151
|
Sisakhtnezhad S, Khosravi L. Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 2015; 94:429-43. [PMID: 26164368 DOI: 10.1016/j.ejcb.2015.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell communication is a critical requirement to coordinate behaviors of the cells in a community and thereby achieve tissue homeostasis and conservation of the multicellular organisms. Tunneling nanotubes (TNTs), as a cell-to-cell communication over long distance, allow for bi- or uni-directional transfer of cellular components between cells. Identification of inducing agents and the cell and molecular mechanism underling the formation of TNTs and their structural and functional features may lead to finding new important roles for these intercellular bridges in vivo and in vitro. During the last decade, research has shown TNTs have different structural and functional properties, varying between and within cell systems. In this review, we will focus on TNTs and their cell and molecular mechanism of formation. Moreover, the latest findings into their functional roles in physiological and pathological processes, such as signal transduction, micro and nano-particles delivery, immune responses, embryogenesis, cellular reprogramming, apoptosis, cancer, and neurodegenerative diseases initiation and progression and pathogens transfer, will be discussed.
Collapse
Affiliation(s)
| | - Leila Khosravi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
152
|
Mutations in the Corneal Endothelial Dystrophy–Associated Gene SLC4A11 Render the Cells More Vulnerable to Oxidative Insults. Cornea 2015; 34:668-74. [DOI: 10.1097/ico.0000000000000421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
153
|
Yishen Jiangzhuo Granules affect tubulointerstitial fibrosis via a mitochondrion-mediated apoptotic pathway. Chin J Integr Med 2015; 21:928-37. [PMID: 25956968 DOI: 10.1007/s11655-015-2078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the effect of Yishen Jiangzhuo Granules, YSJZG) on mitochondrial injury and regeneration and renal tubular epithelial cell apoptosis in chronic renal failure (CRF) rats and explore its mechanism from molecular pathology, gene, protein levels, and relative pathway. METHODS The CRF rat model was established using 5/6 nephrectomy. Sixty rats were randomly divided into six groups: sham-operation group, model (CRF) group, Niaoduqing Granules-treated group [5 g/(kg.day)], low-, moderate-, and high-dose [L-YSJZG, M-YSJZG, H-YSJZG at 3, 6, and 9 g/(kg day)] YSJZG-treated group (n=10 each). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urine protein were assessed after 10 weeks of treatment. The tubulointerstitial injury and collagen deposition were evaluated using periodic acid-schiff stain and Masson staining. Renal tubular epithelial cell apoptosis was assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, mitochondrial injury was observed using an electron microscope, and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels were assessed using chromometry. Transforming growth factor-β1 (TGF-β1) expression was assessed using immunohistochemistry. The expressions of Bax, Bcl-2, peroxisome proliferator-activated receptor γ coactivator- 1α (PGC-1α), mitochondrial transcription factor A (Tfam), mitogen-activated protein kinases (MAPK) phosphorylation were evaluated by Western blot. RESULTS YSJZG decreased the 24-h urine protein, BUN, Scr, remnant kidney weight-to-body weight ratio, renal tubular injury, deposition of collagen, and the apoptosis of renal tubular epithelial cells in a dose-dependent manner. YSJZG dose-dependently restored the number and structure of mitochondria and the expression of Tfam and PCG-1α, up-regulated the expression of Bcl-2, and inhibited the expression of Bax. YSJZG also dose-dependently inhibited TGF-β1 expression, increased SOD and GSH activity, decreased the MDA level, and inhibited p38MAPK and pERK1/2 phosphorylation (all P<0.01). CONCLUSION YSJZG improved the renal function in rats with CRF and inhibited the progression of tubulointerstitial fibrosis by dose-dependently alleviating mitochondrial injury, restoring the expression of Tfam and PCG-1α, and inhibiting renal tubular epithelial cell apoptosis through inhibiting activation of reactive oxygen species-MAPK signaling.
Collapse
|
154
|
Fernández-Moriano C, González-Burgos E, Gómez-Serranillos MP. Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:408927. [PMID: 26064418 PMCID: PMC4429198 DOI: 10.1155/2015/408927] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022]
Abstract
Mitochondria are cytoplasmic organelles that regulate both metabolic and apoptotic signaling pathways; their most highlighted functions include cellular energy generation in the form of adenosine triphosphate (ATP), regulation of cellular calcium homeostasis, balance between ROS production and detoxification, mediation of apoptosis cell death, and synthesis and metabolism of various key molecules. Consistent evidence suggests that mitochondrial failure is associated with early events in the pathogenesis of ageing-related neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. Mitochondria-targeted protective compounds that prevent or minimize mitochondrial dysfunction constitute potential therapeutic strategies in the prevention and treatment of these central nervous system diseases. This paper provides an overview of the involvement of mitochondrial dysfunction in Parkinson's and Alzheimer's diseases, with particular attention to in vitro and in vivo studies on promising endogenous and exogenous mitochondria-targeted protective compounds.
Collapse
Affiliation(s)
- Carlos Fernández-Moriano
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Elena González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
155
|
Thiopurines induce oxidative stress in T-lymphocytes: a proteomic approach. Mediators Inflamm 2015; 2015:434825. [PMID: 25873760 PMCID: PMC4385670 DOI: 10.1155/2015/434825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 01/24/2023] Open
Abstract
Thiopurines are extensively used immunosuppressants for the treatment of inflammatory bowel disease (IBD). The polymorphism of thiopurine S-methyltransferase (TPMT) influences thiopurine metabolism and therapy outcome. We used a TPMT knockdown (kd) model of human Jurkat T-lymphocytes cells to study the effects of treatment with 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) on proteome and phosphoproteome. We identified thirteen proteins with altered expression and nine proteins with altered phosphorylation signals. Three proteins (THIO, TXD17, and GSTM3) with putative functions in cellular oxidative stress responses were altered by 6-TG treatment and another protein PRDX3 was differentially phosphorylated in TPMT kd cells. Furthermore, reactive oxygen species (ROS) assay results were consistent with a significant induction of oxidative stress by both TPMT knockdown and thiopurine treatments. Immunoblot analyses showed treatment altered expression of key antioxidant enzymes (i.e., SOD2 and catalase) in both wt and kd groups, while SOD1 was downregulated by 6-TG treatment and TPMT knockdown. Collectively, increased oxidative stress might be a mechanism involved in thiopurine induced cytotoxicity and adverse effects (i.e., hepatotoxicity) and an antioxidant cotherapy might help to combat this. Results highlight the significance of oxidative stress in thiopurines' actions and could have important implications for the treatment of IBD patients.
Collapse
|
156
|
Therapeutic potential of berberine against neurodegenerative diseases. SCIENCE CHINA-LIFE SCIENCES 2015; 58:564-9. [PMID: 25749423 PMCID: PMC5823536 DOI: 10.1007/s11427-015-4829-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022]
Abstract
Berberine (BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR’s effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer’s disease (AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson’s disease (PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases.
