151
|
Miteva M, Kirkbride KC, Kilchrist KV, Werfel TA, Li H, Nelson CE, Gupta MK, Giorgio TD, Duvall CL. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials 2014; 38:97-107. [PMID: 25453977 DOI: 10.1016/j.biomaterials.2014.10.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
A series of endosomolytic mixed micelles was synthesized from two diblock polymers, poly[ethylene glycol-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (PEG-b-pDPB) and poly[dimethylaminoethyl methacrylate-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (pD-b-pDPB), and used to determine the impact of both surface PEG density and PEG molecular weight on overcoming both intracellular and systemic siRNA delivery barriers. As expected, the percent PEG composition and PEG molecular weight in the corona had an inverse relationship with mixed micelle zeta potential and rate of cellular internalization. Although mixed micelles were internalized more slowly, they generally produced similar gene silencing bioactivity (∼ 80% or greater) in MDA-MB-231 breast cancer cells as the micelles containing no PEG (100 D/no PEG). The mechanistic explanation for the potent bioactivity of the promising 50 mol% PEG-b-DPB/50 mol% pD-b-pDPB (50 D) mixed micelle formulation, despite its relatively low rate of cellular internalization, was further investigated as a function of PEG molecular weight (5 k, 10 k, or 20 k PEG). Results indicated that, although larger molecular weight PEG decreased cellular internalization, it improved cytoplasmic bioavailability due to increased intracellular unpackaging (quantitatively measured via FRET) and endosomal release. When delivered intravenously in vivo, 50 D mixed micelles with a larger molecular weight PEG in the corona also demonstrated significantly improved blood circulation half-life (17.8 min for 20 k PEG micelles vs. 4.6 min for 5 kDa PEG micelles) and a 4-fold decrease in lung accumulation. These studies provide new mechanistic insights into the functional effects of mixed micelle-based approaches to nanocarrier surface PEGylation. Furthermore, the ideal mixed micelle formulation identified (50 D/20 k PEG) demonstrated desirable intracellular and systemic pharmacokinetics and thus has strong potential for in vivo therapeutic use.
Collapse
Affiliation(s)
- Martina Miteva
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA
| | - Kellye C Kirkbride
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA
| | - Kameron V Kilchrist
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA
| | - Thomas A Werfel
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA
| | - Hongmei Li
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA
| | - Christopher E Nelson
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA
| | - Mukesh K Gupta
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA
| | - Todd D Giorgio
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA
| | - Craig L Duvall
- Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235-1631, USA.
| |
Collapse
|
152
|
Knudsen KB, Northeved H, Kumar PEK, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM, Lykkesfeldt J, Jantzen K, Loft S, Møller P, Roursgaard M. In vivo toxicity of cationic micelles and liposomes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:467-77. [PMID: 25168934 DOI: 10.1016/j.nano.2014.08.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/30/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last of three intravenous injections of 100 mg/kg every other day. Histological evaluation of liver, lung and spleen, clinical chemistry parameters, and hematology indicated little effect of treatment. DNA strand breaks were increased in the lung and spleen. Further, in the dose response study we found unaltered expression levels of genes in the antioxidant response (HMOX1) and repair of oxidized nucleobases (OGG1), whereas expression levels of cytokines (IL6, CXCL2 and CCL2) were elevated in lung, spleen or liver. The results indicate that assessment of genotoxicity and gene expression add information on toxicity of nanocarriers, which is not obtained by histology and hematology. FROM THE CLINICAL EDITOR This study investigates the toxicity of cationic micelles and liposomes utilized as nanocarriers in gene and drug delivery, demonstrating its effects on the lungs, spleen and liver.
Collapse
Affiliation(s)
- Kristina Bram Knudsen
- H. Lundbeck A/S, Valby, Denmark; Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | | | - Pramod E K Kumar
- Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| | - Anders Permin
- DTU Food, Technical University of Denmark, Søborg, Denmark
| | - Torben Gjetting
- Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| | - Thomas L Andresen
- Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| | | | | | - Jens Lykkesfeldt
- Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Kim Jantzen
- Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Steffen Loft
- Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Peter Møller
- Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Martin Roursgaard
- Faculty of Health and Medical Science, University of Copenhagen, Denmark.
| |
Collapse
|
153
|
Wardwell PR, Bader RA. Immunomodulation of cystic fibrosis epithelial cells via NF-κB decoy oligonucleotide-coated polysaccharide nanoparticles. J Biomed Mater Res A 2014; 103:1622-31. [PMID: 25087735 DOI: 10.1002/jbm.a.35296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022]
Abstract
Activation of the transcription factor nuclear factor-kappa B (NF-κB) signaling pathway is associated with enhanced secretion of pro-inflammatory mediators and is thought to play a critical role in diseases hallmarked by inflammation, including cystic fibrosis (CF). Small nucleic acids that interfere with gene expression have been proposed as promising therapeutics for a number of diseases. However, applications have been limited by low cellular penetration and a lack of stability. Nano-sized carrier systems have been suggested as a means of improving the effectiveness of nucleic acid-based treatments. In this study, we successfully coated polysialic acid-N-trimethyl chitosan (PSA-TMC) nanoparticles with NF-κΒ decoy oligonucleotides (ODNs). To demonstrate anti-inflammatory activity, the decoy ODN-coated PSA-TMC nanoparticles were administered to an in vitro model of CF generated via interleukin-1β or P. aeruginosa lipopolysaccharides stimulation of IB3-1 bronchial epithelial cells. While free ODN and PSA-TMC nanoparticles coated with scrambled ODNs did not have substantial impacts on the inflammatory response, the decoy ODN-coated PSA-TMC nanoparticles were able to reduce the secretion of interleukin-6 and interleukin-8, pro-inflammatory mediators of CF, by the epithelial cells, particularly at longer time points. In general, the results suggest that NF-κB decoy ODN-coated TMC-PSA nanoparticles may serve as an effective method of altering the pro-inflammatory environment associated with CF.
Collapse
Affiliation(s)
- Patricia R Wardwell
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244; Department of Biomedical and Chemical Engineering, Syracuse University, 121 Link Hall, Syracuse, New York, 13244
| | | |
Collapse
|
154
|
Ingvarsson PT, Rasmussen IS, Viaene M, Irlik PJ, Nielsen HM, Foged C. The surface charge of liposomal adjuvants is decisive for their interactions with the Calu-3 and A549 airway epithelial cell culture models. Eur J Pharm Biopharm 2014; 87:480-8. [DOI: 10.1016/j.ejpb.2014.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 03/29/2014] [Accepted: 04/02/2014] [Indexed: 12/31/2022]
|
155
|
Huang YC, Li RY. Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 2014; 12:4379-98. [PMID: 25089950 PMCID: PMC4145322 DOI: 10.3390/md12084379] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022] Open
Abstract
In this study, we developed novel chitosan/fucoidan nanoparticles (CS/F NPs) using a simple polyelectrolyte self-assembly method and evaluated their potential to be antioxidant carriers. As the CS/F weight ratio was 5/1, the CS/F NPs were spherical and exhibited diameters of approximately 230-250 nm, as demonstrated by TEM. These CS/F NPs maintained compactness and stability for 25 day in phosphate-buffered saline (pH 6.0-7.4). The CS/F NPs exhibited highly potent antioxidant effects by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), reducing the concentration of intracellular reactive oxygen species (ROS) and superoxide anion (O2-) in stimulated macrophages. The DPPH scavenging effect of CS/F NPs primarily derives from fucoidan. Furthermore, these CS/F NPs activated no host immune cells into inflammation-mediated cytotoxic conditions induced by IL-6 production and NO generation. The MTT cell viability assay revealed an absence of toxicity in A549 cells after exposure to the formulations containing 0.375 mg NPs/mL to 3 mg NPs/mL. Gentamicin (GM), an antibiotic, was used as a model drug for an in vitro releasing test. The CS/F NPs controlled the release of GM for up to 72 h, with 99% of release. The antioxidant CS/F NPs prepared in this study could thus be effective in delivering antibiotics to the lungs, particularly for airway inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Department of Food Science, College of Life Science, National Taiwan Ocean University, 2 Pei Ning Road, Keelung 20224, Taiwan.
