151
|
Ling Y, Wang X, Zhu H, Wang Z, Xu C, Wang X, Chen L, Zhang W. Synthesis and biological evaluation of novel farnesylthiosalicylic acid derivatives for cancer treatment. Arch Pharm (Weinheim) 2014; 347:327-33. [PMID: 24435839 DOI: 10.1002/ardp.201300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Novel farnesylthiosalicylic acid (FTS) derivatives were synthesized by coupling with different substituted diamines. Their in vitro growth inhibitory activities against seven human cancer cell lines were evaluated. The results revealed that the synthetic farnesylthiosalicylamides displayed significant antitumor activities compared to the positive control FTS. Especially, compound 8f exhibited the strongest antitumor activities with IC50 values of 6.20-7.83 µM, which were one- to threefold less than those of sorafenib and six- to tenfold less than that of FTS against each cell line in vitro. Furthermore, 8f could inhibit the Ras-related signaling pathway and induce SMMC-7721 cell apoptosis superior to FTS in a dose-dependent manner. These data indicate that 8f may hold greater promise as therapeutic agent for the intervention of human cancers.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy, Nantong University, Nantong, P. R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Kim ST, Park KH, Shin SW, Kim YH. Dose KRAS Mutation Status Affect on the Effect of VEGF Therapy in Metastatic Colon Cancer Patients? Cancer Res Treat 2014; 46:48-54. [PMID: 24520223 PMCID: PMC3918527 DOI: 10.4143/crt.2014.46.1.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 02/02/2023] Open
Abstract
Purpose Mutations affecting the KRAS gene are an established negative predictor for anti-epidermal growth factor receptor (anti-EGFR) therapies in metastatic colorectal cancer (CRC). However, the role of KRAS mutation as a biomarker for anti-vascular endothelial growth factor (VEGF) remains controversial. Materials and Methods We analyzed retrospective data from 32 CRC patients who were available for KRAS mutation status and received cytotoxic chemotherapy plus bevacizumab as a first-line therapy. Six of 32 patients received anti-EGFR therapies. We used KRAS mutation status as a predictive or prognostic factor in CRC patients receiving bevacizumab. Results We observed mutations in KRAS in 59.4% of patients. Bevacizumab was used in combination with oxaliplatin based regimens. There was no significant difference for progression free survival (PFS) and overall survival (OS) in patients with oxaliplatin based cytotoxic chemotherapy plus bevacizumab according to the status of KRAS mutation. After first-line therapy, 28 patients (87.5%) received second-line therapy. In univariate analysis, KRAS mutations did not have a major prognostic value for PFS (hazard ratio, 1.007; 95% confidence interval [CI], 0.469 to 2.162; p>0.05) or OS (hazard ratio, 0.548; 95% CI, 0.226 to 1.328; p>0.05). In addition, anti-EGFR therapies did not affect the impact on OS. Conclusion KRAS mutation is neither a predictive for bevacizumab nor a prognostic for OS in CRC patients receiving anti-VEGF therapy.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea. ; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyong Hwa Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sang Won Shin
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yeul Hong Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
153
|
GRK3 is essential for metastatic cells and promotes prostate tumor progression. Proc Natl Acad Sci U S A 2014; 111:1521-6. [PMID: 24434559 DOI: 10.1073/pnas.1320638111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The biochemical mechanisms that regulate the process of cancer metastasis are still poorly understood. Because kinases, and the signaling pathways they comprise, play key roles in regulation of many cellular processes, we used an unbiased RNAi in vitro screen and a focused cDNA in vivo screen against human kinases to identify those with previously undocumented roles in metastasis. We discovered that G-protein-coupled receptor kinase 3 (GRK3; or β-adrenergic receptor kinase 2) was not only necessary for survival and proliferation of metastatic cells, but also sufficient to promote primary prostate tumor growth and metastasis upon exogenous expression in poorly metastatic cells in mouse xenograft models. Mechanistically, we found that GRK3 stimulated angiogenesis, at least in part through down-regulation of thrombospondin-1 and plasminogen activator inhibitor type 2. Furthermore, GRK3 was found to be overexpressed in human prostate cancers, especially in metastatic tumors. Taken together, these data suggest that GRK3 plays an important role in prostate cancer progression and metastasis.
Collapse
|
154
|
Abstract
Normal cellular behavior depends on functional integration of extracellular stimuli with intracellular signal transduction pathways. Coupling cell surface message reception to nuclear gene expression is no longer a linear model constructed with molecular components acting merely as conduits to relay signals that cascade toward the nucleus. What has emerged instead is a highly integrated circuit comprised of numerous molecular components harmoniously programmed to communicate a multitude of internal signals that controls cellular response. Despite increasing understanding of cell signaling, mutinous elements embedded in these pathways have defied complete resolution. Research indicates that propagation of signals emanating from the extracellular environment to the cell nucleus follows a complex internal circuit equipped with sophisticated molecular components that provide rigid control over a variety of cellular responses. Although increasing understanding of genetic aberrations and signaling pathway transgressions can lead to novel strategies for targeting cancer cells, the disappointing results from clinical trials suggest that the occult processes responsible for neoplastic transformation remain largely unexplained.
Collapse
Affiliation(s)
- Gerald M Higa
- School of Pharmacy and Mary Babb Randolph Cancer Center, West Virginia University, WV, USA.
| |
Collapse
|
155
|
Ling Y, Wang Z, Zhu H, Wang X, Zhang W, Wang X, Chen L, Huang Z, Zhang Y. Synthesis and biological evaluation of farnesylthiosalicylamides as potential anti-tumor agents. Bioorg Med Chem 2014; 22:374-80. [DOI: 10.1016/j.bmc.2013.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/17/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
|
156
|
Lim L, Balakrishnan A, Huskey N, Jones KD, Jodari M, Ng R, Song G, Riordan J, Anderton B, Cheung ST, Willenbring H, Dupuy A, Chen X, Brown D, Chang AN, Goga A. MicroRNA-494 within an oncogenic microRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of mutated in colorectal cancer. Hepatology 2014; 59:202-15. [PMID: 23913442 PMCID: PMC3877416 DOI: 10.1002/hep.26662] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/26/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is associated with poor survival for patients and few effective treatment options, raising the need for novel therapeutic strategies. MicroRNAs (miRNAs) play important roles in tumor development and show deregulated patterns of expression in HCC. Because of the liver's unique affinity for small nucleic acids, miRNA-based therapy has been proposed in the treatment of liver disease. Thus, there is an urgent need to identify and characterize aberrantly expressed miRNAs in HCC. In our study, we profiled miRNA expression changes in de novo liver tumors driven by MYC and/or RAS, two canonical oncogenes activated in a majority of human HCCs. We identified an up-regulated miRNA megacluster comprised of 53 miRNAs on mouse chromosome 12qF1 (human homolog 14q32). This miRNA megacluster is up-regulated in all three transgenic liver models and in a subset of human HCCs. An unbiased functional analysis of all miRNAs within this cluster was performed. We found that miR-494 is overexpressed in human HCC and aids in transformation by regulating the G1 /S cell cycle transition through targeting of the Mutated in Colorectal Cancer tumor suppressor. miR-494 inhibition in human HCC cell lines decreases cellular transformation, and anti-miR-494 treatment of primary MYC-driven liver tumor formation significantly diminishes tumor size. CONCLUSION Our findings identify a new therapeutic target (miR-494) for the treatment of HCC.
