natural products as well as biosynthesis of altered natural products by engineering of biosynthetic pathways. Here we give an overview of available computational tools and then briefly describe a novel computational framework, namely retro-biosynthetic enumeration of biosynthetic reactions, which can add to the repertoire of computational tools available for connecting natural products to their biosynthetic gene clusters. Most of the currently available bioinformatics tools for analysis of secondary metabolite biosynthetic gene clusters utilize the “Genes to Metabolites” approach. In contrast to the “Genes to Metabolites” approach, the “Metabolites to Genes” or retro-biosynthetic approach would involve enumerating the various biochemical transformations or enzymatic reactions which would generate the given chemical moiety starting from a set of precursor molecules and identifying enzymatic domains which can potentially catalyze the enumerated biochemical transformations. In this article, we first give a brief overview of the presently available in silico tools and approaches for analysis of secondary metabolite biosynthetic pathways. We also discuss our preliminary work on development of algorithms for retro-biosynthetic enumeration of biochemical transformations to formulate a novel computational method for identifying genes associated with biosynthesis of a given polyketide or nonribosomal peptide.
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swadha Anand
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
156
|
Sardar D, Tianero MD, Schmidt EW. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins. Methods Enzymol 2016; 575:1-20. [PMID: 27417922 DOI: 10.1016/bs.mie.2016.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The increasingly rapid accumulation of genomic information is revolutionizing natural products discovery. However, the translation of sequence data to chemical products remains a challenge. Here, we detail methods used to circumvent the supply problem of cyanobactin natural products, both by engineered synthesis in Escherichia coli and by using purified enzymes in vitro. Such methodologies exploit nature's strategies of combinatorial chemistry in the cyanobactin class of RiPP natural products. As a result, it is possible to synthesize a wide variety of natural and unnatural compounds.
Collapse
Affiliation(s)
- D Sardar
- University of Utah, Salt Lake City, UT, United States
| | - M D Tianero
- University of Utah, Salt Lake City, UT, United States
| | - E W Schmidt
- University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
157
|
Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:3209-14. [PMID: 26951651 DOI: 10.1073/pnas.1515826113] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.
Collapse
|
158
|
Liu X. Generate a bioactive natural product library by mining bacterial cytochrome P450 patterns. Synth Syst Biotechnol 2016; 1:95-108. [PMID: 29062932 PMCID: PMC5640691 DOI: 10.1016/j.synbio.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
The increased number of annotated bacterial genomes provides a vast resource for genome mining. Several bacterial natural products with epoxide groups have been identified as pre-mRNA spliceosome inhibitors and antitumor compounds through genome mining. These epoxide-containing natural products feature a common biosynthetic characteristic that cytochrome P450s (CYPs) and its patterns such as epoxidases are employed in the tailoring reactions. The tailoring enzyme patterns are essential to both biological activities and structural diversity of natural products, and can be used for enzyme pattern-based genome mining. Recent development of direct cloning, heterologous expression, manipulation of the biosynthetic pathways and the CRISPR-CAS9 system have provided molecular biology tools to turn on or pull out nascent biosynthetic gene clusters to generate a microbial natural product library. This review focuses on a library of epoxide-containing natural products and their associated CYPs, with the intention to provide strategies on diversifying the structures of CYP-catalyzed bioactive natural products. It is conceivable that a library of diversified bioactive natural products will be created by pattern-based genome mining, direct cloning and heterologous expression as well as the genomic manipulation.
Collapse
Affiliation(s)
- Xiangyang Liu
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
159
|
Kokona B, Winesett ES, Nikolai von Krusenstiern A, Cryle MJ, Fairman R, Charkoudian LK. Probing the selectivity of β-hydroxylation reactions in non-ribosomal peptide synthesis using analytical ultracentrifugation. Anal Biochem 2016; 495:42-51. [DOI: 10.1016/j.ab.2015.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022]
|
160
|
Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 2016; 529:235-8. [PMID: 26762461 PMCID: PMC4843164 DOI: 10.1038/nature16163] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Many important natural products are produced by multidomain nonribosomal peptide synthetases (NRPSs)1–4. During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighboring catalytic domains in an assembly line fashion5. Understanding the structural basis for catalysis with NRPSs will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-NRPSs modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering novel NRPSs.
Collapse
|
161
|
Oguri H. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. CHEM REC 2016; 16:652-66. [DOI: 10.1002/tcr.201500213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Hiroki Oguri
- Division of Applied Chemistry Graduate School of Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Nakacho Koganei Tokyo 184-8588 Japan
- JST PRESTO; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
162
|
Li YF, Tsai KJS, Harvey CJB, Li JJ, Ary BE, Berlew EE, Boehman BL, Findley DM, Friant AG, Gardner CA, Gould MP, Ha JH, Lilley BK, McKinstry EL, Nawal S, Parry RC, Rothchild KW, Silbert SD, Tentilucci MD, Thurston AM, Wai RB, Yoon Y, Aiyar RS, Medema MH, Hillenmeyer ME, Charkoudian LK. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol 2016; 89:18-28. [PMID: 26808821 DOI: 10.1016/j.fgb.2016.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Abstract
Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and synthetic biology efforts toward discovering novel fungal enzymes and metabolites.
