151
|
Stennicke HR, Salvesen GS. Caspases - controlling intracellular signals by protease zymogen activation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:299-306. [PMID: 10708865 DOI: 10.1016/s0167-4838(99)00281-2] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Animal development and homeostasis is a balance between cell proliferation and cell death. Physiologic, and sometimes pathologic, cell death - apoptosis - is driven by activation of a family of proteases known as the caspases, present in almost all nucleated animal cells. The enzymatic properties of these proteases are governed by a dominant specificity for substrates containing Asp, and by the use of a Cys side chain for catalyzing peptide bond cleavage. The primary specificity for Asp turns out to be very rare among proteases, and currently the only other known mammalian proteases with the same primary specificity is the physiological caspase activator granzyme B. Like most other proteases, the caspases are synthesized as inactive zymogens whose activation requires limited proteolysis or binding to co-factors. To transmit the apoptotic execution signal, caspase zymogens are sequentially activated through either an intrinsic or an extrinsic pathway. The activation of caspases at the apex of each pathway, the initiators, occurs by recruitment to specific adapter molecules through homophilic interaction domains, and the activated initiators directly process the executioner caspases to their catalytically active forms. In the present communication we review the different mechanisms underlying the selective activation of the caspases.
Collapse
Affiliation(s)
- H R Stennicke
- The Program for Apoptosis and Cell Death, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
152
|
Abstract
The induction of apoptosis, or controlled cell death, by various stimuli has been shown to activate a cascade of endoproteases, called caspases, that cleave numerous cellular proteins necessary for cellular homeostasis. This review discusses this family of proteases together with a variety of mammalian and viral regulatory proteins that act to control this activation.
Collapse
Affiliation(s)
- D K Miller
- Department of Immunology and Rheumatology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| |
Collapse
|
153
|
Lee SW, Ko YG, Bang S, Kim KS, Kim S. Death effector domain of a mammalian apoptosis mediator, FADD, induces bacterial cell death. Mol Microbiol 2000; 35:1540-9. [PMID: 10760153 DOI: 10.1046/j.1365-2958.2000.01824.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
FADD is a mammalian pro-apoptotic mediator consisting of the N-terminal death effector domain (DED) and the C-terminal death domain (DD). The N-terminal 88-residue fragment of murine FADD was defined as the stable structural unit of DED, as determined by proteolytic digestion and conformational analysis. This domain induced bacterial as well as mammalian cell death, whereas the full-length or DD of FADD did not. The Escherichia coli cells expressing FADD-DED showed elongated cell morphology and an increased level of nicked chromosomal DNA and mutation. The lethality of FADD-DED was abolished by co-expression of thioredoxin and superoxide dismutase or relieved by the addition of vitamin E as a reducing agent and under anaerobic growth conditions. The toxicity of FADD-DED was genetically suppressed by various oxidoreductases of E. coli. All these results suggest that the death effector domain of mammalian FADD induced bacterial cell death by enhancing cellular levels of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- S W Lee
- National Creative Research Initiatives Centre for ARS Network, Sung Kyun Kwan University, 300 Chunchundong, Jangangu, Suwon, Kyunggido 44-746, Korea
| | | | | | | | | |
Collapse
|
154
|
Shearwin-Whyatt LM, Harvey NL, Kumar S. Subcellular localization and CARD-dependent oligomerization of the death adaptor RAIDD. Cell Death Differ 2000; 7:155-65. [PMID: 10713730 DOI: 10.1038/sj.cdd.4400632] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RAIDD, a caspase recruitment domain (CARD) containing molecule, interacts with procaspase-2 in a CARD-dependent manner. This interaction has been suggested to mediate the recruitment of caspase-2 to the tumour necrosis factor receptor 1 (TNFR1). In this paper we have studied the subcellular localization of RAIDD and its interaction with caspase-2. We demonstrate that endogenous RAIDD is mostly localized in the cytoplasm and to some extent in the nucleus. RAIDD localization is not affected by TNF-treatment of HeLa cells, but in cells ectopically expressing caspase-2, a fraction of RAIDD is recruited to the nucleus. In transfected cells, coexpression of RAIDD and caspase-2 leads to CARD-dependent colocalization of the two proteins to discrete subcellular structures. We further show that overexpression of the RAIDD-CARD results in the formation of filamentous structures due to CARD-mediated oligomerization. These structures were similar to death effector filaments (DEFs) formed by FADD and FLICE death effector domains (DEDs), and partially colocalized with DEFs. Our results suggest that similar to the DED, the RAIDD-CARD has the ability to form higher order complexes, believed to be important in apoptotic execution. We also present evidence that RAIDD-CARD oligomerization may be regulated by intramolecular folding of the RAIDD molecule.
Collapse
Affiliation(s)
- L M Shearwin-Whyatt
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, Australia
| | | | | |
Collapse
|
155
|
Abstract
Cell death in the oligodendrocyte lineage occurs during development and in pathological conditions as the result of a balance between opposing molecular signals. This review focuses on the molecular mechanisms of activation of signal transduction pathways affecting life/death decisions in progenitor cells and in mature oligodendrocytes. Loss of trophic support, cytokine receptor activation, and oxidative stress may differentially contribute to the induction of cell death at specific stages of development and to the pathogenesis of demyelinating disorders. The execution of the death program leading to the morphological changes of apoptosis and/or necrosis is then determined by the generation of reactive oxygen species and the level of impairment of mitochondrial function. The final decision of a cell to die or survive is determined by a competition between survival and death signals. Depending on ligand availability, type, and levels of receptor expression and downstream cross-talks between distinct signaling pathways, the cell may activate a death execution program that will be affected by its stage of differentiation and its energetic metabolism.
