151
|
Du J, Chen L, Shen J. Identification of FANCA as a protein interacting with centromere-associated protein E. Acta Biochim Biophys Sin (Shanghai) 2009; 41:816-21. [PMID: 19779646 DOI: 10.1093/abbs/gmp074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study sought to isolate and identify proteins that interact with centromere-associated protein E (CENPE), provide new clues for exploring the function of CENP-E in cell cycle control and the pathogenesis of tumor. Yeast two-hybrid screen and regular molecular biologic techniques were undertaken to screen human HeLa cDNA library with the kinetochore binding domain of CENP-E. The bait from the C-terminus of CENP-E was created by subcloning methods to find out optimal candidate proteins that interact with the kinetochore binding domain of CENP-E. Eight novel CENP-E interacting proteins including Homo sapiens Fanconi anemia complementation group A (FANCA) were obtained. In yeast two-hybrid assay, the N-terminal 260 amino acids of FANCA were found to be necessary and sufficient for the interaction with the C-terminus of CENP-E. The interaction was confirmed by in vitro glutathione S-transferase pull-down assay and in vivo coimmunoprecipitation assay. Our finding of the interaction of CENP-E with FANCA demonstrates that CENP-E and FANCA may play important roles in the functional regulation of the mitotic checkpoint signal pathway.
Collapse
Affiliation(s)
- Jian Du
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China.
| | | | | |
Collapse
|
152
|
Rosenfeld SS, van Duffelen M, Behnke-Parks WM, Beadle C, Corrreia J, Xing J. The ATPase cycle of the mitotic motor CENP-E. J Biol Chem 2009; 284:32858-68. [PMID: 19759394 DOI: 10.1074/jbc.m109.041210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that the mitotic motor centrosome protein E (CENP-E) is capable of walking for more than 250 steps on its microtubule track without dissociating. We have examined the kinetics of this molecular motor to see if its enzymology explains this remarkable degree of processivity. We find that like the highly processive transport motor kinesin 1, the enzymatic cycle of CENP-E is characterized by rapid ATP binding, multiple enzymatic turnovers per diffusive encounter, and gating of nucleotide binding. These features endow CENP-E with a high duty cycle, a prerequisite for processivity. However, unlike kinesin 1, neck linker docking in CENP-E is slow, occurring at a rate closer to that for Eg5, a mitotic kinesin that takes only 5-10 steps per processive run. These results suggest that like kinesin 1, features outside of the catalytic domain of CENP-E may also play a role in regulating the processive behavior of this motor.
Collapse
Affiliation(s)
- Steven S Rosenfeld
- Department of Biology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
153
|
Maffini S, Maia ARR, Manning AL, Maliga Z, Pereira AL, Junqueira M, Shevchenko A, Hyman A, Yates JR, Galjart N, Compton DA, Maiato H. Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr Biol 2009; 19:1566-72. [PMID: 19733075 DOI: 10.1016/j.cub.2009.07.059] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/09/2009] [Accepted: 07/22/2009] [Indexed: 12/27/2022]
Abstract
Efficient chromosome segregation during mitosis relies on the coordinated activity of molecular motors with proteins that regulate kinetochore attachments to dynamic spindle microtubules [1]. CLASPs are conserved kinetochore- and microtubule-associated proteins encoded by two paralog genes, clasp1 and clasp2, and have been previously implicated in the regulation of kinetochore microtubule dynamics [2-4]. However, it remains unknown how CLASPs work in concert with other proteins to form a functional kinetochore microtubule interface. Here we have identified mitotic interactors of human CLASP1 via a proteomic approach. Among these, the microtubule plus-end-directed motor CENP-E [5] was found to form a complex with CLASP1 that colocalizes to multiple structures of the mitotic apparatus in human cells. We found that CENP-E recruits both CLASP1 and CLASP2 to kinetochores independently of its motor activity or the presence of microtubules. Depletion of CLASPs or CENP-E by RNA interference in human cells causes a significant and comparable reduction of kinetochore microtubule poleward flux and turnover rates and rescues spindle bipolarity in Kif2a-depleted cells. We conclude that CENP-E integrates two critical functions that are important for accurate chromosome movement and spindle architecture: one relying directly on its motor activity, and the other involving the targeting of key microtubule regulators to kinetochores.
Collapse
Affiliation(s)
- Stefano Maffini
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
The process of mitosis is a validated point of intervention in cancer therapy and a variety of anti-mitotic drugs are successfully being used in the clinic. To date, all approved antimitotics target the spindle microtubules, thus interfering with spindle dynamics, leading to mitotic arrest and apoptosis. While effective, these drugs are also associated with a variety of side effects, including neurotoxicity. In recent years, mitotic kinesins have attracted significant attention in the search for novel, alternative mitotic drug targets. Due to their specific function in mitosis, targeting these proteins creates an opportunity for the development of more selective antimitotics with an improved side effect profile. In addition, kinesin inhibitors may overcome resistance to microtubule targeting drugs. Drug discovery efforts in this area have initially focused on the plus-end directed kinesin spindle protein (KSP) and a variety of compounds are currently undergoing clinical testing.
Collapse
|
155
|
Heit R, Rattner JB, Chan GKT, Hendzel MJ. G2 histone methylation is required for the proper segregation of chromosomes. J Cell Sci 2009; 122:2957-68. [PMID: 19638412 DOI: 10.1242/jcs.045351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Trimethylation of lysine 9 on histone H3 (H3K9me3) is known both to be necessary for proper chromosome segregation and to increase in late G2. We investigated the role of late G2 methylation, specifically in mitotic progression, by inhibiting methylation for 2 hours prior to mitosis using the general methylation inhibitor adenosine dialdehyde (AdOx). AdOx inhibits all methylation events within the cell but, by shortening the treatment length to 2 hours and studying mitotic cells, the only methylation events that are affected are those that occur in late G2. We discovered that methylation events in this time period are crucial for proper mitosis. Mis-segregation of chromosomes is observed with AdOx treatment. Through studies of histone modifications, we have found that inhibiting late G2 methylation affects trimethylation of H3K9 and H4K20. The mitotic checkpoint is active and many kinetochore proteins localize properly, however, pericentric chromatin in these cells is found to be less compact (dense). The reduced integrity of pericentric heterochromatin might be responsible for a noted loss of tension at the centromere in AdOx-treated cells and activation of the spindle assembly checkpoint. We postulate that late G2 methylation is necessary for proper pericentric heterochromatin formation. The results suggest that a reduction in heterochromatin integrity might interfere both with microtubule attachment to chromosomes and with the proper sensing of tension from correct microtubule-kinetochore connections, either of which will result in activation of the mitotic checkpoint.
Collapse
Affiliation(s)
- Ryan Heit
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
156
|
Liu J, Wang Z, Jiang K, Zhang L, Zhao L, Hua S, Yan F, Yang Y, Wang D, Fu C, Ding X, Guo Z, Yao X. PRC1 cooperates with CLASP1 to organize central spindle plasticity in mitosis. J Biol Chem 2009; 284:23059-71. [PMID: 19561070 DOI: 10.1074/jbc.m109.009670] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During cell division, chromosome segregation is governed by the interaction of spindle microtubules with the kinetochore. A dramatic remodeling of interpolar microtubules into an organized central spindle between the separating chromatids is required for the initiation and execution of cytokinesis. Central spindle organization requires mitotic kinesins, microtubule-bundling protein PRC1, and Aurora B kinase complex. However, the precise role of PRC1 in central spindle organization has remained elusive. Here we show that PRC1 recruits CLASP1 to the central spindle at early anaphase onset. CLASP1 belongs to a conserved microtubule-binding protein family that mediates the stabilization of overlapping microtubules of the central spindle. PRC1 physically interacts with CLASP1 and specifies its localization to the central spindle. Repression of CLASP1 leads to sister-chromatid bridges and depolymerization of spindle midzone microtubules. Disruption of PRC1-CLASP1 interaction by a membrane-permeable peptide abrogates accurate chromosome segregation, resulting in sister chromatid bridges. These findings reveal a key role for the PRC1-CLASP1 interaction in achieving a stable anti-parallel microtubule organization essential for faithful chromosome segregation. We propose that PRC1 forms a link between stabilization of CLASP1 association with central spindle microtubules and anti-parallel microtubule elongation.