Collapse
|
157
|
Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci 2015; 9:28. [PMID: 25698933 PMCID: PMC4313590 DOI: 10.3389/fncel.2015.00028] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/15/2015] [Indexed: 12/20/2022] Open
Abstract
The nervous and immune systems have evolved in parallel from the early bilaterians, in which innate immunity and a central nervous system (CNS) coexisted for the first time, to jawed vertebrates and the appearance of adaptive immunity. The CNS feeds from, and integrates efferent signals in response to, somatic and autonomic sensory information. The CNS receives input also from the periphery about inflammation and infection. Cytokines, chemokines, and damage-associated soluble mediators of systemic inflammation can also gain access to the CNS via blood flow. In response to systemic inflammation, those soluble mediators can access directly through the circumventricular organs, as well as open the blood–brain barrier. The resulting translocation of inflammatory mediators can interfere with neuronal and glial well-being, leading to a break of balance in brain homeostasis. This in turn results in cognitive and behavioral manifestations commonly present during acute infections – including anorexia, malaise, depression, and decreased physical activity – collectively known as the sickness behavior (SB). While SB manifestations are transient and self-limited, under states of persistent systemic inflammatory response the cognitive and behavioral changes can become permanent. For example, cognitive decline is almost universal in sepsis survivors, and a common finding in patients with systemic lupus erythematosus. Here, we review recent genetic evidence suggesting an association between neurodegenerative disorders and persistent immune activation; clinical and experimental evidence indicating previously unidentified immune-mediated pathways of neurodegeneration; and novel immunomodulatory targets and their potential relevance for neurodegenerative disorders.
Collapse
Affiliation(s)
- Roman Sankowski
- Elmezzi Graduate School of Molecular Medicine , Manhasset, NY , USA ; Feinstein Institute for Medical Research , Manhasset, NY , USA
| | - Simone Mader
- Feinstein Institute for Medical Research , Manhasset, NY , USA
| | - Sergio Iván Valdés-Ferrer
- Elmezzi Graduate School of Molecular Medicine , Manhasset, NY , USA ; Feinstein Institute for Medical Research , Manhasset, NY , USA ; Department of Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , Mexico
| |
Collapse
|
158
|
Dąbrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00132c] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) requires a medical device, a photosensitizing drug and adequate use of both to trigger biological mechanisms that can rapidly destroy the primary tumour and provide long-lasting protection against metastasis.
Collapse
Affiliation(s)
| | - Luis G. Arnaut
- Chemistry Department
- University of Coimbra
- 3004-535 Coimbra
- Portugal
- Luzitin SA
| |
Collapse
|
159
|
Bobori C. Molecular Genetics of Huntington’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 822:59-65. [DOI: 10.1007/978-3-319-08927-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
160
|
Van Laar VS, Roy N, Liu A, Rajprohat S, Arnold B, Dukes AA, Holbein CD, Berman SB. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis 2014; 74:180-93. [PMID: 25478815 DOI: 10.1016/j.nbd.2014.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022] Open
Abstract
Disruption of the dynamic properties of mitochondria (fission, fusion, transport, degradation, and biogenesis) has been implicated in the pathogenesis of neurodegenerative disorders, including Parkinson's disease (PD). Parkin, the product of gene PARK2 whose mutation causes familial PD, has been linked to mitochondrial quality control via its role in regulating mitochondrial dynamics, including mitochondrial degradation via mitophagy. Models using mitochondrial stressors in numerous cell types have elucidated a PINK1-dependent pathway whereby Parkin accumulates on damaged mitochondria and targets them for mitophagy. However, the role Parkin plays in regulating mitochondrial homeostasis specifically in neurons has been less clear. We examined whether a stressor linked to neurodegeneration, glutamate excitotoxicity, elicits Parkin-mitochondrial translocation and mitophagy in neurons. We found that brief, acute exposure to glutamate causes Parkin translocation to mitochondria in neurons, in a calcium- and N-methyl-d-aspartate (NMDA) receptor-dependent manner. In addition, we found that Parkin accumulates on endoplasmic reticulum (ER) and mitochondrial/ER junctions following excitotoxicity, supporting a role for Parkin in mitochondrial-ER crosstalk in mitochondrial homeostasis. Despite significant Parkin-mitochondria translocation, however, we did not observe mitophagy under these conditions. To further investigate, we examined the role of glutamate-induced oxidative stress in Parkin-mitochondria accumulation. Unexpectedly, we found that glutamate-induced accumulation of Parkin on mitochondria was promoted by the antioxidant N-acetyl cysteine (NAC), and that co-treatment with NAC facilitated Parkin-associated mitophagy. These results suggest the possibility that mitochondrial depolarization and oxidative damage may have distinct pathways associated with Parkin function in neurons, which may be critical in understanding the role of Parkin in neurodegeneration.
Collapse
Affiliation(s)
- Victor S Van Laar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nikita Roy
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Annie Liu
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Swati Rajprohat
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Beth Arnold
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - April A Dukes
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Cory D Holbein
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
161
|
Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience 2014; 272:141-53. [DOI: 10.1016/j.neuroscience.2014.04.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/31/2014] [Accepted: 04/19/2014] [Indexed: 12/12/2022]
|
162
|
Thioredoxin system regulation in the central nervous system: experimental models and clinical evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:590808. [PMID: 24723994 PMCID: PMC3958682 DOI: 10.1155/2014/590808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/07/2023]
Abstract
The reactive oxygen species produced continuously during oxidative metabolism are generated at very high rates in the brain. Therefore, defending against oxidative stress is an essential task within the brain. An important cellular system against oxidative stress is the thioredoxin system (TS). TS is composed of thioredoxin, thioredoxin reductase, and NADPH. This review focuses on the evidence gathered in recent investigations into the central nervous system, specifically the different brain regions in which the TS is expressed. Furthermore, we address the conditions that modulate the thioredoxin system in both, animal models and the postmortem brains of human patients associated with the most common neurodegenerative disorders, in which the thioredoxin system could play an important part.
Collapse
|
163
|
Mahdy HM, Mohamed MR, Emam MA, Karim AM, Abdel-Naim AB, Abdel-Naim A, Khalifa AE. The anti-apoptotic and anti-inflammatory properties of puerarin attenuate 3-nitropropionic-acid induced neurotoxicity in rats. Can J Physiol Pharmacol 2014; 92:252-8. [PMID: 24593790 DOI: 10.1139/cjpp-2013-0398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Puerarin (Pur), an isoflavonoid extracted from the dried roots of Pueraria lobata, has been reported to be useful in the treatment of various diseases. This study was designed to evaluate the anti-apoptotic and anti-inflammatory activities of Pur against 3-nitropropionic acid (3-NP) induced neurotoxicity. For 5 consecutive days, male Wistar rats were given Pur (200 mg/kg body mass) 30 min before treatment with 20 mg/kg body mass of 3-NP. The striata, hippocampi, and cortices of the 3-NP treated group showed apoptotic damage, inflammation, and energy deficit as well as histopathological lesions. The 3-NP-induced alteration in apoptotic biomarkers (caspase-3 activity/level, cytosolic cytochrome c, Bax/Bcl-2 levels) were significantly ameliorated by Pur treatment. Moreover, Pur pretreatment blocked 3-NP-induced inflammatory biomarkers (NF-κB, TNF-α, and iNOS) and prevented the energy deficit (ATP reduction). Nissl staining further confirmed Pur's neuroprotective effect. These results indicate that Pur may be a useful preventive approach to various neurodegenerative diseases with underlying apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Heba M Mahdy
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Monazamet Al-Wehdah Al-Efrikeya Street, Abbassia, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
164
|
Archer LD, Langford-Smith KJ, Bigger BW, Fildes JE. Mucopolysaccharide diseases: a complex interplay between neuroinflammation, microglial activation and adaptive immunity. J Inherit Metab Dis 2014; 37:1-12. [PMID: 23653226 DOI: 10.1007/s10545-013-9613-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Mucopolysaccharide (MPS) diseases are lysosomal storage disorders (LSDs) caused by deficiencies in enzymes required for glycosaminoglycan (GAG) catabolism. Mucopolysaccharidosis I (MPS I), MPS IIIA, MPS IIIB and MPS VII are deficient in the enzymes α-L-Iduronidase, Heparan-N-Sulphatase, N-Acetylglucosaminidase and Beta-Glucuronidase, respectively. Enzyme deficiency leads to the progressive multi-systemic build-up of heparan sulphate (HS) and dermatan sulphate (DS) within cellular lysosomes, followed by cell, tissue and organ damage and in particular neurodegeneration. Clinical manifestations of MPS are well established; however as lysosomes represent vital components of immune cells, it follows that lysosomal accumulation of GAGs could affect diverse immune functions and therefore influence disease pathogenesis. Theoretically, MPS neurodegeneration and GAGs could be substantiating a threat of danger and damage to alert the immune system for cellular clearance, which due to the progressive nature of MPS storage would propagate disease pathogenesis. Innate immunity appears to have a key role in MPS; however the extent of adaptive immune involvement remains to be elucidated. The current literature suggests a complex interplay between neuroinflammation, microglial activation and adaptive immunity in MPS disease.