Collapse
Affiliation(s)
- Yong Fuga Li
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States; Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Kathleen J S Tsai
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Colin J B Harvey
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States
| | - James Jian Li
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States
| | - Beatrice E Ary
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Erin E Berlew
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Brenna L Boehman
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - David M Findley
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Alexandra G Friant
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States
| | | | - Michael P Gould
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Jae H Ha
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Brenna K Lilley
- Department of Biology, Haverford College, Haverford, PA, United States
| | - Emily L McKinstry
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Saadia Nawal
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Robert C Parry
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | | | - Samantha D Silbert
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States
| | | | - Alana M Thurston
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Rebecca B Wai
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Yongjin Yoon
- Department of Chemistry, Haverford College, Haverford, PA, United States
| | - Raeka S Aiyar
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, The Netherlands
| | - Maureen E Hillenmeyer
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States.
| | | |
Collapse
|
163
|
Capehart SL, Carlson EE. Mass spectrometry-based assay for the rapid detection of thiol-containing natural products. Chem Commun (Camb) 2016; 52:13229-13232. [DOI: 10.1039/c6cc07111b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To expedite discovery of thiol-containing compounds, we devised a selective solid-supported reagent for their immobilization, followed by cleavage of a photocleavable linker to yield stable natural product conjugates for direct detection by mass spectrometry.
Collapse
Affiliation(s)
| | - Erin E. Carlson
- Department of Chemistry
- University of Minnesota
- SE Minneapolis
- USA
- Department of Medicinal Chemistry
| |
Collapse
|
164
|
Abstract
The practice of medicine was profoundly transformed by the introduction of the antibiotics (compounds isolated from Nature) and the antibacterials (compounds prepared by synthesis) for the control of bacterial infection. As a result of the extraordinary success of these compounds over decades of time, a timeless biological activity for these compounds has been presumed. This presumption is no longer. The inexorable acquisition of resistance mechanisms by bacteria is retransforming medical practice. Credible answers to this dilemma are far better recognized than they are being implemented. In this perspective we examine (and in key respects, reiterate) the chemical and biological strategies being used to address the challenge of bacterial resistance.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| |
Collapse
|
165
|
Oguri H. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. CHEM REC 2016. [DOI: 10.1002/tcr.201201600213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroki Oguri
- Division of Applied Chemistry Graduate School of Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Nakacho Koganei Tokyo 184-8588 Japan
- JST PRESTO; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
166
|
Simonetti SO, Larghi EL, Kaufman TS. The 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one alkaloids. Results of 20 years of research, uncovering a new family of natural products. Nat Prod Rep 2016; 33:1425-1446. [DOI: 10.1039/c6np00064a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The title alkaloids are discussed. Emphasis is placed on their isolation, source microorganisms and structure, as well as relevant biological activities and synthetic progress.
Collapse
Affiliation(s)
- Sebastian O. Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR)
- Facultad de Ciencias Bioquímicas y Farmacéuticas – Universidad Nacional de Rosario
- (2000) Rosario
- Argentina
| | - Enrique L. Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR)
- Facultad de Ciencias Bioquímicas y Farmacéuticas – Universidad Nacional de Rosario
- (2000) Rosario
- Argentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR)
- Facultad de Ciencias Bioquímicas y Farmacéuticas – Universidad Nacional de Rosario
- (2000) Rosario
- Argentina
| |
Collapse
|
167
|
Kalaitzis JA, Ingrey SD, Chau R, Simon Y, Neilan BA. Genome-Guided Discovery of Natural Products and Biosynthetic Pathways from Australia’s Untapped Microbial Megadiversity. Aust J Chem 2016. [DOI: 10.1071/ch15601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Historically microbial natural product biosynthesis pathways were elucidated mainly by isotope labelled precursor directed feeding studies. Now the genetics underpinning the assembly of microbial natural products biosynthesis is so well understood that some pathways and their products can be predicted from DNA sequences alone. The association between microbial natural products and their biosynthesis gene clusters is now driving the field of ‘genetics guided natural product discovery’. This account overviews our research into cyanotoxin biosynthesis before the genome sequencing era through to some recent discoveries resulting from the mining of Australian biota for natural product biosynthesis pathways.
Collapse
|
168
|
Barrow RA. Natural Products Version? Aust J Chem 2016. [DOI: 10.1071/chv69n2_fo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
169
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
170
|
Licona-Cassani C, Cruz-Morales P, Manteca A, Barona-Gomez F, Nielsen LK, Marcellin E. Systems Biology Approaches to Understand Natural Products Biosynthesis. Front Bioeng Biotechnol 2015; 3:199. [PMID: 26697425 PMCID: PMC4673338 DOI: 10.3389/fbioe.2015.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022] Open
Abstract
Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete’s biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.