| | - Rou-Ying Li
- Department of Food Science, College of Life Science, National Taiwan Ocean University, 2 Pei Ning Road, Keelung 20224, Taiwan.
| |
Collapse
|
156
|
Knudsen KB, Northeved H, Ek PK, Permin A, Andresen TL, Larsen S, Wegener KM, Lam HR, Lykkesfeldt J. Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 2014; 8:764-74. [PMID: 23889261 DOI: 10.3109/17435390.2013.829589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the potential for systemic and local toxicity after administration of empty nanosized anionic and cationic PEGylated-micelles and non-PEGylated liposomes, without a ligand attached, intended for use in drug-delivery systems. The particles were administered to 5-6-week-old male rats by three intravenous (IV) administrations over a period of one week at a dose of 100 mg/kg bodyweight or after a single intracerebroventricular (ICV) injection at a dose of 50 µg. The particles were stable and well characterised with respect to size and zeta potential. ICV administration of cationic particles was associated with histological changes near the injection site (hippocampus). Here, we detected focal infiltration with phagocytic cells, loss of neurons and apoptotic cell death, which were not observed after administration of the vehicle. No significant difference was found after IV or ICV administration of the anionic micelles with regard to haematology, clinical chemistry parameters or at the pathological examinations, as compared to control animals. Our study suggests that ICV delivery of cationic particles to the brain tissue is associated with toxicity at the injection site.
Collapse
Affiliation(s)
- Kristina Bram Knudsen
- Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Montis C, Sostegni S, Milani S, Baglioni P, Berti D. Biocompatible cationic lipids for the formulation of liposomal DNA vectors. SOFT MATTER 2014; 10:4287-4297. [PMID: 24788854 DOI: 10.1039/c4sm00142g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ethylphosphocholine lipids are highly biocompatible cationic amphiphiles that can be used for the formulation of liposomal DNA vectors, with negligible toxic effects on cells and organisms. Here we report the characterization of EDPPC (1,2-dipalmitoyl-sn-glycero-O-ethyl-3-phosphocholine chloride) liposomes, containing two different zwitterionic helper lipids, POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). Depending on the nature of the helper lipid, a phase separation in the bilayer is found at room temperature, where domains enriched in the cationic component coexist in a relatively large temperature range with regions where the zwitterionic lipids are predominant. We studied DNA complexation, the internal structure of lipoplexes and their docking and fusogenic ability with model target bilayers. The structural and functional modifications caused by DNA binding were studied using Dynamic Light Scattering (DLS), zeta potential, and small and wide angle X-ray scattering (SAXS-WAXS) measurements, while the interaction with membranes was assessed by using Giant Unilamellar Vesicles (GUVs) as model target bilayers. The results presented establish a connection between the physicochemical properties of lipid bilayers, and in particular of lipid demixing, with the phase state of the complexes and their ability to interact with model membranes.
Collapse
Affiliation(s)
- Costanza Montis
- CSGI and Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy.
| | | | | | | | | |
Collapse
|
158
|
Affiliation(s)
- Nathalie Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy; Université Libre de Bruxelles (ULB); Brussels Belgium
| | - Karim Amighi
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy; Université Libre de Bruxelles (ULB); Brussels Belgium
| |
Collapse
|
159
|
Wen Y, Meng WS. Recent In Vivo Evidences of Particle-Based Delivery of Small-Interfering RNA (siRNA) into Solid Tumors. J Pharm Innov 2014; 9:158-173. [PMID: 25221632 PMCID: PMC4161233 DOI: 10.1007/s12247-014-9183-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small-interfering RNA (siRNA) is both a powerful tool in research and a promising therapeutic platform to modulate expression of disease-related genes. Malignant tumors are attractive disease targets for nucleic acid-based therapies. siRNA directed against oncogenes, and genes driving metastases or angiogenesis have been evaluated in animal models and in some cases, in humans. The outcomes of these studies indicate that drug delivery is a significant limiting factor. This review provides perspectives on in vivo validated nanoparticle-based siRNA delivery systems. Results of recent advances in liposomes and polymeric and inorganic formulations illustrate the need for mutually optimized attributes for performance in systemic circulation, tumor interstitial space, plasma membrane, and endosomes. Physiochemical properties conducive to efficient siRNA delivery are summarized and directions for future research are discussed.
Collapse
Affiliation(s)
- Yi Wen
- Division of Pharmaceutical Sciences, Duquesne University, 600, Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Wilson S. Meng
- Division of Pharmaceutical Sciences, Duquesne University, 600, Forbes Avenue, Pittsburgh, PA 15282, USA
| |
Collapse
|
160
|
Minami K, Okamoto K, Doi K, Harano K, Noiri E, Nakamura E. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene. Sci Rep 2014; 4:4916. [PMID: 24814863 PMCID: PMC4017229 DOI: 10.1038/srep04916] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/11/2014] [Indexed: 12/14/2022] Open
Abstract
The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.
Collapse
Affiliation(s)
- Kosuke Minami
- 1] Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2]
| | - Koji Okamoto
- Department of Hemodialysis and Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kent Doi
- Department of Hemodialysis and Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eisei Noiri
- Department of Hemodialysis and Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
161
|
Lamberti M, Zappavigna S, Sannolo N, Porto S, Caraglia M. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin Drug Deliv 2014; 11:1087-101. [DOI: 10.1517/17425247.2014.913568] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
162
|
Martín-Molina A, Luque-Caballero G, Faraudo J, Quesada-Pérez M, Maldonado-Valderrama J. Adsorption of DNA onto anionic lipid surfaces. Adv Colloid Interface Sci 2014; 206:172-85. [PMID: 24359695 DOI: 10.1016/j.cis.2013.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/16/2013] [Accepted: 11/11/2013] [Indexed: 01/05/2023]
Abstract
Currently self-assembled DNA delivery systems composed of DNA multivalent cations and anionic lipids are considered to be promising tools for gene therapy. These systems become an alternative to traditional cationic lipid-DNA complexes because of their low cytotoxicity lipids. However, currently these nonviral gene delivery methods exhibit low transfection efficiencies. This feature is in large part due to the poorly understood DNA complexation mechanisms at the molecular level. It is well-known that the adsorption of DNA onto like charged lipid surfaces requires the presence of multivalent cations that act as bridges between DNA and anionic lipids. Unfortunately, the molecular mechanisms behind such adsorption phenomenon still remain unclear. Accordingly a historical background of experimental evidence related to adsorption and complexation of DNA onto anionic lipid surfaces mediated by different multivalent cations is firstly reviewed. Next, recent experiments aimed to characterise the interfacial adsorption of DNA onto a model anionic phospholipid monolayer mediated by Ca(2+) (including AFM images) are discussed. Afterwards, modelling studies of DNA adsorption onto charged surfaces are summarised before presenting preliminary results obtained from both CG and all-atomic MD computer simulations. Our results allow us to establish the optimal conditions for cation-mediated adsorption of DNA onto negatively charged surfaces. Moreover, atomistic simulations provide an excellent framework to understand the interaction between DNA and anionic lipids in the presence of divalent cations. Accordingly,our simulation results in conjunction go beyond the macroscopic picture in which DNA is stuck to anionic membranes by using multivalent cations that form glue layers between them. Structural aspects of the DNA adsorption and molecular binding between the different charged groups from DNA and lipids in the presence of divalent cations are reported in the last part of the study. Although this research work is far from biomedical applications, we truly believe that scientific advances in this line will assist, at least in part, in the rational design and development of optimal carrier systems for genes and applicable to other drugs.
