151
|
Engstrom AM, Faase RA, Marquart GW, Baio JE, Mackiewicz MR, Harper SL. Size-Dependent Interactions of Lipid-Coated Gold Nanoparticles: Developing a Better Mechanistic Understanding Through Model Cell Membranes and in vivo Toxicity. Int J Nanomedicine 2020; 15:4091-4104. [PMID: 32606666 PMCID: PMC7295544 DOI: 10.2147/ijn.s249622] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/13/2020] [Indexed: 01/13/2023] Open
Abstract
Introduction Humans are intentionally exposed to gold nanoparticles (AuNPs) where they are used in variety of biomedical applications as imaging and drug delivery agents as well as diagnostic and therapeutic agents currently in clinic and in a variety of upcoming clinical trials. Consequently, it is critical that we gain a better understanding of how physiochemical properties such as size, shape, and surface chemistry drive cellular uptake and AuNP toxicity in vivo. Understanding and being able to manipulate these physiochemical properties will allow for the production of safer and more efficacious use of AuNPs in biomedical applications. Methods and Materials Here, AuNPs of three sizes, 5 nm, 10 nm, and 20 nm, were coated with a lipid bilayer composed of sodium oleate, hydrogenated phosphatidylcholine, and hexanethiol. To understand how the physical features of AuNPs influence uptake through cellular membranes, sum frequency generation (SFG) was utilized to assess the interactions of the AuNPs with a biomimetic lipid monolayer composed of a deuterated phospholipid 1.2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (dDPPC). Results and Discussion SFG measurements showed that 5 nm and 10 nm AuNPs are able to phase into the lipid monolayer with very little energetic cost, whereas, the 20 nm AuNPs warped the membrane conforming it to the curvature of hybrid lipid-coated AuNPs. Toxicity of the AuNPs were assessed in vivo to determine how AuNP curvature and uptake influence cell health. In contrast, in vivo toxicity tested in embryonic zebrafish showed rapid toxicity of the 5 nm AuNPs, with significant 24 hpf mortality occurring at concentrations ≥20 mg/L, whereas the 10 nm and 20 nm AuNPs showed no significant mortality throughout the five-day experiment. Conclusion By combining information from membrane models using SFG spectroscopy with in vivo toxicity studies, a better mechanistic understanding of how nanoparticles (NPs) interact with membranes is developed to understand how the physiochemical features of AuNPs drive nanoparticle-membrane interactions, cellular uptake, and toxicity.
Collapse
Affiliation(s)
- Arek M Engstrom
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Ryan A Faase
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Grant W Marquart
- Department of Chemistry, Portland State University, Portland, OR, United States
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | | | - Stacey L Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.,School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States.,Oregon Nanoscience and Microtechnologies Institute, Corvallis, OR, United States
| |
Collapse
|
152
|
Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin Loaded on Gold Nanoparticles as a Drug Delivery System for a Successful Biocompatible, Anti-Cancer, Anti-Inflammatory and Phagocytosis Inducer Model. Sci Rep 2020; 10:9362. [PMID: 32518242 PMCID: PMC7283242 DOI: 10.1038/s41598-020-66419-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
Hesperidin is a flavonoid glycoside with proven therapeutic activities for various diseases, including cancer. However, its poor solubility and bioavailability render it only slightly absorbed, requiring a delivery system to reach its therapeutic target. Hesperidin loaded on gold nanoparticles (Hsp-AuNPs) was prepared by a chemical synthesis method. Various characterization techniques such as UV-VIS spectroscopy, FTIR, XRD, FESEM, TEM and EDX, Zeta potential analysis, particle size analysis, were used to confirm the synthesis of Hsp-AuNPs. The cytotoxic effect of Hsp-AuNPs on human breast cancer cell line (MDA-MB-231) was assessed using MTT and crystal violet assays. The results revealed significant decrease in proliferation and inhibition of growth of the treated cells when compared with human normal breast epithelial cell line (HBL-100). Determination of apoptosis by fluorescence microscope was also performed using acridine orange-propidium iodide dual staining assay. The in vivo study was designed to evaluate the toxicity of Hsp-AuNPs in mice. The levels of hepatic and kidney functionality markers were assessed. No significant statistical differences were found for the tested indicators. Histological images of liver, spleen, lung and kidney showed no apparent damages and histopathological abnormalities after treatment with Hsp-AuNPs. Hsp-AuNPs ameliorated the functional activity of macrophages against Ehrlich ascites tumor cells-bearing mice. The production of the pro-inflammatory cytokines was also assessed in bone marrow–derived macrophage cells treated with Hsp-AuNPs. The results obviously demonstrated that Hsp-AuNPs treatment significantly inhibited the secretion of IL-1β, IL-6 and TNF.
Collapse
Affiliation(s)
- Ghassan M Sulaiman
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq.
| | - Hanaa M Waheeb
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Majid S Jabir
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Shaymaa H Khazaal
- Applied Chemistry Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Yaser Hassan Dewir
- King Saud University, College of Food and Agriculture Sciences, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.,Kafrelsheikh University, Faculty of Agriculture, Kafr El-Sheikh, 33516, Egypt
| | - Yougasphree Naidoo
- University of KwaZulu-Natal, School of Life Sciences, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
153
|
Darwish WM, Abdoon AS, Shata MS, Elmansy M. Vincristine-loaded polymeric corona around gold nanorods for combination (chemo-photothermal) therapy of oral squamous carcinoma. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
154
|
Abstract
Nanomaterials are popularly used in drug delivery, disease diagnosis and therapy. Among a number of functionalized nanomaterials such as carbon nanotubes, peptide nanostructures, liposomes and polymers, gold nanoparticles (Au NPs) make excellent drug and anticancer agent carriers in biomedical and cancer therapy application. Recent advances of synthetic technique improved the surface coating of Au NPs with accurate control of particle size, shape and surface chemistry. These make the gold nanomaterials a much easier and safer cancer agent and drug to be applied to the patient’s tumor. Although many studies on Au NPs have been published, more results are in the pipeline due to the rapid development of nanotechnology. The purpose of this review is to assess how the novel nanomaterials fabricated by Au NPs can impact biomedical applications such as drug delivery and cancer therapy. Moreover, this review explores the viability, property and cytotoxicity of various Au NPs.
Collapse
|
155
|
Lepeltier E, Rijo P, Rizzolio F, Popovtzer R, Petrikaite V, Assaraf YG, Passirani C. Nanomedicine to target multidrug resistant tumors. Drug Resist Updat 2020; 52:100704. [PMID: 32512316 DOI: 10.1016/j.drup.2020.100704] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Nanomedicine employs nanotechnologies to develop innovative applications, and more specifically nano-objects in the field of human health, through exploitation of the physical, chemical and biological properties of materials at the nanoscale. The use of nanovehicles capable of transporting and releasing the active therapeutic payload into target cells, particularly in the case of cancer or inflammatory diseases, can also enhance diagnosis. Therefore, nanomedicines improve the benefit/risk ratio of drugs by increasing their bioavailability, selectivity, and efficacy in the target tissue, while reducing the necessary doses and hence diminishing untoward toxicity to healthy tissues. Overcoming multidrug resistance (MDR) to antitumor agents is a central goal of cancer research and therapeutics, making it possible to treat these diseases more accurately and effectively. The adaptability of nanomedicines e.g. modulation of their components, surface functionalization, encapsulation of various active therapeutics as well as the possibility of combining several treatments using a single nanoparticle platform, are characteristics which are perfectly poised to address classical chemoresistance, a major obstacle towards curative cancer therapy. In this review, we discuss an assortment of nanomedicines along with those that should be developed in order to surmount cancer MDR; these include exosomes, natural compounds, lipid nanocapsules, prodrug self-assemblies, and gold nanoparticles.