Collapse
|
156
|
Lugovskoy AA, Zhou P, Chou JJ, McCarty JS, Li P, Wagner G. Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Cell 1999; 99:747-55. [PMID: 10619428 DOI: 10.1016/s0092-8674(00)81672-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apoptotic DNA fragmentation and chromatin condensation are mediated by the caspase-activated DFF40/ CAD nuclease, which is chaperoned and inhibited by DFF45/ICAD. CIDE proteins share a homologous regulatory CIDE-N domain with DFF40/CAD and DFF45/ ICAD. Here we report the solution structure of CIDE-N of human CIDE-B. We show that the CIDE-N of CIDE-B interacts with CIDE-N domains of both DFF40 and DFF45. The binding epitopes are similar and map to a highly charged bipolar surface region of CIDE-B. Furthermore, we demonstrate that the CIDE-N of CIDE-B regulates enzymatic activity of the DFF40/ DFF45 complex in vitro. Based on these results and mutagenesis data, we propose a model for the CIDE-N/ CIDE-N complex and discuss the role of this novel bipolar interaction in mediating downstream events of apoptosis.
Collapse
Affiliation(s)
- A A Lugovskoy
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
157
|
Xiao T, Towb P, Wasserman SA, Sprang SR. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 1999; 99:545-55. [PMID: 10589682 PMCID: PMC4372121 DOI: 10.1016/s0092-8674(00)81542-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of the serine/threonine kinase Pelle and adaptor protein Tube through their N-terminal death domains leads to the nuclear translocation of the transcription factor Dorsal and activation of zygotic patterning genes during Drosophila embryogenesis. Crystal structure of the Pelle and Tube death domain heterodimer reveals that the two death domains adopt a six-helix bundle fold and are arranged in an open-ended linear array with plastic interfaces mediating their interactions. The Tube death domain has an insertion between helices 2 and 3, and a C-terminal tail making significant and indispensable contacts in the heterodimer. In vivo assays of Pelle and Tube mutants confirmed that the integrity of the major heterodimer interface is critical to the activity of these molecules.
Collapse
Affiliation(s)
- Tsan Xiao
- The Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9050
| | - Par Towb
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0634
| | - Steven A. Wasserman
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0634
| | - Stephen R. Sprang
- The Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9050
- To whom correspondence should be addressed ()
| |
Collapse
|
158
|
Vaughn DE, Rodriguez J, Lazebnik Y, Joshua-Tor L. Crystal structure of Apaf-1 caspase recruitment domain: an alpha-helical Greek key fold for apoptotic signaling. J Mol Biol 1999; 293:439-47. [PMID: 10543941 DOI: 10.1006/jmbi.1999.3177] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The caspase recruitment domain (CARD) of Apaf-1 binds to the CARD of caspase-9 to trigger a proteolytic cascade that leads to apoptotic cell death. We report the crystal structure of the Apaf-1 CARD at 1. 3 A resolution, solved in a two-element multiwavelength anomalous dispersion (MAD) X-ray diffraction experiment. This CARD adopts a six-helix bundle fold with Greek key topology surrounding an extensive hydrophobic core. This fold, which we call the "death fold", is found in other domains that mediate interactions in apoptotic signaling despite very low sequence identity. From a structure-based alignment, we identify conserved patterns that characterize the death fold and its subclasses. Like the Ig-fold, it provides a rigid structural scaffold upon which diverse recognition surfaces are assembled.
Collapse
Affiliation(s)
- D E Vaughn
- W. M. Keck Structural Biology, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
159
|
Knock-out of the neural death effector domain protein PEA-15 demonstrates that its expression protects astrocytes from TNFalpha-induced apoptosis. J Neurosci 1999. [PMID: 10493725 DOI: 10.1523/jneurosci.19-19-08244.1999] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis is a very general phenomenon, but only a few reports concern astrocytes. Indeed, astrocytes express receptors for tumor necrosis factor (TNF) alpha, a cytokine demonstrated on many cells and tissues to mediate apoptosis after recruitment of adaptor proteins containing a death effector domain (DED). PEA-15 is a DED-containing protein prominently expressed in the CNS and particularly abundant in astrocytes. This led us to investigate if PEA-15 expression could be involved in astrocytic protection against deleterious effects of TNF. In vitro assays evidence that PEA-15 may bind to DED-containing protein FADD and caspase-8 known to be apical adaptors of the TNF apoptotic signaling. After generation of PEA-15 null mutant mice, our results demonstrate that PEA-15 expression increases astrocyte survival after exposure to TNF.
