151
|
Yau YY, Stewart CN. Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 2013; 13:36. [PMID: 23617583 PMCID: PMC3689633 DOI: 10.1186/1472-6750-13-36] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Collapse
Affiliation(s)
- Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
152
|
Popova OV, Dinh HQ, Aufsatz W, Jonak C. The RdDM pathway is required for basal heat tolerance in Arabidopsis. MOLECULAR PLANT 2013; 6:396-410. [PMID: 23376771 PMCID: PMC3603006 DOI: 10.1093/mp/sst023] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/20/2013] [Indexed: 05/19/2023]
Abstract
Heat stress affects epigenetic gene silencing in Arabidopsis. To test for a mechanistic involvement of epigenetic regulation in heat-stress responses, we analyzed the heat tolerance of mutants defective in DNA methylation, histone modifications, chromatin-remodeling, or siRNA-based silencing pathways. Plants deficient in NRPD2, the common second-largest subunit of RNA polymerases IV and V, and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure. Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress. The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription. We provide evidence that the transcriptional response to temperature stress, at least partially, relies on the integrity of the RNA-dependent DNA methylation pathway.
Collapse
Affiliation(s)
| | | | | | - Claudia Jonak
- To whom correspondence should be addressed. E-mail , tel. +43 1 790449850, fax +43 1 790449001
| |
Collapse
|
153
|
Yu Y, Yang X, Wang H, Shi F, Liu Y, Liu J, Li L, Wang D, Liu B. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses. PLoS One 2013; 8:e55772. [PMID: 23418457 PMCID: PMC3572093 DOI: 10.1371/journal.pone.0055772] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 01/04/2013] [Indexed: 12/11/2022] Open
Abstract
Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by the affected plant populations to the changed environments.
Collapse
Affiliation(s)
- Yingjie Yu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, PR China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, and Institute of Genetics and Cytology, Northeast Normal University, Changchun, PR China
| | - Xuejiao Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, and Institute of Genetics and Cytology, Northeast Normal University, Changchun, PR China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, and Institute of Genetics and Cytology, Northeast Normal University, Changchun, PR China
| | - Fengxue Shi
- Key Laboratory of Molecular Epigenetics of Ministry of Education, and Institute of Genetics and Cytology, Northeast Normal University, Changchun, PR China
| | - Ying Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, and Institute of Genetics and Cytology, Northeast Normal University, Changchun, PR China
| | - Jushan Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, PR China
| | - Linfeng Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, and Institute of Genetics and Cytology, Northeast Normal University, Changchun, PR China
- * E-mail: (LL); (DW)
| | - Deli Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, PR China
- * E-mail: (LL); (DW)
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, and Institute of Genetics and Cytology, Northeast Normal University, Changchun, PR China
| |
Collapse
|
154
|
Cui X, Jin P, Cui X, Gu L, Lu Z, Xue Y, Wei L, Qi J, Song X, Luo M, An G, Cao X. Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci U S A 2013; 110:1953-8. [PMID: 23319643 PMCID: PMC3562835 DOI: 10.1073/pnas.1217020110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways.
Collapse
Affiliation(s)
- Xiekui Cui
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ping Jin
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea; and
| | - Xia Cui
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianfeng Gu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhike Lu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongming Xue
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Liya Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianfei Qi
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Luo
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, ACT 2601, Australia
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
155
|
Zhang YY, Fischer M, Colot V, Bossdorf O. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. THE NEW PHYTOLOGIST 2013; 197:314-322. [PMID: 23121242 DOI: 10.1111/nph.12010] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/15/2012] [Indexed: 05/18/2023]
Abstract
Heritable variation in plant phenotypes, and thus potential for evolutionary change, can in principle not only be caused by variation in DNA sequence, but also by underlying epigenetic variation. However, the potential scope of such phenotypic effects and their evolutionary significance are largely unexplored. Here, we conducted a glasshouse experiment in which we tested the response of a large number of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana--lines that are nearly isogenic but highly variable at the level of DNA methylation--to drought and increased nutrient conditions. We found significant heritable variation among epiRILs both in the means of several ecologically important plant traits and in their plasticities to drought and nutrients. Significant selection gradients, that is, fitness correlations, of several mean traits and plasticities suggest that selection could act on this epigenetically based phenotypic variation. Our study provides evidence that variation in DNA methylation can cause substantial heritable variation of ecologically important plant traits, including root allocation, drought tolerance and nutrient plasticity, and that rapid evolution based on epigenetic variation alone should thus be possible.