Collapse
Affiliation(s)
- Cuauhtemoc Licona-Cassani
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, QLD , Australia ; National Laboratory of Genomics for Biodiversity (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN) , Irapuato , México
| | - Pablo Cruz-Morales
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN) , Irapuato , México
| | - Angel Manteca
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Facultad de Medicina, Universidad de Oviedo , Oviedo , Spain
| | - Francisco Barona-Gomez
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN) , Irapuato , México
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, QLD , Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
171
|
Wolański M, Łebkowski T, Kois-Ostrowska A, Zettler J, Apel AK, Jakimowicz D, Zakrzewska-Czerwińska J. Two transcription factors, CabA and CabR, are independently involved in multilevel regulation of the biosynthetic gene cluster encoding the novel aminocoumarin, cacibiocin. Appl Microbiol Biotechnol 2015; 100:3147-64. [PMID: 26637421 DOI: 10.1007/s00253-015-7196-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/30/2022]
Abstract
Aminocoumarins are potent antibiotics belonging to a relatively small group of secondary metabolites produced by actinomycetes. Genome mining of Catenulispora acidiphila has recently led to the discovery of a gene cluster responsible for biosynthesis of novel aminocoumarins, cacibiocins. However, regulation of the expression of this novel gene cluster has not yet been analyzed. In this study, we identify transcriptional regulators of the cacibiocin gene cluster. Using a heterologous expression system, we show that the CabA and CabR proteins encoded by cabA and cabR genes in the cacibiocin gene cluster control the expression of genes involved in the biosynthesis, modification, regulation, and potentially, efflux/resistance of cacibiocins. CabA positively regulates the expression of cabH (the first gene in the cabHIYJKL operon) and cabhal genes encoding key enzymes responsible for the biosynthesis and halogenation of the aminocoumarin moiety, respectively. We provide evidence that CabA is a direct inducer of cacibiocin production, whereas the second transcriptional factor, CabR, is involved in the negative regulation of its own gene and cabT-the latter of which encodes a putative cacibiocin transporter. We also demonstrate that CabR activity is negatively regulated in vitro by aminocoumarin compounds, suggesting the existence of analogous regulation in vivo. Finally, we propose a model of multilevel regulation of gene transcription in the cacibiocin gene cluster by CabA and CabR.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.
| | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| | | | - Judith Zettler
- Pharmazeutische Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Alexander K Apel
- Pharmazeutische Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
172
|
Abstract
Synthetic biology (SB) is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell-cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity.
Collapse
Affiliation(s)
| | - Pablo Carbonell
- Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Experimental and Health Sciences (DCEXS), Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
173
|
Wang H, Sivonen K, Fewer DP. Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Curr Opin Genet Dev 2015; 35:79-85. [PMID: 26605685 DOI: 10.1016/j.gde.2015.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022]
Abstract
Polyketides and nonribosomal peptides are important secondary metabolites that exhibit enormous structural diversity, have many pharmaceutical applications, and include a number of clinically important drugs. These complex metabolites are most commonly synthesized on enzymatic assembly lines of polyketide synthases and nonribosomal peptide synthetases. Genome-mining studies making use of the recent explosion in the number of genome sequences have demonstrated unexpected enzymatic diversity and greatly expanded the known distribution of these enzyme systems across the three domains of life. The wealth of data now available suggests that genome-mining efforts will uncover new natural products, novel biosynthetic mechanisms, and shed light on the origin and evolution of these important enzymes.
Collapse
Affiliation(s)
- Hao Wang
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Kaarina Sivonen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - David P Fewer
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
174
|
|
175
|
de Felício R, Pavão GB, de Oliveira ALL, Erbert C, Conti R, Pupo MT, Furtado NA, Ferreira EG, Costa-Lotufo LV, Young MCM, Yokoya NS, Debonsi HM. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
176
|
Schulze CJ, Donia MS, Siqueira-Neto JL, Ray D, Raskatov JA, Green RE, McKerrow JH, Fischbach MA, Linington RG. Genome-Directed Lead Discovery: Biosynthesis, Structure Elucidation, and Biological Evaluation of Two Families of Polyene Macrolactams against Trypanosoma brucei. ACS Chem Biol 2015; 10:2373-81. [PMID: 26270237 DOI: 10.1021/acschembio.5b00308] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Marine natural products are an important source of lead compounds against many pathogenic targets. Herein, we report the discovery of lobosamides A-C from a marine actinobacterium, Micromonospora sp., representing three new members of a small but growing family of bacterially produced polyene macrolactams. The lobosamides display growth inhibitory activity against the protozoan parasite Trypanosoma brucei (lobosamide A IC50 = 0.8 μM), the causative agent of human African trypanosomiasis (HAT). The biosynthetic gene cluster of the lobosamides was sequenced and suggests a conserved cluster organization among the 26-membered macrolactams. While determination of the relative and absolute configurations of many members of this family is lacking, the absolute configurations of the lobosamides were deduced using a combination of chemical modification, detailed spectroscopic analysis, and bioinformatics. We implemented a "molecules-to-genes-to-molecules" approach to determine the prevalence of similar clusters in other bacteria, which led to the discovery of two additional macrolactams, mirilactams A and B from Actinosynnema mirum. These additional analogs have allowed us to identify specific structure-activity relationships that contribute to the antitrypanosomal activity of this class. This approach illustrates the power of combining chemical analysis and genomics in the discovery and characterization of natural products as new lead compounds for neglected disease targets.
Collapse
Affiliation(s)
- Christopher J. Schulze
- Department
of Chemistry and Biochemistry, University of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - Mohamed S. Donia
- Department
of Bioengineering and Therapeutic Sciences and the California Institute
for Quantitative Biosciences, University of California San Francisco, San
Francisco, California 94158, United States
| | - Jair L. Siqueira-Neto
- Skaggs
School of Pharmacy, University of California San Diego, San Diego, California 92093, United States
| | - Debalina Ray
- Department
of Pathology, University of California San Francisco, San Francisco, California 94158, United States
| | - Jevgenij A. Raskatov
- Department
of Chemistry and Biochemistry, University of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - Richard E. Green
- Department
of Biomolecular Engineering, University of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - James H. McKerrow
- Skaggs
School of Pharmacy, University of California San Diego, San Diego, California 92093, United States
| | - Michael A. Fischbach
- Department
of Bioengineering and Therapeutic Sciences and the California Institute
for Quantitative Biosciences, University of California San Francisco, San
Francisco, California 94158, United States
| | - Roger G. Linington
- Department
of Chemistry and Biochemistry, University of California Santa Cruz, Santa
Cruz, California 95064, United States
| |
Collapse
|
177
|
Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster ALH, Wyatt MA, Magarvey NA. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res 2015; 43:9645-62. [PMID: 26442528 PMCID: PMC4787774 DOI: 10.1093/nar/gkv1012] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/24/2015] [Indexed: 12/05/2022] Open
Abstract
Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/.