Collapse
Affiliation(s)
- Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Patricia Rijo
- Research Center for Biosciences & Health Technologies (CBIOS), Lisboa, Portugal; iMed.ULisboa - Research Institute for Medicines, Lisboa, Portugal
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Av. 13, LT-50161 Kaunas, Lithuania; Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France.
| |
Collapse
|
156
|
Pashazadeh‐Panahi P, Hasanzadeh M, Eivazzadeh‐Keihan R. A novel optical probe based on
d
‐penicillamine‐functionalized graphene quantum dots: Preparation and application as signal amplification element to minoring of ions in human biofluid. J Mol Recognit 2020; 33:e2828. [DOI: 10.1002/jmr.2828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Reza Eivazzadeh‐Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and Technology Tehran Iran
| |
Collapse
|
157
|
Synthesis of Ligand Functionalized ErbB-3 Targeted Novel DNA Nano-Threads Loaded with the Low Dose of Doxorubicin for Efficient In Vitro Evaluation of the Resistant Anti-Cancer Activity. Pharm Res 2020; 37:75. [PMID: 32232574 DOI: 10.1007/s11095-020-02803-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Doxorubicin (Dox) being a hydrophobic drug needs a unique carrier for the effective encapsulation with uniformity in the aqueous dispersion, cell culture media and the biological-fluids that may efficiently target its release at the tumor site. METHODS Circular DNA-nanotechnology was employed to synthesize DNA Nano-threads (DNA-NTs) by polymerization of triangular DNA-tiles. It involved circularizing a linear single-stranded scaffold strand to make sturdier and rigid triangles. DNA-NTs were characterized by the AFM and Native-PAGE tests. Dox binding and loading to the Neuregulin1 (NRG1) functionalized DNA based nano-threads (NF-DBNs) was estimated by the UV-shift analysis. The biocompatibility of the blank NRG-1/DNA-NTs and enhanced cytotoxicity of the NF-DBNs was assessed by the MTT assay. Cell proliferation/apoptosis was analyzed through the Flow-cytometry experiment. Cell-surface binding and the cell-internalization of the NF-DBNs was captured by the double-photon confocal microscopy (DPCM). RESULTS The AFM images revealed uniform DNA-NTs with the diameter 30 to 80 nm and length 400 to 800 nm. PAGE native gel was used for the further confirmation of the successful assembly of the strands to synthesize DNA-NTs that gave one sharp band with the decreased electrophoretic mobility down the gel. MTT assay showed that blank DNA-NTs were biocompatible to the cells with less cytotoxicity even at elevated concentrations with most of the cells (94%) remaining alive compared to the dose-dependent enhanced cytotoxicity of NF-DBNs further evidenced by the Flow-cytometry analysis. CONCLUSION Uniform and stiffer DNA-NTs for the potential applications in targeted drug delivery was achieved through circular DNA scaffolding.
Collapse
|
158
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
159
|
Gold Nanoparticles in Glioma Theranostics. Pharmacol Res 2020; 156:104753. [PMID: 32209363 DOI: 10.1016/j.phrs.2020.104753] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Despite many endeavors to treat malignant gliomas in the last decades, the median survival of patients has not significantly improved. The infiltrative nature of high-grade gliomas and the impermeability of the blood-brain barrier to the most therapeutic agents remain major hurdles, impeding an efficacious treatment. Theranostic platforms bridging diagnosis and therapeutic modalities aim to surmount the current limitations in diagnosis and therapy of glioma. Gold nanoparticles (AuNPs) due to their biocompatibility and tunable optical properties have widely been utilized for an assortment of theranostic purposes. In this Review, applications of AuNPs as imaging probes, drug/gene delivery systems, radiosensitizers, photothermal transducers, and multimodal theranostic agents in malignant gliomas are discussed. This Review also aims to provide a perspective on cancer theranostic applications of AuNPs in future clinical trials.
Collapse
|
160
|
SALMANOĞLU DS, ÇETİN UYANIKGİL EÖ. Metalik nanopartiküllerin hedeflendirilmesi. EGE TIP DERGISI 2020. [DOI: 10.19161/etd.698596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
161
|
Recent advances of smart acid‐responsive gold nanoparticles in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1619. [DOI: 10.1002/wnan.1619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
|
162
|
Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydr Polym 2020; 229:115511. [DOI: 10.1016/j.carbpol.2019.115511] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 11/19/2022]
|
163
|
Guo WW, Zhang ZT, Wei Q, Zhou Y, Lin MT, Chen JJ, Wang TT, Guo NN, Zhong XC, Lu YY, Yang QY, Han M, Gao J. Intracellular Restructured Reduced Glutathione-Responsive Peptide Nanofibers for Synergetic Tumor Chemotherapy. Biomacromolecules 2020; 21:444-453. [PMID: 31851512 DOI: 10.1021/acs.biomac.9b01202] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Self-assembled peptide nanofibers have been widely studied in cancer nanotherapeutics with their excellent biocompatibility and low toxicity of degradation products, showing the significant potential in inhibiting tumor progression. However, poor solubility prevents direct intravenous administration of nanofibers. Although water-soluble peptide precursors have been formed via the method of phosphorylation for intravenous administration, their opportunities for broad in vivo application are limited by the weak capacity of encapsulating drugs. Herein, we designed a novel restructured reduced glutathione (GSH)-responsive drug delivery system encapsulating doxorubicin for systemic administration, which achieved the intracellular restructuration from three-dimensional micelles into one-dimensional nanofibers. After a long blood circulation, micelles endocytosed by tumor cells could degrade in response to high GSH levels, achieving more release and accumulation of doxorubicin at desired sites. Further, the synergistic chemotherapy effects of self-assembled nanofibers were confirmed in both in vitro and in vivo experiments.
Collapse
|
164
|
Kumar K, Moitra P, Bashir M, Kondaiah P, Bhattacharya S. Natural tripeptide capped pH-sensitive gold nanoparticles for efficacious doxorubicin delivery both in vitro and in vivo. NANOSCALE 2020; 12:1067-1074. [PMID: 31845927 DOI: 10.1039/c9nr08475d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanobiotechnology has been gaining ever-increasing interest for the successful implementation of chemotherapy based treatment of cancer. Gold nanoparticles (AuNPs) capped with a natural pH-responsive short tripeptide (Lys-Phe-Gly or KFG) sequence are presented herein for significant intracellular delivery of an anti-cancer drug, doxorubicin (DOX). A particularly increased apoptotic response has been observed for DOX treatments mediated by KFG-AuNPs when compared with drug alone treatments in various cell lines (BT-474, HeLa, HEK 293 T and U251). Furthermore, KFG-AuNP mediated DOX treatment significantly decreases cell proliferation and tumor growth in a BT-474 cell xenograft model in nude mice. In addition, KFG-AuNPs demonstrate efficacious drug delivery in DOX-resistant HeLa cells (HeLa-DOXR).