Collapse
|
160
|
Pazdernik NJ, Donner DB, Goebl MG, Harrington MA. Mouse receptor interacting protein 3 does not contain a caspase-recruiting or a death domain but induces apoptosis and activates NF-kappaB. Mol Cell Biol 1999; 19:6500-8. [PMID: 10490590 PMCID: PMC84620 DOI: 10.1128/mcb.19.10.6500] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1999] [Accepted: 06/29/1999] [Indexed: 12/23/2022] Open
Abstract
The death domain-containing receptor superfamily and their respective downstream mediators control whether or not cells initiate apoptosis or activate NF-kappaB, events critical for proper immune system function. A screen for upstream activators of NF-kappaB identified a novel serine-threonine kinase capable of activating NF-kappaB and inducing apoptosis. Based upon domain organization and sequence similarity, this novel kinase, named mRIP3 (mouse receptor interacting protein 3), appears to be a new RIP family member. RIP, RIP2, and mRIP3 contain an N-terminal kinase domain that share 30 to 40% homology. In contrast to the C-terminal death domain found in RIP or the C-terminal caspase-recruiting domain found in RIP2, the C-terminal tail of mRIP3 contains neither motif and is unique. Despite this feature, overexpression of the mRIP3 C terminus is sufficient to induce apoptosis, suggesting that mRIP3 uses a novel mechanism to induce death. mRIP3 also induced NF-kappaB activity which was inhibited by overexpression of either dominant-negative NIK or dominant-negative TRAF2. In vitro kinase assays demonstrate that mRIP3 is catalytically active and has autophosphorylation site(s) in the C-terminal domain, but the mRIP3 catalytic activity is not required for mRIP3 induced apoptosis and NF-kappaB activation. Unlike RIP and RIP2, mRIP3 mRNA is expressed in a subset of adult tissues and is thus likely to be a tissue-specific regulator of apoptosis and NF-kappaB activity. While the lack of a dominant-negative mutant precludes linking mRIP3 to a known upstream regulator, characterizing the expression pattern and the in vitro functions of mRIP3 provides insight into the mechanism(s) by which cells modulate the balance between survival and death in a cell-type-specific manner.
Collapse
Affiliation(s)
- N J Pazdernik
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
161
|
Zhou P, Chou J, Olea RS, Yuan J, Wagner G. Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: a structural basis for specific adaptor/caspase interaction. Proc Natl Acad Sci U S A 1999; 96:11265-70. [PMID: 10500165 PMCID: PMC18022 DOI: 10.1073/pnas.96.20.11265] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct recruitment and activation of caspase-9 by Apaf-1 through the homophilic CARD/CARD (Caspase Recruitment Domain) interaction is critical for the activation of caspases downstream of mitochondrial damage in apoptosis. Here we report the solution structure of the Apaf-1 CARD domain and its surface of interaction with caspase-9 CARD. Apaf-1 CARD consists of six tightly packed amphipathic alpha-helices and is topologically similar to the RAIDD CARD, with the exception of a kink observed in the middle of the N-terminal helix. By using chemical shift perturbation data, the homophilic interaction was mapped to the acidic surface of Apaf-1 CARD centered around helices 2 and 3. Interestingly, a significant portion of the chemically perturbed residues are hydrophobic, indicating that in addition to the electrostatic interactions predicted previously, hydrophobic interaction is also an important driving force underlying the CARD/CARD interaction. On the basis of the identified functional residues of Apaf-1 CARD and the surface charge complementarity, we propose a model of CARD/CARD interaction between Apaf-1 and caspase-9.
Collapse
Affiliation(s)
- P Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
162
|
Chittka A, Chao MV. Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proc Natl Acad Sci U S A 1999; 96:10705-10. [PMID: 10485890 PMCID: PMC17947 DOI: 10.1073/pnas.96.19.10705] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A subclass of zinc finger proteins containing a unique protein motif called the positive regulatory (PR) domain has been described. The members include the PRDI-BF1/Blimp-1 protein, the Caenorhabditis elegans egl-43 and EVI1 gene products, and the retinoblastoma interacting protein RIZ. Here we describe a member of this family, SC-1, that exhibits several distinctive features. First, SC-1 interacts with the p75 neurotrophin receptor and is redistributed from the cytoplasm to the nucleus after nerve growth factor (NGF) treatment of transfected COS cells. The translocation of SC-1 to the nucleus was specific for p75, as NGF binding to the TrkA receptor did not lead to nuclear localization of SC-1. Thus, SC-1 provides a downstream transducer for the effects of NGF through the p75 neurotrophin receptor. Under normal growth conditions, SC-1 was found predominantly in the cytoplasm. On serum-starvation, SC-1 also translocated into the nucleus. A direct correlation between nuclear expression of SC-1 with the loss of BrdUrd incorporation was observed. These results imply that SC-1 may be involved in events associated with growth arrest.
Collapse
Affiliation(s)
- A Chittka
- Cell Biology Program, Weill Graduate School of Cornell University Medical College, New York, NY 10021, USA
| | | |
Collapse
|
163
|
Tsukumo SI, Yonehara S. Requirement of cooperative functions of two repeated death effector domains in caspase-8 and in MC159 for induction and inhibition of apoptosis, respectively. Genes Cells 1999; 4:541-9. [PMID: 10526240 DOI: 10.1046/j.1365-2443.1999.00280.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The death effector domain (DED), which functions as a domain for a homophilic protein interaction, plays a role in death receptor-mediated apoptosis. Two tandemly repeated DEDs in the prodomain of caspase-8 (Casp8NC-DED) and those in MC159 (viral FLIP) have been shown to positively and negatively regulate apoptosis, respectively, by binding to caspase-8 and/or Fas-associated death domain (FADD). However, characteristics of each DED in Casp8NC-DED and those in MC159 have not been well examined. RESULTS We analysed deletion and chimera mutants of DEDs derived from Casp8NC-DED and MC159, and found that MC159 and Casp8NC-DED require the combined effects of the two repeated DEDs to exert their binding and biological activities. The carboxy-terminal DED of Casp8NC-DED (Casp8C-DED) has the potential to induce apoptosis, and the amino-terminal DED of MC159 showed a dominant inhibitory effect on apoptosis when combined with Casp8C-DED. In addition, the two repeated DEDs in Casp8NC-DED and MC159 were shown to regulate the activities of caspase differently from the caspase recruitment domain (CARD) in the prodomains of caspase-2, -9 and Apaf-1. CONCLUSIONS Although each of the DEDs in Casp8NC-DED and MC159 has the potential to stimulate or inhibit apoptosis, the combination of the two-repeated DEDs is necessary for the DED-containing proteins to stimulate or inhibit apoptosis.