Collapse
Affiliation(s)
- Yuan-Ye Zhang
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale Unité 1024, Paris F-75005, France
| | - Oliver Bossdorf
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| |
Collapse
|
156
|
Qüesta JI, Fina JP, Casati P. DDM1 and ROS1 have a role in UV-B induced- and oxidative DNA damage in A. thaliana. FRONTIERS IN PLANT SCIENCE 2013; 4:420. [PMID: 24155752 PMCID: PMC3801088 DOI: 10.3389/fpls.2013.00420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 05/18/2023]
Abstract
Absorption of UV-B by DNA induces the formation of covalent bonds between adjacent pyrimidines. In maize and arabidopsis, plants deficient in chromatin remodeling show increased DNA damage compared to WT plants after a UV-B treatment. However, the role of enzymes that participate in DNA methylation in DNA repair after UV-B damage was not previously investigated. In this work, we analyzed how chromatin remodeling activities that have an effect on DNA methylation affects the repair of UV-B damaged DNA using plants deficient in the expression of DDM1 and ROS1. First, we analyzed their regulation by UV-B radiation in arabidopsis plants. Then, we demonstrated that ddm1 mutants accumulated more DNA damage after UV-B exposure compared to Col0 plants. Surprisingly, ros1 mutants show less CPDs and 6-4PPs than WT plants after the treatment under light conditions, while the repair under dark conditions is impaired. Transcripts for two photolyases are highly induced by UV-B in ros1 mutants, suggesting that the lower accumulation of photoproducts by UV-B is due to increased photorepair in these mutants. Finally, we demonstrate that oxidative DNA damage does not occur after UV-B exposure in arabidopsis plants; however, ros1 plants accumulate high levels of oxoproducts, while ddm1 mutants have less oxoproducts than Col0 plants, suggesting that both ROS1 and DDM1 have a role in the repair of oxidative DNA damage. Together, our data provide evidence that both DDM1 and ROS1, directly or indirectly, participate in UV-B induced- and oxidative DNA damage repair.
Collapse
Affiliation(s)
| | | | - Paula Casati
- *Correspondence: Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina e-mail:
| |
Collapse
|
157
|
Bucher E, Reinders J, Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:503-10. [PMID: 22940592 DOI: 10.1016/j.pbi.2012.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/16/2012] [Indexed: 05/23/2023]
Abstract
The mobility of genetic elements called transposable elements (TEs) was discovered half a century ago by Barbara McClintock. Although she had recognized them as chromosomal controlling elements, for much of the consequent time TEs were primarily considered as parasites of the host genome. However the recent explosion of discoveries in the fields of genomics and epigenetics have unambiguously shown the importance of TEs in genome function and evolution. Bursts of endogenous TEs have been reported in plants with epigenetic misregulation, revealing the molecular mechanisms underlying their control. We review here the different steps in TE invasion of the host genome involving epigenetic control and environmental stress responses. As TEs propagate in plant genomes and attract epigenetic marks, their neo-insertions can lead to the formation of new, heritable epigenetic variants (epialleles) of genes in their vicinity and impact on host gene regulatory networks. The epigenetic interplay between TE and genes thus plays a crucial role in the TE-host co-evolution.
Collapse
Affiliation(s)
- Etienne Bucher
- Botanical Institute, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
158
|
Yaakov B, Kashkush K. Mobilization of Stowaway-like MITEs in newly formed allohexaploid wheat species. PLANT MOLECULAR BIOLOGY 2012; 80:419-27. [PMID: 22933118 DOI: 10.1007/s11103-012-9957-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/16/2012] [Indexed: 05/02/2023]
Abstract
Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they can account for up to 90 % of the genome, such as in wheat. The relationship between TEs and their hosts and the role of TEs in organismal biology are poorly understood. In this study, we have applied next generation sequencing, together with a transposon display technique in order to test whether a Stowaway-like MITE, termed Minos, transposes following allopolyploidization events in wheat. We have generated a 454-pyrosequencing database of Minos-specific amplicons (transposon display products) from a newly formed wheat allohexaploid and its parental lines and retrieved hundreds of novel MITE insertions in the allohexaploid. Clear mobilization of Minos was also seen by site-specific PCR analysis and sequence validation. In addition, using real-time qPCR analysis we observed an insignificant change in the relative quantity of Minos from the expected value of merging the two parental genomes, indicating that, despite its activation, no significant burst in Minos copy number can be seen in the newly formed allohexaploid. Interestingly, we found that CCGG sites surrounding Minos underwent massive hypermethylation following the allohexaploidization process. Our data suggest that MITEs have maintained their capacity for activity throughout the evolution of wheat and might be epigenetically deregulated in the first generations following allopolyploidization.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | |
Collapse
|
159
|
Lee SI, Park KC, Ha MW, Kim KS, Jang YS, Kim NS. CACTA transposon-derived Ti-SCARs for cultivar fingerprinting in rapeseed. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0190-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
160
|
Abstract
AbstractThe science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. According to three widely held dogmas, DNA is the unchanging template of heredity, is identical in all the cells and tissues of the body, and is the sole agent of inheritance. Rather than being an unchanging template, DNA appears subject to a good deal of environmentally induced change. Instead of identical DNA in all the cells of the body, somatic mosaicism appears to be the normal human condition. And DNA can no longer be considered the sole agent of inheritance. We now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, epigenetic regulation, DNA variability, and somatic mosaicism appear to be particularly prevalent in the human brain and probably are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period and, in particular, in enabling phenotypic plasticity in offspring. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of minimal shared maternal effects, in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology.