Collapse
|
163
|
Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014; 66:110-6. [PMID: 24384374 DOI: 10.1016/j.addr.2013.12.008] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 11/17/2022]
Abstract
Small interfering RNAs (siRNA) have recently emerged as a new class of therapeutics with a great potential to revolutionize the treatment of cancer and other diseases. A specifically designed siRNA binds and induces post-transcriptional silencing of target genes (mRNA). Clinical applications of siRNA-based therapeutics have been limited by their rapid degradation, poor cellular uptake, and rapid renal clearance following systemic administration. A variety of synthetic and natural nanoparticles composed of lipids, polymers, and metals have been developed for siRNA delivery, with different efficacy and safety profiles. Liposomal nanoparticles have proven effective in delivering siRNA into tumor tissues by improving stability and bioavailability. While providing high transfection efficiency and a capacity to form complexes with negatively charged siRNA, cationic lipids/liposomes are highly toxic. Negatively charged liposomes, on the other hand, are rapidly cleared from circulation. To overcome these problems we developed highly safe and effective neutral lipid-based nanoliposomes that provide robust gene silencing in tumors following systemic (intravenous) administration. This delivery system demonstrated remarkable antitumor efficacy in various orthotopic human cancer models in animals. Here, we briefly overview this and other lipid-based approaches with preclinical applications in different tumor models for cancer therapy and potential applications as siRNA-nanotherapeutics in human cancers.
Collapse
Affiliation(s)
- Bulent Ozpolat
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
164
|
Wilson KD, Tam YK. Lipid-based delivery of CpG oligodeoxynucleotides for cancer immunotherapy. Expert Rev Clin Pharmacol 2014; 2:181-93. [DOI: 10.1586/17512433.2.2.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
165
|
Cicha I, Garlichs CD, Alexiou C. Cardiovascular therapy through nanotechnology – how far are we still from bedside? EUROPEAN JOURNAL OF NANOMEDICINE 2014. [DOI: 10.1515/ejnm-2014-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractRecent years brought about a widespread interest in the potential applications of nanotechnology for the diagnostics and the therapy of human diseases. With its promise of disease-targeted, patient-tailored treatment and reduced side effects, nanomedicine brings hope for millions of patients suffering of non-communicable diseases such as cancer or cardiovascular disorders. However, the emergence of the complex, multicomponent products based on new technologies poses multiple challenges to successful approval in clinical practice. Regulatory and development considerations, including properties of the components, reproducible manufacturing and appropriate characterization methods, as well as nanodrugs’ safety and efficacy are critical for rapid marketing of the new products. This review discusses the recent advances in cardiovascular applications of nanotechnologies and highlights the challenges that must be overcome in order to fill the gap existing between the promising bench trials and the successful bedside applications.
Collapse
|
166
|
Gentile E, Cilurzo F, Di Marzio L, Carafa M, Anna Ventura C, Wolfram J, Paolino D, Celia C. Liposomal chemotherapeutics. Future Oncol 2013; 9:1849-59. [DOI: 10.2217/fon.13.146] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently, six liposomal chemotherapeutics have received clinical approval and many more are in clinical trials or undergoing preclinical evaluation. Liposomes exhibit low toxicity and improve the biopharmaceutical features and therapeutic index of drugs, thereby increasing efficacy and reducing side effects. In this review we discuss the advantages of using liposomes for the delivery of chemotherapeutics. Gemcitabine and paclitaxel have been chosen as examples to illustrate how the performance of a metabolically unstable or poorly water-soluble drug can be greatly improved by liposomal incorporation. We look at the beneficial effects of liposomes in a variety of solid and blood-borne tumors, including thyroid cancer, pancreatic cancer, breast cancer and multiple myeloma.
Collapse
Affiliation(s)
- Emanuela Gentile
- Department of Health Sciences, University ‘Magna Graecia‘ of Catanzaro, University Campus ‘S. Venuta‘, Building of BioSciences, V.le ‘S. Venuta‘ 88100 Germaneto – Catanzaro, Italy
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Felisa Cilurzo
- Department of Health Sciences, University ‘Magna Graecia‘ of Catanzaro, University Campus ‘S. Venuta‘, Building of BioSciences, V.le ‘S. Venuta‘ 88100 Germaneto – Catanzaro, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University ‘G. d‘Annunzio‘ of Chieti - Pescara, Via dei Vestini 31, 66013 Chieti, Italy
| | - Maria Carafa
- Department of Drug Chemistry & Technologies, University ‘La Sapienza‘ of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Anna Ventura
- Department of Drug Science & Health Products, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Joy Wolfram
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China
| | - Donatella Paolino
- Department of Health Sciences, University ‘Magna Graecia‘ of Catanzaro, University Campus ‘S. Venuta‘, Building of BioSciences, V.le ‘S. Venuta‘ 88100 Germaneto – Catanzaro, Italy
| | - Christian Celia
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| |
Collapse
|
167
|
Hou KK, Pan H, Ratner L, Schlesinger PH, Wickline SA. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS NANO 2013; 7:8605-15. [PMID: 24053333 PMCID: PMC4013830 DOI: 10.1021/nn403311c] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Traditional peptide-mediated siRNA transfection via peptide transduction domains exhibits limited cytoplasmic delivery of siRNA due to endosomal entrapment. This work overcomes these limitations with the use of membrane-destabilizing peptides derived from melittin for the knockdown of NFkB signaling in a model of adult T-cell leukemia/lymphoma. While the mechanism of siRNA delivery into the cytoplasmic compartment by peptide transduction domains has not been well studied, our analysis of melittin derivatives indicates that concurrent nanocomplex disassembly and peptide-mediated endosomolysis are crucial to siRNA transfection. Importantly, in the case of the most active derivative, p5RHH, this process is initiated by acidic pH, indicating that endosomal acidification after macropinocytosis can trigger siRNA release into the cytoplasm. These data provide general principles regarding nanocomplex response to endocytosis, which may guide the development of peptide/siRNA nanocomplex-based transfection.