Collapse
Affiliation(s)
- Lionel Lim
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA,Department of Medicine, University of California San FranciscoSan Francisco, CA,Address reprint requests to: Andrei Goga, M.D., Ph.D., Department of Cell & Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143-0512. E-mail: ; fax: 415-476-1128
| | - Asha Balakrishnan
- Department of Medicine, University of California San FranciscoSan Francisco, CA,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical SchoolHannover, Germany,Address reprint requests to: Andrei Goga, M.D., Ph.D., Department of Cell & Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143-0512. E-mail: ; fax: 415-476-1128
| | - Noelle Huskey
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA,Department of Medicine, University of California San FranciscoSan Francisco, CA
| | - Kirk D Jones
- Department of Pathology, University of California San FranciscoSan Francisco, CA
| | - Mona Jodari
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA
| | - Raymond Ng
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan Francisco, CA
| | - Guisheng Song
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan Francisco, CA
| | - Jesse Riordan
- Anatomy and Cell Biology, University of IowaIowa City, IA
| | - Brittany Anderton
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA,Department of Medicine, University of California San FranciscoSan Francisco, CA
| | - Siu-Tim Cheung
- Department of Surgery, The University of Hong KongHong Kong
| | - Holger Willenbring
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan Francisco, CA,Liver Center, University of California San FranciscoSan Francisco, CA
| | - Adam Dupuy
- Anatomy and Cell Biology, University of IowaIowa City, IA
| | - Xin Chen
- Liver Center, University of California San FranciscoSan Francisco, CA,Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan Francisco, CA
| | | | | | - Andrei Goga
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA,Department of Medicine, University of California San FranciscoSan Francisco, CA,Liver Center, University of California San FranciscoSan Francisco, CA
| |
Collapse
|
157
|
Kunz M. Oncogenes in melanoma: an update. Eur J Cell Biol 2013; 93:1-10. [PMID: 24468268 DOI: 10.1016/j.ejcb.2013.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future.
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
158
|
Ras. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
159
|
Shima F, Yoshikawa Y, Matsumoto S, Kataoka T. Discovery of small-molecule Ras inhibitors that display antitumor activity by interfering with Ras·GTP-effector interaction. Enzymes 2013; 34 Pt. B:1-23. [PMID: 25034098 DOI: 10.1016/b978-0-12-420146-0.00001-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ras proteins, particularly their active GTP-bound forms (Ras·GTP), were thought "undruggable" owing to the absence of apparent drug-accepting pockets in their crystal structures. Only recently, such pockets have been found in the crystal structures representing a novel Ras·GTP conformation. We have conducted an in silico docking screen targeting a pocket in the crystal structure of M-Ras(P40D)·GTP and obtained Kobe0065, which, along with its analogue Kobe2602, inhibits binding of H-Ras·GTP to c-Raf-1. They inhibit the growth of H-rasG12V-transformed NIH3T3 cells, which are accompanied by downregulation of not only MEK/ERK but also Akt, RalA, and Sos, indicating the blockade of interaction with multiple effectors. Moreover, they exhibit antitumor activity on a xenograft of human colon carcinoma carrying K-rasG12V. The nuclear magnetic resonance structure of a complex of the compound with H-Ras(T35S)·GTP confirms its insertion into the surface pocket. Thus, these compounds may serve as a novel scaffold for the development of Ras inhibitors with higher potency and specificity.
Collapse
Affiliation(s)
- Fumi Shima
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoko Yoshikawa
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigeyuki Matsumoto
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
160
|
Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget 2013; 4:584-99. [PMID: 23603840 PMCID: PMC3720606 DOI: 10.18632/oncotarget.965] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to V600EBRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that V600EBRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes an addiction to V600EBRAF. Finally, the senescence response associated with inhibition of V600EBRAF is rescued by overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), providing direct evidence that oncogene addiction rests on a metabolic foundation.
Collapse
|
161
|
Activated Ras as a Therapeutic Target: Constraints on Directly Targeting Ras Isoforms and Wild-Type versus Mutated Proteins. ISRN ONCOLOGY 2013; 2013:536529. [PMID: 24294527 PMCID: PMC3833460 DOI: 10.1155/2013/536529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022]
Abstract
The ability to selectively and directly target activated Ras would provide immense utility for treatment of the numerous cancers that are driven by oncogenic Ras mutations. Patients with disorders driven by overactivated wild-type Ras proteins, such as type 1 neurofibromatosis, might also benefit from progress made in that context. Activated Ras is an extremely challenging direct drug target due to the inherent difficulties in disrupting the protein:protein interactions that underlie its activation and function. Major investments have been made to target Ras through indirect routes. Inhibition of farnesyl transferase to block Ras maturation has failed in large clinical trials. Likely reasons for this disappointing outcome include the significant and underappreciated differences in the isoforms of Ras. It is still plausible that inhibition of farnesyl transferase will prove effective for disease that is driven by activated H-Ras. The principal current focus of drugs entering clinic trial is inhibition of pathways downstream of activated Ras, for example, trametinib, a first-in-class MEK inhibitor. The complexity of signaling that is driven by activated Ras indicates that effective inhibition of oncogenic transduction through this approach will be difficult, with resistance being likely to emerge through switch to parallel pathways. Durable disease responses will probably require combinatorial block of several downstream targets.
Collapse
|
162
|
Yang Q, Luo GY, Li Y, Shan HB, Wang HY, Xu GL. Expression of Rac-1 related to tumor depth, lymph node metastasis and patient prognosis in esophageal squamous cell carcinoma. Med Oncol 2013; 30:689. [PMID: 24026656 DOI: 10.1007/s12032-013-0689-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/06/2013] [Indexed: 11/30/2022]
Abstract
Rac-1, which is a member of the Rho guanosine triphosphatase (GTPase) family, has been demonstrated to play an important role in cancer invasion and metastasis. In this study, we investigated the clinical and prognostic significance of Rac-1 in esophageal squamous cell carcinoma (ESCC). The protein and messenger ribonucleic acid (mRNA) levels of Rac-1 in normal esophageal epithelia cells and paired ESCC tissues were examined by Western blot and reverse transcription polymerase chain reaction. The results showed that Rac-1 was upregulated at the protein and mRNA levels in ESCC cancerous specimens compared with normal esophageal tissues. We then examined the correlation between Rac-1 expression and clinicopathological features using immunochemical analysis of 233 surgically resected ESCC. Rac-1 protein was expressed in 228 (97.85%) cancer tissues with cytoplasm staining, and there were significant correlations between Rac-1 expression and tumor location (P = 0.045), tumor stage (P = 0.020), tumor depth (P = 0.023) and lymph node metastasis (P = 0.009). The overall survival and disease-free rates of ESCC patients with high Rac-1 expression were much lower than those with low Rac-1 expression (P < 0.001; P < 0.001, respectively). Multivariate analysis showed that high Rac-1 expression and lymph node metastasis were two independent factors for poor survival (P < 0.001; P < 0.001, respectively). The results in this study indicate, for the first time, that Rac-1 is involved in the invasion and metastatic progression of ESCC and may be a potential marker for evaluating the prognosis of ESCC patients and a therapy target for ESCC.
Collapse
Affiliation(s)
- Qing Yang
- Department of Endoscopy and Laser, Sun Yat-Sen University Cancer Center, 651Dong Feng Road, Guangzhou, 510060, China
| | | | | | | | | | | |
Collapse
|
163
|
Muñoz DM, Tung T, Agnihotri S, Singh S, Guha A, Zadeh G, Hawkins C. Loss of p53 cooperates with K-ras activation to induce glioma formation in a region-independent manner. Glia 2013; 61:1862-72. [PMID: 24038521 DOI: 10.1002/glia.22563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 11/09/2022]
Abstract
Gliomas are recognized as a heterogeneous group of neoplasms differing in their location and morphological features. These differences, between and within varying grades of gliomas, have not been explained solely on the grounds of an oncogenic stimulus. Interactions with the tumor microenvironment as well as inherent characteristics of the cell of origin are likely a source of this heterogeneity. There is an ongoing debate over the cell of origin of gliomas, where some suggest a progenitor, while others argue for a stem cell origin. Thus, it is presumed that neurogenic regions of the brain such as the subventricular zone (SVZ) containing large numbers of neural stem and progenitor populations are more susceptible to transformation. Our studies demonstrate that K-ras(G12D) cooperates with the loss of p53 to induce gliomas from both the SVZ and cortical region, suggesting that cells in the SVZ are not uniquely gliomagenic. Using combinations of doxycycline-inducible K-ras(G12D) and p53 loss, we show that tumors induced by the cooperative actions of these genes remain dependent on active K-ras expression, as deinduction of K-ras(G12D) leads to complete tumor regression despite absence of p53. These results suggest that the interplay between specific combinations of genetic alterations and susceptible cell types, rather than the site of origin, are important determinates of gliomagenesis. Additionally, this model supports the view that, although several genetic events may be necessary to confer traits associated with oncogenic transformation, inactivation of a single oncogenic partner can undermine tumor maintenance, leading to regression and disease remission.