Collapse
Affiliation(s)
- Michael A Skinnider
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chris A Dejong
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Philip N Rees
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chad W Johnston
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Haoxin Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew L H Webster
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Morgan A Wyatt
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nathan A Magarvey
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
178
|
Johnston CW, Skinnider MA, Wyatt MA, Li X, Ranieri MRM, Yang L, Zechel DL, Ma B, Magarvey NA. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nat Commun 2015; 6:8421. [PMID: 26412281 PMCID: PMC4598715 DOI: 10.1038/ncomms9421] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 08/19/2015] [Indexed: 12/04/2022] Open
Abstract
Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC–MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products. Microbial natural products represent a large reservoir of potential pharmaceutical agents. Here, Johnston et al. describe a computer-automated programme for connecting genome sequences with identified and isolated natural products.
Collapse
Affiliation(s)
- Chad W Johnston
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Michael A Skinnider
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Morgan A Wyatt
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Xiang Li
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Michael R M Ranieri
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Lian Yang
- The David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - David L Zechel
- Department of Chemistry; Queens University, Kingston, Ontario, Canada K7L 3N6
| | - Bin Ma
- The David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Nathan A Magarvey
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| |
Collapse
|
179
|
Peter DM, Schada von Borzyskowski L, Kiefer P, Christen P, Vorholt JA, Erb TJ. Screening and Engineering the Synthetic Potential of Carboxylating Reductases from Central Metabolism and Polyketide Biosynthesis. Angew Chem Int Ed Engl 2015; 54:13457-61. [PMID: 26383129 DOI: 10.1002/anie.201505282] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022]
Abstract
Carboxylating enoyl-thioester reductases (ECRs) are a recently discovered class of enzymes. They catalyze the highly efficient addition of CO2 to the double bond of α,β-unsaturated CoA-thioesters and serve two biological functions. In primary metabolism of many bacteria they produce ethylmalonyl-CoA during assimilation of the central metabolite acetyl-CoA. In secondary metabolism they provide distinct α-carboxyl-acyl-thioesters to vary the backbone of numerous polyketide natural products. Different ECRs were systematically assessed with a diverse library of potential substrates. We identified three active site residues that distinguish ECRs restricted to C4 and C5-enoyl-CoAs from highly promiscuous ECRs and successfully engineered a selected ECR as proof-of-principle. This study defines the molecular basis of ECR reactivity, allowing for predicting and manipulating a key reaction in natural product diversification.
Collapse
Affiliation(s)
- Dominik M Peter
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max-Planck-Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg (Germany).,Institute of Microbiology, Eidgenössisch Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8050 Zürich (Switzerland)
| | - Lennart Schada von Borzyskowski
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max-Planck-Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg (Germany).,Institute of Microbiology, Eidgenössisch Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8050 Zürich (Switzerland)
| | - Patrick Kiefer
- Institute of Microbiology, Eidgenössisch Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8050 Zürich (Switzerland)
| | - Philipp Christen
- Institute of Microbiology, Eidgenössisch Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8050 Zürich (Switzerland)
| | - Julia A Vorholt
- Institute of Microbiology, Eidgenössisch Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8050 Zürich (Switzerland)
| | - Tobias J Erb
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max-Planck-Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg (Germany). .,Institute of Microbiology, Eidgenössisch Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8050 Zürich (Switzerland).
| |
Collapse
|
180
|
Peter DM, Schada von Borzyskowski L, Kiefer P, Christen P, Vorholt JA, Erb TJ. Klassifizierung und Manipulation des synthetischen Potenzials carboxylierender Reduktasen aus dem Zentralmetabolismus und der Polyketid‐Biosynthese. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dominik M. Peter
- Biochemie & Synthetische Biologie des Mikrobiellen Metabolismus, Max‐Planck‐Institut für Terrestrische Mikrobiologie, Karl‐von‐Frisch‐Straße 10, 35043 Marburg (Deutschland)
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir‐Prelog‐Weg 4, 8050 Zürich (Schweiz)
| | - Lennart Schada von Borzyskowski
- Biochemie & Synthetische Biologie des Mikrobiellen Metabolismus, Max‐Planck‐Institut für Terrestrische Mikrobiologie, Karl‐von‐Frisch‐Straße 10, 35043 Marburg (Deutschland)
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir‐Prelog‐Weg 4, 8050 Zürich (Schweiz)
| | - Patrick Kiefer
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir‐Prelog‐Weg 4, 8050 Zürich (Schweiz)
| | - Philipp Christen
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir‐Prelog‐Weg 4, 8050 Zürich (Schweiz)
| | - Julia A. Vorholt
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir‐Prelog‐Weg 4, 8050 Zürich (Schweiz)
| | - Tobias J. Erb
- Biochemie & Synthetische Biologie des Mikrobiellen Metabolismus, Max‐Planck‐Institut für Terrestrische Mikrobiologie, Karl‐von‐Frisch‐Straße 10, 35043 Marburg (Deutschland)
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir‐Prelog‐Weg 4, 8050 Zürich (Schweiz)
| |
Collapse
|
181
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
182
|