Collapse
Affiliation(s)
- S I Tsukumo
- Institute for Virus Research, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
164
|
Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 1999; 274:20049-52. [PMID: 10400609 DOI: 10.1074/jbc.274.29.20049] [Citation(s) in RCA: 682] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- B B Wolf
- Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
165
|
Srinivasula SM, Ahmad M, Lin JH, Poyet JL, Fernandes-Alnemri T, Tsichlis PN, Alnemri ES. CLAP, a novel caspase recruitment domain-containing protein in the tumor necrosis factor receptor pathway, regulates NF-kappaB activation and apoptosis. J Biol Chem 1999; 274:17946-54. [PMID: 10364242 DOI: 10.1074/jbc.274.25.17946] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecules that regulate NF-kappaB activation play critical roles in apoptosis and inflammation. We describe the cloning of the cellular homolog of the equine herpesvirus-2 protein E10 and show that both proteins regulate apoptosis and NF-kappaB activation. These proteins were found to contain N-terminal caspase-recruitment domains (CARDs) and novel C-terminal domains (CTDs) and were therefore named CLAPs (CARD-like apoptotic proteins). The cellular and viral CLAPs induce apoptosis downstream of caspase-8 by activating the Apaf-1-caspase-9 pathway and activate NF-kappaB by acting upstream of the NF-kappaB-inducing kinase, NIK, and the IkB kinase, IKKalpha. Deletion of either the CARD or the CTD domain inhibits both activities. The CARD domain was found to be important for homo- and heterodimerization of CLAPs. Substitution of the CARD domain with an inducible FKBP12 oligomerization domain produced a molecule that can induce NF-kappaB activation, suggesting that the CARD domain functions as an oligomerization domain, whereas the CTD domain functions as the effector domain in the NF-kappaB activation pathway. Expression of the CARD domain of human CLAP abrogates tumor necrosis factor-alpha-induced NF-kappaB activation, suggesting that cellular CLAP plays an essential role in this pathway of NF-kappaB activation.
Collapse
Affiliation(s)
- S M Srinivasula
- Center for Apoptosis Research and the Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, Zheng L. Mature T lymphocyte apoptosis--immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999; 17:221-53. [PMID: 10358758 DOI: 10.1146/annurev.immunol.17.1.221] [Citation(s) in RCA: 755] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apoptosis of mature T lymphocytes preserves peripheral homeostasis and tolerance by countering the profound changes in the number and types of T cells stimulated by diverse antigens. T cell apoptosis occurs in at least two major forms: antigen-driven and lymphokine withdrawal. These forms of death are controlled in response to local levels of IL-2 and antigen in a feedback mechanism termed propriocidal regulation. Active antigen-driven death is mediated by the expression of death cytokines such as FasL and TNF. These death cytokines engage specific receptors that assemble caspase-activating protein complexes. These signaling complexes tightly regulate cell death but are vulnerable to inherited defects. Passive lymphokine withdrawal death may result from the cytoplasmic activation of caspases that is regulated by mitochondria and the Bcl-2 protein. The human disease, Autoimmune Lymphoproliferative Syndrome (ALPS) is due to dominant-interfering mutations in the Fas/APO-1/CD95 receptor and other components of the death pathway. The study of ALPS patients reveals the necessity of apoptosis for preventing autoimmunity and allows the genetic investigation of apoptosis in humans. Immunological, cellular, and molecular evidence indicates that throughout the life of a T cell, apoptosis may be evoked in excessive, harmful, or useless clonotypes to preserve a healthy and balanced immune system.
Collapse
Affiliation(s)
- M Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
167
|
Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17:331-67. [PMID: 10358762 DOI: 10.1146/annurev.immunol.17.1.331] [Citation(s) in RCA: 965] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Four members of the tumor necrosis factor (TNF) ligand family, TNF-alpha, LT-alpha, LT-beta, and LIGHT, interact with four receptors of the TNF/nerve growth factor family, the p55 TNF receptor (CD120a), the p75 TNF receptor (CD120b), the lymphotoxin beta receptor (LT beta R), and herpes virus entry mediator (HVEM) to control a wide range of innate and adaptive immune response functions. Of these, the most thoroughly studied are cell death induction and regulation of the inflammatory process. Fas/Apo1 (CD95), a receptor of the TNF receptor family activated by a distinct ligand, induces death in cells through mechanisms shared with CD120a. The last four years have seen a proliferation in knowledge of the proteins participating in the signaling by the TNF system and CD95. The downstream signaling molecules identified so far--caspases, phospholipases, the three known mitogen activated protein (MAP) kinase pathways, and the NF-kappa B activation cascade--mediate the effects of other inducers as well. However, the molecules that initiate these signaling events, including the death domain- and TNF receptor associated factor (TRAF) domain-containing adapter proteins and the signaling enzymes associated with them, are largely unique to the TNF/nerve growth factor receptor family.