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
165
|
Rasekhian M, Tavallaei O, Marzbany M. Combinational treatments for breast cancer. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2020. [DOI: 10.4103/jrptps.jrptps_89_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
166
|
Bio-application of Inorganic Nanomaterials in Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:115-130. [PMID: 32602094 DOI: 10.1007/978-981-15-3258-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials or nanoparticles (INPs) have drawn high attention for their usage in the biomedical field. In addition to the facile synthetic and modifiable property of INPs, INPs have various unique properties that originate from the components of the INPs, such as metal ions that are essential for the human body. Apart from their roles as components of the human body, inorganic materials have unique properties, such as magnetic, antibacterial, and piezoelectric, so that INPs have been widely used as either carriers or inducers. However, most of the bio-applicable INPs, especially those consisting of metal, can cause cytotoxicity. Therefore, INPs require modification to alleviate the harmful effect toward the cells by controlling the release of metal ions from INPs. Even though many attempts have been made to modify INPs, many things, including the side effects of INPs, still remain as obstacles in the bio-application, which need to be elucidated. In this chapter, we introduce novel INPs in terms of their synthetic method and bio-application in tissue engineering.
Collapse
|
167
|
Gao Z, Mu W, Tian Y, Su Y, Sun H, Zhang G, Li A, Yu D, Zhang N, Hao J, Liu Y, Cui J. Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. J Mater Chem B 2020; 8:6866-6876. [DOI: 10.1039/d0tb00405g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Theranostic nanoparticles composed of amphiphilic paramagnetic polymers are assembled for dual mode imaging and synergistic therapy.
Collapse
|
168
|
Ahmad MZ, Ahmad J, Warsi MH, Abdel-Wahab BA, Akhter S. Metallic nanoparticulate delivery systems. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:279-328. [DOI: 10.1016/b978-0-08-102985-5.00013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
169
|
Karuppiah A, Rajan R, Ramanathan M, Nagarajan A. Cytotoxicity and Synergistic Effect of Biogenically Synthesized Ternary Therapeutic Nano Conjugates Comprising Plant Active Principle, Silver and Anticancer Drug on MDA-MB-453 Breast Cancer Cell Line. Asian Pac J Cancer Prev 2020; 21:195-204. [PMID: 31983184 PMCID: PMC7294018 DOI: 10.31557/apjcp.2020.21.1.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 01/11/2023] Open
Abstract
Drug delivery through biogenically synthesized silver nanoparticles (AgNPs) in cancer treatment is exerted by smaller size entailing high surface area and synergistic effects of embedded biomolecules. In this study, prepared ternary conjugates of silver with plant active compound and anticancer drug towards reducing the dose through synergy, rendered by Electrostatic Attraction (EA) of functionalized drug on to the surface of biogenically synthesized AgNPs. The biogenic synthesis resulted in particles of nanometer range as well as serving reducing and capping agents. The cytotoxicity and synergistic effect of ternary therapeutic nano conjugates evaluated using MDA-MB-453 breast cancer cells were found to be superior than Doxorubicin (Dox). Quantitative HPTLC analysis showed 57.22 % inhibition by Dox-AP-AgNPs at a concentration of 2.5 µg/mL of Andrographolide and 0.95 µg/mL of Dox validating synergistic effect of the ternary conjugate.
Collapse
Affiliation(s)
- Arjunan Karuppiah
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Ravikumar Rajan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Arumugam Nagarajan
- Department of Pharmacognosy, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| |
Collapse
|
170
|
Liu J, Ma W, Kou W, Shang L, Huang R, Zhao J. Poly-amino acids coated gold nanorod and doxorubicin for synergistic photodynamic therapy and chemotherapy in ovarian cancer cells. Biosci Rep 2019; 39:BSR20192521. [PMID: 31742323 PMCID: PMC6928523 DOI: 10.1042/bsr20192521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/13/2023] Open
Abstract
In this work, we have successfully designed and formulated a doxorubicin-loaded polypeptide-based multilayer assembled gold nanorod (DH-GNR). We have hypothesized that near-infrared (NIR) laser irradiation of DH-GNR will combine the benefits of chemotherapy and photothermal therapy. The GNR was surface functionalized with poly-glutamic acid (PGA) and poly-l-Lysine (PLL) with a final layer of hyaluronic acid (HA) that could also serve as a targeting ligand toward the overexpressed CD44 receptors in ovarian cancer cells. The zigzag ζ potential of nanoparticle is a proof of successful assembly of alternative polymers on the GNR surface. NIR irradiation exhibited a burst release of drug in pH 7.4 and pH 5.0 buffer conditions. The combination of doxorubicin (DOX)-based chemotherapy and GNR-based photothermal therapy exhibited a synergistic effect in killing the SKOV3 cancer cells. DH-GNR(+NIR) induced a 82.5% apoptosis (combined early and late apoptosis) compared with only 35.2 and 38.5% for DOX or DH-GNR(-NIR) treated cell group. Results clearly suggest that the excessive reactive oxygen species (ROS) generation in DH-GNR (+NIR) might be responsible for the cell apoptosis and cell death. The promising anticancer effect of DH-GNR will be of great potential in the treatment of ovarian cancers and worth further development for treating other malignant tumors.
Collapse
Affiliation(s)
- JinYing Liu
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Wei Ma
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Wei Kou
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Lina Shang
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Rui Huang
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Jin Zhao
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| |
Collapse
|
171
|
Folate–Gold–Bilirubin Nanoconjugate Induces Apoptotic Death in Multidrug-Resistant Oral Carcinoma Cells. Eur J Drug Metab Pharmacokinet 2019; 45:285-296. [DOI: 10.1007/s13318-019-00600-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
172
|
Kumari Y, Kaur G, Kumar R, Singh SK, Gulati M, Khursheed R, Clarisse A, Gowthamarajan K, Karri VVSNR, Mahalingam R, Ghosh D, Awasthi A, Kumar R, Yadav AK, Kapoor B, Singh PK, Dua K, Porwal O. Gold nanoparticles: New routes across old boundaries. Adv Colloid Interface Sci 2019; 274:102037. [PMID: 31655366 DOI: 10.1016/j.cis.2019.102037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023]
Abstract
In recent years, gold nanoparticles have emerged as unique non-invasive drug carriers for targeting drugs to their site of action. Their site specificity has helped in increasing drugs' efficacy at lower dose as well as reduction in their side effects. Moreover, their excellent optical properties and small size offer their utilization as diagnostic tools to diagnose tumors as well as other diseases. This review focuses on various approaches that have been used in last several years for preparation of gold nanoparticles, their characterization techniques and theranostic applications. Their toxicity related aspects are also highlighted. Gold nanoparticles are useful as theranostic agents, owing to their small size, biocompatible nature, size dependent physical, chemical and optical properties etc. However, the challenges associated with these nanoparticles such as scale up, cost, low drug payload, toxicity and stability have been the major impediments in their commercialization. The review looks into all these critical issues and identifies the possibilities to overcome these challenges for successful positioning of metallic nanoparticles in market.
Collapse
Affiliation(s)
- Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ayinkamiye Clarisse
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - K Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ootacamund, Tamilnadu, India
| | - V V S Narayana Reddy Karri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ootacamund, Tamilnadu, India
| | | | - Dipanjoy Ghosh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Kumar Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| |
Collapse
|
173
|
Li Y, Zhai Y, Liu W, Zhang K, Liu J, Shi J, Zhang Z. Ultrasmall nanostructured drug based pH-sensitive liposome for effective treatment of drug-resistant tumor. J Nanobiotechnology 2019; 17:117. [PMID: 31783863 PMCID: PMC6884872 DOI: 10.1186/s12951-019-0550-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 02/04/2023] Open
Abstract
Background Cancer cells always develop ways to resist and evade chemotherapy. To overcome this obstacle, herein, we introduce a programmatic release drug delivery system that imparts avoiding drug efflux and nuclear transport in synchrony via a simple nanostructured drug strategy. Results The programmatic liposome-based nanostructured drugs (LNSD) contained two modules: doxorubicin (DOX) loaded into tetrahedral DNA (TD, ~ 10 nm) to form small nanostructured DOX, and the nanostructured DOX was encapsulated into the pH-sensitive liposomes. In the in vitro and in vivo studies, LNSD shows multiple benefits for drug resistance tumor treatment: (1) not only enhanced the cellular DOX uptake, but also maintained DOX concentration in an optimum level in resistant tumor cells via nanostructure induced anti-efflux effect; (2) small nanostructured DOX efficiently entered into cell nuclear via size depended nuclear-transport for enhanced treatment; (3) improved the pharmacokinetics and biodistribution via reducing DOX leakage during circulation. Conclusions The system developed in this study has the potential to provide new therapies for drug-resistant tumor.