Collapse
Affiliation(s)
- Diana Marcela Muñoz
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
164
|
Wang Y, Kaiser CE, Frett B, Li HY. Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators. J Med Chem 2013; 56:5219-30. [PMID: 23566315 PMCID: PMC4666308 DOI: 10.1021/jm3017706] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The RAS proteins play a role in cell differentiation, proliferation, and survival. Aberrant RAS signaling has been found to play a role in 30% of all cancers. KRAS, a key member of the RAS protein family, is an attractive cancer target, as frequent point mutations in the KRAS gene render the protein constitutively active. A number of attempts have been made to target aberrant KRAS signaling by identifying small molecule compounds that (1) are synthetic lethal to mutant KRAS, (2) block KRAS/GEF interactions, (3) inhibit downstream KRAS effectors, or (4) inhibit the post-translational processing of RAS proteins. In addition, inhibition of novel targets outside the main KRAS signaling pathway, specifically the cell cycle related kinase PLK1, has been shown have an effect in cells that harbor mutant KRAS. Herein we review the use of various high-throughput screening assays utilized to identify new small-molecule compounds capable of targeting mutant KRAS-driven cancers.
Collapse
Affiliation(s)
- Yuanxiang Wang
- Department of Pharmacoloy and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, The University of Arizona, 1580 Hanley Boulevard, Oro Valley, Arizona 85737, United States
| | - Christine E. Kaiser
- Department of Pharmacoloy and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Brendan Frett
- Department of Pharmacoloy and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, The University of Arizona, 1580 Hanley Boulevard, Oro Valley, Arizona 85737, United States
| | - Hong-yu Li
- Department of Pharmacoloy and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, The University of Arizona, 1580 Hanley Boulevard, Oro Valley, Arizona 85737, United States
| |
Collapse
|
165
|
Petrelli F, Coinu A, Cabiddu M, Ghilardi M, Barni S. KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials. Med Oncol 2013; 30:650. [PMID: 23828442 DOI: 10.1007/s12032-013-0650-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/23/2013] [Indexed: 01/12/2023]
Abstract
The significance of KRAS in advanced colorectal cancer (CRC) treated with bevacizumab (B) is not well understood. We conducted a systematic review and pooled analysis of published trials with the aim to assess the predictive and prognostic role of KRAS status in patients treated with B. We performed a systematic search of PubMed, EMBASE, Web of Science, and Cochrane Register of Controlled Trials. The primary endpoints included objective response rate (RR), progression-free survival (PFS), and overall survival (OS). The odds ratio (OR) for RR and hazard ratios (HRs) were calculated or extracted by published data either using a fixed effect model or a random effect model. A total of 12 studies were included. A total of 2,266 patients were analysed (54 % were KRAS wt). The pooled RRs for KRAS wild-type (wt) versus mutated (mut) patients were 54.8 and 48.3 %, respectively (OR 1.42, P = 0.02). Median PFS was significantly longer in KRAS wt patients compared with that in KRAS mut patients (HR = 0.85; 95 % confidence interval (CI) 0.74-0.98; P = 0.02). Similarly, median OS was significantly better in wt KRAS patients compared with that in mut KRAS patients (HR = 0.65; 95 % CI 0.46-0.92; P = 0.01). This pooled analysis of 12 published studies shows that KRAS wt status is a good prognostic factor for B-based chemotherapy. Also, KRAS wt CRC is associated with a better RR with B plus chemotherapy than mut counterpart.
Collapse
Affiliation(s)
- Fausto Petrelli
- Medical Oncology Unit, Oncology Department, Azienda Ospedaliera Treviglio, Piazzale Ospedale 1, 24047 Treviglio (BG), Italy.
| | | | | | | | | |
Collapse
|
166
|
Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153:320-34. [PMID: 23582323 DOI: 10.1016/j.cell.2013.03.036] [Citation(s) in RCA: 2231] [Impact Index Per Article: 185.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/25/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022]
Abstract
Chromatin regulators have become attractive targets for cancer therapy, but it is unclear why inhibition of these ubiquitous regulators should have gene-specific effects in tumor cells. Here, we investigate how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition of the MYC oncogene in multiple myeloma (MM). BRD4 and Mediator were found to co-occupy thousands of enhancers associated with active genes. They also co-occupied a small set of exceptionally large super-enhancers associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impacted genes with super-enhancers, including MYC. Super-enhancers were found at key oncogenic drivers in many other tumor cells. These observations have implications for the discovery of cancer therapeutics directed at components of super-enhancers in diverse tumor types.
Collapse
Affiliation(s)
- Jakob Lovén
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
van der Weyden L, Adams DJ. Cancer of mice and men: old twists and new tails. J Pathol 2013; 230:4-16. [PMID: 23436574 DOI: 10.1002/path.4184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 01/28/2013] [Accepted: 02/16/2013] [Indexed: 12/18/2022]
Abstract
In this review we set out to celebrate the contribution that mouse models of human cancer have made to our understanding of the fundamental mechanisms driving tumourigenesis. We take the opportunity to look forward to how the mouse will be used to model cancer and the tools and technologies that will be applied, and indulge in looking back at the key advances the mouse has made possible.
Collapse
|
168
|
Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat Med 2013; 19:924-9. [PMID: 23749232 DOI: 10.1038/nm.3194] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 04/11/2013] [Indexed: 12/14/2022]
Abstract
During wound healing, stem cells provide functional mature cells to meet acute demands for tissue regeneration. Simultaneously, the tissue must maintain a pool of stem cells to sustain its future regeneration capability. However, how these requirements are balanced in response to injury is unknown. Here we demonstrate that after wounding or ultraviolet type B irradiation, melanocyte stem cells (McSCs) in the hair follicle exit the stem cell niche before their initial cell division, potentially depleting the pool of these cells. We also found that McSCs migrate to the epidermis in a melanocortin 1 receptor (Mc1r)-dependent manner and differentiate into functional epidermal melanocytes, providing a pigmented protective barrier against ultraviolet irradiation over the damaged skin. These findings provide an example in which stem cell differentiation due to injury takes precedence over stem cell maintenance and show the potential for developing therapies for skin pigmentation disorders by manipulating McSCs.
Collapse
|
169
|
Rimessi A, Marchi S, Patergnani S, Pinton P. H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 2013; 33:2329-40. [DOI: 10.1038/onc.2013.192] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 02/08/2023]
|
170
|
di Magliano MP, Logsdon CD. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology 2013; 144:1220-9. [PMID: 23622131 PMCID: PMC3902845 DOI: 10.1053/j.gastro.2013.01.071] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 12/16/2022]
Abstract
The Kras gene is mutated to an oncogenic form in most pancreatic tumors. However, early attempts to use this molecule as a specific biomarker of the disease, or inhibit its activity as a cancer therapy, failed. This left a situation in which everyone was aware of the association between this important oncogene and pancreatic cancer, but no one knew what to do about it. Recent findings have changed this picture-many assumptions made about KRAS and its role in pancreatic cancer were found to be incorrect. Several factors have contributed to increased understanding of the activities of KRAS, including creation of genetically engineered mouse models, which have allowed for detailed analyses of pancreatic carcinogenesis in an intact animal with a competent immune system. Cancer genome sequencing projects have increased our understanding of the heterogeneity of individual tumors. We also have a better understanding of which oncogenes are important for tumor maintenance and are therefore called "drivers." We review the advances and limitations of our knowledge about the role of Kras in development of pancreatic cancers and the important areas for future research.
Collapse
Affiliation(s)
| | - Craig D. Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas,Department of Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
171
|
Function of oncogenes in cancer development: a changing paradigm. EMBO J 2013; 32:1502-13. [PMID: 23632857 DOI: 10.1038/emboj.2013.97] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/09/2013] [Indexed: 12/27/2022] Open
Abstract
Tumour-associated oncogenes induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumour cells. However, recent evidences have revealed that oncogenes are only essential for the proliferation of some specific tumour cell types, but not all. Indeed, the latest studies of the interactions between the oncogene and its target cell have shown that oncogenes contribute to cancer development not only by inducing proliferation but also by developmental reprogramming of the epigenome. This provides the first evidence that tumorigenesis can be initiated by stem cell reprogramming, and uncovers a new role for oncogenes in the origin of cancer. Here we analyse these evidences and propose an updated model of oncogene function that can explain the full range of genotype-phenotype associations found in human cancer. Finally, we discuss how this vision opens new avenues for developing novel anti-cancer interventions.