Collapse
Affiliation(s)
- Kirk K. Hou
- Computational and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO. 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University School of Medicine, St Louis, MO. 63108, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, MO. 63108, USA
| | - Paul H. Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO. 63108, USA
| | - Samuel A. Wickline
- Department of Medicine, Washington University School of Medicine, St Louis, MO. 63108, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO. 63108, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO. 63108, USA
- CORRESPONDING AUTHOR: Washington University in St. Louis School of Medicine, Campus Box 8215, 660 S. Euclid Ave., St. Louis, MO 63110. Fax: 1 314 454 5265.
| |
Collapse
|
168
|
|
169
|
Alhariri M, Azghani A, Omri A. Liposomal antibiotics for the treatment of infectious diseases. Expert Opin Drug Deliv 2013; 10:1515-32. [PMID: 23886421 DOI: 10.1517/17425247.2013.822860] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Liposomal delivery systems have been utilized in developing effective therapeutics against cancer and targeting microorganisms in and out of host cells and within biofilm community. The most attractive feature of liposome-based drugs are enhancing therapeutic index of the new or existing drugs while minimizing their adverse effects. AREAS COVERED This communication provides an overview on several aspects of liposomal antibiotics including the most widely used preparation techniques for encapsulating different agents and the most important characteristic parameters applied for examining shape, size and stability of the spherical vesicles. In addition, the routes of administration, liposome-cell interactions and host parameters affecting the biodistribution of liposomes are highlighted. EXPERT OPINION Liposomes are safe and suitable for delivery of variety of molecules and drugs in biomedical research and medicine. They are known to improve the therapeutic index of encapsulated agents and reduce drug toxicity. Recent studies on liposomal formulation of chemotherapeutic and bioactive agents and their targeted delivery show liposomal antibiotics potential in the treatment of microbial infections.
Collapse
Affiliation(s)
- Moayad Alhariri
- Laurentian University, The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Sudbury, ON, P3E 2C6 , Canada +1 705 675 1151 ext. 2190 ; +1 705675 4844 ;
| | | | | |
Collapse
|
170
|
Zhan Q, Shen B, Deng X, Chen H, Jin J, Zhang X, Peng C, Li H. Drug-eluting scaffold to deliver chemotherapeutic medication for management of pancreatic cancer after surgery. Int J Nanomedicine 2013; 8:2465-72. [PMID: 23885173 PMCID: PMC3716555 DOI: 10.2147/ijn.s47666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Traditional post-surgical chemotherapy for pancreatic cancer is notorious for its devastating side effects due to the high dosage required. On the other hand, legitimate concerns have been raised about nanoparticle-mediated drug delivery because of its potential cytotoxicity. Therefore, we explored the local delivery of a reduced dosage of FOLFIRINOX, a four-drug regimen comprising oxaliplatin, leucovorin, irinotecan, and fluorouracil, for pancreatic cancer using a biocompatible drug-eluting scaffold as a novel chemotherapy strategy after palliative surgery. In vitro assays showed that FOLFIRINOX in the scaffold caused massive apoptosis and thereby a decrease in the viability of pancreatic cancer cells, confirming the chemotherapeutic capability of the drug-eluting scaffold. In vivo studies in an orthotopic murine xenograft model demonstrated that the FOLFIRINOX in the scaffold had antitumorigenic and antimetastatic effects comparable with those achieved by intraperitoneal injection, despite the dose released by the scaffold being roughly two thirds lower. A mechanistic study attributed our results to the excellent ability of the FOLFIRINOX in the scaffold to destroy the CD133+CXCR4+ cell population responsible for pancreatic tumorigenesis and metastasis. This clinically oriented study gives rise to a promising alternative strategy for postsurgical management of pancreatic cancer, featuring a local chemotherapeutic effect with considerable attenuation of side effects.
Collapse
Affiliation(s)
- Qian Zhan
- Department of General Surgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
171
|
ElMeshad AN, Mortazavi SM, Mozafari MR. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J Liposome Res 2013; 24:1-9. [DOI: 10.3109/08982104.2013.810644] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
172
|
Lee JM, Yoon TJ, Cho YS. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:782041. [PMID: 23844368 PMCID: PMC3703404 DOI: 10.1155/2013/782041] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/30/2013] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) is a gene regulation mechanism initiated by RNA molecules that enables sequence-specific gene silencing by promoting degradation of specific mRNAs. Molecular therapy using small interfering RNA (siRNA) has shown great therapeutic potential for diseases caused by abnormal gene overexpression or mutation. The major challenges to application of siRNA therapeutics include the stability and effective delivery of siRNA in vivo. Important progress in nanotechnology has led to the development of efficient siRNA delivery systems. In this review, the authors discuss recent advances in nanoparticle-mediated siRNA delivery and the application of siRNA in clinical trials for cancer therapy. This review will also offer perspectives on future applications of siRNA therapeutics.
Collapse
Affiliation(s)
- Jong-Min Lee
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu 480717, Republic of Korea
| | - Tae-Jong Yoon
- Department of Applied BioScience, CHA University, Sungnam 463836, Republic of Korea
| | - Young-Seok Cho
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu 480717, Republic of Korea
| |
Collapse
|
173
|
Efficient Biodistribution and Gene Silencing in the Lung epithelium via Intravenous Liposomal Delivery of siRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e96. [PMID: 23736774 PMCID: PMC3696903 DOI: 10.1038/mtna.2013.22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA interference (RNAi) may provide a therapeutic solution to many pulmonary epithelium diseases. However, the main barrier to the clinical use of RNAi remains the lack of efficient delivery vectors. Research has mainly concentrated on the intranasal route of delivery of short interfering RNA (siRNA) effector molecules for the treatment of respiratory diseases. However, this may be complicated in a diseased state due to the increased fluid production and tissue remodeling. Therefore, we investigated our hydration of a freeze-dried matrix (HFDM) formulated liposomes for systemic delivery to the lung epithelium. Here, we show that 45 ± 2% of epithelial murine lung cells receive siRNA delivery upon intravenous (IV) liposomal administration. Furthermore, we demonstrate that liposomal siRNA delivery resulted in targeted gene and protein knockdown throughout the lung, including lung epithelium. Taken together, this is the first description of lung epithelial delivery via cationic liposomes, and provides a proof of concept for the use of IV liposomal RNAi delivery to specifically knockdown targeted genes in the respiratory system. This approach may provide an attractive alternate therapeutic delivery strategy for the treatment of lung epithelium diseases.
Collapse
|
174
|
Peng L, Gao Y, Xue YN, Huang SW, Zhuo RX. The effectiveness, cytotoxicity, and intracellular trafficking of nonviral vectors for gene delivery to bone mesenchymal stem cells. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513481893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nonviral gene delivery that enables exogenous gene expression in bone mesenchymal stem cells could accelerate clinical application of cell-based gene therapy. This study systematically investigated and compared the potential of polyethylenimine and Lipofectamine 2000 as gene carriers to modify bone mesenchymal stem cells including transfection efficiency, cytotoxicity, intracellular trafficking as well as cell membrane damage and apoptosis/necrosis. Polyethylenimine at its optimal N/P ratio of 10 demonstrated the same toxic effects but lower transfection efficiency (17.1% vs 39.5%) compared to Lipofectamine. Intracellular trafficking resulted in over 80% of bone mesenchymal stem cells that were able to take up polyethylenimine polyplexes, but only 20.69% showed nuclear uptake; however, for Lipofectamine, about half bone mesenchymal stem cells were found to uptake lipoplexes but about 30% displayed nuclear localization. Moreover, the percentages of nuclear localization of both vectors were in close relationship with their transfection efficiency. We concluded that for bone mesenchymal stem cell transfection, polyethylenimine displayed high cellular uptake but Lipofectamine was more effective in delivering genes into the nucleus, which was likely the underlying basis for a more efficient gene expression. Further structure modification of polyethylenimine such as improving its nuclear entry ability will eventually make it a better candidate for bone mesenchymal stem cells’ in vitro gene delivery.