Collapse
Affiliation(s)
- Louise D Archer
- The Transplant Centre, UHSM, University of Manchester, Manchester, England, UK
| | | | | | | |
Collapse
|
165
|
Gelderblom M, Daehn T, Schattling B, Ludewig P, Bernreuther C, Arunachalam P, Matschke J, Glatzel M, Gerloff C, Friese MA, Magnus T. Plasma levels of neuron specific enolase quantify the extent of neuronal injury in murine models of ischemic stroke and multiple sclerosis. Neurobiol Dis 2013; 59:177-82. [DOI: 10.1016/j.nbd.2013.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022] Open
|
166
|
Chen T, Yang YF, Luo P, Liu W, Dai SH, Zheng XR, Fei Z, Jiang XF. Homer1 knockdown protects dopamine neurons through regulating calcium homeostasis in an in vitro model of Parkinson's disease. Cell Signal 2013; 25:2863-70. [PMID: 24036210 DOI: 10.1016/j.cellsig.2013.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/15/2013] [Accepted: 09/02/2013] [Indexed: 11/26/2022]
Abstract
Homer1 protein is an important scaffold protein at postsynaptic density and has been demonstrated to play a central role in calcium signaling in the central nervous system. The aim of this study was to investigate the effects of Homer1 knockdown on MPP(+) induced neuronal injury in cultured dopamine (DA) neurons. We found that down-regulating Homer1 expression with specific small interfering RNA (siRNA) significantly suppressed LDH release, reduced Propidium iodide (PI) or Hoechst staining, increased the number of tyrosine hydroxylase (TH) positive cells and DA uptake, and attenuated apoptotic and necrotic cell death after MPP(+) injury. Homer1 knockdown decreased intracellular reactive oxygen species (ROS) generation through inhibition of intracellular calcium overload, but did not affect the endogenous antioxidant enzyme activities. Calcium imaging was used to examine the changes of intracellular Ca(2+) concentration ([Ca(2+)]cyt) and Ca(2+) in endoplasmic reticulum (ER) ([Ca(2+)]ER), and the results showed that Homer1 siRNA transfection attenuated ER Ca(2+) release up to 120min after MPP(+) injury. Furthermore, decrease of [Ca(2+)]cyt induced by Homer1 knockdown in MPP(+) treated neurons was further enhanced by NMDA receptor antagonists MK-801 and AP-5, but not canonical transient receptor potential (TRPC) channel antagonist SKF-96365. l-type calcium antagonist isradipine but not nimodipine further inhibited intracellular calcium overload after MPP(+) insult in Homer1 down-regulated neurons. These results suggest that Homer1 knockdown has protective effects against neuronal injury in in vitro PD model by reducing calcium overload mediated ROS generation, and this protection may be dependent at least in part on the regulatory effects on the function of calcium channels in both plasma membrane and ER.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth, Military Medical University, Xi'an, Shaanxi 710032, China; Department of Neurosurgery, The 123th Hospital of PLA, Bengbu, Anhui 233000, China
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Perfeito R, Cunha-Oliveira T, Rego AC. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2013; 62:186-201. [PMID: 23743292 DOI: 10.1016/j.freeradbiomed.2013.05.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
Collapse
Affiliation(s)
- Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
168
|
Zhang Y, Bao YL, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX. Alantolactone induces apoptosis in RKO cells through the generation of reactive oxygen species and the mitochondrial pathway. Mol Med Rep 2013; 8:967-72. [PMID: 23970102 DOI: 10.3892/mmr.2013.1640] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/19/2013] [Indexed: 11/06/2022] Open
Abstract
Alantolactone, a methanol extract of Inula helenium, possesses anticancer properties in a number of cancer cell lines. However, its anticancer effect on human colorectal cancer cells and the underlying mechanisms remain to be elucidated. In the present study, the effects of alantolactone on cell viability and apoptosis in RKO human colon cancer cells were investigated. Alantolactone treatment of RKO cells was found to result in dose‑dependent inhibition of cell viability and induction of apoptosis, accompanied with the accumulation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential. In addition, these effects were blocked with N‑acetylcysteine, a specific ROS inhibitor. Western blotting indicated that exposure of RKO cells to alantolactone is associated with the downregulation of Bcl‑2, induction of Bax and activation of caspase‑3 and ‑9. These results indicated that a ROS‑mediated mitochondria‑dependent pathway is involved in alantolactone‑induced apoptosis. From these observations, it was hypothesized that alantolactone may be used for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Ríčný J. Overlooked Alzheimer's smoking gun? Neurochem Res 2013; 38:1774-6. [PMID: 23743622 DOI: 10.1007/s11064-013-1086-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 12/24/2022]
Abstract
Overview of Szutowicz et al. (Neurochem Res 38(8):1523-1542, 2013), is focusing on specific features of acetyl-CoA metabolism in the cholinergic compartment of the brain. Authors are suggesting that deficit of that metabolite can act as a trigger for several cholinergic encephalopathies, with special emphasis on Alzheimer disease (AD). Central role of acetyl-CoA and its metabolic paths in neurodegeneration are charted starting from its synthesis in mitochondria, followed by utilization in energy metabolism, as well as transport into cytoplasm and participation in the synthesis and turnover of neurotransmitter acetylcholine to emergence of diseased states. Various putative pathogenic signals are evaluated that might be responsible for acetyl-CoA deficit ending up in development of neurodegeneration, unraveling exceptional susceptibility of cholinergic system. They are discussed in context of other existing alternative hypotheses on AD etiology. Overview is thoroughly documented (178 references) and is supported by results accomplished by extensive research in Prof. Szutowicz's laboratory (approximately 25 original papers).