Collapse
|
161
|
Yao Y, Bilichak A, Golubov A, Kovalchuk I. ddm1 plants are sensitive to methyl methane sulfonate and NaCl stresses and are deficient in DNA repair. PLANT CELL REPORTS 2012; 31:1549-61. [PMID: 22538524 DOI: 10.1007/s00299-012-1269-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/28/2012] [Accepted: 04/13/2012] [Indexed: 05/22/2023]
Abstract
UNLABELLED Plant response to stress includes changes in gene expression and chromatin structure. Our previous work showed that Arabidopsis thaliana Dicer-like (DCL) mutants were impaired in transgenerational response to stress that included an increase in recombination frequency, cytosine methylation and stress tolerance. It can be hypothesized that changes in chromatin structure are important for an efficient stress response. To test this hypothesis, we analyzed the stress response of ddm1, a mutant impaired in DDM1, a member of the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes. We exposed Arabidopsis thaliana ddm1 mutants to methyl methane sulfonate (MMS) and NaCl and found that these plants were more sensitive. At the same time, ddm1 plants were similar to wild-type plants in sensitivity to temperature and bleomycin stresses. Direct comparison to met1 plants, deficient in maintenance methyltransferase MET1, showed higher sensitivity of ddm1 plants to NaCl. The level of DNA strand breaks upon exposure to MMS increased in wild-type plants but decreased in ddm1 plants. DNA methylation analysis showed that heterozygous ddm1/DDM1 plants had lower methylation as compared to fourth generation of homozygous ddm1/ddm1 plants. Exposure to MMS resulted in a decrease in methylation in wild-type plants and an increase in ddm1 plants. Finally, in vitro DNA excision repair assay showed lower capacity for ddm1 mutant. Our results provided a new example of a link between genetic genome stability and epigenetic genome stability. KEY MESSAGE We demonstrate that heterozygous ddm1/DDM1 plants are more sensitive to stress and have more severe changes in methylation than homozygous ddm1/ddm1 plants.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, University Drive 4401, Lethbridge, AB, T1K 3M4, Canada.
| | | | | | | |
Collapse
|
162
|
Higo H, Tahir M, Takashima K, Miura A, Watanabe K, Tagiri A, Ugaki M, Ishikawa R, Eiguchi M, Kurata N, Sasaki T, Richards E, Takano M, Kishimoto N, Kakutani T, Habu Y. DDM1 (decrease in DNA methylation) genes in rice (Oryza sativa). Mol Genet Genomics 2012; 287:785-92. [PMID: 22915302 DOI: 10.1007/s00438-012-0717-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
Regulation of cytosine methylation in the plant genome is of pivotal in determining the epigenetic states of chromosome regions. Relative tolerance of plant to deficiency in cytosine methylation provides unparalleled opportunities to study the mechanism for regulation of cytosine methylation. The Decrease in DNA Methylation 1 (DDM1) of Arabidopsis thaliana is one of the best characterized plant epigenetic regulators that are necessary for maintenance of cytosine methylation in genomic DNA. Although cytosine methylation could affect various aspects of plant growth and development including those related to agricultural importance, orthologs of DDM1 in plants other than Arabidopsis has not been studied in detail. In this study, we identified two rice genes with similarity to Arabidopsis DDM1 and designated them OsDDM1a and OsDDM1b. Both of the rice DDM1 homologs are transcribed during development and their amino acid sequences are 93 % identical to each other. Transgenic rice lines expressing the OsDDM1a cDNA in the antisense orientation exhibited genomic DNA hypomethylation. In those lines, repeated sequences were more severely affected than a single copy sequence as is the case in Arabidopsis ddm1 mutants. Transcripts derived from endogenous transposon-related loci were up-regulated in the antisense OsDDM1 lines, opening a possibility to identify and utilize potentially active transposons for rice functional genomics.