Collapse
Affiliation(s)
- D Wallach
- Department of Biological Chemistry, Weizmann Institute, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
168
|
Jeong EJ, Bang S, Lee TH, Park YI, Sim WS, Kim KS. The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD. J Biol Chem 1999; 274:16337-42. [PMID: 10347191 DOI: 10.1074/jbc.274.23.16337] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A signal of Fas-mediated apoptosis is transferred through an adaptor protein Fas-associated death domain protein (FADD) by interactions between the death domains of Fas and FADD. To understand the signal transduction mechanism of Fas-mediated apoptosis, we solved the solution structure of a murine FADD death domain. It consists of six helices arranged in a similar fold to the other death domains. The interactions between the death domains of Fas and FADD analyzed by site-directed mutagenesis indicate that charged residues in helices alpha2 and alpha3 are involved in death domain interactions, and the interacting helices appear to interact in anti-parallel pattern, alpha2 of FADD with alpha3 of Fas and vice versa.
Collapse
Affiliation(s)
- E J Jeong
- Structural Biology Center, Korea Institute of Science and Technology, Seoul, 130-650, Korea University, Seoul, 136-701, Korea
| | | | | | | | | | | |
Collapse
|
169
|
Abstract
The complete sequence of the nematode worm Caenorhabditis elegans contains the genetic machinery that is required to undertake the core biological processes of single cells. However, the genome also encodes proteins that are associated with multicellularity, as well as others that are lineage-specific expansions of phylogenetically widespread families and yet more that are absent in non-nematodes. Ongoing analysis is beginning to illuminate the similarities and differences among human proteins and proteins that are encoded by the genomes of the multicellular worm and the unicellular yeast, and will be essential in determining the reliability of transferring experimental data among phylogenetically distant species.
Collapse
Affiliation(s)
- R R Copley
- Biocomputing European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
170
|
Abstract
The p75 receptor is the founding member of the TNF receptor superfamily. Members in this receptor family share a common cysteine motif repeated two to six times that serves as the ligand binding domain. In addition, several members contain a cytoplasmic region designated the death domain. The neurotrophins NGF, BDNF, NT-3, and NT-4 each bind to the p75 receptor and also more selectively to members of the Trk family of receptor tyrosine kinases. Although the biological functions of p75 have been elusive, recent experimental evidence supports an involvement of this receptor in apoptosis. This presents a counter-intuitive function for neurotrophins, which are normally required for the survival of neurons during development. The life-and-death decisions by neurotrophins appear to be governed by the level of expression and signaling activities of the p75 and Trk tyrosine kinase receptors and their downstream effector molecules. The generation of the correct number of cells in the nervous system is a highly controlled and coordinated process that is the consequence of cell proliferation and cell death decisions. The appropriate number of neuronal and glial cells formed during development guarantees the establishment of proper innervation and functional synaptic connections. One common mechanism to account for the number of viable cells is the ability to form ligand-receptor complexes that promote cell survival under conditions of limiting concentrations of trophic factors. Another diametrically opposed mechanism is to produce ligand-receptor interactions that can activate programmed cell death directly.
Collapse
Affiliation(s)
- P Casaccia-Bonnefil
- Molecular Neurobiology Program, Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York 10016, USA
| | | | | | | |
Collapse
|
171
|
Siegel RM, Fleisher TA. The role of Fas and related death receptors in autoimmune and other disease states. J Allergy Clin Immunol 1999; 103:729-38. [PMID: 10329802 DOI: 10.1016/s0091-6749(99)70412-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Fas receptor, also known as APO-1 or CD95, has emerged as a key initiator of apoptotic programmed cell death in a variety of cell types. CD4(+) T cells are unique in their ability to commit "suicide" by stimulating their own Fas receptors with secreted or membrane-bound Fas ligand. This takes place in the setting of repeated stimulation with T-cell antigens and is thought to be a mechanism for controlling the expansion of T cells during viral infections and autoimmune disease states. T cells can also trigger apoptosis in B cells, macrophages, and other cell types through Fas ligand. These interactions negatively regulate the immune system but can also contribute to immunopathology, as occurs in Fas-mediated damage of target tissues in hepatitis and other organ-specific autoimmune diseases. The dual role of Fas in the immune response complicates the understanding of its role in disease states and may limit its potential as a therapeutic target. Despite the many roles of Fas in immunoregulation, findings in experimental mouse strains and human patients with genetic deficiencies in the Fas pathway have shown that the main result of disrupting this pathway in vivo is systemic autoimmunity and a predisposition toward lymphoid malignancies. The role of Fas in various cell types and the lessons we have learned from Fas-deficient patients with the autoimmune lymphoproliferative syndrome will be discussed.