Micallef ML, D'Agostino PM, Sharma D, Viswanathan R, Moffitt MC. Genome mining for natural product biosynthetic gene clusters in the Subsection V cyanobacteria. BMC Genomics 2015; 16:669. [PMID: 26335778 PMCID: PMC4558948 DOI: 10.1186/s12864-015-1855-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cyanobacteria are well known for the production of a range of secondary metabolites. Whilst recent genome sequencing projects has led to an increase in the number of publically available cyanobacterial genomes, the secondary metabolite potential of many of these organisms remains elusive. Our study focused on the 11 publically available Subsection V cyanobacterial genomes, together with the draft genomes of Westiella intricata UH strain HT-29-1 and Hapalosiphon welwitschii UH strain IC-52-3, for their genetic potential to produce secondary metabolites. The Subsection V cyanobacterial genomes analysed in this study are reported to produce a diverse range of natural products, including the hapalindole-family of compounds, microcystin, hapalosin, mycosporine-like amino acids and hydrocarbons. RESULTS A putative gene cluster for the cyclic depsipeptide hapalosin, known to reverse P-glycoprotein multiple drug resistance, was identified within three Subsection V cyanobacterial genomes, including the producing cyanobacterium H. welwitschii UH strain IC-52-3. A number of orphan NRPS/PKS gene clusters and ribosomally-synthesised and post translationally-modified peptide gene clusters (including cyanobactin, microviridin and bacteriocin gene clusters) were identified. Furthermore, gene clusters encoding the biosynthesis of mycosporine-like amino acids, scytonemin, hydrocarbons and terpenes were also identified and compared. CONCLUSIONS Genome mining has revealed the diversity, abundance and complex nature of the secondary metabolite potential of the Subsection V cyanobacteria. This bioinformatic study has identified novel biosynthetic enzymes which have not been associated with gene clusters of known classes of natural products, suggesting that these cyanobacteria potentially produce structurally novel secondary metabolites.
Collapse
Affiliation(s)
- Melinda L Micallef
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Paul M D'Agostino
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW, 2052, Australia.
| | - Deepti Sharma
- Department of Chemistry, Case Western Reserve University, 2740 Millis Science Center, Adelbert Road, Cleveland, OH, 44106, USA.
| | - Rajesh Viswanathan
- Department of Chemistry, Case Western Reserve University, 2740 Millis Science Center, Adelbert Road, Cleveland, OH, 44106, USA.
| | - Michelle C Moffitt
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
183
|
Luzzatto-Knaan T, Melnik AV, Dorrestein PC. Mass spectrometry tools and workflows for revealing microbial chemistry. Analyst 2015; 140:4949-66. [PMID: 25996313 PMCID: PMC5444374 DOI: 10.1039/c5an00171d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the time Van Leeuwenhoek was able to observe microbes through a microscope, an innovation that led to the birth of the field of microbiology, we have aimed to understand how microorganisms function, interact and communicate. The exciting progress in the development of analytical technologies and workflows has demonstrated that mass spectrometry is a very powerful technique for the interrogation of microbiology at the molecular level. In this review, we aim to highlight the available and emerging tools in mass spectrometry for microbial analysis by overviewing the methods and workflow advances for taxonomic identification, microbial interaction, dereplication and drug discovery. We emphasize their potential for future development and point out unsolved problems and future directions that would aid in the analysis of the chemistry produced by microbes.
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
184
|
Matsushita T, Chen W, Juskeviciene R, Teo Y, Shcherbakov D, Vasella A, Böttger EC, Crich D. Influence of 4'-O-Glycoside Constitution and Configuration on Ribosomal Selectivity of Paromomycin. J Am Chem Soc 2015; 137:7706-17. [PMID: 26024064 DOI: 10.1021/jacs.5b02248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of 20 4'-O-glycosides of the aminoglycoside antibiotic paromomycin were synthesized and evaluated for their ability to inhibit protein synthesis by bacterial, mitochondrial and cytosolic ribosomes. Target selectivity, i.e., inhibition of the bacterial ribosome over eukaryotic mitochondrial and cytosolic ribosomes, which is predictive of antibacterial activity with reduced ototoxicity and systemic toxicity, was greater for the equatorial than for the axial pyranosides, and greater for the d-pentopyranosides than for the l-pentopyranosides and d-hexopyranosides. In particular, 4'-O-β-d-xylopyranosyl paromomycin shows antibacterioribosomal activity comparable to that of paromomycin, but is significantly more selective showing considerably reduced affinity for the cytosolic ribosome and for the A1555G mutant mitochondrial ribosome associated with hypersusceptibility to drug-induced ototoxicity. Compound antibacterioribosomal activity correlates with antibacterial activity, and the ribosomally more active compounds show activity against Escherichia coli, Klebsiella pneumonia, Enterobacter cloacae, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA). The paromomycin glycosides retain activity against clinical strains of MRSA that are resistant to paromomycin, which is demonstrated to be a consequence of 4'-O-glycosylation blocking the action of 4'-aminoglycoside nucleotidyl transferases by the use of recombinant E. coli carrying the specific resistance determinant.
Collapse
Affiliation(s)
- Takahiko Matsushita
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Weiwei Chen
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Reda Juskeviciene
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Youjin Teo
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Dimitri Shcherbakov
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Andrea Vasella
- §Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Erik C Böttger
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - David Crich
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
185
|
Kakule TB, Jadulco RC, Koch M, Janso JE, Barrows LR, Schmidt EW. Native promoter strategy for high-yielding synthesis and engineering of fungal secondary metabolites. ACS Synth Biol 2015; 4:625-33. [PMID: 25226362 PMCID: PMC4487227 DOI: 10.1021/sb500296p] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Strategies
are needed for the robust production of cryptic, silenced,
or engineered secondary metabolites in fungi. The filamentous fungus Fusarium heterosporum natively synthesizes the polyketide
equisetin at >2 g L–1 in a controllable manner.