Collapse
|
172
|
In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc Natl Acad Sci U S A 2013; 110:8182-7. [PMID: 23630290 DOI: 10.1073/pnas.1217730110] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutational activation of the Ras oncogene products (H-Ras, K-Ras, and N-Ras) is frequently observed in human cancers, making them promising anticancer drug targets. Nonetheless, no effective strategy has been available for the development of Ras inhibitors, partly owing to the absence of well-defined surface pockets suitable for drug binding. Only recently, such pockets have been found in the crystal structures of a unique conformation of Ras⋅GTP. Here we report the successful development of small-molecule Ras inhibitors by an in silico screen targeting a pocket found in the crystal structure of M-Ras⋅GTP carrying an H-Ras-type substitution P40D. The selected compound Kobe0065 and its analog Kobe2602 exhibit inhibitory activity toward H-Ras⋅GTP-c-Raf-1 binding both in vivo and in vitro. They effectively inhibit both anchorage-dependent and -independent growth and induce apoptosis of H-ras(G12V)-transformed NIH 3T3 cells, which is accompanied by down-regulation of downstream molecules such as MEK/ERK, Akt, and RalA as well as an upstream molecule, Son of sevenless. Moreover, they exhibit antitumor activity on a xenograft of human colon carcinoma SW480 cells carrying the K-ras(G12V) gene by oral administration. The NMR structure of a complex of the compound with H-Ras⋅GTP(T35S), exclusively adopting the unique conformation, confirms its insertion into one of the surface pockets and provides a molecular basis for binding inhibition toward multiple Ras⋅GTP-interacting molecules. This study proves the effectiveness of our strategy for structure-based drug design to target Ras⋅GTP, and the resulting Kobe0065-family compounds may serve as a scaffold for the development of Ras inhibitors with higher potency and specificity.
Collapse
|
173
|
Noncanonical roles of the immune system in eliciting oncogene addiction. Curr Opin Immunol 2013; 25:246-58. [PMID: 23571026 DOI: 10.1016/j.coi.2013.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 02/08/2023]
Abstract
Cancer is highly complex. The magnitude of this complexity makes it highly surprising that even the brief suppression of an oncogene can sometimes result in rapid and sustained tumor regression, illustrating that cancers can be 'oncogene addicted' [1-10]. The essential implication is that oncogenes may not only fuel the initiation of tumorigenesis, but in some cases must be excessively activated to maintain a neoplastic state [11]. Oncogene suppression acutely restores normal physiological programs that effectively overrides secondary genetic events and a cancer collapses [12,13]. Oncogene addiction is the description of the dramatic and sustained regression of some cancers upon the specific inactivation of a single oncogene [1-13,14(••),15,16(••)], that can occur through tumor intrinsic [1,2,4,12], but also host immune mechanisms [17-23]. Notably, oncogene inactivation elicits a host immune response that involves specific immune effectors and cytokines that facilitate a remodeling of the tumor microenvironment including the shut down of angiogenesis and the induction of cellular senescence of tumor cells [16(••)]. Hence, immune effectors are not only critically involved in tumor prevention, initiation [17-19], and progression [20], but also appear to be essential to tumor regression upon oncogene inactivation [21,22(••),23(••)]. Understanding how the inactivation of an oncogene elicits a systemic signal in the host that prompts a deconstruction of a tumor could have important implications. The combination of oncogene-targeted therapy together with immunomodulatory therapy may be ideal for the development of both robust tumor intrinsic and immunological responses, effectively leading to sustained tumor regression.
Collapse
|
174
|
Bellovin DI, Das B, Felsher DW. Tumor dormancy, oncogene addiction, cellular senescence, and self-renewal programs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:91-107. [PMID: 23143977 DOI: 10.1007/978-1-4614-1445-2_6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancers are frequently addicted to initiating oncogenes that elicit aberrant cellular proliferation, self-renewal, and apoptosis. Restoration of oncogenes to normal physiologic regulation can elicit dramatic reversal of the neoplastic phenotype, including reduced proliferation and increased apoptosis of tumor cells (Science 297(5578):63-64, 2002). In some cases, oncogene inactivation is associated with compete elimination of a tumor. However, in other cases, oncogene inactivation induces a conversion of tumor cells to a dormant state that is associated with cellular differentiation and/or loss of the ability to self-replicate. Importantly, this dormant state is reversible, with tumor cells regaining the ability to self-renew upon oncogene reactivation. Thus, understanding the mechanism of oncogene inactivation-induced dormancy may be crucial for predicting therapeutic outcome of targeted therapy. One important mechanistic insight into tumor dormancy is that oncogene addiction might involve regulation of a decision between self-renewal and cellular senescence. Recent evidence suggests that this decision is regulated by multiple mechanisms that include tumor cell-intrinsic, cell-autonomous mechanisms and host-dependent, tumor cell-non-autonomous programs (Mol Cell 4(2):199-207, 1999; Science 297(5578):102-104, 2002; Nature 431(7012):1112-1117, 2004; Proc Natl Acad Sci U S A 104(32):13028-13033, 2007). In particular, the tumor microenvironment, which is known to be critical during tumor initiation (Cancer Cell 7(5):411-423, 2005; J Clin Invest 121(6):2436-2446, 2011), prevention (Nature 410(6832):1107-1111, 2001), and progression (Cytokine Growth Factor Rev 21(1):3-10, 2010), also appears to dictate when oncogene inactivation elicits the permanent loss of self-renewal through induction of cellular senescence (Nat Rev Clin Oncol 8(3):151-160, 2011; Science 313(5795):1960-1964, 2006; N Engl J Med 351(21):2159-21569, 2004). Thus, oncogene addiction may be best modeled as a consequence of the interplay amongst cell-autonomous and host-dependent programs that define when a therapy will result in tumor dormancy.
Collapse
Affiliation(s)
- David I Bellovin
- Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305-5151, USA
| | | | | |
Collapse
|
175
|
Abstract
Lung cancer is a heterogeneous group of disorders that is now being subdivided into molecular subtypes with dedicated targeted therapies. The MET receptor tyrosine kinase has been identified as aberrantly overexpressed, potentially having activating mutations, and amplified in certain subsets of lung cancers. The ligand hepatocyte growth factor (HGF) can also be overexpressed in lung cancer or expressed in stroma, and both the MET receptor and the HGF ligand can be targets for therapeutics, especially in lung cancer. Activation of MET leads to a plethora of biochemical and biologic changes both in normal and cancerous cells. Preclinically, it has been shown that silencing or inactivating MET leads to decreased viability of cancer cells. There are a number of compounds against MET/HGF in clinical trials that have been shown to be active in lung cancers. This review will summarize the biology of MET as well as its therapeutic inhibition in lung cancer.
Collapse
Affiliation(s)
| | - Ravi Salgia
- All authors: University of Chicago, Chicago, IL
| |
Collapse
|
176
|
Wardwell-Ozgo J, Dogruluk T, Gifford A, Zhang Y, Heffernan TP, van Doorn R, Creighton CJ, Chin L, Scott KL. HOXA1 drives melanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome. Oncogene 2013; 33:1017-26. [PMID: 23435427 PMCID: PMC3982326 DOI: 10.1038/onc.2013.30] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 12/05/2012] [Accepted: 12/27/2012] [Indexed: 12/30/2022]
Abstract
Metastatic melanoma is a highly lethal disease notorious for its aggressive clinical course and eventual resistance to existing therapies. Currently we possess a limited understanding of the genetic events driving melanoma progression, and much effort is focused on identifying pro-metastatic aberrations or perturbed signaling networks that constitute new therapeutic targets. In this study, we validate and assess the mechanism by which homeobox transcription factor A1 (HOXA1), a pro-invasion oncogene previously identified in a metastasis screen by our group, contributes to melanoma progression. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveals up-regulation of factors involved in diverse cytokine pathways that include the TGFβ signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion in melanoma cells. Transcriptome profiling also shows HOXA1’s ability to potently down-regulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive cell state concomitant with TGFβ activation. Our analysis of publicly available datasets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors. Together, these validation data and mechanistic insights suggest that patients whose primary tumors express HOXA1 are among a high-risk metastasis subgroup that should be considered for anti-TGFβ therapy in adjuvant settings. Moreover, further analysis of HOXA1 target genes in melanoma may reveal new pathways or targets amenable to therapeutic intervention.