Collapse
Affiliation(s)
- Yanyan Li
- The Fifth Affiliated Hospital of Zhengzhou University, Kangfu Road, Zhengzhou, 450052, China
| | - Yongxia Zhai
- The Fifth Affiliated Hospital of Zhengzhou University, Kangfu Road, Zhengzhou, 450052, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China. .,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China.
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China. .,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China. .,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| |
Collapse
|
174
|
Electroporation of outer membrane vesicles derived from Pseudomonas aeruginosa with gold nanoparticles. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1646-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Since their discovery, extracellular vesicles have gained considerable scientific interest as a novel drug delivery system. In particular, outer membrane vesicles (OMVs) play a critical role in bacteria–bacteria communication and bacteria–host interactions by trafficking cell signalling biochemicals (i.e. DNA, RNA, proteins). Although previous studies have focused on the use of OMVs as vaccines, little work has been done on loading them with functional nanomaterials for drug delivery. We have developed a novel drug delivery system by loading OMVs with gold nanoparticles (AuNPs). AuNPs are versatile nanoparticles that have been extensively used in disease therapeutics. The particles were loaded into the vesicles via electroporation, which uses an electric pulse to create a short-lived electric field. The resulting capacitance on the membrane generates pores in the lipid bilayer of the OMVs allowing AuNPs (or any nanoparticle under 10 nm) inside the vesicles. Closure of the pores of the lipid membrane of the OMVs entraps the nanoparticles as cargo. Transmission electron microscopy was used to confirm the loading of AuNPs inside the OMVs and dynamic light scattering (DLS) and cryogenic scanning electron microscopy (cryo-SEM) verified the size and integrity of the OMVs. This is the first report to load nanoparticles into OMVs, demonstrating a potential method for drug delivery.
Graphic abstract
Collapse
|
175
|
Khafaji M, Zamani M, Vossoughi M, Iraji zad A. Doxorubicin/Cisplatin-Loaded Superparamagnetic Nanoparticles As A Stimuli-Responsive Co-Delivery System For Chemo-Photothermal Therapy. Int J Nanomedicine 2019; 14:8769-8786. [PMID: 31806971 PMCID: PMC6844268 DOI: 10.2147/ijn.s226254] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. METHODS Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol (6 kDa) and carboxylate-methoxy polyethylene glycol (6 kDa) to improve their stability, biocompatibility, and drug loading capability. Doxorubicin (DOX) and cisplatin (CDDP) were loaded on the PS-IONs through the interactions between the drug molecules and polyethylene glycol. RESULTS The PS-IONs demonstrated excellent cellular uptake, cytocompatibility, and hemocompatibility at the practical dosage. Furthermore, in addition to being an appropriate MRI agent, PS-IONs demonstrated superb photothermal property in 0.5 W/cm2 of 808 nm laser irradiation. The release of both drugs was effectively triggered by pH and NIR irradiation. As a result of the intracellular combination chemotherapy and 10 min of safe power laser irradiation, the highest cytotoxicity for iron-based nanocarriers (97.3±0.8%) was achieved. CONCLUSION The results of this study indicate the great potential of PS-IONs as a multifunctional targeted co-delivery system for cancer theranostic application and the advantage of employing proper combination therapy for cancer eradication.
Collapse
Affiliation(s)
- Mona Khafaji
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran14588-89694, Iran
| | - Masoud Zamani
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Azam Iraji zad
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran14588-89694, Iran
- Department of Physics, Sharif University of Technology, Tehran14588, Iran
| |
Collapse
|
176
|
Caballero AB, Cardo L, Claire S, Craig JS, Hodges NJ, Vladyka A, Albrecht T, Rochford LA, Pikramenou Z, Hannon MJ. Assisted delivery of anti-tumour platinum drugs using DNA-coiling gold nanoparticles bearing lumophores and intercalators: towards a new generation of multimodal nanocarriers with enhanced action. Chem Sci 2019; 10:9244-9256. [PMID: 32055309 PMCID: PMC7003971 DOI: 10.1039/c9sc02640a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
New gold and lipoic based nanocarriers for the delivery of platinum(ii) and platinum(iv) drugs are developed, which allow enhanced loading of the drug on the surface of the nanocarriers and release in a pH-dependent fashion, with superior release at lower pHs which are associated with many tumours. The conjugate nanoparticles and their conjugates enter cells rapidly (within 3 hours). They tend to cluster in vesicles and are also observed by light and electron microscopies in the cytoplasm, endoplasmic reticulum and nucleus. We further incorporate aminoanthraquinone units that are both fluorophores and DNA intercalators. This results in nanocarriers that after drug release will remain surface decorated with DNA-binders challenging the conventional design of the nanocarrier as an inert component. The outcome is nanocarriers that themselves have distinctive, remarkable and unusual DNA binding properties being able to bind and wrap DNA (despite their anionic charge) and provide enhanced cytotoxic activity beyond that conferred by the platinum agents they release. DNA coiling is usually associated with polycations which can disrupt cell membranes; anionic nanoparticles that can cause novel and dramatic effects on DNA may have fascinating potential for new approaches to in-cell nucleic acid recognition. Our findings have implications for the understanding and interpretation of the biological activities of nanoparticles used to deliver other DNA-binding drugs including clinical drug doxorubicin and its formulations.
Collapse
Affiliation(s)
- Ana B Caballero
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Lucia Cardo
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Sunil Claire
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - James S Craig
- Physical Sciences for Health Centre , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| | - Nikolas J Hodges
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| | - Anton Vladyka
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Tim Albrecht
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Luke A Rochford
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Zoe Pikramenou
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Michael J Hannon
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| |
Collapse
|
177
|
Li J, Li X, Liu P. Doxorubicin-doxorubicin conjugate prodrug as drug self-delivery system for intracellular pH-triggered slow release. Colloids Surf B Biointerfaces 2019; 185:110608. [PMID: 31707225 DOI: 10.1016/j.colsurfb.2019.110608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/20/2019] [Indexed: 10/25/2022]
Abstract
Drug content and releasing rate are the main determining factors for the drug delivery systems (DDSs). Here, doxorubicin dimer (D-DOXcar) was synthesized as drug-drug conjugate prodrug with high drug content of 86%, via an acid-triggered hydrolysable carbamate linker. The prodrug nanoparticles (D-DOXcar-NP) with different diameters were prepared as drug self-delivery system (DSDS) for intracellular pH-triggered slow release. They showed size- and concentration-dependent pH-triggered slow DOX release. For the D-DOXcar-sNP with smaller diameter, the cumulative release ratio reached 25.6% at pH 5.0 within 60 h. The MTT results demonstrated that the proposed DSDS showed similar tumor inhibition regardless of carboxylesterases, and an enhanced anti-tumor efficacy on the HepG2 cells in comparison with the free DOX.