Collapse
Affiliation(s)
- Jing Liu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Yuan K, Li N, Jiang K, Zhu T, Huo Y, Wang C, Lu J, Shaw A, Thomas K, Zhang J, Mann D, Liao J, Jin C, Yao X. PinX1 is a novel microtubule-binding protein essential for accurate chromosome segregation. J Biol Chem 2009; 284:23072-82. [PMID: 19553660 DOI: 10.1074/jbc.m109.001990] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitosis is an orchestration of dynamic interactions between spindle microtubules and chromosomes, which is mediated by protein structures that include the kinetochores, and other protein complexes present on chromosomes. PinX1 is a potent telomerase inhibitor in interphase; however, its function in mitosis is not well documented. Here we show that PinX1 is essential for faithful chromosome segregation. Deconvolution microscopic analyses show that PinX1 localizes to nucleoli and telomeres in interphase and relocates to the periphery of chromosomes and the outer plate of the kinetochores in mitosis. Our deletion analyses mapped the kinetochore localization domain of PinX1 to the central region and its chromosome periphery localization domain to the C terminus. Interestingly, the kinetochore localization of PinX1 is dependent on Hec1 and CENP-E. Our biochemical characterization revealed that PinX1 is a novel microtubule-binding protein. Our real time imaging analyses show that suppression of PinX1 by small interference RNA abrogates faithful chromosome segregation and results in anaphase chromatid bridges in mitosis and micronuclei in interphase, suggesting an essential role of PinX1 in chromosome stability. Taken together, the results indicate that PinX1 plays an important role in faithful chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Kai Yuan
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Jiang K, Wang J, Liu J, Ward T, Wordeman L, Davidson A, Wang F, Yao X. TIP150 interacts with and targets MCAK at the microtubule plus ends. EMBO Rep 2009; 10:857-65. [PMID: 19543227 PMCID: PMC2699393 DOI: 10.1038/embor.2009.94] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 11/17/2022] Open
Abstract
The microtubule (MT) cytoskeleton orchestrates the cellular plasticity and dynamics that underlie morphogenesis and cell division. Growing MT plus ends have emerged as dynamic regulatory machineries in which specialized proteins—called plus-end tracking proteins (+TIPs)—bind to and control the plus-end dynamics that are essential for cell division and migration. However, the molecular mechanisms underlying the plus-end regulation by +TIPs at spindle and astral MTs have remained elusive. Here, we show that TIP150 is a new +TIP that binds to end-binding protein 1 (EB1) in vitro and co-localizes with EB1 at the MT plus ends in vivo. Suppression of EB1 eliminates the plus-end localization of TIP150. Interestingly, TIP150 also binds to mitotic centromere-associated kinesin (MCAK), an MT depolymerase that localizes to the plus end of MTs. Suppression of TIP150 diminishes the plus-end localization of MCAK. Importantly, aurora B-mediated phosphorylation disrupts the TIP150–MCAK association in vitro. We reason that TIP150 facilitates the EB1-dependent loading of MCAK onto MT plus ends and orchestrates the dynamics at the plus end of MTs.
Collapse
Affiliation(s)
- Kai Jiang
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Wainman A, Creque J, Williams B, Williams EV, Bonaccorsi S, Gatti M, Goldberg ML. Roles of the Drosophila NudE protein in kinetochore function and centrosome migration. J Cell Sci 2009; 122:1747-58. [PMID: 19417004 DOI: 10.1242/jcs.041798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the distribution of the dynein-associated protein NudE in Drosophila larval brain neuroblasts and spermatocytes, and analyzed the phenotypic consequences of a nudE null mutation. NudE can associate with kinetochores, spindles and the nuclear envelope. In nudE mutant brain mitotic cells, centrosomes are often detached from the poles. Moreover, the centrosomes of mutant primary spermatocytes do not migrate from the cell cortex to the nuclear envelope, establishing a new role for NudE. In mutant neuroblasts, chromosomes fail to congress to a tight metaphase plate, and cell division arrests because of spindle assembly checkpoint (SAC) activation. The targeting of NudE to mitotic kinetochores requires the dynein-interacting protein Lis1, and surprisingly Cenp-meta, a Drosophila CENP-E homolog. NudE is non-essential for the targeting of all mitotic kinetochore components tested. However, in the absence of NudE, the 'shedding' of proteins off the kinetochore is abrogated and the SAC cannot be turned off, implying that NudE regulates dynein function at the kinetochore.
Collapse
Affiliation(s)
- Alan Wainman
- Instituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Sapienza, Università di Roma, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
160
|
BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J 2009; 28:2077-89. [PMID: 19407811 PMCID: PMC2684026 DOI: 10.1038/emboj.2009.123] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 04/07/2009] [Indexed: 12/23/2022] Open
Abstract
Regulation of BubR1 is central to the control of APC/C activity. We have found that BubR1 forms a complex with PCAF and is acetylated at lysine 250. Using mass spectrometry and acetylated BubR1-specific antibodies, we have confirmed that BubR1 acetylation occurs at prometaphase. Importantly, BubR1 acetylation was required for checkpoint function, through the inhibition of ubiquitin-dependent BubR1 degradation. BubR1 degradation began before the onset of anaphase. It was noted that the pre-anaphase degradation was regulated by BubR1 acetylation. Degradation of an acetylation-mimetic form, BubR1–K250Q, was inhibited and chromosome segregation in cells expressing BubR1–K250Q was markedly delayed. By contrast, the acetylation-deficient mutant, BubR1–K250R, was unstable, and mitosis was accelerated in BubR1–K250R-expressing cells. Furthermore, we found that APC/C–Cdc20 was responsible for BubR1 degradation during mitosis. On the basis of our collective results, we propose that the acetylation status of BubR1 is a molecular switch that converts BubR1 from an inhibitor to a substrate of the APC/C complex, thus providing an efficient way to modulate APC/C activity and mitotic timing.
Collapse
|
161
|
Kong X, Ball AR, Sonoda E, Feng J, Takeda S, Fukagawa T, Yen TJ, Yokomori K. Cohesin associates with spindle poles in a mitosis-specific manner and functions in spindle assembly in vertebrate cells. Mol Biol Cell 2009; 20:1289-301. [PMID: 19116315 PMCID: PMC2649254 DOI: 10.1091/mbc.e08-04-0419] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 12/11/2008] [Accepted: 12/19/2008] [Indexed: 12/16/2022] Open
Abstract
Cohesin is an essential protein complex required for sister chromatid cohesion. Cohesin associates with chromosomes and establishes sister chromatid cohesion during interphase. During metaphase, a small amount of cohesin remains at the chromosome-pairing domain, mainly at the centromeres, whereas the majority of cohesin resides in the cytoplasm, where its functions remain unclear. We describe the mitosis-specific recruitment of cohesin to the spindle poles through its association with centrosomes and interaction with nuclear mitotic apparatus protein (NuMA). Overexpression of NuMA enhances cohesin accumulation at spindle poles. Although transient cohesin depletion does not lead to visible impairment of normal spindle formation, recovery from nocodazole-induced spindle disruption was significantly impaired. Importantly, selective blocking of cohesin localization to centromeres, which disrupts centromeric sister chromatid cohesion, had no effect on this spindle reassembly process, clearly separating the roles of cohesin at kinetochores and spindle poles. In vitro, chromosome-independent spindle assembly using mitotic extracts was compromised by cohesin depletion, and it was rescued by addition of cohesin that was isolated from mitotic, but not S phase, cells. The combined results identify a novel spindle-associated role for human cohesin during mitosis, in addition to its function at the centromere/kinetochore regions.
Collapse
Affiliation(s)
- Xiangduo Kong
- *Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Alexander R. Ball
- *Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Eiichiro Sonoda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jie Feng
- Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - Shunichi Takeda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Tim J. Yen
- Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - Kyoko Yokomori
- *Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| |
Collapse
|
162
|
Wood KW, Chua P, Sutton D, Jackson JR. Centromere-associated protein E: a motor that puts the brakes on the mitotic checkpoint. Clin Cancer Res 2009; 14:7588-92. [PMID: 19047083 DOI: 10.1158/1078-0432.ccr-07-4443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell cycle checkpoints have long been recognized as important nodes for regulating cell proliferation and maintaining genomic integrity. These checkpoints are often altered in cancer and represent promising points for therapeutic intervention. Until recently, direct targeting of the mitotic checkpoint has been an untapped area for cancer drug discovery. Regulation of the mitotic checkpoint is complex, but many of the critical players have been identified and functionally characterized. A substantial number of these proteins can be localized to the kinetochore, a structure located at the centromeric region of each mitotic chromosome. The kinetochore mediates chromosome attachment to spindle microtubules and subsequent chromosome movement. The mitotic checkpoint monitors microtubule attachment and chromosome position on the mitotic spindle, inhibiting progression into anaphase until proper attachment and metaphase positioning is achieved. Centromere-associated protein E is a kinesin microtubule motor protein that plays an essential role in integrating the mechanics of microtubule-chromosome interactions with mitotic checkpoint signaling, and has emerged as a novel target for cancer therapy.