We hypothesized that this production level was achieved by regulatory
elements in the equisetin pathway, leading to the prediction that
the same regulatory elements would be useful in producing other secondary
metabolites. This was tested by using the native eqxS promoter and eqxR regulator in F. heterosporum, synthesizing heterologous natural products in yields of ∼1
g L–1. As proof of concept for the practical application,
we resurrected an extinct pathway from an endophytic fungus with an
initial yield of >800 mg L–1, leading to the
practical
synthesis of a selective antituberculosis agent. Finally, the method
enabled new insights into the function of polyketide synthases in
filamentous fungi. These results demonstrate a strategy for optimally
employing native regulators for the robust synthesis of secondary
metabolites.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E. Janso
- Natural Products,
Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06355, United States
| | | | | |
Collapse
|
186
|
Wang WX, Kusari S, Sezgin S, Lamshöft M, Kusari P, Kayser O, Spiteller M. Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl Microbiol Biotechnol 2015; 99:7651-62. [DOI: 10.1007/s00253-015-6653-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
187
|
Goodwin CR, Covington BC, Derewacz DK, McNees CR, Wikswo JP, McLean JA, Bachmann BO. Structuring Microbial Metabolic Responses to Multiplexed Stimuli via Self-Organizing Metabolomics Maps. ACTA ACUST UNITED AC 2015; 22:661-70. [PMID: 25937311 DOI: 10.1016/j.chembiol.2015.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 11/19/2022]
Abstract
Secondary metabolite biosynthesis in microorganisms responds to discrete chemical and biological stimuli; however, untargeted identification of these responses presents a significant challenge. Herein we apply multiplexed stimuli to Streptomyces coelicolor and collect the resulting response metabolomes via ion mobility-mass spectrometric analysis. Self-organizing map (SOM) analytics adapted for metabolomic data demonstrate efficient characterization of the subsets of primary and secondary metabolites that respond similarly across stimuli. Over 60% of all metabolic features inventoried from responses are either not observed under control conditions or produced at greater than 2-fold increase in abundance in response to at least one of the multiplexing conditions, reflecting how metabolites encode phenotypic changes in an organism responding to multiplexed challenges. Using abundance as an additional filter, each of 16 known S. coelicolor secondary metabolites is prioritized via SOM and observed at increased levels (1.2- to 22-fold compared with unperturbed) in response to one or more challenge conditions.
Collapse
Affiliation(s)
- Cody R Goodwin
- Department of Chemistry, Vanderbilt University, 7300 Stevenson Center, Nashville, TN 37235, USA; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA; Center for Innovative Technology, Vanderbilt University, 5401 Stevenson Center, Nashville, TN 37235, USA
| | - Brett C Covington
- Department of Chemistry, Vanderbilt University, 7300 Stevenson Center, Nashville, TN 37235, USA
| | - Dagmara K Derewacz
- Department of Chemistry, Vanderbilt University, 7300 Stevenson Center, Nashville, TN 37235, USA
| | - C Ruth McNees
- Department of Chemistry, Vanderbilt University, 7300 Stevenson Center, Nashville, TN 37235, USA
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA; Department of Biomedical Engineering, Department of Molecular Physiology and Biophysics, and Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, 7300 Stevenson Center, Nashville, TN 37235, USA; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7300 Stevenson Center, Nashville, TN 37235, USA; Center for Innovative Technology, Vanderbilt University, 5401 Stevenson Center, Nashville, TN 37235, USA.
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7300 Stevenson Center, Nashville, TN 37235, USA; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7300 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
188
|
High-Quality Draft Genome Sequence of Actinobacterium Kibdelosporangium sp. MJ126-NF4, Producer of Type II Polyketide Azicemicins, Using Illumina and PacBio Technologies. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00114-15. [PMID: 25838474 PMCID: PMC4384478 DOI: 10.1128/genomea.00114-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the high-quality draft genome sequence of actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of the type II polyketide azicemicins, obtained using Illumina and PacBio sequencing technologies. The 11.75-Mbp genome contains >11,000 genes and 22 polyketide and nonribosomal peptide natural product gene clusters.
Collapse
|
189
|
Ogasawara Y, Yackley BJ, Greenberg JA, Rogelj S, Melançon CE. Expanding our understanding of sequence-function relationships of type II polyketide biosynthetic gene clusters: bioinformatics-guided identification of Frankiamicin A from Frankia sp. EAN1pec. PLoS One 2015; 10:e0121505. [PMID: 25837682 PMCID: PMC4383371 DOI: 10.1371/journal.pone.0121505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/31/2015] [Indexed: 01/04/2023] Open
Abstract
A large and rapidly increasing number of unstudied “orphan” natural product biosynthetic gene clusters are being uncovered in sequenced microbial genomes. An important goal of modern natural products research is to be able to accurately predict natural product structures and biosynthetic pathways from these gene cluster sequences. This requires both development of bioinformatic methods for global analysis of these gene clusters and experimental characterization of select products produced by gene clusters with divergent sequence characteristics. Here, we conduct global bioinformatic analysis of all available type II polyketide gene cluster sequences and identify a conserved set of gene clusters with unique ketosynthase α/β sequence characteristics in the genomes of Frankia species, a group of Actinobacteria with underexploited natural product biosynthetic potential. Through LC-MS profiling of extracts from several Frankia species grown under various conditions, we identified Frankia sp. EAN1pec as producing a compound with spectral characteristics consistent with the type II polyketide produced by this gene cluster. We isolated the compound, a pentangular polyketide which we named frankiamicin A, and elucidated its structure by NMR and labeled precursor feeding. We also propose biosynthetic and regulatory pathways for frankiamicin A based on comparative genomic analysis and literature precedent, and conduct bioactivity assays of the compound. Our findings provide new information linking this set of Frankia gene clusters with the compound they produce, and our approach has implications for accurate functional prediction of the many other type II polyketide clusters present in bacterial genomes.