Collapse
Affiliation(s)
- Hiromi Higo
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Maumus F, Rabinowicz P, Bowler C, Rivarola M. Stemming epigenetics in marine stramenopiles. Curr Genomics 2012; 12:357-70. [PMID: 22294878 PMCID: PMC3145265 DOI: 10.2174/138920211796429727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/24/2011] [Accepted: 06/17/2011] [Indexed: 12/27/2022] Open
Abstract
Epigenetics include DNA methylation, the modification of histone tails that affect chromatin states, and small RNAs that are involved in the setting and maintenance of chromatin modifications. Marine stramenopiles (MAS), which are a diverse assemblage of algae that acquired photosynthesis from secondary endosymbiosis, include single-celled organisms such as diatoms as well as multicellular forms such as brown algae. The recent publication of two diatom genomes that diverged ~90 million years ago (mya), as well as the one of a brown algae that diverged from diatoms ~250 Mya, provide a great system of related, yet diverged set of organisms to compare epigenetic marks and their relationships. For example, putative DNA methyltransferase homologues were found in diatoms while none could be identified in the brown algal genome. On the other hand, no canonical DICER-like protein was found in diatoms in contrast to what is observed in brown algae. A key interest relies in understanding the adaptive nature of epigenetics and its inheritability. In contrast to yeast that lack DNA methylation, homogeneous cultures of diatoms constitute an attractive system to study epigenetic changes in response to environmental conditions such as nutrient-rich to nutrient-poor transitions which is especially relevant because of their ecological importance. P. tricornutum is also of outstanding interest because it is observed as three different morphotypes and thus constitutes a simple and promising model for the study of the epigenetic phenomena that accompany cellular differentiation. In this review we focus on the insights obtained from MAS comparative genomics and epigenomic analyses.
Collapse
Affiliation(s)
- Florian Maumus
- Unité de Recherche en Génomique-Info, UR 1164, INRA Centre de Versailles-Grignon, Versailles, France
| | | | | | | |
Collapse
|
164
|
Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES. Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 2012; 13:9900-9922. [PMID: 22949838 PMCID: PMC3431836 DOI: 10.3390/ijms13089900] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022] Open
Abstract
Natural variation is defined as the phenotypic variation caused by spontaneous mutations. In general, mutations are associated with changes of nucleotide sequence, and many mutations in genes that can cause changes in plant development have been identified. Epigenetic change, which does not involve alteration to the nucleotide sequence, can also cause changes in gene activity by changing the structure of chromatin through DNA methylation or histone modifications. Now there is evidence based on induced or spontaneous mutants that epigenetic changes can cause altering plant phenotypes. Epigenetic changes have occurred frequently in plants, and some are heritable or metastable causing variation in epigenetic status within or between species. Therefore, heritable epigenetic variation as well as genetic variation has the potential to drive natural variation.
Collapse
Affiliation(s)
- Ryo Fujimoto
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Taku Sasaki
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohrgasse 3, Vienna 1030, Austria; E-Mail:
| | - Ryo Ishikawa
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8510, Japan; E-Mail:
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Kenji Osabe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Takahiro Kawanabe
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| |
Collapse
|
165
|
Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, Mezard C, Kelly KA, Henderson IR. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 2012; 8:e1002844. [PMID: 22876192 PMCID: PMC3410864 DOI: 10.1371/journal.pgen.1002844] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/07/2012] [Indexed: 12/25/2022] Open
Abstract
Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.
Collapse
Affiliation(s)
- Nataliya E. Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Liudmila Chelysheva
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Versailles, France
| | | | | | - Erik Wijnker
- Wageningen University, Wageningen, The Netherlands
| | - Nigel Miller
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jan Drouaud
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Versailles, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Versailles, France
| | - Gregory P. Copenhaver
- Department of Biology and The Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Christine Mezard
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Versailles, France
| | - Krystyna A. Kelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
166
|
Abstract
Regulation of gene expression by DNA methylation is crucial for defining cellular identities and coordinating organism-wide developmental programs in many organisms. In plants, modulation of DNA methylation in response to environmental conditions represents a potentially robust mechanism to regulate gene expression networks; however, examples of dynamic DNA methylation are largely limited to gene imprinting. Here we report an unexpected role for DNA methylation in regulation of the Arabidopsis thaliana immune system. Profiling the DNA methylomes of plants exposed to bacterial pathogen, avirulent bacteria, or salicylic acid (SA) hormone revealed numerous stress-induced differentially methylated regions, many of which were intimately associated with differentially expressed genes. In response to SA, transposon-associated differentially methylated regions, which were accompanied by up-regulation of 21-nt siRNAs, were often coupled to transcriptional changes of the transposon and/or the proximal gene. Thus, dynamic DNA methylation changes within repetitive sequences or transposons can regulate neighboring genes in response to SA stress.