Collapse
Affiliation(s)
- Jan Ríčný
- Laboratory of Biochemistry and Brain Pathophysiology, Prague Psychiatric Center, Ústavní 91, 181 03, Prague, Czech Republic.
| |
Collapse
|
170
|
Lungato L, Marques MS, Pereira VG, Hix S, Gazarini ML, Tufik S, D'Almeida V. Sleep deprivation alters gene expression and antioxidant enzyme activity in mice splenocytes. Scand J Immunol 2013; 77:195-9. [PMID: 23360182 DOI: 10.1111/sji.12029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 01/11/2013] [Indexed: 12/17/2022]
Abstract
Cellular defence against the formation of reactive oxygen species (ROS) involves a number of mechanisms in which antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) play an important role. The relation between sleep deprivation and oxidative stress has not yet been completely elucidated. Although some authors did not find evidence of this relationship, others found alterations in some oxidative stress markers in response to sleep deprivation. Thus, the objective of this study was to identify changes induced by sleep deprivation in the activity and gene expression of antioxidant enzymes in mice splenocytes, ideally corroborating a better understanding of the observed effects related to sleep deprivation, which could be triggered by oxidative imbalance. Splenocytes from mice sleep deprived for 72 h showed no significant difference in CAT and CuZnSOD gene expression compared with normal sleep mice. However, sleep-deprived mice did show higher MnSOD gene expression than the control group. Concerning enzymatic activity, CuZnSOD and MnSOD significantly increased after sleep deprivation, despite the expression in CuZnSOD remained unchanged. Moreover, CAT activity was significantly lower after sleep deprivation. The data suggest that the antioxidant system is triggered by sleep deprivation, which in turn could influence the splenocytes homoeostasis, thus interfering in physiological responses.
Collapse
Affiliation(s)
- L Lungato
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | | | | | | | | | | | | |
Collapse
|
171
|
Leonelli M, Martins DO, Britto LRG. Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases. Cell Mol Neurobiol 2013; 33:379-92. [PMID: 23324998 DOI: 10.1007/s10571-012-9904-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/29/2012] [Indexed: 01/23/2023]
Abstract
The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.
Collapse
Affiliation(s)
- Mauro Leonelli
- Laboratory of Cellular Neurobiology, Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| | | | | |
Collapse
|
172
|
Song J, Lee JH, Lee SH, Park KA, Lee WT, Lee JE. TRPV1 Activation in Primary Cortical Neurons Induces Calcium-Dependent Programmed Cell Death. Exp Neurobiol 2013; 22:51-7. [PMID: 23585723 PMCID: PMC3620459 DOI: 10.5607/en.2013.22.1.51] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Transient receptor potential cation channel, subfamily V, member 1 (TRPV1, also known as vanilloid receptor 1) is a receptor that detects capsaicin, a pungent component of chili peppers, and noxious heat. Although its function in the primary nociceptor as a pain receptor is well established, whether TRPV1 is expressed in the brain is still under debate. In this study, the responses of primary cortical neurons were investigated. Here, we report that 1) capsaicin induces caspase-3-dependent programmed cell death, which coincides with increased production of nitric oxide and peroxynitrite ; that 2) the prolonged capsaicin treatment induces a steady increase in the degree of capase-3 activation, which is prevented by the removal of capsaicin; 3) and that blocking calcium entry and calcium-mediated signaling prevents capsaicin-induced cell death. These results indicate that cortical neurons express TRPV1 whose prolonged activation causes cell death.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | |
Collapse
|
173
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
174
|
Rhim T, Lee DY, Lee M. Drug delivery systems for the treatment of ischemic stroke. Pharm Res 2013; 30:2429-44. [PMID: 23307348 DOI: 10.1007/s11095-012-0959-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 12/07/2012] [Indexed: 12/13/2022]
Abstract
Stroke is the third leading cause of death in the United States. Reduced cerebral blood flow causes acute damage to the brain due to excitotoxicity, reactive oxygen species (ROS), and ischemia. Currently, the main treatment for stroke is to revive the blood flow by using thrombolytic agents. Reviving blood flow also causes ischemia-reperfusion (I/R) damage. I/R damage results from inflammation and apoptosis and can persist for days to weeks, increasing the infarct size. Drugs can be applied to stroke to intervene in the sub-acute and chronic phases. Chemical, peptide, and genetic therapies have been evaluated to reduce delayed damage to the brain. These drugs have different characteristics, requiring that delivery carriers be developed based on these characteristics. The delivery route is another important factor affecting the efficiency of drug delivery. Various delivery routes have been developed, such as intravenous injection, intranasal administration, and local direct injection to overcome the blood-brain-barrier (BBB). In this review, the delivery carriers and delivery routes for peptide and gene therapies are discussed and examples are provided. Combined with new drugs, drug delivery systems will eventually provide useful treatments for ischemic stroke.
Collapse
Affiliation(s)
- Taiyoun Rhim
- Department of Bioengineering, College of Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | | | | |
Collapse
|
175
|
Gillespie S, Gavins FNE. Phytochemicals: countering risk factors and pathological responses associated with ischaemia reperfusion injury. Pharmacol Ther 2012; 138:38-45. [PMID: 23269179 DOI: 10.1016/j.pharmthera.2012.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 01/20/2023]
Abstract
Plant derived non-nutritive molecules, known as phytochemicals, have been investigated for their ability to provide protection against inflammation. Emerging studies of several vasculopathies (e.g. atherosclerosis, hypertension) provide novel data to support these anti-inflammatory effects and offer evidence for involvement of host pathways. Fundamental mechanisms of action are common amongst these compounds, and furthermore, the administration of these phytochemicals activates host defence pathways innately present to protect cells from oxidative stress. This review will elucidate the real benefit of therapeutic intervention with these phytochemicals for vasculopathies, and associated ischaemia reperfusion injury in both the heart and brain.
Collapse
|
176
|
N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:280-7. [PMID: 22820675 DOI: 10.1016/j.pnpbp.2012.06.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 11/23/2022]
Abstract
The growing body of evidence implicates the significance of oxidative stress in the pathophysiology of depression. The aim of this paper was to examine N-acetylcysteine (NAC) - a putative precursor of the most important tissue antioxidant glutathione - in an animal model of depression and in ex vivo assays to detect oxidative stress parameters. Imipramine (IMI), a classical and clinically-approved antidepressant drug was also under investigation. Male Wistar rats which underwent either bulbectomy (BULB; removal of the olfactory bulbs) or sham surgery (SHAM; olfactory bulbs were left undestroyed) were treated acutely or repeatedly with NAC (50-100mg/kg, ip) or IMI (10mg/kg, ip). Following 10-daily injections with NAC or IMI or their solvents, or 9-daily injections with a corresponding solvent plus acute NAC or acute IMI forced swimming test on day 10, and locomotor activity were performed; immediately after behavioral tests animals were decapitated. Biochemical tests (the total antioxidant capacity - TAC and the superoxide dismutase activity - SOD) were performed on homogenates in several brain structures. In behavioral studies, chronic (but not acute) administration of NAC resulted in a dose-dependent reduction in the immobility time seen only in BULB rats while chronic IMI produced a significant decrease in this parameter in both SHAM and BULB animals. On the other hand, chronic administration of NAC and IMI resulted in a significant increase in cellular antioxidant mechanisms (SOD activity) that reversed the effects of BULB in the frontal cortex, hippocampus and striatum. Our study further supports the antidepressant-like activity of NAC and links its effect as well as IMI actions with the enhancement of brain SOD activity.