Collapse
Affiliation(s)
- Jiagen Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
178
|
Zhang S, Guo N, Wan G, Zhang T, Li C, Wang Y, Wang Y, Liu Y. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J Nanobiotechnology 2019; 17:109. [PMID: 31623608 PMCID: PMC6798417 DOI: 10.1186/s12951-019-0540-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Background Multidrug resistance (MDR) generally leads to breast cancer treatment failure. The most common mechanism of MDR is the overexpression of ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein (P-gp) that reduce the intracellular accumulation of various chemotherapeutic agents. Celecoxib (CXB), a selective COX-2 inhibitor, can dramatically enhance the cytotoxicity of doxorubicin (DOX) in breast cancer cells overexpressing P-gp. Thus it can be seen that the combination of DOX and CXB maybe obtain synergistic effects against breast cancer by overcoming drug resistance. Results In this study, we designed a pH and redox dual-responsive nanocarrier system to combine synergistic effects of DOX and CXB against drug resistant breast cancer. This nanocarrier system denoted as HPPDC nanoparticles showed good in vitro stability and significantly accelerated drug releases under the acidic and redox conditions. In drug-resistant human breast cancer MCF-7/ADR cells, HPPDC nanoparticles significantly enhanced the cellular uptake of DOX through the endocytosis mediated by CD44/HA specific binding and the down-regulated P-gp expression induced by COX-2 inhibition, and thus notably increased the cytotoxicity and apoptosis-inducing activity of DOX. In MCF-7/ADR tumor-bearing nude mice, HPPDC nanoparticles showed excellent tumor-targeting ability, remarkably enhanced tumor chemosensitivity and reduced COX-2 and P-gp expressions in tumor tissues. Conclusion All results demonstrated that HPPDC nanoparticles can efficiently overcome drug resistance in breast cancer both in vitro and in vivo by combining chemotherapy and COX-2 inhibitor. In a summary, HPPDC nanoparticles show a great potential for combination treatment of drug resistant breast cancer.
Collapse
Affiliation(s)
- Sipei Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences; Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Qixiangtai Road 22, Tianjin, 300070, China
| | - Nan Guo
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences; Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Qixiangtai Road 22, Tianjin, 300070, China
| | - Guoyun Wan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences; Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Qixiangtai Road 22, Tianjin, 300070, China
| | - Tao Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences; Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Qixiangtai Road 22, Tianjin, 300070, China
| | - Chunyu Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences; Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Qixiangtai Road 22, Tianjin, 300070, China
| | - Yongfei Wang
- Choate Rosemary Hall, Class of 2019, Wallingford, CT, 06492, USA
| | - Yinsong Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences; Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Qixiangtai Road 22, Tianjin, 300070, China.
| | - Yuanyuan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences; Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Qixiangtai Road 22, Tianjin, 300070, China.
| |
Collapse
|
179
|
Naz F, Kumar Dinda A, Kumar A, Koul V. Investigation of ultrafine gold nanoparticles (AuNPs) based nanoformulation as single conjugates target delivery for improved methotrexate chemotherapy in breast cancer. Int J Pharm 2019; 569:118561. [DOI: 10.1016/j.ijpharm.2019.118561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 11/27/2022]
|
180
|
Shrestha B, Tang L, Romero G. Nanoparticles‐Mediated Combination Therapies for Cancer Treatment. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Liang Tang
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Gabriela Romero
- Department of Chemical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
181
|
Guo Q, Wang Y, Zhang L, Zhang P, Yu Y, Zhang Y, Li C, Jiang S, Zhang X. In situ real-time tracing of hierarchical targeting nanostructures in drug resistant tumors using diffuse fluorescence tomography. Chem Sci 2019; 10:7878-7886. [PMID: 31588333 PMCID: PMC6761867 DOI: 10.1039/c9sc01841g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022] Open
Abstract
Nanoparticles that respond to specific endogenous or exogenous stimuli in tumor tissues are actively being developed to address multidrug resistance owing to multiple advantages, including a prolonged circulation time, enhanced permeability and retention effect, and superior cellular uptake. Although some exciting results have been obtained, existing nanoparticles have limited routes to overcome the drug resistance of tumor cells; this limitation results in a failure to ablate resistant tumors via intravenous administration. To resolve this dilemma, we developed a smart theranostic nanoplatform with programmable particle size, activatable target ligands and in vivo multimodal imaging. This nanoplatform, which includes stealth zwitterionic coating, was shown to be quickly trapped in tumor tissue from the blood circulation within 5 min. Subsequently, the targeting moieties were activated in response to the acidic tumor microenvironment by triggering the zwitterionic shell detachment, driving the peeled nanoparticles to penetrate into tumor cells. These smart nanoparticles completely inhibited drug-resistant tumor growth and did not cause any damage to normal organ tissues in live animals. The designed nanoplatforms simultaneously acted as a nanoprobe for fluorescence imaging. Moreover, we also used noninvasive pharmacokinetic diffuse fluorescence tomography (DFT) to dynamically monitor and in situ real-time trace the nanoplatforms' behavior throughout the entire tumor in live animals. The nanoplatforms enabled rapid drug accumulation and deep penetration throughout the entire tumor. The rate of drug accumulation after the administration of nanoplatforms was five-fold higher compared with that after the administration of the free drug, which resulted in increased drug delivery efficiency and improved antitumor efficacy. Collectively, this hierarchical vehicle design provides promising insights for the development of theragnosis for multidrug resistant tumors.
Collapse
Affiliation(s)
- Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education , Institute of Polymer Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological & Interdisciplinary Sciences (RAD-X) , Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Limin Zhang
- College of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300072 , China
| | - Peng Zhang
- Department of Chemical Engineering , University of Washington , Seattle , WA 98195 , USA .
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education , Institute of Polymer Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Yanqi Zhang
- College of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300072 , China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education , Institute of Polymer Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Shaoyi Jiang
- Department of Chemical Engineering , University of Washington , Seattle , WA 98195 , USA .
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education , Institute of Polymer Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , China .
| |
Collapse
|
182
|
Kaviani M, Di Valentin C. Rational design of nanosystems for simultaneous drug delivery and photodynamic therapy by quantum mechanical modeling. NANOSCALE 2019; 11:15576-15588. [PMID: 31403155 DOI: 10.1039/c9nr03763b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug delivery systems are based on reversible interactions between carriers and drugs. Spacers are often introduced to tailor the type of interaction and to keep drugs intact. Here, we model a drug delivery system based on a functionalized curved TiO2 nanoparticle of realistic size (700 atoms - 2.2 nm) by the neurotransmitter dopamine to carry the anticancer chemotherapeutic agent doxorubicin (DOX). The multiscale quantum chemical study aims at unraveling the nature and mechanism of the interactions between the components and the electronic properties of the composite system. We simulate the temperature effect through molecular dynamics runs of thermal annealing. Dopamine binds preferentially to low coordinated Ti sites on the nanoparticle through dissociated bidentate and chelate modes involving the diol groups. DOX is tethered by H-bonds, π-π stacking, dipole-dipole interactions and dispersion forces. Comparing different coverage densities of the spacer on the nanoparticle surface, we assess the best conditions for an effective drug transport and release: only at full coverage, DOX does not slip among the dopamine molecules to reach the nanoparticle surface, which is crucial to avoid the formation of stable coordinative bonds with under-coordinated Ti atoms. Finally, given the strong absorption properties and fluorescence of DOX and of the TiO2 photocatalyst, we model the effect of light irradiation through excited state calculations to localize excitons and to follow the charge carrier's life path. This fundamental study on the nature and mechanism of drug/carrier interaction provides a solid ground for the rational design of new experimental protocols for a more efficient drug transport and release and its combination with photodynamic therapy.