Collapse
|
163
|
Henderson MC, Shaw YJY, Wang H, Han H, Hurley LH, Flynn G, Dorr RT, Von Hoff DD. UA62784, a novel inhibitor of centromere protein E kinesin-like protein. Mol Cancer Ther 2009; 8:36-44. [PMID: 19139111 PMCID: PMC2634858 DOI: 10.1158/1535-7163.mct-08-0789] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic carcinoma is the fourth leading cause of death from cancer. Novel targets and therapeutic options are needed to aid in the treatment of pancreatic cancer. The compound UA62784 is a novel fluorenone with inhibitory activity against the centromere protein E (CENP-E) kinesin-like protein. UA62784 was isolated due to its selectivity in isogenic pancreatic carcinoma cell lines with a deletion of the DPC4 gene. UA62784 causes mitotic arrest by inhibiting chromosome congression at the metaphase plate likely through inhibition of the microtubule-associated ATPase activity of CENP-E. Furthermore, CENP-E binding to kinetochores during mitosis is not affected by UA62784, suggesting that the target lies within the motor domain of CENP-E. UA62784 is a novel specific inhibitor of CENP-E and its activity suggests a potential role for antimitotic drugs in treating pancreatic carcinomas.
Collapse
Affiliation(s)
- Meredith C Henderson
- Arizona Cancer Center, BIO5 Institute, College of Pharmacy, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Huang H, Hittle J, Zappacosta F, Annan RS, Hershko A, Yen TJ. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. ACTA ACUST UNITED AC 2008; 183:667-80. [PMID: 19015317 PMCID: PMC2582891 DOI: 10.1083/jcb.200805163] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BubR1 kinase is essential for the mitotic checkpoint and also for kinetochores to establish microtubule attachments. In this study, we report that BubR1 is phosphorylated in mitosis on four residues that differ from sites recently reported to be phosphorylated by Plk1 (Elowe, S., S. Hummer, A. Uldschmid, X. Li, and E.A. Nigg. 2007. Genes Dev. 21:2205–2219; Matsumura, S., F. Toyoshima, and E. Nishida. 2007. J. Biol. Chem. 282:15217–15227). S670, the most conserved residue, is phosphorylated at kinetochores at the onset of mitosis and dephosphorylated before anaphase onset. Unlike the Plk1-dependent S676 phosphorylation, S670 phosphorylation is sensitive to microtubule attachments but not to kinetochore tension. Functionally, phosphorylation of S670 is essential for error correction and for kinetochores with end-on attachments to establish tension. Furthermore, in vitro data suggest that the phosphorylation status of BubR1 is important for checkpoint inhibition of the anaphase-promoting complex/cyclosome. Finally, RNA interference experiments show that Mps1 is a major but not the exclusive kinase that specifies BubR1 phosphorylation in vivo. The combined data suggest that BubR1 may be an effector of multiple kinases that are involved in discrete aspects of kinetochore attachments and checkpoint regulation.
Collapse
Affiliation(s)
- Haomin Huang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
165
|
Yang Y, Wu F, Ward T, Yan F, Wu Q, Wang Z, McGlothen T, Peng W, You T, Sun M, Cui T, Hu R, Dou Z, Zhu J, Xie W, Rao Z, Ding X, Yao X. Phosphorylation of HsMis13 by Aurora B kinase is essential for assembly of functional kinetochore. J Biol Chem 2008; 283:26726-36. [PMID: 18640974 DOI: 10.1074/jbc.m804207200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosome movements in mitosis are orchestrated by dynamic interactions between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here we show that phosphorylation of human HsMis13 by Aurora B kinase is required for functional kinetochore assembly in HeLa cells. Aurora B interacts with HsMis13 in vitro and in vivo. HsMis13 is a cognate substrate of Aurora B, and the phosphorylation sites were mapped to Ser-100 and Ser-109. Suppression of Aurora B kinase by either small interfering RNA or chemical inhibitors abrogates the localization of HsMis13 but not HsMis12 to the kinetochore. In addition, non-phosphorylatable but not wild type and phospho-mimicking HsMis13 failed to localize to the kinetochore, demonstrating the requirement of phosphorylation by Aurora B for the assembly of HsMis13 to kinetochore. In fact, localization of HsMis13 to the kinetochore is spatiotemporally regulated by Aurora B kinase, which is essential for recruiting outer kinetochore components such as Ndc80 components and CENP-E for functional kinetochore assembly. Importantly, phospho-mimicking mutant HsMis13 restores the assembly of CENP-E to the kinetochore, and tension developed across the sister kinetochores in Aurora B-inhibited cells. Thus, we reason that HsMis13 phosphorylation by Aurora B is required for organizing a stable bi-oriented microtubule kinetochore attachment that is essential for faithful chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Yong Yang
- Hefei National Laboratory for Physical Sciences at Micro-scale and University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Zhu M, Wang F, Yan F, Yao PY, Du J, Gao X, Wang X, Wu Q, Ward T, Li J, Kioko S, Hu R, Xie W, Ding X, Yao X. Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization. J Biol Chem 2008; 283:18916-25. [PMID: 18460473 DOI: 10.1074/jbc.m710591200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore. Septin (SEPT) belongs to a conserved family of polymerizing GTPases localized to the metaphase spindle during mitosis. Previous study showed that SEPT2 depletion results in chromosome mis-segregation correlated with a loss of centromere-associated protein E (CENP-E) from the kinetochores of congressing chromosomes (1). However, it has remained elusive as to whether CENP-E physically interacts with SEPT and how this interaction orchestrates chromosome segregation in mitosis. Here we show that SEPT7 is required for a stable kinetochore localization of CENP-E in HeLa and MDCK cells. SEPT7 stabilizes the kinetochore association of CENP-E by directly interacting with its C-terminal domain. The region of SEPT7 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pull-down and yeast two-hybrid assays. Immunofluorescence study shows that SEPT7 filaments distribute along the mitotic spindle and terminate at the kinetochore marked by CENP-E. Remarkably, suppression of synthesis of SEPT7 by small interfering RNA abrogated the localization of CENP-E to the kinetochore and caused aberrant chromosome segregation. These mitotic defects and kinetochore localization of CENP-E can be successfully rescued by introducing exogenous GFP-SEPT7 into the SEPT7-depleted cells. These SEPT7-suppressed cells display reduced tension at kinetochores of bi-orientated chromosomes and activated mitotic spindle checkpoint marked by Mad2 and BubR1 labelings on these misaligned chromosomes. These findings reveal a key role for the SEPT7-CENP-E interaction in the distribution of CENP-E to the kinetochore and achieving chromosome alignment. We propose that SEPT7 forms a link between kinetochore distribution of CENP-E and the mitotic spindle checkpoint.
Collapse
Affiliation(s)
- Mei Zhu
- Division of Cellular Dynamics, Hefei National Laboratory for Physical Sciences at Microscale and the University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 2008; 29:637-43. [PMID: 18342609 DOI: 10.1016/j.molcel.2008.01.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/16/2007] [Accepted: 01/08/2008] [Indexed: 12/19/2022]
Abstract
During mitosis, chromosome alignment depends on the regulated dynamics of microtubules and on motor protein activities. At the kinetochore, the interplay between microtubule-binding proteins, motors, and kinases is poorly understood. Cenp-E is a kinetochore-associated kinesin involved in chromosome congression, but the mechanism by which this is achieved is unclear. Here, we present a study of the regulation of Cenp-E motility by using purified full-length (FL) Xenopus Cenp-E protein, which demonstrates that FL Cenp-E is a genuine plus-end-directed motor. Furthermore, we find that the Cenp-E tail completely blocks the motility of Cenp-E in vitro. This is achieved through direct interaction between its motor and tail domains. Finally, we show that Cenp-E autoinhibition is reversed by MPS1- or CDK1-cyclin B-mediated phosphorylation of the Cenp-E tail. This suggests a model of dynamic control of Cenp-E motility, and hence chromosome congression, dependent upon phosphorylation at the kinetochore.