Collapse
Affiliation(s)
- Lin Peng
- State Key Laboratory of Oral Diseases, West China College & Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yuan Gao
- State Key Laboratory of Oral Diseases, West China College & Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ya-Nan Xue
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
175
|
Depreter F, Pilcer G, Amighi K. Inhaled proteins: Challenges and perspectives. Int J Pharm 2013; 447:251-80. [DOI: 10.1016/j.ijpharm.2013.02.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/12/2013] [Indexed: 12/26/2022]
|
176
|
Chen CCV, Ku MC, D. M. J, Lai JS, Hueng DY, Chang C. Simple SPION incubation as an efficient intracellular labeling method for tracking neural progenitor cells using MRI. PLoS One 2013; 8:e56125. [PMID: 23468856 PMCID: PMC3585319 DOI: 10.1371/journal.pone.0056125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/04/2013] [Indexed: 01/08/2023] Open
Abstract
Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs.
Collapse
Affiliation(s)
- Chiao-Chi V. Chen
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
- Functional and Micro-magnetic Resonance Imaging Center, Academic Sinica, Taipei, Taiwan
| | - Min-Chi Ku
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
- Functional and Micro-magnetic Resonance Imaging Center, Academic Sinica, Taipei, Taiwan
| | - Jayaseema D. M.
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
- Functional and Micro-magnetic Resonance Imaging Center, Academic Sinica, Taipei, Taiwan
| | | | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (CC); (D-YH)
| | - Chen Chang
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
- Functional and Micro-magnetic Resonance Imaging Center, Academic Sinica, Taipei, Taiwan
- * E-mail: (CC); (D-YH)
| |
Collapse
|
177
|
Ismail MF, Elmeshad AN, Salem NAH. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer's disease. Int J Nanomedicine 2013; 8:393-406. [PMID: 23378761 PMCID: PMC3558309 DOI: 10.2147/ijn.s39232] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background To sustain the effect of rivastigmine, a hydrophilic cholinesterase inhibitor, nanobased formulations were prepared. The efficacy of the prepared rivastigmine liposomes (RLs) in comparison to rivastigmine solution (RS) was assessed in an aluminium chloride (AlCl3)-induced Alzheimer’s model. Methods Liposomes were prepared by lipid hydration (F1) and heating (F2) methods. Rats were treated with either RS or RLs (1 mg/kg/day) concomitantly with AlCl3 (50 mg/kg/day). Results The study showed that the F1 method produced smaller liposomes (67.51 ± 14.2 nm) than F2 (528.7 ± 15.5 nm), but both entrapped the same amount of the drug (92.1% ± 1.4%). After 6 hours, 74.2% ± 1.5% and 60.8% ± 2.3% of rivastigmine were released from F1 and F2, respectively. Both RLs and RS improved the deterioration of spatial memory induced by AlCl3, with RLs having a superior effect. Further biochemical measurements proved that RS and RLs were able to lower plasma C-reactive protein, homocysteine and asymmetric dimethy-larginine levels. RS significantly attenuated acetylcholinesterase (AChE) activity, whereas Na+/K+-adenosine triphosphatase (ATPase) activity was enhanced compared to the AlCl3-treated animals; however, RLs succeeded in normalization of AChE and Na+/K+ ATPase activities. Gene-expression profile showed that cotreatment with RS to AlCl3-treated rats succeeded in exerting significant decreases in BACE1, AChE, and IL1B gene expression. Normalization of the expression of the aforementioned genes was achieved by coadministration of RLs to AlCl3-treated rats. The profound therapeutic effect of RLs over RS was evidenced by nearly preventing amyloid plaque formation, as shown in the histopathological examination of rat brain. Conclusion RLs could be a potential drug-delivery system for ameliorating Alzheimer’s disease.
Collapse
|
178
|
Abstract
The emergence of RNAi offers a potentially exciting new therapeutic paradigm for respiratory diseases. However, effective delivery remains a key requirement for their translation into the clinic and has been a major factor in the limited clinical success seen to date. Inhalation offers tissue-specific targeting of the RNAi to treat respiratory diseases and a diminished risk of off-target effects. In order to deliver RNAi directly to the respiratory tract via inhalation, ‘smart’ non-viral carriers are required to protect the RNAi during delivery/aerosolization and enhance cell-specific uptake to target cells. Here, we review the state-of-the-art in therapeutic aerosol bioengineering, and specifically non-viral siRNA delivery platforms, for delivery via inhalation. This includes developments in inhaler device engineering and particle engineering, including manufacturing methods and excipients used in therapeutic aerosol bioengineering that underpin the development of smart, cell type-specific delivery systems to target siRNA to respiratory epithelial cells and/or alveolar macrophages.
Collapse
|
179
|
Adipose-derived stromal cells overexpressing vascular endothelial growth factor accelerate mouse excisional wound healing. Mol Ther 2012; 21:445-55. [PMID: 23164936 DOI: 10.1038/mt.2012.234] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is essential to wound repair, and vascular endothelial growth factor (VEGF) is a potent factor to stimulate angiogenesis. Here, we examine the potential of VEGF-overexpressing adipose-derived stromal cells (ASCs) for accelerating wound healing using nonviral, biodegradable polymeric vectors. Mouse ASCs were transfected with DNA plasmid encoding VEGF or green fluorescent protein (GFP) using biodegradable poly (β-amino) esters (PBAE). Cells transfected using Lipofectamine 2000, a commercially available transfection reagent, were included as controls. ASCs transfected using PBAEs showed enhanced transfection efficiency and 12-15-fold higher VEGF production compared with cells transfected using Lipofectamine 2000 (*P < 0.05). When transplanted into a mouse wild-type excisional wound model, VEGF-overexpressing ASCs led to significantly accelerated wound healing, with full wound closure observed at 8 days compared to 10-12 days in groups treated with ASCs alone or saline control (*P < 0.05). Histology and polarized microscopy showed increased collagen deposition and more mature collagen fibers in the dermis of wound beds treated using PBAE/VEGF-modified ASCs than ASCs alone. Our results demonstrate the efficacy of using nonviral-engineered ASCs to accelerate wound healing, which may provide an alternative therapy for treating many diseases in which wound healing is impaired.
Collapse
|
180
|
Evaluation of interferon response induced by anti-myostatin shRNA constructs in goat (Capra hircus) fetal fibroblasts by quantitative real time-polymerase chain reaction. Anim Biotechnol 2012; 23:174-83. [PMID: 22870872 DOI: 10.1080/10495398.2012.664598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
RNAi is an evolutionary conserved, highly efficient, and cost effective technique of gene silencing. It holds considerable promise and success has been achieved both in vitro and in vivo experiments. However, it is not devoid of undesirable side effects as dsRNA can trigger the immune response and can also cause non-specific off-target gene silencing. In the present study, silencing of myostatin gene, a negative regulator of myogenesis, was evaluated in caprine fetal fibroblasts using three different shRNA constructs. Out of these three constructs, two constructs sh1 and sh2 showed, 72% and 50% reduction (p<0.05) of myostatin mRNA, respectively. Efficient suppression (42-86%) of MSTN gene (p<0.05) was achieved even by reducing the concentration of shRNA constructs. The induction of classical interferon stimulated gene (Oligoandenylate Synthetase-1, OAS-1) was studied to analyze the immune response against shRNAs. Notably, a reduction in the potency of shRNAs to induce interferon response was observed at lower concentration for OAS1 gene. The results obtained in the study would be helpful in the abrogation of the bystander effects of RNAi for long term stable expression of anti-MSTN expression constructs in the muscle.