Collapse
Affiliation(s)
- Moloud Kaviani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| |
Collapse
|
183
|
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019; 271:101989. [PMID: 31330396 DOI: 10.1016/j.cis.2019.101989] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
In a couple of decades, nanotechnology has become a trending area in science due to it covers all subject that combines diverse range of fields including but not limited to chemistry, physics and medicine. Various metal and metal oxide nanomaterials have been developed for wide range applications. However, the application of gold nanostructures and nanoparticles has been received more attention in various biomedical applications. The unique property of gold nanoparticles (AuNPs) is surface plasmon resonance (SPR) that determine the size, shape and stability. The wide surface area of AuNPs eases the proteins, peptides, oligonucleotides, and many other compounds to tether and enhance the biological activity of AuNPs. AuNPs have multifunctionality including antimicrobial, anticancer, drug and gene delivery, sensing applications and imaging. This state-of-the-art review is focused on the role of unique properties of AuNPs in multifunctionality and its various applications.
Collapse
|
184
|
Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J Control Release 2019; 311-312:170-189. [PMID: 31472191 DOI: 10.1016/j.jconrel.2019.08.032] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Over the past two decades, the development of plasmonic nanoparticle (NPs), especially gold (Au) NPs, is being pursued more seriously in the medical fields such as imaging, drug delivery, and theranostic systems. However, there is no comprehensive review on the effect of the physical and chemical parameters of AuNPs on their plasmonic properties as well as the use of these unique characteristic in medical activities such as imaging and therapeutics. Therefore, in this literature the surface plasmon resonance (SPR) modeling of AuNPs was accurately captured toward precision medicine. Indeed, we investigated the importance of plasmonic properties of AuNPs in optical manipulation, imaging, drug delivery, and photothermal therapy (PTT) of cancerous cells based on their physicochemical properties. Finally, some challenges regarding the commercialization of AuNPs in future medicine such as, cytotoxicity, lack of standards for medical applications, high cost, and time-consuming process were discussed.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
185
|
Huang P, Wang G, Su Y, Zhou Y, Huang W, Zhang R, Yan D. Stimuli-responsive nanodrug self-assembled from amphiphilic drug-inhibitor conjugate for overcoming multidrug resistance in cancer treatment. Am J Cancer Res 2019; 9:5755-5768. [PMID: 31534517 PMCID: PMC6735370 DOI: 10.7150/thno.36163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Severe multidrug resistance (MDR) often develops in the process of chemotherapy for most small molecule anticancer drugs, which results in clinical chemotherapy failures. Methods: Here, a nanodrug is constructed through the self-assembly of amphiphilic drug-inhibitor conjugates (ADIC) containing a redox-responsive linkage for reversing the multidrug resistance (MDR) in cancer treatment. Specifically, hydrophilic anticancer irinotecan (Ir) and hydrophobic P-gp protein inhibitor quinine (Qu) are linked by a redox responsive bridge for overcoming MDR of tumors. Results: Ir-ss-Qu is able to self-assemble into nanoparticles (NPs) in water and shows the longer blood retention half-life compared with that of free Ir or Qu, which facilitates drug accumulation in tumor site. After endocytosis of Ir-ss-Qu NPs by drug-resistant tumor cells, the disulfide bond in the linkage between Ir and Qu is cleaved rapidly induced by glutathione (GSH) to release anticancer drug Ir and inhibitor Qu synchronously. The released Qu can markedly reduce the expression of P-gp in drug-resistant tumor cells and inhibits P-gp to pump Ir out of the cells. The increased concentration of intracellular Ir can effectively improve the therapeutic efficacy. Conclusions: Such redox-responsive Ir-ss-Qu NPs, as a drug delivery system, exhibit very high cytotoxicity and the most effective inhibitory to the growth of drug-resistant breast cancer compared with that of free therapeutic agents in vitro and in vivo.
Collapse
|
186
|
Ultra-Small Platinum Nanoparticles with High Catalytic Selectivity Synthesized by an Eco-friendly Method Supported on Natural Hydroxyapatite. Catal Letters 2019. [DOI: 10.1007/s10562-019-02919-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
187
|
Zhu S, Zhu L, Yu J, Wang Y, Peng B. Anti-osteoclastogenic effect of epigallocatechin gallate-functionalized gold nanoparticles in vitro and in vivo. Int J Nanomedicine 2019; 14:5017-5032. [PMID: 31371944 PMCID: PMC6627179 DOI: 10.2147/ijn.s204628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Epigallocatechin gallate (EGCG), the major anti-inflammatory compound in green tea, has been shown to suppress osteoclast (OC) differentiation. However, the low aqueous solubility of EGCG always leads to poor bioavailability, adverse effects, and several drawbacks for clinical applications. Purpose: In this study, we synthesized EGCG-capped gold nanoparticles (EGCG-GNPs) to solve the drawbacks for clinical uses of EGCG in bone destruction disorders by direct reduction of HAuCl4 in EGCG aqueous solution. Methods and Results: The obtained EGCG-GNPs were negatively charged and spherical. Theoretical calculation results suggested that EGCG was released from GNPs in an acidic environment. Cellular uptake study showed an obviously large amount of intracellular EGCG-GNPs without cytotoxicity. EGCG-GNPs exhibited better effects in reducing intracellular reactive oxygen species levels than free EGCG. A more dramatic anti-osteoclastogenic effect induced by EGCG-GNPs than free EGCG was observed in lipopolysaccharide (LPS)-stimulated bone marrow macrophages, including decreased formation of TRAP-positive multinuclear cells and actin rings. Meanwhile, EGCG-GNPs not only suppressed the mRNA expression of genetic markers of OC differentiation but also inhibited MAPK signaling pathways. Furthermore, we confirmed that EGCG-GNPs greatly reversed bone resorption in the LPS-induced calvarial bone erosion model in vivo, which was more effective than applying free EGCG, specifically in inhibiting the number of OCs, improving bone density, and preventing bone loss. Conclusion: EGCG-GNPs showed better anti-osteoclastogenic effect than free EGCG in vitro and in vivo, indicating their potential in anti-bone resorption treatment strategy.
Collapse
Affiliation(s)
- Shenting Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Lingxin Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Jingjing Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yanqing Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bin Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
188
|
Fan M, Wen Y, Ye D, Jin Z, Zhao P, Chen D, Lu X, He Q. Acid-Responsive H 2 -Releasing 2D MgB 2 Nanosheet for Therapeutic Synergy and Side Effect Attenuation of Gastric Cancer Chemotherapy. Adv Healthc Mater 2019; 8:e1900157. [PMID: 30968583 DOI: 10.1002/adhm.201900157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/28/2019] [Indexed: 11/12/2022]
Abstract
The hydrogen molecule is recognized as a high potential to attenuate toxic side effects of chemotherapy and also enhance chemotherapeutic efficacy, and the development of a novel hydrogen-generating prodrug for facile, safe, and efficient hydrogen delivery is vitally important for combined hydrogenochemotherapy but is still challenging. Here, targeting gastric cancer, a 2D magnesium boride nanosheet (MBN) is synthesized as a new type of acid-responsive hydrogen-releasing prodrug by an ultrasound-assisted chemical etching route, which is used to realize hydrogenochemotherapy by combination of facile oral administration of polyvinylpyrrolidone (PVP)-encapsulating MBN (MBN@PVP) pills with routine intravenous injection of doxorubicin (DOX). The MBN@PVP pill has high stability in normal tissues/blood environments as well as high gastric acid-responsiveness with sustained release behavior, which matches well with its metabolism rate in the stomach in great favor of continuous and long-term hydrogen administration. Hydrogenochemotherapy with DOX+MBN@PVP has remarkably prolonged the survival time of gastric tumor-bearing mice by reducing the toxic side effects of chemotherapy. The mechanism for therapeutic synergy and side effect attenuation of hydrogenochemotherapy is discovered to be derived from the selectivity of hydrogen molecules in inhibiting aerobic respiration of gastric cells but activating aerobic respiration of normal cells including marrow mesenchymal stem cells and cardiac, hepatic, and splenic cells.