Collapse
Affiliation(s)
- J Wardwell-Ozgo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - T Dogruluk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - A Gifford
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Y Zhang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - T P Heffernan
- Institute for Applied Cancer Science, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - R van Doorn
- Department of Dermatology; Leiden University Medical Center, Leiden, The Netherlands
| | - C J Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - L Chin
- 1] Institute for Applied Cancer Science, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA [2] Department of Genomic Medicine, Houston, TX, USA
| | - K L Scott
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
177
|
Abstract
The PI3K-PTEN-AKT signaling pathway is involved in various cellular activities, including proliferation, migration, cell growth, cell survival and differentiation during adult homeostasis as well as in tumorigenesis. It has been suggested that the constitutive activation of PI3K/AKT signaling with concurrent loss of function of the tumor suppressor molecule PTEN contributes to cancer formation. Members of the PI3K-PTEN-AKT pathway, including these proteins and mTOR, are altered in melanoma tumors and cell lines. A hallmark of activation of the pathway is the loss of function of PTEN. Indeed, loss of heterozygosity of PTEN has been observed in approximately 30% of human melanomas, implicating this signaling pathway in this cancer. PI3K signaling activation, via loss of PTEN function, can inhibit proapoptotic genes such as the FoxO family of transcription factors, while inducing cell growth- and cell survival-related elements such as p70S6K and AKT. Determining how the PI3K-PTEN-AKT signaling pathway, alone or in cooperation with other pathways, orchestrates the induction of target genes involved in a diverse range of activities is a major challenge in research into melanoma initiation and progression. Moreover, the acquisition of basic knowledge will help patient management with appropriate therapies that are already, or will shortly be, on the market.
Collapse
Affiliation(s)
- Alejandro Conde-Perez
- Institut Curie, Developmental Genetics of Melanocytes, Bat. 110, 91405, Orsay, France
| | | |
Collapse
|
178
|
Swisher CL, Larson PEZ, Kruttwig K, Kerr AB, Hu S, Bok RA, Goga A, Pauly JM, Nelson SJ, Kurhanewicz J, Vigneron DB. Quantitative measurement of cancer metabolism using stimulated echo hyperpolarized carbon-13 MRS. Magn Reson Med 2013; 71:1-11. [PMID: 23412881 DOI: 10.1002/mrm.24634] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/28/2012] [Accepted: 12/19/2012] [Indexed: 01/01/2023]
Abstract
PURPOSE Magnetic resonance spectroscopy of hyperpolarized substrates allows for the observation of label exchange catalyzed by enzymes providing a powerful tool to investigate tissue metabolism and potentially kinetics in vivo. However, the accuracy of current methods to calculate kinetic parameters has been limited by T1 relaxation effects, extracellular signal contributions, and reduced precision at lower signal-to-noise ratio. THEORY AND METHODS To address these challenges, we investigated a new modeling technique using metabolic activity decomposition-stimulated echo acquisition mode. The metabolic activity decomposition-stimulated echo acquisition mode technique separates exchanging from nonexchanging metabolites providing twice the information as conventional techniques. RESULTS This allowed for accurate measurements of rates of conversion and of multiple T1 values simultaneously using a single acquisition. CONCLUSION The additional measurement of T1 values for the reaction metabolites provides further biological information about the cellular environment of the metabolites. The new technique was investigated through simulations and in vivo studies of transgenic mouse models of cancer demonstrating improved assessments of kinetic rate constants and new T1 relaxation value measurements for hyperpolarized (13) C-pyruvate, (13) C-lactate, and (13) C-alanine.
Collapse
Affiliation(s)
- Christine Leon Swisher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
Genomic variation is a trend observed in various human diseases including cancer. Genetic studies have set out to understand how and why these variations result in cancer, why some populations are pre-disposed to the disease, and also how genetics affect drug responses. The melanoma incidence has been increasing at an alarming rate worldwide. The burden posed by melanoma has made it a necessity to understand the fundamental signaling pathways involved in this deadly disease. Signaling cascades such as mitogen-activated protein kinase and PI3K/AKT have been shown to be crucial in the regulation of processes that are commonly dysregulated during cancer development such as aberrant proliferation, loss of cell cycle control, impaired apoptosis, and altered drug metabolism. Understanding how these and other oncogenic pathways are regulated has been integral in our challenge to develop potent anti-melanoma drugs. With advances in technology and especially in next generation sequencing, we have been able to explore melanoma genomes and exomes leading to the identification of previously unknown genes with functions in melanomagenesis such as GRIN2A and PREX2. The therapeutic potential of these novel candidate genes is actively being pursued with some presenting as druggable targets while others serve as indicators of therapeutic responses. In addition, the analysis of the mutational signatures of melanoma tumors continues to cement the causative role of UV exposure in melanoma pathogenesis. It has become distinctly clear that melanomas from sun-exposed skin areas have distinct mutational signatures including C to T transitions indicative of UV-induced damage. It is thus necessary to continue spreading awareness on how to decrease the risk factors of developing the disease while at the same time working for a cure. Given the large amount of information gained from these sequencing studies, it is likely that in the future, treatment of melanoma will follow a highly personalized route that takes into account the differential mutational signatures of each individual’s cancer.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | | |
Collapse
|
180
|
Genetically engineered animal models for in vivo target identification and validation in oncology. Methods Mol Biol 2013; 986:281-305. [PMID: 23436419 DOI: 10.1007/978-1-62703-311-4_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vitro approaches using human cancer cell lines aimed to identify and validate oncology targets, have pinpointed a number of key targets and signalling pathways which control cell growth and cell death. However, tumors are more than insular masses of proliferating cancer cells. Instead they are complex tissues composed of multiple distinct cell types that participate in homotypic and heterotypic interactions and depend upon each other for their growth. Therefore, many targets in oncology need to be validated in the context of the whole animal. This review provides an overview on how animal models can be generated and used for target identification and validation in vivo.
Collapse
|
181
|
Evans MS, Madhunapantula SV, Robertson GP, Drabick JJ. Current and future trials of targeted therapies in cutaneous melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:223-55. [PMID: 23288642 DOI: 10.1007/978-1-4614-6176-0_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to effectively treat melanoma, targeted inhibition of key m-echanistic events regulating melanoma development such as cell proliferation, survival, angiogenesis and invasion or metastasis needs to be accomplished. The Mitogen Activated Protein Kinase (MAPK) pathway has been identified as a key player in melanoma development making this cascade an important therapeutic target. However, identification of the ideal pathway member to therapeutically target for maximal clinical benefit remains a challenge. In normal cells, the MAPK pathway relays extracellular signals from the cell membrane to the nucleus via a cascade of phosphorylation events, which promote cancer development. Dysregulation of the MAPK pathway occurs frequently in many human cancers including melanoma. Mutations in the B-RAF and RAS genes, genetic or epigenetic modifications are the key aberrations observed in this signaling cascade. Constitutive activation of this pathway causes oncogenic transformation of cells by promoting cell proliferation, invasion, metastasis, migration, survival and angiogenesis. This review provides an overview of (a) key members of MAPK signaling regulating melanoma development; (b) key proteins which can serve as biomarkers to assess disease progression; (c) the clinical efficacy of various pharmacological agents targeting MAPK pathway; (d) current clinical trials evaluating downstream targets of the MAPK pathway; (e) issues associated with pharmacological agents such as drug resistance, induction of cancers; and finally (e) various strategies overcoming drug resistance.