Collapse
Affiliation(s)
- Yasushi Ogasawara
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Benjamin J. Yackley
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jacob A. Greenberg
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Snezna Rogelj
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico, United States of America
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, United States of America
| | - Charles E. Melançon
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
190
|
Winkelblech J, Liebhold M, Gunera J, Xie X, Kolb P, Li SM. TryptophanC5-,C6-andC7-Prenylating Enzymes Displaying a Preference for C-6 of the Indole Ring in the Presence of Unnatural Dimethylallyl Diphosphate Analogues. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201400958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
191
|
Sun H, Liu Z, Zhao H, Ang EL. Recent advances in combinatorial biosynthesis for drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:823-33. [PMID: 25709407 PMCID: PMC4334309 DOI: 10.2147/dddt.s63023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1) precursor-directed biosynthesis; 2) enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3) pathway-level recombination. Recent examples of combinatorial biosynthesis employing these strategies will also be highlighted in this review.
Collapse
Affiliation(s)
- Huihua Sun
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Zihe Liu
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore ; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
192
|
Cacho RA, Tang Y, Chooi YH. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 2015; 5:774. [PMID: 25642215 PMCID: PMC4294208 DOI: 10.3389/fmicb.2014.00774] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022] Open
Abstract
Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of SMs of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work.
Collapse
Affiliation(s)
- Ralph A Cacho
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Yi Tang
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, CA, USA ; Chemistry and Biochemistry Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Yit-Heng Chooi
- Plant Sciences Division, Research School of Biology, The Australian National University Canberra, ACT, Australia
| |
Collapse
|
193
|
Shen B, Hindra, Yan X, Huang T, Ge H, Yang D, Teng Q, Rudolf JD, Lohman JR. Enediynes: Exploration of microbial genomics to discover new anticancer drug leads. Bioorg Med Chem Lett 2015; 25:9-15. [PMID: 25434000 PMCID: PMC4480864 DOI: 10.1016/j.bmcl.2014.11.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022]
Abstract
The enediyne natural products have been explored for their phenomenal cytotoxicity. The development of enediynes into anticancer drugs has been successfully achieved through the utilization of polymer- and antibody-drug conjugates (ADCs) as drug delivery systems. An increasing inventory of enediynes would benefit current application of ADCs in many oncology programs. Innovations in expanding the enediyne inventory should take advantage of the current knowledge of enediyne biosynthesis and post-genomics technologies. Bioinformatics analysis of microbial genomes reveals that enediynes are underexplored, in particular from Actinomycetales. This digest highlights the emerging opportunities to explore microbial genomics for the discovery of novel enediyne natural products.
Collapse
Affiliation(s)
- Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA; Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Hindra
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tingting Huang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Huiming Ge
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Qihui Teng
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeremy R Lohman
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
194
|
Tsakos M, Schaffert ES, Clement LL, Villadsen NL, Poulsen TB. Ester coupling reactions – an enduring challenge in the chemical synthesis of bioactive natural products. Nat Prod Rep 2015; 32:605-32. [DOI: 10.1039/c4np00106k] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review we investigate the use of complex ester fragment couplings within natural product total syntheses. Using examples from the literature up to 2014 we illustrate the state-of-the-art as well as the challenges within this area of organic synthesis.
Collapse
Affiliation(s)
- Michail Tsakos
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | - Eva S. Schaffert
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | - Lise L. Clement
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | - Nikolaj L. Villadsen
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | - Thomas B. Poulsen
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| |
Collapse
|
195
|
Walsh CT. Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids. ACS Chem Biol 2014; 9:2718-28. [PMID: 25303280 DOI: 10.1021/cb500695k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The indole side chain of tryptophan has latent nucleophilic reactivity at both N1 and all six (nonbridgehead) carbons, which is not generally manifested in post-translational reactions of proteins. On the other hand, all seven positions can be prenylated by the primary metabolite Δ(2)-isopentenyl diphosphate by dimethyallyl transferase (DMATs) family members as initial steps in biosynthetic pathways to bioactive fungal alkaloids including ergots and tremorgens. These are formulated as regioselective capture of isopentenyl allylic cationic transition states by the indole side chain as a nucleophile. The balance of regiospecificity and promiscuity among these indole prenyltransferases continues to raise questions about possible Cope and azaCope rearrangements of nascent products. In addition to these two electron reaction manifolds, there is evidence for one electron reaction manifolds in indole ring biosynthetic functionalization.