Collapse
Affiliation(s)
- Mingjian Fan
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Yanyuan Wen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Dien Ye
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Penghe Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Xifeng Lu
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| |
Collapse
|
189
|
Yang D, Deng F, Liu D, He B, He B, Tang X, Zhang Q. The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy. Asian J Pharm Sci 2019; 14:349-364. [PMID: 32104465 PMCID: PMC7032133 DOI: 10.1016/j.ajps.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Aurum nanomaterials (ANM), combining the features of nanotechnology and metal elements, have demonstrated enormous potential and aroused great attention on biomedical applications over the past few decades. Particularly, their advantages, such as controllable particle size, flexible surface modification, higher drug loading, good stability and biocompatibility, especially unique optical properties, promote the development of ANM in biomedical field. In this review, we will discuss the advanced preparation process of ANM and summarize their recent applications as well as their prospects in diagnosis and therapy. Besides, multi-functional ANM-based theranostic nanosystems will be introduced in details, including radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), and so on.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dechun Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
190
|
Dykman LA, Khlebtsov NG. Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:3152-3182. [PMID: 31467774 PMCID: PMC6706047 DOI: 10.1364/boe.10.003152] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 05/19/2023]
Abstract
Functionalized gold nanoparticles (GNPs) with controlled geometrical and optical properties have been the subject of intense research and biomedical applications. This review summarizes recent data and topical problems in nanomedicine that are related to the use of variously sized, shaped, and structured GNPs. We focus on three topical fields in current nanomedicine: (1) use of GNP-based nanoplatforms for the targeted delivery of anticancer and antimicrobial drugs and of genes; (2) GNP-based cancer immunotherapy; and (3) combined chemo-, immuno-, and phototherapy. We present a summary of the available literature data and a short discussion of future work.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
191
|
Zhao M, Li B, Fan Y, Zhang F. In Vivo Assembly and Disassembly of Probes to Improve Near-Infrared Optical Bioimaging. Adv Healthc Mater 2019; 8:e1801650. [PMID: 31094099 DOI: 10.1002/adhm.201801650] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/22/2019] [Indexed: 12/25/2022]
Abstract
The near-infrared range (NIR, 700-1700 nm) has been used as a superior optical window for non-invasive bioimaging. Increasing signal-to-noise ratio (SNR) is the most fundamental method to improve NIR bioimaging. However, the low delivery efficiency of fluorescent contrast agents leads to weak signal at lesions. Moreover, non-specific accumulation and "always on" signals will cause "false positive" signals and high background noise, all of which result in low SNR and potential long-term biotoxicity. Thus, to reach precise detection of lesions, strong bioimaging signals and low background interference are the two important pre-requisites. This review provides an overview of in vivo assembly and disassembly strategies to improve tumor-specific accumulation, "turn-on" the silent signals, and reduce the background noise in NIR bioimaging windows. In vivo assembly and disassembly occurring spontaneously, responding to disease micro-environment or external stimuli, including pH, enzymes, reactive oxygen species, redox, light, and specific recognition is summarized, which may provide ideas and approaches to further enhance bioimaging and reduce long-term biotoxicity concerns.
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of Polymers and iChemFudan University Shanghai 200433 P. R. China
| | - Benhao Li
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of Polymers and iChemFudan University Shanghai 200433 P. R. China
| | - Yong Fan
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of Polymers and iChemFudan University Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of Polymers and iChemFudan University Shanghai 200433 P. R. China
| |
Collapse
|
192
|
Singh N, Nayak J, Sahoo SK, Kumar R. Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:453-465. [DOI: 10.1016/j.msec.2019.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
193
|
Sun X, Liu B, Chen X, Lin H, Peng Y, Li Y, Zheng H, Xu Y, Ou X, Yan S, Wu Z, Deng S, Zhang L, Zhao P. Aptamer-assisted superparamagnetic iron oxide nanoparticles as multifunctional drug delivery platform for chemo-photodynamic combination therapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:76. [PMID: 31218573 DOI: 10.1007/s10856-019-6278-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/03/2019] [Indexed: 05/27/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) were widely employed as targeted drug delivery platform due to their unique magnetic property and effortless surface modification. However, the lack of targeting accuracy has been a big obstacle for SPION used in precise medicine. Herein, the tumor-targeting of SPION was enhanced by the conjugation of an aptamer-hybridized nucleic acid structure. The aptamer modified on the surface of SPION was composed of a double-stranded DNA (dsDNA) and a G-quadruplex DNA (AS1411) structure, which carried a chemical anticancer drug, daunomycin (DNM) and a photosensitizer molecule, namely 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP), respectively. The aptamer-dsDNA conjugated SPION nanocarriers (named Apt-S8@SPION) exhibited good stability in serum and nuclease DNase I. The drug-loaded nanocarriers (TMPyP&DNM&Apt-S8@SPION) have high cellular cytotoxicity to A549 and C26 cells which are represently nucleolin-overexpressing cancer cells. The nucleolin-blocking experiments unambiguously evidenced that the formed nanomedicine could target to the cell surface via the specific AS1411-nucleolin interaction, which increased the efficiency of cell uptake. Meanwhile, the TMPyP&DNM&Apt-S8@SPION nanospheres could produce cytotoxic reactive oxygen species efficiently by irradiation of visible light for establishing a new type of PDT to cancer cells. Therefore, the designed TMPyP&DNM&Apt-S8@SPION nanoparticles have magnetic-aptamer dual targeting and combined chemo-photodynamic therapy, and thus were supposed to be ideal drug delivery vehicles with great potential in the era of precision medicine.
Collapse
Affiliation(s)
- Xiangyu Sun
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Xianli Chen
- Medical College of Shaoguan University, No. 128, Xinhuanan Road, 512026, Shaoguan, China
| | - Huichao Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yanbo Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yanyu Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Haoran Zheng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yibin Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Xulin Ou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Siqi Yan
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Zonghai Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Shujun Deng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China.
| |
Collapse
|
194
|
Venditti I. Engineered Gold-Based Nanomaterials: Morphologies and Functionalities in Biomedical Applications. A Mini Review. Bioengineering (Basel) 2019; 6:bioengineering6020053. [PMID: 31185667 PMCID: PMC6630817 DOI: 10.3390/bioengineering6020053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, several engineered gold-based nanomaterials, such as spheres, rods, stars, cubes, hollow particles, and nanocapsules have been widely explored in biomedical fields, in particular in therapy and diagnostics. As well as different shapes and dimensions, these materials may, on their surfaces, have specific functionalizations to improve their capability as sensors or in drug loading and controlled release, and/or particular cell receptors ligands, in order to get a definite targeting. In this review, the up-to-date progress will be illustrated regarding morphologies, sizes and functionalizations, mostly used to obtain an improved performance of nanomaterials in biomedicine. Many suggestions are presented to organize and compare the numerous and heterogeneous experimental data, such as the most important chemical-physical parameters, which guide and control the interaction between the gold surface and biological environment. The purpose of all this is to offer the readers an overview of the most noteworthy progress and challenges in this research field.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, University of Roma Tre, via della Vasca Navale 79, 00146 Rome, Italy.