Collapse
|
181
|
Tyagi RK, Garg NK, Sahu T. Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. J Control Release 2012; 162:242-254. [PMID: 22564369 DOI: 10.1016/j.jconrel.2012.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multi-antigen approach to develop an effective vaccine against complex systemic inflammatory pathogens such as Plasmodium spp. that cause severe malaria. The capacity of multi subunit DNA vaccine encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and interferon-γ responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be capable of eliciting both cell mediated and humoral immune responses. The cytotoxic T cell responses are categorically needed against intracellular hepatic stage and humoral response with antibodies targeted against antigens from all stages of malaria parasite life cycle. Therefore, the key to success for any DNA based vaccine is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of non-viral DNA-mediated gene transfer techniques such as liposome, virosomes, microsphere and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. Also, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells (APC). Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. In this review we discussed various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccine.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612-9415, USA.
| | | | | |
Collapse
|
182
|
From RNA interference technology to effective therapy: how far have we come and how far to go? Ther Deliv 2012; 2:1395-406. [PMID: 22826872 DOI: 10.4155/tde.11.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over a decade has passed since the first description of RNAi in animals--the fundamental endogenous process by which small dsRNAs mediate sequence-specific gene silencing. This discovery has radically transformed our understanding of gene regulation and function and spawned a whole new biotechnology industry focused on developing RNAi-based therapeutic approaches to a variety of human diseases that have otherwise proved challenging to conventional therapies. While RNAi technologies hold great promise as a powerful medical tool, successful delivery of RNAi agents and effective measurement of their uptake are major challenges in translating RNAi therapies to the clinic. Exciting developments in the field have also been tempered by safety concerns surrounding the immunogenic potential of this gene silencing technology and the potential side effects associated with exploiting a crucial biological pathway for therapeutic benefit. This article examines the progress of RNAi therapeutics including advances in delivery and safety, and recent findings from several Phase I-III clinical trials. The emergence of a novel application of RNAi in enhancing the delivery of low-molecular weight drugs to neuronal tissues will also be presented to provide an outlook on the future of RNAi technologies.
Collapse
|
183
|
Balbino TA, Gasperini AAM, Oliveira CLP, Azzoni AR, Cavalcanti LP, de La Torre LG. Correlation of the physicochemical and structural properties of pDNA/cationic liposome complexes with their in vitro transfection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11535-11545. [PMID: 22788539 DOI: 10.1021/la302608g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we characterized the conventional physicochemical properties of the complexes formed by plasmid DNA (pDNA) and cationic liposomes (CL) composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% molar ratio). We found that these properties are nearly unaffected at the studied ranges when the molar charge ratio (R(±)) between the positive charge from the CL and negative charge from pDNA is not close to the isoneutrality region (R(±) = 1). However, the results from in vitro transfection of HeLa cells showed important differences when R(±) is varied, indicating that the relationships between the physicochemical and biological characteristics were not completely elucidated. To obtain information regarding possible liposome structural modifications, small-angle X-ray scattering (SAXS) experiments were performed as a function of R(±) to obtain correlations between structural, physicochemical, and transfection properties. The SAXS results revealed that pDNA/CL complexes can be described as being composed of single bilayers, double bilayers, and multiple bilayers, depending on the R(±) value. Interestingly, for R(±) = 9, 6, and 3, the system is composed of single and double bilayers, and the fraction of the latter increases with the amount of DNA (or a decreasing R(±)) in the system. This information is used to explain the transfection differences observed at an R(±) = 9 as compared to R(±) = 3 and 6. Close to the isoneutrality region (R(±) = 1.8), there was an excess of pDNA, which induced the formation of a fraction of aggregates with multiple bilayers. These aggregates likely provide additional resistance against the release of pDNA during the transfection phenomenon, reflected as a decrease in the transfection level. The obtained results permitted proper correlation of the physicochemical and structural properties of pDNA/CL complexes with the in vitro transfection of HeLa cells by these complexes, contributing to a better understanding of the gene delivery process.
Collapse
Affiliation(s)
- Tiago A Balbino
- School of Chemical Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
184
|
Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine 2012; 7:3637-57. [PMID: 22915840 PMCID: PMC3418108 DOI: 10.2147/ijn.s23696] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Indexed: 12/18/2022] Open
Abstract
During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and promises; and to evaluate critically future perspectives and challenges in siRNA-based cancer therapy.
Collapse
Affiliation(s)
- Evelina Miele
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
185
|
Young KL, Scott AW, Hao L, Mirkin SE, Liu G, Mirkin CA. Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells. NANO LETTERS 2012; 12:3867-71. [PMID: 22725653 PMCID: PMC3397824 DOI: 10.1021/nl3020846] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular transfection of nucleic acids is necessary for regulating gene expression through antisense or RNAi pathways. The development of spherical nucleic acids (SNAs, originally gold nanoparticles functionalized with synthetic oligonucleotides) has resulted in a powerful set of constructs that are able to efficiently transfect cells and regulate gene expression without the use of auxiliary cationic cocarriers. The gold core in such structures is primarily used as a template to arrange the nucleic acids into a densely packed and highly oriented form. In this work, we have developed methodology for coating the gold particle with a shell of silica, modifying the silica with a layer of oligonucleotides, and subsequently oxidatively dissolving the gold core with I(2). The resulting hollow silica-based SNAs exhibit cooperative binding behavior with respect to complementary oligonucleotides and cellular uptake properties comparable to their gold-core SNA counterparts. Importantly, they exhibit no cytotoxicity and have been used to effectively silence the eGFP gene in mouse endothelial cells through an antisense approach.
Collapse
Affiliation(s)
- Kaylie L. Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Alexander W. Scott
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Liangliang Hao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Sarah E. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Guoliang Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Corresponding Author, , Tel.: (847) 467-7302
| |
Collapse
|
186
|
Rosen Y, Upadhyay UM, Elman NM. Pharmacogenomics-based RNA interference nanodelivery: focus on solid malignant tumors. Expert Opin Drug Deliv 2012; 9:755-66. [DOI: 10.1517/17425247.2012.685932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
187
|
Montis C, Milani S, Berti D, Baglioni P. Complexes of nucleolipid liposomes with single-stranded and double-stranded nucleic acids. J Colloid Interface Sci 2012; 373:57-68. [DOI: 10.1016/j.jcis.2011.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/18/2011] [Accepted: 10/22/2011] [Indexed: 01/10/2023]
|
188
|
Formulation Strategies, Characterization, and In Vitro Evaluation of Lecithin-Based Nanoparticles for siRNA Delivery. JOURNAL OF DRUG DELIVERY 2012; 2012:986265. [PMID: 22570790 PMCID: PMC3335242 DOI: 10.1155/2012/986265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/22/2011] [Accepted: 01/16/2012] [Indexed: 01/18/2023]
Abstract
The aim of the present work was to take advantage of lecithin's biocompatibility along with its physicochemical properties for the preparation of lecithin-based nanocarriers for small interfering RNA (siRNA) delivery. Water lecithin dispersions were prepared in different conditions, loaded with siRNA at different N/P ratios, and evaluated for loading capacity. The most appropriate ones were then assayed for cytotoxicity and characterized in terms of particle size distribution, zeta potential, and morphology. Results demonstrated that formulations prepared at pH 5.0 and 7.0 were able to load siRNA at broad N/P ratios, and cellular uptake assays showed an efficient delivery of oligos in MCF-7 human breast cancer cells; fluorescent-labeled dsRNA mainly located next to its target, near the nucleus of the cells. No signs of toxicity were observed for broad compositions of lecithin. The physicochemical characterization of the siRNA-loaded dispersions exhibited particles of nanometric sizes and pH-dependant shapes, which make them suitable for ex vivo and in vivo further evaluation.