Collapse
|
168
|
Kim Y, Heuser JE, Waterman CM, Cleveland DW. CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. ACTA ACUST UNITED AC 2008; 181:411-9. [PMID: 18443223 PMCID: PMC2364708 DOI: 10.1083/jcb.200802189] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The mitotic kinesin centromere protein E (CENP-E) is an essential kinetochore component that directly contributes to the capture and stabilization of spindle microtubules by kinetochores. Although reduction in CENP-E leads to high rates of whole chromosome missegregation, neither its properties as a microtubule-dependent motor nor how it contributes to the dynamic linkage between kinetochores and microtubules is known. Using single-molecule assays, we demonstrate that CENP-E is a very slow, highly processive motor that maintains microtubule attachment for long periods. Direct visualization of full-length Xenopus laevis CENP-E reveals a highly flexible 230-nm coiled coil separating its kinetochore-binding and motor domains. We also show that full-length CENP-E is a slow plus end–directed motor whose activity is essential for metaphase chromosome alignment. We propose that the highly processive microtubule-dependent motor activity of CENP-E serves to power chromosome congression and provides a flexible, motile tether linking kinetochores to dynamic spindle microtubules.
Collapse
Affiliation(s)
- Yumi Kim
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
169
|
Suijkerbuijk SJE, Kops GJPL. Preventing aneuploidy: the contribution of mitotic checkpoint proteins. Biochim Biophys Acta Rev Cancer 2008; 1786:24-31. [PMID: 18472014 DOI: 10.1016/j.bbcan.2008.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/18/2008] [Accepted: 04/08/2008] [Indexed: 12/21/2022]
Abstract
Aneuploidy, an abnormal number of chromosomes, is a trait shared by most solid tumors. Chromosomal instability (CIN) manifested as aneuploidy might promote tumorigenesis and cause increased resistance to anti-cancer therapies. The mitotic checkpoint or spindle assembly checkpoint is a major signaling pathway involved in the prevention of CIN. We review current knowledge on the contribution of misregulation of mitotic checkpoint proteins to tumor formation and will address to what extent this contribution is due to chromosome segregation errors directly. We propose that both checkpoint and non-checkpoint functions of these proteins contribute to the wide array of oncogenic phenotypes seen upon their misregulation.
Collapse
Affiliation(s)
- Saskia J E Suijkerbuijk
- Department of Physiological Chemistry, UMC Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
170
|
Pan H, Ma P, Zhu W, Schultz RM. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol 2008; 316:397-407. [PMID: 18342300 PMCID: PMC2374949 DOI: 10.1016/j.ydbio.2008.01.048] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 11/21/2022]
Abstract
An increase in the incidence of aneuploidy is well documented with increasing maternal age, in particular in human females. Remarkably, little is known regarding the underlying molecular basis for the age-associated increase in aneuploidy, which is a major source of decreased fertility in humans. Using mouse as a model system we find that eggs obtained from old mice (60-70 weeks of age) display a 6-fold increase in the incidence of hyperploidy as assessed by chromosome spreads. Expression profiling of transcripts in oocytes and eggs obtained from young and old mice reveals that approximately 5% of the transcripts are differentially expressed in oocytes obtained from old females when compared to oocytes obtained from young females (6-12 weeks of age) and that this fraction increases to approximately 33% in eggs. The latter finding indicates that the normal pattern of degradation of maternal mRNAs that occurs during oocyte maturation is dramatically altered in eggs obtained from old mice and could therefore be a contributing source to the decline in fertility. Analysis of the differentially expressed transcripts also indicated that the strength of the spindle assembly checkpoint is weakened and that higher errors of microtubule-kinetochore interactions constitute part of molecular basis for the age-associated increase in aneuploidy in females. Last, BRCA1 expression is reduced in oocytes obtained from old females and RNAi-mediated reduction of BRCA1 in oocytes obtained from young females results in perturbing spindle formation and chromosome congression following maturation.
Collapse
Affiliation(s)
- Hua Pan
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | | | | | |
Collapse
|
171
|
Zhang XD, Goeres J, Zhang H, Yen TJ, Porter ACG, Matunis MJ. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 2008; 29:729-41. [PMID: 18374647 PMCID: PMC2366111 DOI: 10.1016/j.molcel.2008.01.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 11/15/2007] [Accepted: 01/07/2008] [Indexed: 12/31/2022]
Abstract
SUMOylation is essential for cell-cycle regulation in invertebrates; however, its functions during the mammalian cell cycle are largely uncharacterized. Mammals express three SUMO paralogs: SUMO-1, SUMO-2, and SUMO-3 (SUMO-2 and SUMO-3 are 96% identical and referred to as SUMO-2/3). We found that SUMO-2/3 localize to centromeres and condensed chromosomes, whereas SUMO-1 localizes to the mitotic spindle and spindle midzone, indicating that SUMO paralogs regulate distinct mitotic processes in mammalian cells. Consistent with this, global inhibition of SUMOylation caused a prometaphase arrest due to defects in targeting the microtubule motor protein CENP-E to kinetochores. CENP-E was found to be modified specifically by SUMO-2/3 and to possess SUMO-2/3 polymeric chain-binding activity essential for kinetochore localization. Our findings indicate that SUMOylation is a key regulator of the mammalian cell cycle, with SUMO-1 and SUMO-2/3 modification of different proteins regulating distinct processes.
Collapse
Affiliation(s)
- Xiang-Dong Zhang
- Johns Hopkins University, Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, 615 North Wolfe Street, Baltimore, MD 21205
| | - Jacqueline Goeres
- Johns Hopkins University, Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, 615 North Wolfe Street, Baltimore, MD 21205
| | - Hong Zhang
- Johns Hopkins University, Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, 615 North Wolfe Street, Baltimore, MD 21205
| | - Tim J. Yen
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111
| | - Andrew C. G. Porter
- Gene Targeting Group, Hematology, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, London W12 ONN, United Kingdom
| | - Michael J. Matunis
- Johns Hopkins University, Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, 615 North Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
172
|
|
173
|
Matsuno K, Sawada JI, Asai A. Therapeutic potential of mitotic kinesin inhibitors in cancer. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.3.253] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
174
|
Du J, Cai X, Yao J, Ding X, Wu Q, Pei S, Jiang K, Zhang Y, Wang W, Shi Y, Lai Y, Shen J, Teng M, Huang H, Fei Q, Reddy ES, Zhu J, Jin C, Yao X. The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability. Oncogene 2008; 27:4107-14. [PMID: 18297113 DOI: 10.1038/onc.2008.34] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss or gain of whole chromosome, the form of chromosome instability commonly associated with cancers is thought to arise from aberrant chromosome segregation during cell division. Chromosome segregation in mitosis is orchestrated by the interaction of kinetochores with spindle microtubules. Our studies show that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. However, it was unclear how NEK2A ensures accurate chromosome segregation in mitosis. Here we show that NEK2A-mediated Hec1 (highly expressed in cancer) phosphorylation is essential for faithful kinetochore microtubule attachments in mitosis. Using phospho-specific antibody, our studies show that NEK2A phosphorylates Hec1 at Ser165 during mitosis. Although such phosphorylation is not required for assembly of Hec1 to the kinetochore, expression of non-phosphorylatable mutant Hec1(S165) perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. Our in vitro reconstitution experiment demonstrated that Hec1 binds to microtubule in low affinity and phosphorylation by NEK2A, which prevents aberrant kinetochore-microtubule connections in vivo, increases the affinity of the Ndc80 complex for microtubules in vitro. Thus, our studies illustrate a novel regulatory mechanism in which NEK2A kinase operates a faithful chromosome attachment to spindle microtubule, which prevents chromosome instability during cell division.
Collapse
Affiliation(s)
- J Du
- Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Yu J, Lan J, Zhu Y, Li X, Lai X, Xue Y, Jin C, Huang H. The E3 ubiquitin ligase HECTD3 regulates ubiquitination and degradation of Tara. Biochem Biophys Res Commun 2008; 367:805-12. [PMID: 18194665 DOI: 10.1016/j.bbrc.2008.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/26/2022]
Abstract
Tara was identified as an interacting partner of guanine nucleotide exchange factor Trio and TRF1. Tara is proposed to be involved in many important fundamental cellular processes, ranging from actin remodeling, directed cell movement, to cell cycle regulation. Yet, its exact roles required further elucidation. Here, we identify a novel Tara-binding protein HECTD3, a putative member of HECT E3 ubiquitin ligases. HECTD3 directly binds Tara in vitro and forms a complex with Tara in vivo. Overexpression of HECTD3 enhances the ubiquitination of Tara in vivo and promotes the turnover of Tara, whereas depletion of HECTD3 by small interfering RNA decreases Tara degradation. Furthermore, depletion of HECTD3 leads to multipolar spindle formation. All these findings suggest that HECTD3 may facilitate cell cycle progression via regulating ubiquitination and degradation of Tara.