Collapse
Affiliation(s)
- Matthew S Evans
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
182
|
Sugar-Based Inhibitors of Ras Activation. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-416749-0.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
183
|
Auphan-Anezin N, Verdeil G, Grange M, Soudja SM, Wehbe M, Buferne M, Mas A, Schmitt-Verhulst AM. Immunosuppression in inflammatory melanoma: can it be resisted by adoptively transferred T cells? Pigment Cell Melanoma Res 2012; 26:167-75. [PMID: 23217139 DOI: 10.1111/pcmr.12056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/28/2012] [Indexed: 01/05/2023]
Abstract
Discovery of tumor antigen (TA) recognized by autologous T cells (TCs) in patients with melanoma has led to clinical protocols using either vaccination or adoptive transfer of TA-specific TCs. However, efficacy of these treatments has been hampered by inhibitory effects exerted on tumor-infiltrating TCs by tumor-intrinsic mediators or by recruitment of immunosuppressive cells. A mouse model of autochthonous melanoma recapitulates some aspects of inflammatory melanoma development in patients. These include a systemic Th2-/Th17-oriented chronic inflammation, recruitment of immunosuppressive myeloid cells and acquisition by tumor-infiltrating TCs of an 'exhausted' phenotype characterized by expression of multiple inhibitory receptors including programmed death-1, also expressed on patients' melanoma-infiltrating TCs. Rather than using extracellular blocking reagents to inhibitory surface molecules on TCs, we sought to dampen negative signaling exerted on them. Adoptively transferred TCs presenting increased cytokine receptor signaling due to expression of an active Stat5 transcription factor were efficient at inducing melanoma regression in the preclinical melanoma model. These transferred TCs thrived and retained expression of effector molecules in the melanoma microenvironment, defining a protocol endowing TCs with the ability to resist melanoma-induced immunosuppression.
Collapse
Affiliation(s)
- Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM2, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Harris ML, Pavan WJ. Postnatal lineage mapping of follicular melanocytes with the Tyr::CreER(T) (2) transgene. Pigment Cell Melanoma Res 2012; 26:269-74. [PMID: 23176440 DOI: 10.1111/pcmr.12048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/15/2012] [Indexed: 11/28/2022]
Abstract
One of the main advantages of using inducible and conditional transgenes to study pigment cell biology is that they allow for genetic manipulation within melanocytes after roles in general neural crest or melanoblast development have been fulfilled. Specifically, we focus here on the ability of the Tyr::CreER(T) (2) transgenic line to alter genes within follicular melanocytes postnatally. Using the Gt(ROSA)26Sor(tm1sor) reporter allele, we present in detail the expression and activity of Tyr::CreER(T) (2) when induced during hair morphogenesis and adult hair cycling. We find that despite similarities in expression pattern to endogenous TYR, Tyr::CreER(T) (2) is effective at targeting both undifferentiated and differentiated melanocytes within the hair follicle. We also find that Tyr::CreER(T) (2) provides the highest levels of recombination when induced during the early phases of hair growth. In conclusion, the descriptions provided here will guide future analyses of gene function within the melanocyte system of the hair follicle when using this Tyr::CreER(T) (2) transgene.
Collapse
Affiliation(s)
- Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
185
|
Collins MA, Brisset JC, Zhang Y, Bednar F, Pierre J, Heist KA, Galbán CJ, Galbán S, di Magliano MP. Metastatic pancreatic cancer is dependent on oncogenic Kras in mice. PLoS One 2012; 7:e49707. [PMID: 23226501 PMCID: PMC3513322 DOI: 10.1371/journal.pone.0049707] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 10/12/2012] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is one of the deadliest human malignancies, and its prognosis has not improved over the past 40 years. Mouse models that spontaneously develop pancreatic adenocarcinoma and mimic the progression of the human disease are emerging as a new tool to investigate the basic biology of this disease and identify potential therapeutic targets. Here, we describe a new model of metastatic pancreatic adenocarcinoma based on pancreas-specific, inducible and reversible expression of an oncogenic form of Kras, together with pancreas-specific expression of a mutant form of the tumor suppressor p53. Using high-resolution magnetic resonance imaging to follow individual animals in longitudinal studies, we show that both primary and metastatic lesions depend on continuous Kras activity for their maintenance. However, re-activation of Kras* following prolonged inactivation leads to rapid tumor relapse, raising the concern that Kras*-resistance might eventually be acquired. Thus, our data identifies Kras* as a key oncogene in pancreatic cancer maintenance, but raises the possibility of acquired resistance should Kras inhibitors become available for use in pancreatic cancer.
Collapse
Affiliation(s)
- Meredith A. Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jean-Christophe Brisset
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Josette Pierre
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin A. Heist
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Craig J. Galbán
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stefanie Galbán
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marina Pasca di Magliano
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
186
|
Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One 2012; 7:e50973. [PMID: 23226552 PMCID: PMC3513308 DOI: 10.1371/journal.pone.0050973] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/29/2012] [Indexed: 01/27/2023] Open
Abstract
During metastasis, cancer cells enter the circulation in order to gain access to distant tissues, but how this fluid microenvironment influences cancer cell biology is poorly understood. A longstanding view is that circulating cancer cells derived from solid tissues may be susceptible to damage from hemodynamic shear forces, contributing to metastatic inefficiency. Here we report that compared to non-transformed epithelial cells, transformed cells are remarkably resistant to fluid shear stress (FSS) in a microfluidic protocol, exhibiting a biphasic decrease in viability when subjected to a series of millisecond pulses of high FSS. We show that magnitude of FSS resistance is influenced by several oncogenes, is an adaptive and transient response triggered by plasma membrane damage and requires extracellular calcium and actin cytoskeletal dynamics. This novel property of malignant cancer cells may facilitate hematogenous metastasis and indicates, contrary to expectations, that cancer cells are quite resistant to destruction by hemodynamic shear forces.
Collapse
Affiliation(s)
- J. Matthew Barnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jones T. Nauseef
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
187
|
Abstract
The transforming effects of proto-oncogenes such as MYC that mediate unrestrained cell proliferation are countered by "intrinsic tumor suppressor mechanisms" that most often trigger apoptosis. Therefore, cooperating genetic or epigenetic effects to suppress apoptosis (e.g., overexpression of BCL2) are required to enable the dual transforming processes of unbridled cell proliferation and robust suppression of apoptosis. Certain oncogenes such as BCR-ABL are capable of concomitantly mediating the inhibition of apoptosis and driving cell proliferation and therefore are less reliant on cooperating lesions for transformation. Accordingly, direct targeting of BCR-ABL through agents such as imatinib have profound antitumor effects. Other oncoproteins such as MYC rely on the anti-apoptotic effects of cooperating oncoproteins such as BCL2 to facilitate tumorigenesis. In these circumstances, where the primary oncogenic driver (e.g., MYC) cannot yet be therapeutically targeted, inhibition of the activity of the cooperating antiapoptotic protein (e.g., BCL2) can be exploited for therapeutic benefit.
Collapse
|
188
|
Anders K, Blankenstein T. Molecular pathways: comparing the effects of drugs and T cells to effectively target oncogenes. Clin Cancer Res 2012. [PMID: 23197254 DOI: 10.1158/1078-0432.ccr-12-3017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutant cancer-driving oncogenes are the best therapeutic targets, both with drugs like small-molecule inhibitors (SMI) and adoptive T-cell therapy (ATT), the most effective form of immunotherapy. Cancer cell survival often depends on oncogenes, which implies that they are homogeneously expressed by all cancer cells and are difficult to select against. Mutant oncogene-directed therapy is relatively selective, as it targets preferentially the oncogene-expressing cancer cells. Both SMI and ATT can be highly effective in relevant preclinical models as well as selected clinical situations, and both share the risk of therapy resistance, facilitated by the frequent genetic instability of cancer cells. Recently, both therapies were compared in the same experimental model targeting the same oncogene. It showed that the oncogene-inactivating drug selected resistant clones, leading eventually to tumor relapse, whereas ATT eradicated large established tumors completely. The mode of tumor destruction likely explained the different outcome with only ATT destroying the tumor vasculature. Elucidating the cellular and molecular mechanisms responsible for tumor regression and relapse will define optimal conditions for the clinic. We argue that the ideal conditions of ATT in the experimental cancer model can be translated to individuals with cancer.