Collapse
Affiliation(s)
- Christopher T. Walsh
- ChEM-H Institute and Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
196
|
Santos O, Soares A, Machado F, Romanos M, Muricy G, Giambiagi‐deMarval M, Laport M. Investigation of biotechnological potential of sponge‐associated bacteria collected in
B
razilian coast. Lett Appl Microbiol 2014; 60:140-147. [DOI: 10.1111/lam.12347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022]
Affiliation(s)
- O.C.S. Santos
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - A.R. Soares
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA) Núcleo em Ecologia e Desenvolvimento Sócio‐Ambiental de Macaé Universidade Federal do Rio de Janeiro Macaé Rio de Janeiro Brazil
| | - F.L.S. Machado
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA) Núcleo em Ecologia e Desenvolvimento Sócio‐Ambiental de Macaé Universidade Federal do Rio de Janeiro Macaé Rio de Janeiro Brazil
| | - M.T.V. Romanos
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - G. Muricy
- Museu Nacional Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - M. Giambiagi‐deMarval
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - M.S. Laport
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
197
|
Skinnider MA, Johnston CW, Zvanych R, Magarvey NA. Automated Identification of Depsipeptide Natural Products by an Informatic Search Algorithm. Chembiochem 2014; 16:223-7. [DOI: 10.1002/cbic.201402434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 11/06/2022]
|
198
|
Chooi YH, Solomon PS. A chemical ecogenomics approach to understand the roles of secondary metabolites in fungal cereal pathogens. Front Microbiol 2014; 5:640. [PMID: 25477876 PMCID: PMC4237128 DOI: 10.3389/fmicb.2014.00640] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
Secondary metabolites (SMs) are known to play important roles in the virulence and lifestyle of fungal plant pathogens. The increasing availability of fungal pathogen genome sequences and next-generation genomic tools have allowed us to survey the SM gene cluster inventory in individual fungi. Thus, there is immense opportunity for SM discovery in these plant pathogens. Comparative genomics and transcriptomics have been employed to obtain insights on the genetic features that enable fungal pathogens to adapt in individual ecological niches and to adopt the different pathogenic lifestyles. Here, we will discuss how we can use these tools to search for ecologically important SM gene clusters in fungi, using cereal pathogens as models. This ecological genomics approach, combined with genome mining and chemical ecology tools, is likely to advance our understanding of the natural functions of SMs and accelerate bioactive molecule discovery.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Plant Sciences Division, Research School of Biology, The Australian National University Canberra, ACT, Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University Canberra, ACT, Australia
| |
Collapse
|
199
|
Hindra, Huang T, Yang D, Rudolf JD, Xie P, Xie G, Teng Q, Lohman J, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, Shen B. Strain prioritization for natural product discovery by a high-throughput real-time PCR method. JOURNAL OF NATURAL PRODUCTS 2014; 77:2296-2303. [PMID: 25238028 PMCID: PMC4208669 DOI: 10.1021/np5006168] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 08/31/2023]
Abstract
Natural products offer unmatched chemical and structural diversity compared to other small-molecule libraries, but traditional natural product discovery programs are not sustainable, demanding too much time, effort, and resources. Here we report a strain prioritization method for natural product discovery. Central to the method is the application of real-time PCR, targeting genes characteristic to the biosynthetic machinery of natural products with distinct scaffolds in a high-throughput format. The practicality and effectiveness of the method were showcased by prioritizing 1911 actinomycete strains for diterpenoid discovery. A total of 488 potential diterpenoid producers were identified, among which six were confirmed as platensimycin and platencin dual producers and one as a viguiepinol and oxaloterpin producer. While the method as described is most appropriate to prioritize strains for discovering specific natural products, variations of this method should be applicable to the discovery of other classes of natural products. Applications of genome sequencing and genome mining to the high-priority strains could essentially eliminate the chance elements from traditional discovery programs and fundamentally change how natural products are discovered.
Collapse
Affiliation(s)
- Hindra
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Tingting Huang
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jeffrey D. Rudolf
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Pengfei Xie
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Guangbo Xie
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Qihui Teng
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jeremy
R. Lohman
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Xiangcheng Zhu
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
| | - Yong Huang
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Li-Xing Zhao
- Yunnan
Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic
of China
| | - Yi Jiang
- Yunnan
Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic
of China
| | - Yanwen Duan
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
| | - Ben Shen
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
200
|
Baltz RH. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 2014; 3:748-58. [PMID: 23654258 DOI: 10.1021/sb3000673] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are giant multi-enzymes that carry out sequencial assembly line couplings of amino acids to generate linear or cyclic peptides. NRPSs are composed of repeating enzyme domains with modular organization to activate and couple specific amino acids in a particular order. From a synthetic biology perspective, they can be considered as peptide assembly machines composed of devices to couple fatty acids to l-amino acids, l-amino acids to l-amino acids, and d-amino acids to l-amino acids. The coupling devices are composed of specific parts that contain two or more enzyme domains that can be exchanged combinatorially to generate novel peptide assembly machines to produce novel peptides. The potent lipopeptide antibiotics daptomycin and A54145E have identical cyclic depsipeptide ring structures and stereochemistry but have divergent amino acid sequences. As their biosynthetic gene clusters are derived from an ancient ancestral lipopetide pathway, these lipopeptides provided an attractive model to develop combinatorial biosynthesis to generate antibiotics superior to daptomycin. These studies on combinatorial biosynthesis have helped generate guidelines for the successful assembly of NRPS parts and devices that can be used to generate novel lipopeptide structures and have established a basis for future synthetic biology studies to further develop combinatorial biosynthesis as a robust approach to natural product drug discovery.
Collapse
Affiliation(s)
- Richard H. Baltz
- CognoGen Biotechnology Consulting, 6438 North Olney Street, Indianapolis,
Indiana 46220, United States
| |
Collapse
|