Collapse
Affiliation(s)
- Jian Yu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod Biomed Online 2008; 16:103-12. [PMID: 18252055 DOI: 10.1016/s1472-6483(10)60562-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aneuploidy often results from chromosome misalignment at metaphases. Oocytes from senescence-accelerated mice (SAM) exhibit increased chromosome misalignment with age, which originates from nuclear factors. This work sought to further characterize the underlying defects of chromosome misalignments. Using immunofluorescence microscopy with specific antibodies, several specific components associated with spindles or chromosomes, including centrosomes, centromeres and cohesin complex were examined. No obvious differences were found in the distribution of centrosome focus at the spindle pole of oocytes from young and aged SAM, regardless of chromosome alignments, although cytoplasmic centrosome foci were significantly reduced in aged SAM (P < 0.0001). Oocytes from both young and aged SAM exhibited centromere-associated protein-E (CENP-E) at centromeres of all chromosomes, including misaligned chromosomes from aged SAM, demonstrating that CENP-E did not contribute to chromosome misalignments. Notably, both meiotic cohesin proteins located between sister chromatids, REC8 (recombinant 8), STAG3 (stromal antigen 3) and SMC1beta, were remarkably reduced in oocytes from aged SAM. Further, degradation of the cohesin was even more obvious in SAM than in hybrid F1 mice with age, which may explain why SAM are vulnerable to aneuploidy. This natural ageing mouse model shows that defective cohesin coincides with increased incidence of chromosome misalignment and precocious separations of sister chromatids.
Collapse
Affiliation(s)
- Lin Liu
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| | | |
Collapse
|
177
|
Li Y, Yu W, Liang Y, Zhu X. Kinetochore dynein generates a poleward pulling force to facilitate congression and full chromosome alignment. Cell Res 2007; 17:701-12. [PMID: 17680027 DOI: 10.1038/cr.2007.65] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
For proper chromosome segregation, all kinetochores must achieve bipolar microtubule (MT) attachment and subsequently align at the spindle equator before anaphase onset. The MT minus end-directed motor dynein/dynactin binds kinetochores in prometaphase and has long been implicated in chromosome congression. Unfortunately, inactivation of dynein usually disturbs spindle organization, thus hampering evaluation of its kinetochore roles. Here we specifically eliminated kinetochore dynein/dynactin by RNAi-mediated depletion of ZW10, a protein essential for kinetochore localization of the motor. Time-lapse microscopy indicated markedly-reduced congression efficiency, though congressing chromosomes displayed similar velocities as in control cells. Moreover, cells frequently failed to achieve full chromosome alignment, despite their normal spindles. Confocal microcopy revealed that the misaligned kinetochores were monooriented or unattached and mostly lying outside the spindle, suggesting a difficulty to capture MTs from the opposite pole. Kinetochores on monoastral spindles were dispersed farther away from the pole and exhibited only mild oscillation. Furthermore, inactivating dynein by other means generated similar phenotypes. Therefore, kinetochore dynein produces on monooriented kinetochores a poleward pulling force, which may contribute to efficient bipolar attachment by facilitating their proper microtubule captures to promote congression as well as full chromosome alignment.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
178
|
Abstract
The mitotic checkpoint is a mechanism that arrests the progression to anaphase until all chromosomes have achieved proper attachment to mitotic spindles. In cancer cells, satisfaction of this checkpoint is frequently delayed or prevented by various defects, some of which have been causally implicated in tumorigenesis. At the same time, deliberate induction of mitotic arrest has proved clinically useful, as antimitotic drugs that interfere with proper chromosome-spindle interactions are effective anticancer agents. However, how mitotic arrest contributes to tumorigenesis or antimitotic drug toxicity is not well defined. Here, we report that mitotic chromosomes can acquire DNA breaks during both pharmacologic and genetic induction of mitotic arrest in human cancer cells. These breaks activate a DNA damage response, occur independently of cell death, and subsequently manifest as karyotype alterations. Such breaks can also occur spontaneously, particularly in cancer cells containing mitotic spindle abnormalities. Moreover, we observed evidence of some breakage in primary human cells. Our findings thus describe a novel source of DNA damage in human cells. They also suggest that mitotic arrest may promote tumorigenesis and antimitotic toxicity by provoking DNA damage.
Collapse
Affiliation(s)
- W. Brian Dalton
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia
| | - Mandayam O. Nandan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ryan T. Moore
- Institute for Quantitative Social Science, Harvard University, Cambridge, Massachusetts
| | - Vincent W. Yang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
179
|
Vogt E, Kirsch-Volders M, Parry J, Eichenlaub-Ritter U. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat Res 2007; 651:14-29. [PMID: 18096427 DOI: 10.1016/j.mrgentox.2007.10.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/28/2007] [Indexed: 01/21/2023]
Abstract
The spindle assembly checkpoint (SAC) monitors attachment to microtubules and tension on chromosomes in mitosis and meiosis. It represents a surveillance mechanism that halts cells in M-phase in the presence of unattached chromosomes, associated with accumulation of checkpoint components, in particular, Mad2, at the kinetochores. A complex between the anaphase promoting factor/cylosome (APC/C), its accessory protein Cdc20 and proteins of the SAC renders APC/C inactive, usually until all chromosomes are properly assembled at the spindle equator (chromosome congression) and under tension from spindle fibres. Upon release from the SAC the APC/C can target proteins like cyclin B and securin for degradation by the proteasome. Securin degradation causes activation of separase proteolytic enzyme, and in mitosis cleavage of cohesin proteins at the centromeres and arms of sister chromatids. In meiosis I only the cohesin proteins at the sister chromatid arms are cleaved. This requires meiosis specific components and tight regulation by kinase and phosphatase activities. There is no S-phase between meiotic divisions. Second meiosis resembles mitosis. Mammalian oocytes arrest constitutively at metaphase II in presence of aligned chromosomes, which is due to the activity of the cytostatic factor (CSF). The SAC has been identified in spermatogenesis and oogenesis, but gender-differences may contribute to sex-specific differential responses to aneugens. The age-related reduction in expression of components of the SAC in mammalian oocytes may act synergistically with spindle and other cell organelles' dysfunction, and a partial loss of cohesion between sister chromatids to predispose oocytes to errors in chromosome segregation. This might affect dose-response to aneugens. In view of the tendency to have children at advanced maternal ages it appears relevant to pursue studies on consequences of ageing on the susceptibility of human oocytes to the induction of meiotic error by aneugens and establish models to assess risks to human health by environmental exposures.
Collapse
Affiliation(s)
- E Vogt
- University of Bielefeld, Faculty of Biology, Gene Technology/Microbiology, Bielefeld, Germany
| | | | | | | |
Collapse
|
180
|
Fu G, Ding X, Yuan K, Aikhionbare F, Yao J, Cai X, Jiang K, Yao X. Phosphorylation of human Sgo1 by NEK2A is essential for chromosome congression in mitosis. Cell Res 2007; 17:608-18. [PMID: 17621308 DOI: 10.1038/cr.2007.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation in mitosis is orchestrated by the interaction of the kinetochore with spindle microtubules. Our recent study shows that NEK2A interacts with MAD1 at the kinetochore and possibly functions as a novel integrator of spindle checkpoint signaling. However, it is unclear how NEK2A regulates kinetochore-microtubule attachment in mitosis. Here we show that NEK2A phosphorylates human Sgo1 and such phosphorylation is essential for faithful chromosome congression in mitosis. NEK2A binds directly to HsSgo1 in vitro and co-distributes with HsSgo1 to the kinetochore of mitotic cells. Our in vitro phosphorylation experiment demonstrated that HsSgo1 is a substrate of NEK2A and the phosphorylation sites were mapped to Ser(14) and Ser(507) as judged by the incorporation of (32)P. Although such phosphorylation is not required for assembly of HsSgo1 to the kinetochore, expression of non-phosphorylatable mutant HsSgo1 perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. These findings reveal a key role for the NEK2A-mediated phosphorylation of HsSgo1 in orchestrating dynamic kinetochore-microtubule interaction. We propose that NEK2A-mediated phosphorylation of human Sgo1 provides a link between centromeric cohesion and spindle microtubule attachment at the kinetochores.