Collapse
Affiliation(s)
- Kathleen Anders
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, Berlin, Germany
| | | |
Collapse
|
189
|
Orgaz JL, Sanz-Moreno V. Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell Melanoma Res 2012; 26:39-57. [PMID: 23095214 DOI: 10.1111/pcmr.12041] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/22/2012] [Indexed: 01/05/2023]
Abstract
Metastatic cutaneous melanoma accounts for the majority of skin cancer deaths due to its aggressiveness and high resistance to current therapies. To efficiently metastasize, invasive melanoma cells need to change their cytoskeletal organization and alter contacts with the extracellular matrix and the surrounding stromal cells. Melanoma cells can use different migratory strategies depending on varying environments to exit the primary tumour mass and invade surrounding and later distant tissues. In this review, we have focused on tumour cell plasticity or the interconvertibility that melanoma cells have as one of the factors that contribute to melanoma metastasis. This has been an area of very intense research in the last 5 yr yielding a vast number of findings. We have therefore reviewed all the possible clinical opportunities that this new knowledge offers to both stratify and treat cutaneous malignant melanoma patients.
Collapse
Affiliation(s)
- Jose L Orgaz
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | |
Collapse
|
190
|
Gunderson AJ, Mohammed J, Horvath FJ, Podolsky MA, Anderson CR, Glick AB. CD8(+) T cells mediate RAS-induced psoriasis-like skin inflammation through IFN-γ. J Invest Dermatol 2012; 133:955-63. [PMID: 23151849 PMCID: PMC3577939 DOI: 10.1038/jid.2012.390] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The RAS signaling pathway is constitutively activated in psoriatic keratinocytes. We expressed activated H-RASV12G in suprabasal keratinocytes of adult mice and observed rapid development of a psoriasis-like skin phenotype characterized by basal keratinocyte hyperproliferation, acanthosis, hyperkeratosis, intraepidermal neutrophil microabscesses and increased Th1/Th17 and Tc1/Tc17 skin infiltration. The majority of skin infiltrating CD8+ T cells co-expressed IFN-γ and IL-17A. When RAS was expressed on a Rag1−/− background, microabscess formation, iNOS expression and keratinocyte hyperproliferation were suppressed. Depletion of CD8+ but not CD4+ T cells reduced cutaneous and systemic inflammation, the RAS-induced increase in cutaneous Th17 and IL-17+ γΔ T cells, and epidermal hyperproliferation to levels similar to a Rag1−/− background. Reconstitution of Rag1−/− inducible RAS mice with purified CD8+ T cells restored microabscess formation and epidermal hyperproliferation. Neutralization of IFN-γ but not IL-17A in CD8+ T cell reconstituted Rag1−/− mice expressing RAS blocked CD8-mediated skin inflammation, iNOS expression and keratinocyte hyperproliferation. These results show for that CD8+ T cells can orchestrate skin inflammation with psoriasis-like pathology in response to constitutive RAS activation in keratinocytes, and this is primarily mediated through IFN-γ.
Collapse
|
191
|
Abstract
Studies of cell lines and of animal models of pancreatic cancer have raised a number of provocative questions about the nature and origins of human pancreatic cancer and have provided several leads into exciting new approaches for the treatment of this deadly cancer. In addition, clinicians with little or no contact with human pathology have challenged the way that pancreatic pathology is practiced, suggesting that "genetic signals" may be more accurate than today's multimodal approach to diagnoses. In this review, we consider 8 provocative issues in pancreas pathology, with an emphasis on "the evidence derived from man."
Collapse
|
192
|
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although CDK4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development, and tumorigenesis as well as how small molecule inhibitors of CDK4 can be used to treat disease.
Collapse
|
193
|
Bashir T, Cloninger C, Artinian N, Anderson L, Bernath A, Holmes B, Benavides-Serrato A, Sabha N, Nishimura RN, Guha A, Gera J. Conditional astroglial Rictor overexpression induces malignant glioma in mice. PLoS One 2012; 7:e47741. [PMID: 23077666 PMCID: PMC3471885 DOI: 10.1371/journal.pone.0047741] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022] Open
Abstract
Background Hyperactivation of the mTORC2 signaling pathway has been shown to contribute to the oncogenic properties of gliomas. Moreover, overexpression of the mTORC2 regulatory subunit Rictor has been associated with increased proliferation and invasive character of these tumor cells. Methodology/Principal Findings To determine whether Rictor overexpression was sufficient to induce glioma formation in mice, we inserted a Cre-lox-regulated human Rictor transgene into the murine ROSA26 locus. This floxed Rictor strain was crossed with mice expressing the Cre recombinase driven from the glial fibrillary acidic protein (GFAP) promoter whose expression is limited to the glial cell compartment. Double transgenic GFAP-Cre/RictorloxP/loxP mice developed multifocal infiltrating glioma containing elevated mTORC2 activity and typically involved the subventricular zone (SVZ) and lateral ventricle. Analysis of Rictor-dependent signaling in these tumors demonstrated that in addition to elevated mTORC2 activity, an mTORC2-independent marker of cortical actin network function, was also elevated. Upon histological examination of the neoplasms, many displayed oligodendroglioma-like phenotypes and expressed markers associated with oligodendroglial lineage tumors. To determine whether upstream oncogenic EGFRvIII signaling would alter tumor phenotypes observed in the GFAP-Cre/RictorloxP/loxP mice, transgenic GFAP-EGFRvIII; GFAP-Cre/RictorloxP/loxP mice were generated. These mice developed mixed astrocytic-oligodendroglial tumors, however glioma formation was accelerated and correlated with increased mTORC2 activity. Additionally, the subventricular zone within the GFAP-Cre/RictorloxP/loxP mouse brain was markedly expanded, and a further proliferation within this compartment of the brain was observed in transgenic GFAP-EGFRvIII; GFAP-Cre/RictorloxP/loxP mice. Conclusion/Significance These data collectively establish Rictor as a novel oncoprotein and support the role of dysregulated Rictor expression in gliomagenesis via mTOR-dependent and mTOR-independent mechanisms. Furthermore, oncogenic EGFRvIII signaling appears to potentiate the in vivo proliferative capacity of GFAP-Cre/RictorloxP/loxP gliomas.
Collapse
Affiliation(s)
- Tariq Bashir
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
| | - Cheri Cloninger
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
| | - Nicholas Artinian
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
| | - Lauren Anderson
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
| | - Andrew Bernath
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
| | - Brent Holmes
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
| | - Angelica Benavides-Serrato
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
| | - Nesrin Sabha
- Labatt Brain Tumor Research Centre, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Robert N. Nishimura
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Abhijit Guha
- Labatt Brain Tumor Research Centre, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Gera
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
194
|
Hindriksen S, Bijlsma MF. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors. Cancers (Basel) 2012; 4:989-1035. [PMID: 24213498 PMCID: PMC3712732 DOI: 10.3390/cancers4040989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
195
|
Sacco E, Spinelli M, Vanoni M. Approaches to Ras signaling modulation and treatment of Ras-dependent disorders: a patent review (2007--present). Expert Opin Ther Pat 2012; 22:1263-87. [PMID: 23009088 DOI: 10.1517/13543776.2012.728586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Ras proteins are small GTPases molecular switches that cycle through two alternative conformational states, a GDP-bound inactive state and a GTP-bound active state. In the active state, Ras proteins interact with and modulate the activity of several downstream effectors regulating key cellular processes including proliferation, differentiation, survival, senescence, migration and metabolism. Activating mutations of RAS genes and of genes encoding Ras signaling members have a great incidence in proliferative disorders, such as cancer, immune and inflammatory diseases and developmental syndromes. Therefore, Ras and Ras signaling represent important clinical targets for the design and development of pharmaceutically active agents, including anticancer agents. AREAS COVERED The authors summarize methods available to down-regulate the Ras pathway and review recent patents covering Ras signaling modulators, as well as methods designed to kill specifically cancer cells bearing activated RAS oncogene. EXPERT OPINION Targeted therapy approach based on direct targeting of molecules specifically altered in Ras-dependent diseases is pursued with molecules that down-regulate expression or inhibit the biological function of mutant Ras or Ras signaling members. The low success rate in a clinical setting of molecules targeting activated members of the Ras pathway may require development of novel approaches, including combined and synthetic lethal therapies.