Collapse
|
177
|
Zhou IY, Ding AY, Li Q, McAlonan GM, Wu EX. Magnetic resonance spectroscopy reveals N-acetylaspartate reduction in hippocampus and cingulate cortex after fear conditioning. Psychiatry Res 2012; 204:178-83. [PMID: 23137804 DOI: 10.1016/j.pscychresns.2012.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/22/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
The fear conditioning in rodents provides a valuable translational tool to investigate the neural basis of learning and memory and potentially the neurobiology of post-traumatic stress disorder (PTSD). Neurobiological changes induced by fear conditioning have largely been examined ex vivo while progressive 'real-time' changes in vivo remain under-explored. Single voxel proton magnetic resonance spectroscopy (1H MRS) of the hippocampus, cingulate cortex and thalamus of adult male C57BL/6N mice (N=12) was performed at 1 day before, 1 day and 1 week after, fear conditioning training using a 7T scanner. N-acetylaspartate (NAA), a marker for neuronal integrity and viability, significantly decreased in the hippocampus at 1 day and 1 week post-conditioning. Significant NAA reduction was also observed in the cingulate cortex at 1 day post-conditioning. These findings of hippocampal NAA decrease indicate reduced neuronal dysfunction and/or neuronal integrity, contributing to the trauma-related PTSD-like symptoms. The neurochemical changes characterized by 1H MRS can shed light on the biochemical mechanisms of learning and memory. Moreover, such information can potentially facilitate prompt intervention for patients with psychiatric disorders.
Collapse
Affiliation(s)
- Iris Y Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
178
|
Perfeito R, Cunha-Oliveira T, Rego AC. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease--resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2012; 53:1791-806. [PMID: 22967820 DOI: 10.1016/j.freeradbiomed.2012.08.569] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
Collapse
Affiliation(s)
- Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
179
|
Zhang Y, Luo M, Zu Y, Fu Y, Gu C, Wang W, Yao L, Efferth T. Dryofragin, a phloroglucinol derivative, induces apoptosis in human breast cancer MCF-7 cells through ROS-mediated mitochondrial pathway. Chem Biol Interact 2012; 199:129-36. [DOI: 10.1016/j.cbi.2012.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 01/08/2023]
|
180
|
Pomierny-Chamioło L, Moniczewski A, Wydra K, Suder A, Filip M. Oxidative stress biomarkers in some rat brain structures and peripheral organs underwent cocaine. Neurotox Res 2012; 23:92-102. [PMID: 22791409 PMCID: PMC3526736 DOI: 10.1007/s12640-012-9335-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/16/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) generates or intensifies cocaine-evoked toxicity in the brain and peripheral organs. The aim of this study was to examine superoxide dismutase (SOD) activity and lipid peroxidation [measured by malondialdehyde (MDA) levels] in rats during maintenance of cocaine self-administration and after withdrawal by a yoked-triad procedure. Our results indicate that repeated cocaine self-administration provoked an elevation of SOD activity in the hippocampus, frontal cortex, dorsal striatum, and liver. MDA levels were reduced in the brain, increased in the liver, kidney, and heart during maintenance of self-administration, and increased in the kidney in cocaine-yoked rats. In addition, following extinction training, we found enhanced MDA levels and SOD activity in the rat hippocampus, while changes in the activity of OS biomarkers in other brain structures and peripheral tissues were reminiscent of the changes seen during cocaine self-administration. These findings highlight the association between OS biomarkers in motivational processes related to voluntary cocaine intake in rats. OS participates in memory and learning impairments that could be involved in drug toxicity and addiction mechanisms. Therefore, further studies are necessary to address protective mechanisms against cocaine-induced brain and peripheral tissue damage.
Collapse
Affiliation(s)
- Lucyna Pomierny-Chamioło
- Department of Toxicology, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland.
| | | | | | | | | |
Collapse
|
181
|
Cruz JS, Kushmerick C, Moreira-Lobo DC, Oliveira FA. Thiamine deficiency in vitro accelerates A-type potassium current inactivation in cerebellar granule neurons. Neuroscience 2012; 221:108-14. [PMID: 22771620 DOI: 10.1016/j.neuroscience.2012.06.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 01/12/2023]
Abstract
Thiamine deficiency during embryonic or early postnatal development causes deficits in cerebellum-dependent activities including motor control and procedural memory. Here, we give a detailed description of the changes to A-type current in cultured cerebellar granule neurons exposed to thiamine deficiency in vitro. A-type current in treated neurons was reduced to 51% of that in controls. The remaining A-type current in treated neurons exhibited normal activation kinetics and voltage dependence whereas inactivation was markedly faster. These effects were selective because the delayed-rectifier potassium current density and kinetics were unchanged in thiamine-deficient neurons. A computational model of the cerebellar granule neuron was used to test the impact of these alterations and predicts an increase in excitability that is especially pronounced for synaptic activation. Our results suggest that the loss of A-type potassium conductance leads to hyperactivity in cerebellar granule neurons and may contribute to cell death observed in the granule layer of cerebellum during thiamine-deficiency in vivo.
Collapse
Affiliation(s)
- J S Cruz
- Departamento de Bioquímica e Imunologia, Institudo de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte - MG, Brazil
| | | | | | | |
Collapse
|
182
|
Zampagni M, Wright D, Cascella R, D'Adamio G, Casamenti F, Evangelisti E, Cardona F, Goti A, Nacmias B, Sorbi S, Liguri G, Cecchi C. Novel S-acyl glutathione derivatives prevent amyloid oxidative stress and cholinergic dysfunction in Alzheimer disease models. Free Radic Biol Med 2012; 52:1362-71. [PMID: 22326489 DOI: 10.1016/j.freeradbiomed.2012.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/22/2011] [Accepted: 01/19/2012] [Indexed: 01/12/2023]
Abstract
Oxidative stress-mediated neuronal death may be initiated by a decrease in glutathione (GSH), whose levels are reduced in mitochondrial and synaptosomal fractions of specific CNS regions in Alzheimer disease (AD) patients. Currently, the use of GSH as a therapeutic agent is limited by its unfavorable pharmacokinetic properties. In this study, we designed the synthesis of new S-acyl glutathione (acyl-SG) thioesters of fatty acids via N-acyl benzotriazole-intermediate production and investigated their potential for targeted delivery of the parent GSH and free fatty acid to amyloid-exposed fibroblasts from familial AD patients and human SH-SY5Y neuroblastoma cells. Cell culture supplementation with acyl-SG derivatives triggers a significant decrease in lipid peroxidation and mitochondrial dysfunction in a fatty acid unsaturation degree-dependent fashion. Acyl-SG thioesters also protect cholinergic neurons against Aβ-induced damage and reduce glial reaction in rat brains. Collectively, these findings suggest that acyl-SG thioesters could prove useful as a tool for controlling AD-induced cerebral deterioration.