Collapse
Affiliation(s)
- Guosheng Fu
- Laboratory of Cellular Dynamics, Hefei National Laboratory, University of Science & Technology of China, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
Basic research that has focused on achieving a mechanistic understanding of mitosis has provided unprecedented molecular and biochemical insights into this highly complex phase of the cell cycle. The discovery process has uncovered an ever-expanding list of novel proteins that orchestrate and coordinate spindle formation and chromosome dynamics during mitosis. That many of these proteins appear to function solely in mitosis makes them ideal targets for the development of mitosis-specific cancer drugs. The clinical successes seen with anti-microtubule drugs such as taxanes and the vinca alkaloids have also encouraged the development of drugs that specifically target mitosis. Drugs that selectively inhibit mitotic kinesins involved in spindle and kinetochore functions, as well as kinases that regulate these activities, are currently in various stages of clinical trials. Our increased understanding of mitosis has also revealed that this process is targeted by inhibitors of farnesyl transferase, histone deacetylase, and Hsp90. Although these drugs were originally designed to block cell proliferation by inhibiting signaling pathways and altering gene expression, it is clear now that these drugs can also directly interfere with the mitotic process. The increased attention to mitosis as a chemotherapeutic target has also raised an important issue regarding the cellular determinants that specify drug sensitivity. One likely contribution is the mitotic checkpoint, a failsafe mechanism that delays mitotic exit so that cells whose chromosomes are not properly attached to the spindle have extra time to correct their errors. As the biochemical activity of the mitotic checkpoint is finite, cells cannot indefinitely sustain the delay, as in cases where cells are treated with anti-mitotic drugs. When the mitotic checkpoint activity is eventually lost, cells will exit mitosis and become aneuploid. While many of the aneuploid cells may die because of massive chromosome imbalance, survivors that continue to proliferate will no doubt be selected. This is clearly an undesirable outcome, thus efforts to obtain fundamental insights into why some cells that arrest in mitosis die without exiting mitosis will be exceedingly important in enhancing our understanding of the drug sensitivity of cancer cells.
Collapse
Affiliation(s)
- Valery Sudakin
- Department of Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | |
Collapse
|
182
|
Elowe S, Hümmer S, Uldschmid A, Li X, Nigg EA. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 2007; 21:2205-19. [PMID: 17785528 PMCID: PMC1950859 DOI: 10.1101/gad.436007] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/19/2007] [Indexed: 11/25/2022]
Abstract
Mitotic phosphorylation of the spindle checkpoint component BubR1 is highly conserved throughout evolution. Here, we demonstrate that BubR1 is phosphorylated on the Cdk1 site T620, which triggers the recruitment of Plk1 and phosphorylation of BubR1 by Plk1 both in vitro and in vivo. Phosphorylation does not appear to be required for spindle checkpoint function but instead is important for the stability of kinetochore-microtubule (KT-MT) interactions, timely mitotic progression, and chromosome alignment onto the metaphase plate. By quantitative mass spectrometry, we identify S676 as a Plk1-specific phosphorylation site on BubR1. Furthermore, using a phospho-specific antibody, we show that this site is phosphorylated during prometaphase, but dephosphorylated at metaphase upon establishment of tension between sister chromatids. These findings describe the first in vivo verified phosphorylation site for human BubR1, identify Plk1 as the kinase responsible for causing the characteristic mitotic BubR1 upshift, and attribute a KT-specific function to the hyperphosphorylated form of BubR1 in the stabilization of KT-MT interactions.
Collapse
Affiliation(s)
- Sabine Elowe
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Stefan Hümmer
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Andreas Uldschmid
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Xiuling Li
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Erich A. Nigg
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
183
|
Kaul R, Verma SC, Robertson ES. Protein complexes associated with the Kaposi's sarcoma-associated herpesvirus-encoded LANA. Virology 2007; 364:317-29. [PMID: 17434559 PMCID: PMC4067005 DOI: 10.1016/j.virol.2007.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/02/2007] [Accepted: 03/06/2007] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the major biological cofactor contributing to development of Kaposi's sarcoma. KSHV establishes a latent infection in human B cells expressing the latency-associated nuclear antigen (LANA), a critical factor in the regulation of viral latency. LANA is known to modulate viral and cellular gene expression. We report here on some initial proteomic studies to identify cellular proteins associated with the amino and carboxy-terminal domains of LANA. The results of these studies show an association of known cellular proteins which support LANA functions and have identified additional LANA-associated proteins. These results provide new evidence for complexes involving LANA with a number of previously unreported functional classes of proteins including DNA polymerase, RNA helicase and cell cycle control proteins. The results also indicate that the amino terminus of LANA can interact with its carboxy-terminal domain. This interaction is potentially important for facilitating associations with other cell cycle regulatory proteins which include CENP-F identified in association with both the amino and carboxy-termini. These novel associations add to the diversity of LANA functions in relation to the maintenance of latency and subsequent transformation of KSHV infected cells.
Collapse
Affiliation(s)
| | | | - Erle S Robertson
- Address for Correspondence: 201E Johnson Pavilion, 3610 Hamilton Walk, Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Phone: 215-746-0116 Fax: 215-898-9557 E-mail:
| |
Collapse
|
184
|
Schmidt M, Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Updat 2007; 10:162-81. [PMID: 17669681 DOI: 10.1016/j.drup.2007.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/18/2007] [Indexed: 12/22/2022]
Abstract
Drugs that interfere with the normal progression of mitosis belong to the most successful chemotherapeutic compounds currently used for anti-cancer treatment. Classically, these drugs are represented by microtubule binding drugs that inhibit the function of the mitotic spindle in order to halt the cell cycle in mitosis and to induce apoptosis in tumor cells. However, these compounds act not only on proliferating tumor cells, but exhibit significant side effects on non-proliferating cells including neurons that are highly dependent on intracellular transport processes mediated by microtubules. Therefore, there is a particular interest in developing novel anti-mitotic drugs that target non-microtubule structures. In fact, recently several novel drugs that target mitotic kinesins or the Aurora and polo-like kinases have been developed and are currently tested in clinical trials. In addition, approaches of cell cycle checkpoint abrogation during mitosis and at the G2/M transition inducing mitosis-associated tumor cell death are promising new strategies for anti-cancer therapy. It is expected that this "next generation" of anti-mitotic drugs will be as successful as the classical anti-microtubule drugs, while avoiding some of the adverse side effects.
Collapse
Affiliation(s)
- Mathias Schmidt
- Altana Pharma AG, Therapeutic Area Oncology, Byk-Gulden Strasse 2, Konstanz, Germany
| | | |
Collapse
|
185
|
Liu D, Ding X, Du J, Cai X, Huang Y, Ward T, Shaw A, Yang Y, Hu R, Jin C, Yao X. Human NUF2 Interacts with Centromere-associated Protein E and Is Essential for a Stable Spindle Microtubule-Kinetochore Attachment. J Biol Chem 2007; 282:21415-24. [PMID: 17535814 DOI: 10.1074/jbc.m609026200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here, we show that Homo sapiens (Hs) NUF2 is required for stable kinetochore localization of centromere-associated protein E (CENP-E) in HeLa cells. HsNUF2 specifies the kinetochore association of CENP-E by interacting with its C-terminal domain. The region of HsNUF2 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pulldown and yeast two-hybrid assays. Suppression of synthesis of HsNUF2 by small interfering RNA abrogated the localization of CENP-E to the kinetochore, demonstrating the requirement of HsNUF2 for CENP-E kinetochore localization. In addition, depletion of HsNUF2 caused aberrant chromosome segregation. These HsNUF2-suppressed cells displayed reduced tension at kinetochores of bi-orientated chromosomes. Double knockdown of CENP-E and HsNUF2 further abolished the tension at the kinetochores. Our results indicate that HsNUF2 and CENP-E are required for organization of stable microtubule-kinetochore attachment that is essential for faithful chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Dan Liu
- Laboratory of Cellular Dynamics, University of Science and Technology of China and the National Laboratory for Physical Sciences, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Schafer-Hales K, Iaconelli J, Snyder JP, Prussia A, Nettles JH, El-Naggar A, Khuri FR, Giannakakou P, Marcus AI. Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther 2007; 6:1317-28. [PMID: 17431110 DOI: 10.1158/1535-7163.mct-06-0703] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Farnesyl transferase inhibitors (FTI) exhibit anticancer activity as a single agent in preclinical studies and show promise in combination with other therapeutics in clinical trials. Previous studies show that FTIs arrest cancer cells in mitosis; however, the mechanism by which this occurs is unclear. Here, we observed that treatment of various cancer cell lines with the FTI lonafarnib caused mitotic chromosomal alignment defects, leaving cells in a pseudometaphase state, whereby both aligned chromosomes and chromosomes juxtaposed to the spindle poles (termed "lagging chromosomes") were observed in the same cell. To determine how this occurs, we investigated the functionality of two farnesylated mitotic proteins, CENP-E and CENP-F, which mediate chromosomal capture and alignment. The data show that lonafarnib in proliferating cancer cells depletes CENP-E and CENP-F from metaphase but not prometaphase kinetochores. Loss of CENP-E and CENP-F metaphase localization triggered aberrant chromosomal maintenance, causing aligned chromosomes to be prematurely released from the spindle equator and become lagging chromosomes, resulting in a mitotic delay. Furthermore, lonafarnib treatment reduces sister kinetochore tension and activates the BubR1 spindle checkpoint, suggesting that farnesylation of CENP-E and CENP-F is critical for their functionality in maintaining kinetochore-microtubule interactions. Importantly, apparently similar chromosomal alignment defects were observed in head and neck tumors samples from a phase I trial with lonafarnib, providing support that lonafarnib disrupts chromosomal maintenance in human cancers. Lastly, to examine how farnesylation could regulate CENP-E in mediating kinetochore-microtubule attachments, we examined possible docking motifs of a farnesyl group on the outer surface of the microtubule. This analysis revealed three hydrophobic patches on the tubulin dimer for insertion of a farnesyl group, alluding to the possibility of an association between a farnesyl group and the microtubule.