| |
Collapse
|
195
|
Evaluation of a Nanocomposite Based on Reduced Graphene Oxide and Gold Nanoparticles as an Electrochemical Platform for Detection of Sulfamethazine. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A nanocomposite based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) was synthesized by the microwave-assisted hydrothermal method and applied in the determination of sulfamethazine (SMZ) in swine effluent using a glassy carbon (GC) electrode. The rGO-AuNPs nanocomposite was characterized morphologically, electrochemically and spectrochemically, showing that rGO was modified with the AuNPs. The GC/rGO-AuNPs electrode was optimized for the determination of SMZ, achieving detection limits of 0.1 μmol L−1. The proposed sensor was successfully applied to the determination of SMZ in synthetic swine effluent samples.
Collapse
|
196
|
Zhang L, Shen S, Cheng L, You H, Lu L, Ma C, Dai Y, Fang J. Mesoporous gold nanoparticles for photothermal controlled anticancer drug delivery. Nanomedicine (Lond) 2019; 14:1443-1454. [DOI: 10.2217/nnm-2018-0242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: To realize the transit and release of cancer drug exactly as well as high drug loading ratio, we reported a biocompatible and temperature responsive controlled drug delivery system based on 3D mesoporous structured Au networks. Materials & methods: Here, we filled the hollow interiors of Au networks with a phase-change material so that the drug release was easily regulated by controlling the temperature only. Results: Thanks to the high near-infrared reflectance absorbance and mesoporous structure, the Au–PEG + lauric acid/doxorubicin system showed a strong photothermal conversion efficiency, high drug-loading ratio (54.2% for doxorubicin) and controlled drug release. Conclusion: This system revealed great advantages in photothermal therapy and chemotherapy, offering an obvious synergistic effect in cancer treatment.
Collapse
Affiliation(s)
- Lingling Zhang
- School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shann xi 710049, PR China
| | - Sida Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hongjun You
- School of Science, Xi’an Jiaotong University, Xi’an, Shann xi 710049, PR China
| | - Lu Lu
- School of Microelectronics, Xi’an Jiaotong University, Xi’an, Shann xi 710049, PR China
| | - Chuansheng Ma
- School of Microelectronics, Xi’an Jiaotong University, Xi’an, Shann xi 710049, PR China
| | - Yanzhu Dai
- School of Microelectronics, Xi’an Jiaotong University, Xi’an, Shann xi 710049, PR China
| | - Jixiang Fang
- School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shann xi 710049, PR China
| |
Collapse
|
197
|
Lee GC, Seo D, Kim J, Siddique AB, Park H, Kim HJ, Kang H, Lee JY, Lim J, Kim J, Kim S. Cyclic Hydrazide‐Functionalized Poly(ethylene oxide) Frameworks for the Synthesis of pH‐Cleavable Drug‐Carriers and Their Applications for the Stabilization of Gold Nanoparticles. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Geon Chang Lee
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Donghwa Seo
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Junggyu Kim
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Abu B. Siddique
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Hyeonjong Park
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Hyun Jun Kim
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Ho‐Jung Kang
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Jae Yeol Lee
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Jeewoo Lim
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Jungahn Kim
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Sehoon Kim
- Center for TheranosticsKorea Institute of Science and Technology Seoul 02792 Korea
| |
Collapse
|
198
|
Yang C, Pang X, Chen W, Wang X, Lin G, Chu C, Zhang X, Deng X, Chen X, Liu G. Environmentally responsive dual-targeting nanotheranostics for overcoming cancer multidrug resistance. Sci Bull (Beijing) 2019; 64:705-714. [PMID: 36659653 DOI: 10.1016/j.scib.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/10/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023]
Abstract
The development of multiple drug resistance (MDR) to chemotherapy and subsequent treatment failures are major obstacles in cancer therapy. An attractive option for combating MDR is inhibiting the expression of P-glycoprotein (P-gp) in tumor cells. Here, we report a novel chemosensitizing agent, XMD8-92, which can down-regulate P-gp. To enhance the specificity of MDR chemotherapy, a promising nanotheranostic micelle system based on poly(ethylene glycol)-blocked-poly(L-leucine) (PEG-b-Leu) was developed to simultaneously carry the anticancer drug doxorubicin, chemosensitizing agent XMD8-92, and superparamagnetic iron oxide nanoparticles (SPIOs). Featured with MDR environmentally responsive dual-targeting capability, controllable drug delivery, and efficient magnetic resonance (MR) imaging characteristics, the prepared nanotheranostics (DXS@NPs) showed outstanding in vitro cytotoxicity on MDR cells (SCG 7901/VCR) with only 53% of cells surviving compared to 90% of DOX-treated cells. Furthermore, efficient tumor inhibition and highly reduced systemic toxicity were exhibited by MDR tumor-bearing mice treated with DXS@NPs. Overall, the environmentally responsive dual-targeting nanotheranostics represent a promising approach for overcoming cancer MDR.
Collapse
Affiliation(s)
- Caixia Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Weihai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
199
|
Affiliation(s)
- Zhe Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Wen‐Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Zhe Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
200
|
Song J, Lin L, Yang Z, Zhu R, Zhou Z, Li ZW, Wang F, Chen J, Yang H, Chen X. Self-Assembled Responsive Bilayered Vesicles with Adjustable Oxidative Stress for Enhanced Cancer Imaging and Therapy. J Am Chem Soc 2019; 141:8158-8170. [PMID: 31053030 DOI: 10.1021/jacs.8b13902] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present study, we report the development of magnetic-plasmonic bilayer vesicles assembled from iron oxide-gold Janus nanoparticles (Fe3O4-Au JNPs) for reactive oxygen species (ROS) enhanced chemotherapy. The amphiphilic Fe3O4-Au JNPs were grafted with poly(ethylene glycol) (PEG) on the Au surface and ROS-generating poly(lipid hydroperoxide) (PLHP) on the Fe3O4 surface, respectively, which were then assembled into vesicles containing two closely attached Fe3O4-Au NPs layers in opposite directions. The self-assembly mechanism of the bilayered vesicles was elucidated by performing a series of numerical simulations. The enhanced optical properties of the bilayered vesicles were verified by the calculated results and experimental data. The vesicles exhibited enhanced T2 relaxivity and photoacoustic properties over single JNPs due to the interparticle magnetic dipole interaction and plasmonic coupling. In particular, the vesicles are pH responsive and disassemble into single JNPs in the acidic tumor environment, activating an intracellular biochemical reaction between the grafted PLHP and released ferrous ions (Fe2+) from Fe3O4 NPs, resulting in highly efficient local ROS generation and increased intracellular oxidative stress. In combination with the release of doxorubicin (DOX), the vesicles combine ROS-mediated cytotoxicity and DOX-induced chemotherapy, leading to greatly improved therapeutic efficacy than monotherapies. High tumor accumulation efficiency and fast vesicle clearance from the body were also confirmed by positron emission tomography (PET) imaging of radioisotope 64Cu-labeled vesicles.
Collapse
Affiliation(s)
- Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou 350116 , China
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou 350116 , China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , China
| | - Feng Wang
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou 350116 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|