Collapse
|
189
|
Song G, Wu H, Yoshino K, Zamboni WC. Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs. J Liposome Res 2012; 22:177-92. [PMID: 22332871 DOI: 10.3109/08982104.2012.655285] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various attempts to increase the therapeutic index of the drug while minimizing side effects have been made in drug delivery systems. Among several promising strategies, liposomes represent an advanced technology to target active molecules to the site of action. Rapid clearance of circulating liposomal drugs administered intravenously has been a critical issue because circulation time in the blood affects drug exposure at the target site. The clinical use of liposomal drugs is complicated by large intra- and interindividual variability in their pharmacokinetics (PK) and pharmacodynamics (PD). Thus, it is important to understand the factors affecting the PK/PD of the liposomal formulation of drugs and to elucidate the mechanisms underlying the variability in the PK/PD of liposomal drugs. In this review article, we describe the characteristics of liposome formulations and discuss the effects of various factors, including liposome-associated factors, host-associated factors, and treatment on the PK/PD of liposomal agents.
Collapse
Affiliation(s)
- Gina Song
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
190
|
Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 2012; 20:513-24. [PMID: 22252451 DOI: 10.1038/mt.2011.294] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA interference (RNAi)-based therapeutics have significant potential for the treatment of human disease. Safe and effective delivery of RNA to target tissues remains a major barrier to realizing its clinical potential. Several factors can affect the in vivo performance of short interfering RNA (siRNA) delivery formulations, including siRNA sequence, structure, chemical modification, and delivery formulation. This review provides an introduction to the principles underlying the pharmacokinetics and pharmacodynamics of systemically administered siRNA and its delivery formulations, including the factors that lead to its degradation, clearance, and tissue uptake, as well as its potential for immunogenicity, toxicity, and off-target effects within the body.
Collapse
|
191
|
Lam JKW, Liang W, Chan HK. Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev 2012; 64:1-15. [PMID: 21356260 PMCID: PMC7103329 DOI: 10.1016/j.addr.2011.02.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/15/2011] [Accepted: 02/19/2011] [Indexed: 11/25/2022]
Abstract
Small interfering RNA (siRNA) has a huge potential for the treatment or prevention of various lung diseases. Once the RNA molecules have successfully entered the target cells, they could inhibit the expression of specific gene sequence through RNA interference (RNAi) mechanism and generate therapeutic effects. The biggest obstacle to translating siRNA therapy from the laboratories into the clinics is delivery. An ideal delivery agent should protect the siRNA from enzymatic degradation, facilitate cellular uptake and promote endosomal escape inside the cells, with negligible toxicity. Lung targeting could be achieved by systemic delivery or pulmonary delivery. The latter route of administration could potentially enhance siRNA retention in the lungs and reduce systemic toxic effects. However the presence of mucus, the mucociliary clearance actions and the high degree branching of the airways present major barriers to targeted pulmonary delivery. The delivery systems need to be designed carefully in order to maximize the siRNA deposition to the diseased area of the airways. In most of the pulmonary siRNA therapy studies in vivo, siRNA was delivered either intratracheally or intranasally. Very limited work was done on the formulation of siRNA for inhalation which is believed to be the direction for future development. This review focuses on the latest development of pulmonary delivery of siRNA for the treatment of various lung diseases.
Collapse
Affiliation(s)
- Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong.
| | | | | |
Collapse
|
192
|
Sharma A, Madhunapantula SV, Robertson GP. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol 2011; 8:47-69. [PMID: 22097965 DOI: 10.1517/17425255.2012.637916] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The biggest challenge faced by the scientific community involved in drug development is to deliver safe and effective dosage of drugs without causing systemic toxicity. Therefore, novel nano-based delivery vehicles specifically targeting tumors but not normal tissues are urgently needed. AREAS COVERED Nanoparticles have beneficial aspects but can be toxic themselves, which is always a concern for any drug or delivery agent. This review examines and details the toxicological aspects that should be considered when planning to use nanoparticles in animals or in man for drug delivery or imaging. Subjects discussed in this review include i) overviews of applications of various nanoparticles for drug delivery and imaging; ii) toxicological aspects to consider when selecting particular nanoparticles for use in various applications in animals or man; iii) hurdles faced when examining nanoparticle toxicity; and iv) current approaches for assessing nanoparticle toxicity. EXPERT OPINION Nanotechnology has significant potential for advancing therapeutic efficacy and imaging in cancer; however, these agents can be toxic. Therefore, toxicity needs to be considered when selecting nanoparticles for a particular application. Methods for assessing nanoparticle toxicity need to be improved and standardized across all nanotechnology platforms in order to speed up the application of nanoparticle use in humans.
Collapse
Affiliation(s)
- Arati Sharma
- The Pennsylvania State University College of Medicine, Department of Pharmacology, R130, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
193
|
Movassaghian S, Moghimi HR, Shirazi FH, Torchilin VP. Dendrosome-dendriplex inside liposomes: as a gene delivery system. J Drug Target 2011; 19:925-32. [DOI: 10.3109/1061186x.2011.628396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
194
|
Abstract
SiRNA is the trigger of RNA interference, a mechanism discovered in the late 1990s. To release the therapeutic potential of this versatile but large and fragile molecule, excipients are used which either interact by electrostatic interaction, passively encapsulate siRNA or are covalently attached to enable specific and safe delivery of the drug substance. Controlling the delicate balance between protective complexation and release of siRNA at the right point and time is done by understanding excipients–siRNA interactions. These can be lipids, polymers such as PEI, PLGA, Chitosans, Cyclodextrins, as well as aptamers and peptides. This review describes the mechanisms of interaction of the most commonly used siRNA delivery vehicles, and looks at the results of their clinical and preclinical studies.