Collapse
|
187
|
Li X, Lan J, Zhu Y, Yu J, Dou Z, Huang H. Expression, purification, and characterization of Tara, a novel telomere repeat-binding factor 1 (TRF1)-binding protein. Protein Expr Purif 2007; 55:84-92. [PMID: 17629495 DOI: 10.1016/j.pep.2007.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/29/2007] [Accepted: 05/12/2007] [Indexed: 10/23/2022]
Abstract
Tara was originally identified as a binding protein of guanine nucleotide exchange factor Trio. Although Tara may be involved in many fundamental cellular processes, ranging from actin remodeling, directed cell movement, to cell cycle regulation, aging, and cancer, the exact molecular mechanisms are poorly understood. We expressed recombinant Tara in Escherichia coli and purified the protein to approximately 99% purity using affinity chromatography and gel-filtration chromatography. The identity of the purified protein was confirmed by mass spectrometry. Non-denaturing polyacrylamide gel electrophoresis and gel-filtration chromatography showed that Tara forms multimer in vitro. The purified Tara was used to generate polyclonal antibody, which could specifically recognize both the recombinant and endogenous Tara. Using the pull-down assay, we showed that the purified Tara interacted with TRF1, suggesting that the purified protein is functional and biologically active. The availability of purified Tara and anti-Tara antibody provides critical reagents for elucidating Tara's cellular function and its molecular mechanism.
Collapse
Affiliation(s)
- Xiaoxiao Li
- The First Affiliated Hospital of Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
188
|
Matsumura S, Toyoshima F, Nishida E. Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J Biol Chem 2007; 282:15217-27. [PMID: 17376779 DOI: 10.1074/jbc.m611053200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plk1, an evolutionarily conserved M phase kinase, associates with not only spindle poles but also kinetochores during prometaphase. However, the role of Plk1 at kinetochores has been poorly understood. Here we show that BubR1 mediates the action of Plk1 at kinetochores for proper chromosome alignment. Our results show that BubR1 colocalizes with Plk1 at kinetochores of unaligned chromosomes and physically interacts with Plk1 in prometaphase cells. Down-regulation of Plk1 by small interfering RNA abolished the mobility-shifted, hyperphosphorylated form of BubR1 in the prometaphase-arrested cells. In addition, BubR1 was phosphorylated by Plk1 in vitro at two Plk1 consensus sites in the kinase domain of BubR1. The add-back of either wild-type BubR1 or BubR1 2E, in which the two Plk1 phosphorylation sites were replaced by glutamic acids, but not that of BubR1 2A, an unphosphorylatable mutant, rescued the chromosome alignment defects in BubR1-deficient cells. Moreover, when both Plk1 and BubR1 were down-regulated, the add-back of BubR1 2E, but not that of wild-type BubR1, rescued the chromosome alignment defects. These results taken together suggest that Plk1 facilitates chromosome alignment during prometaphase through BubR1.
Collapse
Affiliation(s)
- Shigeru Matsumura
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
189
|
Abstract
In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint proteins with kinetochores--structures that mediate the binding of spindle microtubules to chromosomes in mitosis. These studies are finally starting to reveal the mechanisms of checkpoint activation and silencing during mitotic progression.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| | | |
Collapse
|
190
|
Fu G, Hua S, Ward T, Ding X, Yang Y, Guo Z, Yao X. D-box is required for the degradation of human Shugoshin and chromosome alignment. Biochem Biophys Res Commun 2007; 357:672-8. [PMID: 17448445 DOI: 10.1016/j.bbrc.2007.03.204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/31/2007] [Indexed: 10/23/2022]
Abstract
Chromosome segregation and proper alignment in mitosis relies on cohesion between sister chromatids and the interaction of the kinetochore with spindle microtubules. Vertebrate Sgo 1 localizes to kinetochores and is required to prevent premature sister centromere separation in mitosis. Sgo 1 is degraded by the anaphase-promoting complex, allowing the separation of sister centromeres in anaphase. However, little is known about the molecular basis of Sgo 1 degradation and its temporal control during mitosis. Here, we show that APC/C targets human Sgo 1 for degradation through a destruction box motif (D-box) in its C-terminus. Mutation in the D-box causes transient metaphase arrest, and mutation in the D-box leads to defects in chromosome alignment and segregation through its effect on the localization of Aurora B and CENP-E. These results provide a link between sister centromere cohesion and bipolar attachment of kinetochores.
Collapse
Affiliation(s)
- Guosheng Fu
- Laboratory of Cellular Dynamics, University of Science & Technology of China, Hefei National Laboratory, Hefei 230027, China
| | | | | | | | | | | | | |
Collapse
|
191
|
Jackson JR, Patrick DR, Dar MM, Huang PS. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007; 7:107-17. [PMID: 17251917 DOI: 10.1038/nrc2049] [Citation(s) in RCA: 383] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advent of molecularly targeted drug discovery has facilitated the identification of a new generation of anti-mitotic therapies that target proteins with specific functions in mitosis. The exquisite selectivity for mitosis and the distinct ways in which these new agents interfere with mitosis provides the potential to not only overcome certain limitations of current tubulin-targeted anti-mitotic drugs, but to expand the scope of clinical efficacy that those drugs have established. The development of these new anti-mitotic drugs as targeted therapies faces significant challenges; nevertheless, these potential therapies also serve as unique tools to dissect the molecular mechanisms of the mitotic-checkpoint response.
Collapse
Affiliation(s)
- Jeffrey R Jackson
- GlaxoSmithKline, Oncology Center of Excellence in Drug Discovery, Department of Biology, Collegeville, Pennsylvania, USA.
| | | | | | | |
Collapse
|
192
|
Vos LJ, Famulski JK, Chan GKT. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol 2007; 84:619-39. [PMID: 16936833 DOI: 10.1139/o06-078] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.
Collapse
Affiliation(s)
- Larissa J Vos
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | | | | |
Collapse
|
193
|
Abstract
Clathrin is a triskelion consisting of three heavy chains each with an associated light chain. During mitosis, clathrin contributes to kinetochore fibre stability. As the N-terminal domain at the foot of each leg can bind to the mitotic spindle, we proposed previously a ;bridge hypothesis' wherein clathrin acts as a brace between two or three microtubules within a kinetochore fibre to increase fibre stability. Here, we have tested this hypothesis by replacing endogenous clathrin heavy chain in human cells with a panel of clathrin constructs. Mutants designed to abolish trimerisation were unable to rescue the mitotic defects caused by depletion of endogenous clathrin. By contrast, stunted triskelia with contracted legs could partially rescue normal mitosis. These results indicate that the key structural features of clathrin that are necessary for its function in mitosis are a trimeric molecule with a spindle interaction domain at each end, supporting the bridge hypothesis for clathrin function in mitosis.
Collapse
Affiliation(s)
- Stephen J Royle
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
| | | |
Collapse
|
194
|
Abstract
Two new studies show that Aurora B kinase corrects improperly attached chromosomes by recruiting molecules necessary for eliminating the bad attachments and by regulating the turnover of the kinetochore fiber.