Collapse
Affiliation(s)
- Mariagioia Zampagni
- Department of Biochemical Sciences, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Schurr A, Gozal E. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress. Front Pharmacol 2012; 2:96. [PMID: 22275901 PMCID: PMC3257848 DOI: 10.3389/fphar.2011.00096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/23/2011] [Indexed: 12/21/2022] Open
Abstract
Ever since it was shown for the first time that lactate can support neuronal function in vitro as a sole oxidative energy substrate, investigators in the field of neuroenergetics have been debating the role, if any, of this glycolytic product in cerebral energy metabolism. Our experiments employed the rat hippocampal slice preparation with electrophysiological and biochemical methodologies. The data generated by these experiments (a) support the hypothesis that lactate, not pyruvate, is the end-product of cerebral aerobic glycolysis; (b) indicate that lactate plays a major and crucial role in affording neural tissue to respond adequately to glutamate excitation and to recover unscathed post-excitation; (c) suggest that neural tissue activation is accompanied by aerobic lactate and NADH production, the latter being produced when the former is converted to pyruvate by mitochondrial lactate dehydrogenase (mLDH); (d) imply that NADH can be utilized as an endogenous scavenger of reactive oxygen species (ROS) to provide neuroprotection against ROS-induced neuronal damage.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville Louisville, KY, USA.
| | | |
Collapse
|
184
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
185
|
Chiang MC, Chern Y, Huang RN. PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease. Neurobiol Dis 2012; 45:322-8. [DOI: 10.1016/j.nbd.2011.08.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 08/04/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022] Open
|
186
|
Bisharyan Y, Clark TG. Calcium-dependent mitochondrial extrusion in ciliated protozoa. Mitochondrion 2011; 11:909-18. [PMID: 21856451 PMCID: PMC3206207 DOI: 10.1016/j.mito.2011.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/22/2011] [Accepted: 08/04/2011] [Indexed: 01/21/2023]
Abstract
Here we demonstrate that ciliated protozoa can jettison mitochondria as intact organelles, releasing their contents to the extracellular space either in a soluble form, or in association with membrane vesicles at the cell periphery. The response is triggered by lateral clustering of GPI-anchored surface antigens, or by heat shock. In the first instance, extrusion is accompanied by elevated levels of intracellular calcium and is inhibited by Verapamil and BAPTA-AM arguing strongly for the involvement of calcium in triggering the response. Cells survive mitochondrial discharge raising the interesting possibility that extrusion is an early evolutionary adaptation to cell stress.
Collapse
Affiliation(s)
- Yelena Bisharyan
- Department of Microbiology and Immunology, Veterinary Medical Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
187
|
Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011; 2011:572634. [PMID: 21941533 PMCID: PMC3177364 DOI: 10.1155/2011/572634] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022] Open
Abstract
It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS) is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5) hyperactivity associated with neurodegeneration.
Collapse
Affiliation(s)
- Varsha Shukla
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Santosh K. Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
188
|
Bar-Or A, Rieckmann P, Traboulsee A, Yong VW. Targeting progressive neuroaxonal injury: lessons from multiple sclerosis. CNS Drugs 2011; 25:783-99. [PMID: 21870889 DOI: 10.2165/11587820-000000000-00000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are characterized by progressive neuroaxonal injury, suggesting a common pathophysiological pathway. Identification and development of neuroprotective therapies for such diseases has proven a major challenge, particularly because of an already substantial neuroaxonal compromise at the time of initial onset of clinical symptoms. Methods for early identification of neurodegeneration are therefore vital to ensure that neuroprotective therapies are applied as early as possible. Recent investigations have enhanced our understanding of the role of neuroaxonal injury in multiple sclerosis (MS). As MS generally manifests earlier in life and can be diagnosed much earlier in the course of the disease than the above-mentioned 'classic' neurodegenerative diseases, it is possible that MS could be used as a model disease to study degeneration and regeneration of the CNS. The mechanism of neuroaxonal injury in MS is believed to be inflammation-led neurodegeneration; however, the reverse may also be true (i.e. neuroaxonal degeneration may precede inflammation). Animal models of PD, AD and ALS have shown that it is likely that most cases of disease are due to initial inflammation, followed by a degenerative process, providing a parallel between MS and the classic neurodegenerative diseases. Other common factors between MS and the neurodegenerative diseases include iron and mitochondrial dysregulation, abnormalities in α-synuclein and tau protein, and a number of immune mediators. Conventional MRI techniques, using markers such as T2-weighted lesions, gadolinium-enhancing lesions and T1-weighted hypointensities, are readily available and routinely used in clinical practice; however, the utility of these MRI measures to predict disease progression in MS is limited. More recently, MRI techniques that provide more pathology-specific data have been applied in MS studies, including magnetic resonance spectroscopy, magnetization transfer ratio and myelin water imaging. Optical coherence tomography (OCT) is a non-MRI technique that quantifies optic nerve integrity and retinal ganglion cell loss as markers of neuroaxonal injury; more research is needed to evaluate whether information obtained from OCT is a reliable marker of axonal injury and long-term disability in MS. Using these advanced techniques, it may become possible to follow degeneration and regeneration longitudinally in patients with MS and to better differentiate the effects of drugs under investigation. Currently available immune-directed therapies that are approved by the US FDA for the first-line treatment of MS (interferon-β and glatiramer acetate) have been shown to decelerate the inflammatory process in MS; however, such therapy is less effective in preventing the progression of the disease and neuroaxonal injury. The use of MS as a clinical model to study modulation of neuroaxonal injury in the brain could have direct implications for the development of treatment strategies in neurodegenerative diseases such as AD, PD and ALS.
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology and Neurosurgery and Microbiology and Immunology, McGill University, Neuroimmunology Unit, Montreal, QC, Canada
| | | | | | | |
Collapse
|
189
|
Mishra V, Verma R, Singh N, Raghubir R. The neuroprotective effects of NMDAR antagonist, ifenprodil and ASIC1a inhibitor, flurbiprofen on post-ischemic cerebral injury. Brain Res 2011; 1389:152-60. [DOI: 10.1016/j.brainres.2011.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/25/2022]
|
190
|
Protective effects of synthetic kynurenines on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Brain Res Bull 2011; 85:133-40. [PMID: 21419832 DOI: 10.1016/j.brainresbull.2011.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
Mitochondrial complex I inhibition is thought to underlie the neurodegenerative process in Parkinson's disease (PD). Moreover, an overproduction of nitric oxide due to both cytosolic (iNOS) and mitochondrial (i-mtNOS) inducible nitric oxide synthases causes free radicals generation and oxidative/nitrosative stress, contributing to mitochondrial dysfunction and neuronal cell death. Looking for active molecules against mitochondrial dysfunction and inflammatory response in PD, we show here the effects of four synthetic kynurenines in the MPTP model of PD in mice. After MPTP administration, mitochondria from substantia nigra and, in a lesser extent, from striatum showed a significant increase in i-mtNOS activity, nitric oxide production, oxidative stress, and complex I inhibition. The four kynurenines assayed counteracted the effects of MPTP, reducing iNOS/i-mtNOS activity, and restoring the activity of the complex I. Consequently, the cytosolic and mitochondrial oxidative/nitrosative stress returned to control values. The results suggest that the kynurenines here reported represent a family of synthetic compounds with neuroprotective properties against PD, and that they can serve as templates for the design of new drugs able to target the mitochondria.