Collapse
Affiliation(s)
- R M Siegel
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, and the Clinical Pathology Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
172
|
Strasser A, Newton K. FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int J Biochem Cell Biol 1999; 31:533-7. [PMID: 10399313 DOI: 10.1016/s1357-2725(99)00003-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FADD/MORT1 is a cytosolic adaptor protein which is critical for signalling from CD95 (Fas/APO-1) and certain other members of the tumour necrosis factor receptor (TNF-R) family (called 'death receptors'). Two protein interaction domains have been identified in FADD/MORT1. The C-terminal 'death domain' is needed for recruitment of FADD/MORT1 to ligated 'death receptors' and the N-terminal 'death effector domain' mediates oligomerisation and activation of caspase-8 zymogens. Caspase-8 activates other cysteine proteases by cleavage and this starts a proteolytic cascade which constitutes the 'point of no return' in apoptosis signalling. Experiments in mice lacking FADD/MORT1 function proved that this adaptor is required for CD95- and TNF-RI-transduced cell death but is dispensable for other pathways to apoptosis. Surprisingly, FADD/MORT1 is also essential for mitogen-induced proliferation of T-lymphocytes. Therapeutic activation of FADD/MORT1 function may be used to kill unwanted cells in cancer or autoimmunity and its suppression may help prevent cell death in certain degenerative disorders.
Collapse
Affiliation(s)
- A Strasser
- Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Vic., Australia.
| | | |
Collapse
|
173
|
Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 1999; 398:777-85. [PMID: 10235259 DOI: 10.1038/19709] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fas is a cell-surface receptor molecule that relays apoptotic (cell death) signals into cells. When Fas is activated by binding of its ligand, the proteolytic protein caspase-8 is recruited to a signalling complex known as DISC by binding to a Fas-associated adapter protein. A large new protein, FLASH, has now been identified by cloning of its complementary DNA. This protein contains a motif with oligomerizing activity whose sequence is similar to that of the Caenorhabditis elegans protein CED-4, and another domain (DRD domain) that interacts with a death-effector domain in caspase-8 or in the adapter protein. Stimulated Fas binds FLASH, so FLASH is probably a component of the DISC signalling complex. Transient expression of FLASH activates caspase-8, whereas overexpression of a truncated form of FLASH containing only one of its DRD or CED-4-like domains does not allow activation of caspase-8 and Fas-mediated apoptosis to occur. Overexpression of full-length FLASH blocks the anti-apoptotic effect of the adenovirus protein E1B19K. FLASH is therefore necessary for the activation of caspase-8 in Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Y Imai
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
174
|
Yan M, Lee J, Schilbach S, Goddard A, Dixit V. mE10, a novel caspase recruitment domain-containing proapoptotic molecule. J Biol Chem 1999; 274:10287-92. [PMID: 10187815 DOI: 10.1074/jbc.274.15.10287] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptotic signaling is mediated by homophilic interactions between conserved domains present in components of the death pathway. The death domain, death effector domain, and caspase recruitment domain (CARD) are examples of such interaction motifs. We have identified a novel mammalian CARD-containing adaptor molecule termed mE10 (mammalian E10). The N-terminal CARD of mE10 exhibits significant homology (47% identity and 64% similarity) to the CARD of a gene from Equine Herpesvirus type 2. The C-terminal region is unique. Overexpression of mE10 in MCF-7 human breast carcinoma cells induces apoptosis. Mutational analysis indicates that CARD-mediated mE10 oligomerization is essential for killing activity. The C terminus of mE10 bound to the zymogen form of caspase-9 and promoted its processing to the active dimeric species. Taken together, these data suggest a model where autoproteolytic activation of pro-caspase-9 is mediated by mE10-induced oligomerization.
Collapse
Affiliation(s)
- M Yan
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
175
|
Abstract
The identification of proteins involved in the early phases of cell death has relied primarily on the modular organization of shared sequences and structural motifs of previously identified proteins in the apoptotic machinery. This property has facilitated the isolation of proteins that interact with each other through structural domains using yeast two-hybrid cloning. Likewise, the conservation in primary sequence of the various shared domains has promoted the use of polymerase chain reaction and database search strategies to isolate additional family members. Here, we discuss the use of database search strategies in the isolation of novel death proteins, as well as how similar strategies may be extended to discover additional, novel cell death proteins.
Collapse
Affiliation(s)
- R Gururajan
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
176
|
Abstract
Caspase recruitment and oligomerization mediated by adaptor proteins constitute a basic mechanism of caspase activation. The complex phenotypes of the caspase knockout mice indicate that multiple mechanisms of caspase activation operate in parallel and that death signal transduction pathways are both cell-type and stimulus specific. The BH3-domain- containing pro-apototic members of Bcl-2 family may be one of the critical links between the initial death signals and the central machinery of apoptosis.
Collapse
Affiliation(s)
- H Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
177
|
Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 1999; 96:615-24. [PMID: 10089877 DOI: 10.1016/s0092-8674(00)80572-3] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report the solution structure of BID, an intracellular cross-talk agent that can amplify FAS/TNF apoptotic signal through the mitochondria death pathway after Caspase 8 cleavage. BID contains eight alpha helices where two central hydrophobic helices are surrounded by six amphipathic ones. The fold resembles poreforming bacterial toxins and shows similarity to BCL-XL although sequence homology to BCL-XL is limited to the 16-residue BH3 domain. Furthermore, we modeled a complex of BCL-XL and BID by aligning the BID and BAK BH3 motifs in the known BCL-XL-BAK BH3 complex. Additionally, we show that the overall structure of BID is preserved after cleavage by Caspase 8. We propose that BID has both BH3 domain-dependent and -independent modes of action in inducing mitochondrial damage.