Collapse
Affiliation(s)
- Xin Zhang
- Medical Sciences, Indiana University, 915 E. 3rd Street, Myers Hall 262, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
195
|
Xue Y, Dan L, Chuanhai F, Zhen D, Qing Z, Xuebiao Y. A novel genome-wide full-length kinesin prediction analysis reveals additional mammalian kinesins. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2054-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
196
|
Orthaus S, Ohndorf S, Diekmann S. RNAi knockdown of human kinetochore protein CENP-H. Biochem Biophys Res Commun 2006; 348:36-46. [PMID: 16875666 DOI: 10.1016/j.bbrc.2006.06.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
The inner kinetochore protein complex binds to centromeres during the whole cell cycle. It serves as the basis for the binding of further kinetochore proteins during mitosis. CENP-H is one of the inner kinetochore proteins which is conserved amongst many eukaryotes. By specific RNAi knockdown, we reduced the CENP-H protein level in human HEp-2 cells down to less than 5% of its normal value. In these CENP-H knocked-down cells, we observed severe mitotic phenotypes like misaligned chromosomes and multipolar spindles, however, no mitotic arrest. Strong reduction of CENP-H resulted in a slightly reduced CENP-C level at the kinetochores and normal localisation of hBubR1, indicating a functional mitotic checkpoint at the hBubR1 protein level. In CENP-H knocked-down human cells, the misaligned chromosomes contained only reduced levels of CENP-E. Our data clearly indicate that CENP-H has an important impact on the architecture and function of the human kinetochore complex.
Collapse
Affiliation(s)
- Sandra Orthaus
- Department of Molecular Biology, FLI e.V., Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | |
Collapse
|
197
|
Stavropoulou V, Vasquez V, Cereser B, Freda E, Masucci MG. TPPII promotes genetic instability by allowing the escape from apoptosis of cells with activated mitotic checkpoints. Biochem Biophys Res Commun 2006; 346:415-25. [PMID: 16762321 DOI: 10.1016/j.bbrc.2006.05.141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 11/16/2022]
Abstract
Overexpression of TPPII correlates with accelerated growth and the appearance of centrosome and chromosome aberrations, suggesting that the activity of this enzyme may be critical for the induction and/or maintenance of genetic instability in malignant cells. We now find that the length of mitosis and of the entire cell cycle is significantly reduced in TPPII overexpressing HEK293 cells compared to untransfected and control transfected cells. Functional TPPII knockdown by shRNA interference caused a significant slowdown in cell growth and the accumulation of cells that delayed or failed to complete mitosis. TPPII overexpressing cells evade mitotic arrest induced by spindle poisons and display high levels of polyploidy despite the constitutively high expression of major components of the spindle checkpoint. TPPII overexpression correlated with upregulation of IAPs and with resistance to mitochondria dependent apoptosis induced by p53 stabilization. Thus, TPPII appears to promote malignant cell growth by allowing exit from mitosis and the survival of cells with severe mitotic spindle damage.
Collapse
Affiliation(s)
- Vaia Stavropoulou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
198
|
Fang Z, Miao Y, Ding X, Deng H, Liu S, Wang F, Zhou R, Watson C, Fu C, Hu Q, Lillard JW, Powell M, Chen Y, Forte JG, Yao X. Proteomic identification and functional characterization of a novel ARF6 GTPase-activating protein, ACAP4. Mol Cell Proteomics 2006; 5:1437-49. [PMID: 16737952 DOI: 10.1074/mcp.m600050-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARF6 GTPase is a conserved regulator of membrane trafficking and actin-based cytoskeleton dynamics at the leading edge of migrating cells. A key determinant of ARF6 function is the lifetime of the GTP-bound active state, which is orchestrated by GTPase-activating protein (GAP) and GTP-GDP exchanging factor. However, very little is known about the molecular mechanisms underlying ARF6-mediated cell migration. To systematically analyze proteins that regulate ARF6 activity during cell migration, we performed a proteomic analysis of proteins selectively bound to active ARF6 using mass spectrometry and identified a novel ARF6-specific GAP, ACAP4. ACAP4 encodes 903 amino acids and contains two coiled coils, one pleckstrin homology domain, one GAP motif, and two ankyrin repeats. Our biochemical characterization demonstrated that ACAP4 has a phosphatidylinositol 4,5-bisphosphate-dependent GAP activity specific for ARF6. The co-localization of ACAP4 with ARF6 occurred in ruffling membranes formed upon AIF(4) and epidermal growth factor stimulation. ACAP4 overexpression limited the recruitment of ARF6 to the membrane ruffles in the absence of epidermal growth factor stimulation. Expression of GTP hydrolysis-resistant ARF6(Q67L) resulted in accumulations of ACAP4 and ARF6 in the cytoplasmic membrane, suggesting that GTP hydrolysis is required for the ARF6-dependent membrane remodeling. Significantly the depletion of ACAP4 by small interfering RNA or inhibition of ARF6 GTP hydrolysis by overexpressing GAP-deficient ACAP4 suppressed ARF6-dependent cell migration in wound healing, demonstrating the importance of ACAP4 in cell migration. Thus, our study sheds new light on the biological function of ARF6-mediated cell migration.
Collapse
Affiliation(s)
- Zhiyou Fang
- Laboratory of Cellular Dynamics, Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Liu D, Zhang N, Du J, Cai X, Zhu M, Jin C, Dou Z, Feng C, Yang Y, Liu L, Takeyasu K, Xie W, Yao X. Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis. Biochem Biophys Res Commun 2006; 345:394-402. [PMID: 16682006 DOI: 10.1016/j.bbrc.2006.04.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 04/12/2006] [Indexed: 11/17/2022]
Abstract
Centromere-associated protein E (CENP-E) is a kinesin-related microtubule motor protein that is essential for chromosome congression during mitosis. Our previous studies show that microtubule motor CENP-E represents a link between attachment of spindle microtubules and the mitotic checkpoint signaling cascade. However, the molecular function of CENP-E at the midbody had remained elusive. Here we show that CENP-E interacts with Skp1 at the midbody and participates in cytokinesis. CENP-E interacts with Skp1 in vitro and in vivo via its coiled-coil domain. Our yeast two-hybrid assays mapped the binding interfaces to the central stalk region of CENP-E (955-1571 aa) and the C-terminal 33 amino acids of Skp1, respectively. Our immunocytochemical studies revealed that CENP-E targets to the midbody prior to Skp1 and the midbody localization of CENP-E becomes diminished as Skp1 arrives at the midbody. Suppression of Skp1 in mitotic HeLa cells by siRNA resulted in accumulation of telophase cells with elongated inter-cell bridges and with midbodies stretched 2-3 times longer than that of normal cells. These Skp1-eliminated or -suppressed cells accumulate higher level of CENP-E, suggesting that spatiotemporal regulation of CENP-E degradation at the midbody is essential for cytokinesis. Over-expression of Skp1 lacking the CENP-E-binding domain confirmed that Skp1-CENP-E interaction is essential for faithful cytokinesis. We hypothesize that CENP-E degradation is essential for faithful mitotic exit and the proteolysis of CENP-E is mediated by SCF via a direct Skp1 link.
Collapse
Affiliation(s)
- Dan Liu
- Division of Cellular Dynamics, Hefei National Laboratory and University of Science & Technology of China, Hefei, China 230027
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Varis A, Salmela AL, Kallio MJ. Cenp-F (mitosin) is more than a mitotic marker. Chromosoma 2006; 115:288-95. [PMID: 16565862 DOI: 10.1007/s00412-005-0046-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/02/2005] [Accepted: 12/15/2005] [Indexed: 12/18/2022]
Abstract
Cenp-F (mitosin) is a large coiled-coil protein whose function has remained obscure since its identification a decade ago. It has been suggested that the protein plays a role in the kinetochore-mediated mitotic functions but until recently there was little evidence to support this postulation. Recent results from five laboratories have given insights on how Cenp-F may participate in the regulation of cell division. In this mini-review, we will summarize the current data regarding the mitotic tasks of Cenp-F as well as discuss how it is used as a proliferation marker of malignant cell growth in the clinic. Also, the protein's post-translational modification by farnesylation and potential contribution to cell cycle effects of farnesyl transferase inhibitors will be addressed.
Collapse
Affiliation(s)
- Asta Varis
- Cancer Biology and Cell Screening Department, VTT Medical Biotechnology, Itäinen Pitkäkatu 4A, 20521, Turku, Finland
| | | | | |
Collapse
|