Collapse
Affiliation(s)
- Katharina Bruno
- Novartis Pharma AG, Technical Research & Development (TRD), Pharmaceutical and Analytical Development (PHAD), CH-4057 Basel, Switzerland.
| |
Collapse
|
195
|
Wang XT, Avanessian B, Ma Q, Durfee H, Tang YQ, Liu PY. Enhancement of flap survival and changes in angiogenic gene expression after AAV2-mediated VEGF gene transfer to rat ischemic flaps. Wound Repair Regen 2011; 19:498-504. [DOI: 10.1111/j.1524-475x.2011.00705.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
196
|
Pellegrino C, Gubkina O, Schaefer M, Becq H, Ludwig A, Mukhtarov M, Chudotvorova I, Corby S, Salyha Y, Salozhin S, Bregestovski P, Medina I. Knocking down of the KCC2 in rat hippocampal neurons increases intracellular chloride concentration and compromises neuronal survival. J Physiol 2011; 589:2475-96. [PMID: 21486764 PMCID: PMC3115820 DOI: 10.1113/jphysiol.2010.203703] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/16/2011] [Indexed: 12/12/2022] Open
Abstract
KCC2 is a neuron-specific potassium-chloride co-transporter controlling intracellular chloride homeostasis in mature and developing neurons. It is implicated in the regulation of neuronal migration, dendrites outgrowth and formation of the excitatory and inhibitory synaptic connections. The function of KCC2 is suppressed under several pathological conditions including neuronal trauma, different types of epilepsies, axotomy of motoneurons, neuronal inflammations and ischaemic insults. However, it remains unclear how down-regulation of the KCC2 contributes to neuronal survival during and after toxic stress. Here we show that in primary hippocampal neuronal cultures the suppression of the KCC2 function using two different shRNAs, dominant-negative KCC2 mutant C568A or DIOA inhibitor, increased the intracellular chloride concentration [Cl⁻]i and enhanced the toxicity induced by lipofectamine-dependent oxidative stress or activation of the NMDA receptors. The rescuing of the KCC2 activity using over-expression of the active form of the KCC2, but not its non-active mutant Y1087D, effectively restored [Cl⁻]i and enhanced neuronal resistance to excitotoxicity. The reparative effects of KCC2 were mimicked by over-expression of the KCC3, a homologue transporter. These data suggest an important role of KCC2-dependent potassium/chloride homeostasis under neurototoxic conditions and reveal a novel role of endogenous KCC2 as a neuroprotective molecule.
Collapse
|
197
|
Preferential cellular uptake of amphiphilic macromolecule-lipid complexes with enhanced stability and biocompatibility. J Control Release 2011; 153:233-9. [PMID: 21510986 DOI: 10.1016/j.jconrel.2011.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 02/22/2011] [Accepted: 04/03/2011] [Indexed: 01/18/2023]
Abstract
Amphiphilic macromolecules (AM) were electrostatically complexed with a 1:1 ratio of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) to form AM-lipid complexes with drug delivery applications. The complexes exist as AM-coated liposomes and their drug delivery properties can be tuned by altering the AM-lipid weight ratio. The complexation and tuning are achieved in a simple, efficient, and scalable manner. The gradual increase in lipid ratios concurrently increased the zeta potential of the complexes, which directly correlates to increased cell uptake of the complexes in vitro with preferential uptake noted in BT-20 carcinoma cells versus normal fibroblasts. Increasing AM content increased complex steric stability in the presence of serum proteins and reduced the inherent cytotoxicity towards fibroblasts in vitro. AM-lipid complexes solubilized paclitaxel and showed drug-mediated, dose-dependent cytotoxicity towards target BT-20 cells in vitro. AM-lipid complexes make good candidates as drug delivery systems due to their tunable zeta potential, steric stability, inherently low cytotoxicity, and ability to load and deliver insoluble chemotherapeutic agents. Significantly, their preferential uptake in a carcinoma cell line over normal cells in vitro demonstrates a unique, passive targeting approach to delivery anti-cancer therapeutics.
Collapse
|
198
|
Al-Deen FN, Ho J, Selomulya C, Ma C, Coppel R. Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3703-3712. [PMID: 21361304 DOI: 10.1021/la104479c] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Low efficiency is often observed in the delivery of DNA vaccines. The use of superparamagnetic nanoparticles (SPIONs) to deliver genes via magnetofection could improve transfection efficiency and target the vector to its desired locality. Here, magnetofection was used to enhance the delivery of a malaria DNA vaccine encoding Plasmodium yoelii merozoite surface protein MSP1(19) (VR1020-PyMSP1(19)) that plays a critical role in Plasmodium immunity. The plasmid DNA (pDNA) containing membrane associated 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 (PyMSP1(19)) was conjugated with superparamagnetic nanoparticles coated with polyethyleneimine (PEI) polymer, with different molar ratio of PEI nitrogen to DNA phosphate. We reported the effects of SPIONs-PEI complexation pH values on the properties of the resulting particles, including their ability to condense DNA and the gene expression in vitro. By initially lowering the pH value of SPIONs-PEI complexes to 2.0, the size of the complexes decreased since PEI contained a large number of amino groups that became increasingly protonated under acidic condition, with the electrostatic repulsion inducing less aggregation. Further reaggregation was prevented when the pHs of the complexes were increased to 4.0 and 7.0, respectively, before DNA addition. SPIONs/PEI complexes at pH 4.0 showed better binding capability with PyMSP1(19) gene-containing pDNA than those at neutral pH, despite the negligible differences in the size and surface charge of the complexes. This study indicated that the ability to protect DNA molecules due to the structure of the polymer at acidic pH could help improve the transfection efficiency. The transfection efficiency of magnetic nanoparticle as carrier for malaria DNA vaccine in vitro into eukaryotic cells, as indicated via PyMSP1(19) expression, was significantly enhanced under the application of external magnetic field, while the cytotoxicity was comparable to the benchmark nonviral reagent (Lipofectamine 2000).
Collapse
Affiliation(s)
- Fatin Nawwab Al-Deen
- Department of Chemical Engineering, Monash University, Clayton VIC 3800, Australia
| | | | | | | | | |
Collapse
|
199
|
Channarong S, Chaicumpa W, Sinchaipanid N, Mitrevej A. Development and evaluation of chitosan-coated liposomes for oral DNA vaccine: the improvement of Peyer's patch targeting using a polyplex-loaded liposomes. AAPS PharmSciTech 2011; 12:192-200. [PMID: 21194014 DOI: 10.1208/s12249-010-9559-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/30/2010] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to develop chitosan-coated and polyplex-loaded liposomes (PLLs) containing DNA vaccine for Peyer's patch targeting. Plain liposomes carrying plasmid pRc/CMV-HBs were prepared by the reverse-phase evaporation method. Chitosan coating was carried out by incubation of the liposomal suspensions with chitosan solution. Main lipid components of liposomes were phosphatidylcholine/cholesterol. Sodium deoxycholate and dicetyl phosphate were used as negative charge inducers. The zeta potentials of plain liposomes were strongly affected by the pH of the medium. Coating with chitosan variably increased the surface charges of the liposomes. To increase the zeta potential and stability of the liposome, chitosan was also used as a DNA condensing agent to form a polyplex. The PLLs were coated with chitosan solution. In vivo study of PLLs was carried out in comparison with chitosan-coated liposomes using plasmid encoding green fluorescence protein as a reporter. A single dose of plasmid equal to 100 μg was intragastrically inoculated into BALB/c mice. The expression of green fluorescence protein (GFP) was detected after 24 h using a confocal laser scanning microscope. The signal of GFP was obtained from positively charged chitosan-coated liposomes but found only at the upper part of duodenum. With chitosan-coated PLL540, the signal of GFP was found throughout the intestine. Chitosan-coated PLL demonstrated a higher potential to deliver the DNA to the distal intestine than the chitosan-coated liposomes due to the increase in permanent positive surface charges and the decreased enzymatic degradation.
Collapse
|
200
|
The nuclear localization signal sequence of porcine circovirus type 2 ORF2 enhances intracellular delivery of plasmid DNA. Arch Virol 2011; 156:803-15. [DOI: 10.1007/s00705-011-0920-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 01/12/2011] [Indexed: 12/11/2022]
|