Collapse
|
191
|
Wenz T, Williams SL, Bacman SR, Moraes CT. Emerging therapeutic approaches to mitochondrial diseases. ACTA ACUST UNITED AC 2011; 16:219-29. [PMID: 20818736 DOI: 10.1002/ddrr.109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to the therapy of mitochondrial disorders, some of which are targeted to specific conditions whereas others may be applicable to a more diverse group of patients.
Collapse
Affiliation(s)
- Tina Wenz
- Department of Neurology, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
192
|
Kairisalo M, Bonomo A, Hyrskyluoto A, Mudò G, Belluardo N, Korhonen L, Lindholm D. Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells. Neurosci Lett 2010; 488:263-6. [PMID: 21094207 DOI: 10.1016/j.neulet.2010.11.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/11/2010] [Accepted: 11/13/2010] [Indexed: 11/26/2022]
Abstract
Resveratrol, a polyphenol derived e.g. from red grapes, has been shown to mediate several positive biological actions such as protection of cells against oxidative stress. It can also influence cell signaling, but the mechanisms behind its antioxidant properties are largely unknown. Here we show that RSV reduces oxidative stress and enhances cell survival in PC6.3 cells depending on the concentration. In these cells, RSV increased the levels of antioxidants, SOD2 and TRX2, and of X chromosome-linked inhibitor of apoptosis protein. RSV also activated NFκB signaling as shown using luciferase reporter constructs. These findings show that RSV regulates oxidative stress and mitochondrial antioxidants in neuronal cells. This may contribute to cell protection in various brain disorders.
Collapse
Affiliation(s)
- Minna Kairisalo
- Minerva Institute for Medical Research, Biomedicum-2 Helsinki, Tukholmankatu 8, FIN-00290 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
193
|
Bagh MB, Thakurta IG, Biswas M, Behera P, Chakrabarti S. Age-related oxidative decline of mitochondrial functions in rat brain is prevented by long term oral antioxidant supplementation. Biogerontology 2010; 12:119-31. [PMID: 20857196 DOI: 10.1007/s10522-010-9301-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/06/2010] [Indexed: 12/20/2022]
Abstract
A combination of antioxidants (N-acetyl cysteine, α-lipoic acid, and α-tocopherol) was selected for long term oral supplementation study in rats for protective effects on age-related mitochondrial alterations in the brain. Four groups of rats were chosen: young control (6-7 months); aged rats (22-24 months); aged rats (22-24 months) on daily antioxidant supplementation from 18 month onwards and young rats (6-7 months) on daily antioxidant supplementation from 2 month onwards. The brain mitochondrial functional parameters, status of antioxidant enzymes and accumulation of oxidative damage markers were measured in the four groups of rats. A significant decrease in complex IV activity and a loss of transmembrane potential and phosphorylation capacity along with an increased accumulation of oxidative damage markers and compromised antioxidant enzyme status were noticed in aged rat brain mitochondria as compared to that in young controls, but in aged rats supplemented with oral antioxidants the mitochondrial alterations were largely prevented. Antioxidant supplementation in young rats had no effect on mitochondrial parameters investigated in this study. The results have implications in biochemical and functional deficits of brain during aging as well as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Bindu Bagh
- Department of Biochemistry, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | | | | | | | | |
Collapse
|
194
|
Zhang C, Yuan X, Mao W, Yue L, Kong X, Gao Y, Luo L, Yin Z. Inhibition of cadmium-induced apoptosis by glutathione S-transferase P1 via mitogen-activated protein kinases and mitochondrial pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:202-208. [PMID: 21787653 DOI: 10.1016/j.etap.2010.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 05/20/2010] [Accepted: 06/25/2010] [Indexed: 05/31/2023]
Abstract
Cadmium is a well-known toxic metal for the kidney. Glutathione S-transferase P1 (GSTP1) plays an important role in the detoxification and xenobiotics metabolism. Here, we investigated whether GSTP1 affected Cd(2+)-induced apoptotic cell death in human embryonic kidney cell line (HEK) 293 cells. We showed that in HEK293 cells, silencing of GSTP1 expression through RNA interference reinforced the loss in cell viability induced by Cd(2+). Overexpression of GSTP1 inhibited loss of mitochondrial membrane potential, prevented cytochrome c release from mitochondria and caspase-3 activation, inhibited mitogen-activated protein kinases (MAPKs) including ERK, JNK and p38, and suppressed apoptosis induced by Cd(2+). The oligonucleosomal DNA fragmentation assay also demonstrated that overexpression of GSTP1 by adenovirus infection prevented Cd(2+)-induced apoptosis in primary renal tubule cells. Our data suggest that GSTP1 was an endogenous inhibitor of Cd(2+)-induced apoptosis.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
195
|
The physiological behaviour of IMR-32 neuroblastoma cells is affected by a 12-h hypoxia/24-h reoxygenation period. Neurochem Res 2010; 35:1691-9. [PMID: 20640916 DOI: 10.1007/s11064-010-0231-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Nervous system cells are highly dependent on adequate tissue oxygenation and are very susceptible to hypoxia, which causes mitochondrial dysfunctions involved in apoptosis and necrosis. In this paper, we examine the effect of a 12-h incubation of differentiated IMR-32 neuroblastoma cells in a hypoxic environment (73% N(2): 2% O(2): 5% CO(2), v:v) by evaluating cell viability, modifications of NO, intracellular Ca(2+) concentration [Ca(2+)](i) and membrane potential, the production of phosphorylated ERK, desferoxamine-chelatable free iron and esterified F2-isoprostane levels. The same parameters were evaluated after a subsequent 24-h re-oxygenation period. The NO concentration increased significantly immediately after hypoxia and returned to values similar to those of controls after the reoxygenation period. At the same time, we observed a significant increase of [Ca(2+)](i) immediately after hypoxia. Phosphorylated ERK proteins increased significantly during the first 2 h of hypoxia, then decreased, and remained practically unmodified after 12 h hypoxia and the following reoxygenation period. Moreover, IMR-32 cell mitochondria were significantly depolarized after hypoxia, while membrane potential returned to normal after the reoxygenation period. Finally, desferoxamine-chelatable free iron and F2-isoprostane levels also increased significantly after hypoxia. Our results indicate that 2% O(2) hypoxia induces variations of NO and [Ca(2+)](i) with subsequent mitochondrial depolarization, and it is responsible for oxidative stress, represented by increased free iron and F2-isoprostane, protein carbonyls and 4 hydroxynonenal protein adducts levels.
Collapse
|
196
|
Trudeau K, Molina AJA, Guo W, Roy S. High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:447-55. [PMID: 20522647 DOI: 10.2353/ajpath.2010.091029] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction has been implicated in diabetic complications; however, it is unknown whether hyperglycemia affects mitochondrial morphology and metabolic capacity during development of diabetic retinopathy. We investigated high glucose (HG) effects on mitochondrial morphology, membrane potential heterogeneity, cellular oxygen consumption, extracellular acidification, cytochrome c release, and apoptosis in retinal endothelial cells. Rat retinal endothelial cells grown in normal (5 mmol/L) or HG (30 mmol/L) medium and double-stained with MitoTracker Green and tetramethylrhodamine-ethyl-ester-perchlorate were examined live with confocal microscopy. Images were analyzed for mitochondrial shape change using Form Factor and Aspect Ratio values, and membrane potential heterogeneity, using deviation of fluorescence intensity values. Rat retinal endothelial cells grown in normal or HG medium were analyzed for transient changes in oxygen consumption and extracellular acidification using an XF-24 flux analyzer, cytochrome c release by Western blot, and apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Rat retinal endothelial cells grown in HG medium exhibited increased mitochondrial fragmentation concurrent with membrane potential heterogeneity. Metabolic analysis showed increased extracellular acidification in HG with reduced steady state/maximal oxygen consumption. Cytochrome c and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells were also increased in HG. Thus, HG-induced mitochondrial fragmentation with concomitant increase in membrane potential heterogeneity, reduced oxygen consumption, and cytochrome c release may underlie apoptosis of retinal endothelial cells as seen in diabetic retinopathy.