Collapse
Affiliation(s)
- J J Chou
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
178
|
Li WH, Fraser SE, Meade TJ. A Calcium-Sensitive Magnetic Resonance Imaging Contrast Agent. J Am Chem Soc 1999. [DOI: 10.1021/ja983702l] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
179
|
Aravind L, Koonin EV. Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 1999; 285:1353-61. [PMID: 9917379 DOI: 10.1006/jmbi.1998.2394] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using iterative database searches, a statistically significant sequence similarity was detected between the POZ (poxvirus and zinc finger) domains found in a variety of proteins involved in animal transcription regulation, cytoskeleton organization, and development, and the tetramerization domain of animal potassium channels. Using the crystal structure of the Aplysia Shaker channel tetramerization domain as a template, the common structure of the POZ domain class was predicted. Examination of the structure resulted in the identification of several structural features and specific amino acid residues that may be involved in conserved protein-protein interactions mediated by the POZ domains as well as those that may contribute to the specificity of these interactions. Phylogenetic analysis of the POZ domains suggests that the common ancestor of the crown group eukaryotes already possessed this domain; POZ domains have undergone independent expansion in plants and in different animal lineages.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| | | |
Collapse
|
180
|
Affiliation(s)
- D L Vaux
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital Victoria, Australia.
| | | |
Collapse
|
181
|
Kumar S, Colussi PA. Prodomains--adaptors--oligomerization: the pursuit of caspase activation in apoptosis. Trends Biochem Sci 1999; 24:1-4. [PMID: 10087912 DOI: 10.1016/s0968-0004(98)01332-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S Kumar
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, Australia.
| | | |
Collapse
|
182
|
Ramos JW, Kojima TK, Hughes PE, Fenczik CA, Ginsberg MH. The death effector domain of PEA-15 is involved in its regulation of integrin activation. J Biol Chem 1998; 273:33897-900. [PMID: 9852038 DOI: 10.1074/jbc.273.51.33897] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased integrin ligand binding affinity (activation) is triggered by intracellular signaling events. A Ras-initiated mitogen-activated protein kinase pathway suppresses integrin activation in fibroblasts. We used expression cloning to isolate cDNAs that prevent Ras suppression of integrin activation. Here, we report that PEA-15, a small death effector domain (DED)-containing protein, blocks Ras suppression. PEA-15 does not block the capacity of Ras to activate the ERK mitogen-activated protein kinase pathway. Instead, it inhibits suppression via a pathway blocked by a dominant-negative form of the distinct small GTPase, R-Ras. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to reverse suppression of integrin activation. Thus, certain DED-containing proteins can regulate integrin activation as opposed to apoptotic protease cascades.
Collapse
Affiliation(s)
- J W Ramos
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
183
|
Leo CP, Hsu SY, McGee EA, Salanova M, Hsueh AJ. DEFT, a novel death effector domain-containing molecule predominantly expressed in testicular germ cells. Endocrinology 1998; 139:4839-48. [PMID: 9832420 DOI: 10.1210/endo.139.12.6335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apoptosis is a physiological process by which multicellular organisms eliminate unwanted cells. Death factors such as Fas ligand induce apoptosis by triggering a series of intracellular protein-protein interactions mediated by defined motifs found in the signaling molecules. One of these motifs is the death effector domain (DED), a stretch of about 80 amino acids that is shared by adaptors, regulators, and executors of the death factor pathway. We have identified the human and rat complementary DNAs encoding a novel protein termed DEFT (Death EFfector domain-containing Testicular molecule). The N-terminus of DEFT shows a high degree of homology to the DEDs found in FADD (an adaptor molecule) as well as procaspase-8/FLICE and procaspase-10/Mch4 (executors of the death program). Northern blot hybridization experiments have shown that the DEFT messenger RNA (mRNA) is expressed in a variety of human and rat tissues, with particularly abundant expression in the testis. In situ hybridization analysis further indicated the expression of DEFT mRNA in meiotic male germ cells. In a model of germ cell apoptosis induction, an increase in testis DEFT mRNA was found in immature rats after 2 days of treatment with a GnRH antagonist. Unlike FADD and procaspase-8/FLICE, overexpression of DEFT did not induce apoptosis in Chinese hamster ovary cells. Although cotransfection studies indicated that DEFT is incapable of modulating apoptosis effected by FADD and procaspase-8/FLICE, interactions between DEFT and uncharacterized DED-containing molecules in the testis remain to be studied in the future. In conclusion, we have identified a novel DED-containing protein with high expression in testis germ cells. This protein may be important in the regulation of death factor-induced apoptosis in the testis and other tissues.