Collapse
Affiliation(s)
- Elena Sacco
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Milano, Italy
| | | | | |
Collapse
|
196
|
Plichta KA, Mathers JL, Gestl SA, Glick AB, Gunther EJ. Basal but not luminal mammary epithelial cells require PI3K/mTOR signaling for Ras-driven overgrowth. Cancer Res 2012; 72:5856-66. [PMID: 23010075 DOI: 10.1158/0008-5472.can-12-1635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mammary ducts of humans and mice are comprised of two main mammary epithelial cell (MEC) subtypes: a surrounding layer of basal MECs and an inner layer of luminal MECs. Breast cancer subtypes show divergent clinical behavior that may reflect properties inherent in their MEC compartment of origin. How the response to a cancer-initiating genetic event is shaped by MEC subtype remains largely unexplored. Using the mouse mammary gland, we designed organotypic three-dimensional culture models that permit challenge of discrete MEC compartments with the same oncogenic insult. Mammary organoids were prepared from mice engineered for compartment-restricted coexpression of oncogenic H-RAS(G12V) together with a nuclear fluorescent reporter. Monitoring of H-RAS(G12V)-expressing MECs during extended live cell imaging permitted visualization of Ras-driven phenotypes via video microscopy. Challenging either basal or luminal MECs with H-RAS(G12V) drove MEC proliferation and survival, culminating in aberrant organoid overgrowth. In each compartment, Ras activation triggered modes of collective MEC migration and invasion that contrasted with physiologic modes used during growth factor-initiated branching morphogenesis. Although basal and luminal Ras activation produced similar overgrowth phenotypes, inhibitor studies revealed divergent use of Ras effector pathways. Blocking either the phosphoinositide 3-kinase or the mammalian target of rapamycin pathway completely suppressed Ras-driven invasion and overgrowth of basal MECs, but only modestly attenuated Ras-driven phenotypes in luminal MECs. We show that MEC subtype defines signaling pathway dependencies downstream of Ras. Thus, cells-of-origin may critically determine the drug sensitivity profiles of mammary neoplasia.
Collapse
Affiliation(s)
- Kristin A Plichta
- Jake Gittlen Cancer Research Foundation, PennsylvaniaState University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
197
|
Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 2012; 18:1503-10. [PMID: 22983396 DOI: 10.1038/nm.2941] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/15/2012] [Indexed: 02/06/2023]
Abstract
The discovery of potent inhibitors of the BRAF proto-oncogene has revolutionized therapy for melanoma harboring mutations in BRAF, yet NRAS-mutant melanoma remains without an effective therapy. Because direct pharmacological inhibition of the RAS proto-oncogene has thus far been unsuccessful, we explored systems biology approaches to identify synergistic drug combination(s) that can mimic RAS inhibition. Here, leveraging an inducible mouse model of NRAS-mutant melanoma, we show that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activates apoptosis but not cell-cycle arrest, which is in contrast to complete genetic neuroblastoma RAS homolog (NRAS) extinction, which triggers both of these effects. Network modeling pinpointed cyclin-dependent kinase 4 (CDK4) as a key driver of this differential phenotype. Accordingly, combined pharmacological inhibition of MEK and CDK4 in vivo led to substantial synergy in therapeutic efficacy. We suggest a gradient model of oncogenic NRAS signaling in which the output is gated, resulting in the decoupling of discrete downstream biological phenotypes as a result of incomplete inhibition. Such a gated signaling model offers a new framework to identify nonobvious coextinction target(s) for combined pharmacological inhibition in NRAS-mutant melanomas.
Collapse
|
198
|
Wang L, Chen D, Olson J, Ali S, Fan T, Mao H. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI: implications in presurgical brain mapping. Acta Radiol 2012; 53:802-11. [PMID: 22850572 DOI: 10.1258/ar.2012.120118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. PURPOSE To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. MATERIAL AND METHODS BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. RESULTS The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. CONCLUSION Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional areas when using conventional fixed models.
Collapse
Affiliation(s)
- Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Radiology, Baoan Hospital, Shenzhen, Guangdong, China
| | - Dandan Chen
- Department of Physics, Emory University, Atlanta, Georgia, USA
- School of Radiation Medicine & Protection, Soochow University, Suzhou, China
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University School of Medicine, Georgia, USA
| | - Shazia Ali
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tianning Fan
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
199
|
Loewenstein PM, Green M. Expression of the Adenovirus Early Gene 1A Transcription-Repression Domain Alone Downregulates HER2 and Results in the Death of Human Breast Cancer Cells Upregulated for the HER2 Proto-Oncogene. Genes Cancer 2012; 2:737-44. [PMID: 22207899 DOI: 10.1177/1947601911426570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/22/2011] [Indexed: 02/03/2023] Open
Abstract
Adenovirus (Ad) early gene 1A 243 residue protein (E1A 243R) possesses a potent transcription-repression function within the N-terminal 80 amino acids (E1A 1-80). We examined the ability of E1A 243R and E1A 1-80 to repress transcription of both an exogenous and the endogenous HER2 promoter in a human breast cancer cell line upregulated for the HER2 proto-oncogene (SK-BR-3). Both moieties repressed HER2 expression by over 90%. When E1A 1-80 was expressed from a nonreplicative Ad vector, levels of expression were lower than anticipated. Addition of nonspecific sequences to the E1A 1-80 C-terminus (E1A 1-80 C+) enhanced its expression 10- to 20-fold. Because "oncogene addiction" suggests that repression of HER2 could kill HER2 upregulated cells, we examined the ability of full-length E1A 243R and E1A 1-80 C+ delivered by an Ad vector to kill HER2 upregulated SK-BR-3 cells. Expression of both E1A 243R and E1A 1-80 C+ killed SK-BR-3 cells but not normal breast cells. E1A 1-80 C+ is a particularly effective killer of SK-BR-3 cells. At 144 h post infection, over 85% of SK-BR-3 cells were killed by a 100 moi of the Ad vector expressing E1A 1-80 C+. As controls, Ad vectors expressing E1A 243R with deletion of all known functional domains or expressing unrelated β-galactosidase had no effect. Three additional human breast cancer cells lines reported to be upregulated for HER2 or another EGF family member (EGFR) were found to be efficiently killed by expression of E1A 1-80 C+, whereas three additional "normal" cell lines (two derived from breast and one from foreskin) were not. The ability of the E1A transcription-repression domain alone to kill HER2 upregulated breast cancer cells has potential for development of therapies for treatment of aggressive human breast cancers and potentially other human cancers that overexpress HER2.
Collapse
Affiliation(s)
- Paul M Loewenstein
- Saint Louis University School of Medicine, Institute for Molecular Virology, Saint Louis, MO, USA
| | | |
Collapse
|
200
|
Subramanian RR, Yamakawa A. Combination therapy targeting Raf-1 and MEK causes apoptosis of HCT116 colon cancer cells. Int J Oncol 2012; 41:1855-62. [PMID: 22922669 DOI: 10.3892/ijo.2012.1602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 07/06/2012] [Indexed: 11/06/2022] Open
Abstract
Members of the Ras protooncogene family are mutated in approximately 75% of colon cancers. The Raf kinases (Raf-1, b-Raf and a-Raf) directly interact with Ras and serve as mediators of mitogenic signals. Expression of the constitutively active alleles of Raf or Ras gene families results in oncogenesis in a number of model systems. Previous studies emphasized the importance of Raf-1 and b-Raf in preventing apoptosis in addition to their roles in cell growth. In the present study, we examined whether inhibition of the Raf-1 or b-Raf kinase decreases cell growth and increases apoptosis in colon cancer cells. c-Raf and b-Raf were depleted in colon cancer cell lines, such as HCT116, HT29 and Colo205, containing Ras or b-Raf mutations by RNA interference (RNAi). The results showed that colon cancer cells with activating Ras mutations undergo apoptosis following Raf-1 inhibition, as determined by cell cycle analysis and the release of cytochrome c. Moreover, in b-Raf mutant colon cancers, the inhibition of b-Raf as compared to Raf-1 is crucial for cancer cell death. There is increasing evidence for both MEK-independent Raf signaling and Raf-independent MEK signaling. Thus, we investigated whether targeting multiple points of the mitogen-activated protein kinase (MAPK) pathway with a MEK inhibitor and Raf RNAi increases cancer cell death. The results showed that combination therapy, inhibiting Raf and MEK kinases simultaneously, increased apoptosis in colon cancer cells. Taken together, our data demonstrate that combination therapy targeting the MAPK pathway at two distinct points, Raf kinase and MEK, has greater efficacy in increasing cancer cell death and is likely to improve therapeutic outcomes for patients.
Collapse
Affiliation(s)
- Romesh R Subramanian
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|