Collapse
Affiliation(s)
- Kyle Trudeau
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston 02118, USA
| | | | | | | |
Collapse
|
197
|
Singh H, Saroya R, Smith R, Mantha R, Guindon L, Mitchel REJ, Seymour C, Mothersill C. Radiation induced bystander effects in mice given low doses of radiation in vivo. Dose Response 2010; 9:225-42. [PMID: 21731538 DOI: 10.2203/dose-response.09-062.singh] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 'bystander effect' phenomenon has challenged the traditional framework for assessing radiation damage by showing radiation induced changes in cells which have not been directly targeted, but are neighbors to or receive medium from directly hit cells. Our group performed a range of single and serial low dose irradiations on two genetically distinct strains of mice. Bladder explants established from these mice were incubated in culture medium, which was used to measure death responses in a keratinocyte reporter system. The study revealed that the medium harvested from bladder tissues' (ITCM) from acutely irradiated C57BL6 but not Balb/c mice, was able to induce clonogenic death. Administration of a priming dose(s) before a challenge dose to both C57BL6 and Balb/c mice stimulated reporter cell survival irrespective of the time interval between dose(s) delivery. When ITCM corresponding to both strains of mice was measured for its calcium mobilization inducing ability, results showed an elevation in intracellular calcium levels that was strain dependent. This indicates that genotype determined the type of bystander signal/response that was produced after exposure to low and acute doses of radiation. However, serial exposure conditions modified bystander signal production to induce similar effects that were characterized by excessive growth.
Collapse
Affiliation(s)
- Harleen Singh
- Medical Physics and Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 2010; 107:106-16. [PMID: 20448215 DOI: 10.1161/circresaha.109.214601] [Citation(s) in RCA: 576] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Superoxide (O2(-) ) has been implicated in the pathogenesis of many human diseases including hypertension; however, commonly used antioxidants have proven ineffective in clinical trials. It is possible that these agents are not adequately delivered to the subcellular sites of superoxide production. OBJECTIVE Because the mitochondria are important sources of reactive oxygen species, we postulated that mitochondrial targeting of superoxide scavenging would have therapeutic benefit. METHODS AND RESULTS In this study, we found that the hormone angiotensin (Ang II) increased endothelial mitochondrial superoxide production. Treatment with the mitochondria-targeted antioxidant mitoTEMPO decreased mitochondrial O2(-), inhibited the total cellular O2(-), reduced cellular NADPH oxidase activity, and restored the level of bioavailable NO. These effects were mimicked by overexpressing the mitochondrial MnSOD (SOD2), whereas SOD2 depletion with small interfering RNA increased both basal and Ang II-stimulated cellular O2(-). Treatment of mice in vivo with mitoTEMPO attenuated hypertension when given at the onset of Ang II infusion and decreased blood pressure by 30 mm Hg following establishment of both Ang II-induced and DOCA salt hypertension, whereas a similar dose of nontargeted TEMPOL was not effective. In vivo, mitoTEMPO decreased vascular O2(-), increased vascular NO production and improved endothelial-dependent relaxation. Interestingly, transgenic mice overexpressing mitochondrial SOD2 demonstrated attenuated Ang II-induced hypertension and vascular oxidative stress similar to mice treated with mitoTEMPO. CONCLUSIONS These studies show that mitochondrial O2(-) is important for the development of hypertension and that antioxidant strategies specifically targeting this organelle could have therapeutic benefit in this and possibly other diseases.
Collapse
Affiliation(s)
- Anna E Dikalova
- Division of Cardiology, Emory University School of Medicine, 1639 Pierce Dr, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 2010; 86:673-80. [PMID: 20408982 DOI: 10.1111/j.1751-1097.2010.00732.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-level light therapy (LLLT) increases survival of cultured cells, improves behavioral recovery from neurodegeneration and speeds wound healing. These beneficial effects are thought to be mediated by upregulation of mitochondrial proteins, especially the respiratory enzyme cytochrome oxidase. However, the effects of in vivo LLLT on cytochrome oxidase in intact skeletal muscle have not been previously investigated. We used a sensitive method for enzyme histochemistry of cytochrome oxidase to examine the rat temporalis muscle 24 h after in vivo LLLT. The findings showed for the first time that in vivo LLLT induced a dose- and fiber type-dependent increase in cytochrome oxidase in muscle fibers. LLLT was particularly effective at enhancing the aerobic capacity of intermediate and red fibers. The findings suggest that LLLT may enhance the oxidative energy metabolic capacity of different types of muscle fibers, and that LLLT may be used to enhance the aerobic potential of skeletal muscle.
Collapse
Affiliation(s)
- Christopher R Hayworth
- Departments of Psychology, Pharmacology and Toxicology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | |
Collapse
|
200
|
G. V, K. SP, V. L, Rajendra W. The antiepileptic effect of Centella asiatica on the activities of Na/K, Mg and Ca-ATPases in rat brain during pentylenetetrazol-induced epilepsy. Indian J Pharmacol 2010; 42:82-6. [PMID: 20711371 PMCID: PMC2907020 DOI: 10.4103/0253-7613.64504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 01/28/2010] [Accepted: 04/14/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To study the anticonvulsant effect of different extracts of Centella asiatica (CA) in male albino rats with reference to Na(+)/K(+), Mg(2+) and Ca(2+)-ATPase activities. MATERIALS AND METHODS Male Wistar rats (150+/-25 g b.w.) were divided into seven groups of six each i.e. (a) control rats treated with saline, (b) pentylenetetrazol (PTZ)-induced epileptic group (60 mg/kg, i.p.), (c) epileptic group pretreated with n-hexane extract (n-HE), (d) epileptic group pretreated with chloroform extract (CE), (e) epileptic group pretreated with ethyl acetate extract (EAE), (f) epileptic group pretreated with n-butanol extract (n-BE), and (g) epileptic group pretreated with aqueous extract (AE). RESULTS The activities of three ATPases were decreased in different regions of brain during PTZ-induced epilepsy and were increased in epileptic rats pretreated with different extracts of CA except AE. CONCLUSION The extracts of C. asiatica, except AE, possess anticonvulsant and neuroprotective activity and thus can be used for effective management in treatment of epileptic seizures.
Collapse
Affiliation(s)
- Visweswari G.
- Department of Zoology, Division of Molecular Biology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Siva Prasad K.
- Department of Zoology, Division of Molecular Biology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Lokanatha V.
- Department of Biotechnology, Dravidian University, Kuppam, Andhra Pradesh, India
| | - W. Rajendra
- Department of Zoology, Division of Molecular Biology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|