Collapse
Affiliation(s)
- C P Leo
- Department of Gynecology and Obstetrics, Stanford University School of Medicine, California 94305-5317, USA
| | | | | | | | | |
Collapse
|
184
|
Stegh AH, Schickling O, Ehret A, Scaffidi C, Peterhänsel C, Hofmann TG, Grummt I, Krammer PH, Peter ME. DEDD, a novel death effector domain-containing protein, targeted to the nucleolus. EMBO J 1998; 17:5974-86. [PMID: 9774341 PMCID: PMC1170924 DOI: 10.1093/emboj/17.20.5974] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The CD95 signaling pathway comprises proteins that contain one or two death effector domains (DED), such as FADD/Mort1 or caspase-8. Here we describe a novel 37 kDa protein, DEDD, that contains an N-terminal DED. DEDD is highly conserved between human and mouse (98. 7% identity) and is ubiquitously expressed. Overexpression of DEDD in 293T cells induced weak apoptosis, mainly through its DED by which it interacts with FADD and caspase-8. Endogenous DEDD was found in the cytoplasm and translocated into the nucleus upon stimulation of CD95. Immunocytological studies revealed that overexpressed DEDD directly translocated into the nucleus, where it co-localizes in the nucleolus with UBF, a basal factor required for RNA polymerase I transcription. Consistent with its nuclear localization, DEDD contains two nuclear localization signals and the C-terminal part shares sequence homology with histones. Recombinant DEDD binds to both DNA and reconstituted mononucleosomes and inhibits transcription in a reconstituted in vitro system. The results suggest that DEDD is a final target of a chain of events by which the CD95-induced apoptotic signal is transferred into the nucleolus to shut off cellular biosynthetic activities.
Collapse
Affiliation(s)
- A H Stegh
- Tumor Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Affiliation(s)
- D R Green
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| |
Collapse
|
186
|
Rudolf MT, Li WH, Wolfson N, Traynor-Kaplan AE, Schultz C. 2-Deoxy derivative is a partial agonist of the intracellular messenger inositol 3,4,5,6-tetrakisphosphate in the epithelial cell line T84. J Med Chem 1998; 41:3635-44. [PMID: 9733488 DOI: 10.1021/jm970781n] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have synthesized the first deoxy analogues of myo-inositol 3,4,5, 6-tetrakisphosphate (1) [Ins(3,4,5,6)P4], rac-2-deoxy-myo-inositol 3, 4,5,6-tetrakisphosphate (rac-2), 2-deoxy-myo-inositol 1,4,5, 6-tetrakisphosphate (ent-2), and rac-1-deoxy-myo-inositol 3,4,5, 6-tetrakisphosphate (rac-3). In order to evaluate the binding properties of the three derivatives to the yet unidentified intracellular binding sites for Ins(3,4,5,6)P4, the analogues were converted to membrane-permeant derivatives. Starting with common inositol precursors, various forms of Barton-McCombie deoxygenation and classical protection/deprotection procedures yielded the desired precursors rac-1-O-butyryl-2-deoxy-myo-inositol (rac-12), ent-3-O-butyryl-2-deoxy-myo-inositol (ent-12), and rac-2-O-butyryl-1-deoxy-myo-inositol (rac-19), respectively. Phosphorylation and subsequent deprotection yielded rac-2, ent-2, and rac-3. Alternatively, phosphorylation followed by alkylation with acetoxymethyl bromide gave the membrane-permeant derivatives 1-O-butyryl-2-deoxy-myo-inositol 3,4,5,6-tetrakisphosphate octakis(acetoxymethyl) ester (rac-5), 3-O-butyryl-2-deoxy-myo-inositol 1,4,5,6-tetrakisphosphate octakis(acetoxymethyl) ester (ent-5), and 2-O-butyryl-1-deoxy-myo-inositol 3,4,5,6-tetrakisphosphate octakis(acetoxymethyl) ester (rac-6), respectively. We examined the potency of the membrane-permeant deoxy derivatives in inhibition of calcium-mediated chloride secretion (CaMCS) in intact T84 cells. Compared to the 1,2-di-O-butyryl-myo-inositol 3,4,5, 6-tetrakisphosphate octakis(acetoxymethyl) ester (4), the membrane-permeant derivative of Ins(3,4,5,6)P4 (1), the 2-deoxy derivative (rac-5) exhibited a slightly weaker inhibitory effect, while the enantiomerically pure 2-deoxy-Ins(1,4,5,6)P4 (ent-5) and the 1-deoxy derivative (rac-6) were inactive. As expected, the effect was stereoselective. Thus, the 1-hydroxyl group is apparently essential for binding and the inhibitory effect of Ins(3,4,5,6)P4 on chloride secretion, whereas the 2-hydroxyl group plays a less important role.
Collapse
Affiliation(s)
- M T Rudolf
- Institut für Organische Chemie, Abt. Bioorganische Chemie, Universität Bremen UFT, Leobener Strasse, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
187
|
Chou JJ, Matsuo H, Duan H, Wagner G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 1998; 94:171-80. [PMID: 9695946 DOI: 10.1016/s0092-8674(00)81417-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apoptosis requires recruitment of caspases by receptor-associated adaptors through homophilic interactions between the CARDs (caspase recruitment domains) of adaptor proteins and prodomains of caspases. We have solved the CARD structure of the RAIDD adaptor protein that recruits ICH-1/caspase-2. It consists of six tightly packed helices arranged in a topology homologous to the Fas death domain. The surface contains a basic and an acidic patch on opposite sides. This polarity is conserved in the ICH-1 CARD as indicated by homology modeling. Mutagenesis data suggest that these patches mediate CARD/CARD interaction between RAIDD and ICH-1. Subsequent modeling of the CARDs of Apaf-1 and caspase-9, as well as Ced-4 and Ced-3, showed that the basic/acidic surface polarity is highly conserved, suggesting a general mode for CARD/CARD interaction.
Collapse
Affiliation(s)
- J J Chou
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
188
|
Liddington R, Frederick C. Paper Alert. Structure 1998. [DOI: 10.1016/s0969-2126(98)00081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|