Collapse
|
167
|
Baruch O, Kashkush K. Analysis of copy-number variation, insertional polymorphism, and methylation status of the tiniest class I (TRIM) and class II (MITE) transposable element families in various rice strains. PLANT CELL REPORTS 2012; 31:885-893. [PMID: 22183295 DOI: 10.1007/s00299-011-1209-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they may compose up to 90% of the genome. Many studies, both in plants and animals reported that in fact non-autonomous elements that have lost their protein-coding sequences and became miniature elements were highly associated with genes, and showed a high level of transpositional activity such as mPing family in rice. In this study, we have investigated in detail the copy number, insertional polymorphism and the methylation status of the tiniest LTR retrotransposon family, termed TRIM, in nine rice strains, in comparison with mPing. While TRIM showed similar copy numbers (average of 79 insertions) in all the nine rice strains, the copy number of mPing varied dramatically (ranging from 6 to 203 insertions) in the same strains. Site-specific PCR analysis revealed that ~58% of the TRIM elements have identical insertion sites among the nine rice strains, while none of the mPing elements (100% polymorphism) have identical insertion sites in the same strains. Finally, over 65% of the TRIM insertion sites were cytosine methylated in all nine rice strains, while the level of the methylated mPing insertion sites ranged between 43 and 81.5%. The findings of this study indicate that unlike mPing, TRIM is most probably a fossil TE family in rice. In addition, the data shows that there might be a strong correlation between TE methylation and copy number.
Collapse
Affiliation(s)
- Omer Baruch
- Department of Life Sciences, Ben-Gurion University, 84105 Beer-Sheva, Israel
| | | |
Collapse
|
168
|
Saze H, Tsugane K, Kanno T, Nishimura T. DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. PLANT & CELL PHYSIOLOGY 2012; 53:766-84. [PMID: 22302712 DOI: 10.1093/pcp/pcs008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DNA methylation is a type of epigenetic marking that strongly influences chromatin structure and gene expression in plants and mammals. Over the past decade, DNA methylation has been intensively investigated in order to elucidate its control mechanisms. These studies have shown that small RNAs are involved in the induction of DNA methylation, that there is a relationship between DNA methylation and histone methylation, and that the base excision repair pathway has an important role in DNA demethylation. Some aspects of DNA methylation have also been shown to be shared with mammals, suggesting that the regulatory pathways are, in part at least, evolutionarily conserved. Considerable progress has been made in elucidating the mechanisms that control DNA methylation; however, many aspects of the mechanisms that read the information encoded by DNA methylation and mediate this into downstream regulation remain uncertain, although some candidate proteins have been identified. DNA methylation has a vital role in the inactivation of transposons, suggesting that DNA methylation is a key factor in the evolution and adaptation of plants.
Collapse
Affiliation(s)
- Hidetoshi Saze
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | | | | | | |
Collapse
|
169
|
Eun CH, Takagi K, Park KI, Maekawa M, Iida S, Tsugane K. Activation and epigenetic regulation of DNA transposon nDart1 in rice. PLANT & CELL PHYSIOLOGY 2012; 53:857-868. [PMID: 22514089 DOI: 10.1093/pcp/pcs060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A large part of the rice genome is composed of transposons. Since active excision/reintegration of these mobile elements may result in harmful genetic changes, many transposons are maintained in a genetically or epigenetically inactivated state. However, some non-autonomous DNA transposons of the nDart1-3 subgroup, including nDart1-0, actively transpose in specific rice lines, such as pyl-v which carries an active autonomous element, aDart1-27, on chromosome 6. Although nDart1-3 subgroup elements show considerable sequence identity, they display different excision frequencies. The most active element, nDart1-0, had a low cytosine methylation status. The aDart1-27 sequence showed conservation between pyl-stb (pyl-v derivative line) and Nipponbare, which both lack autonomous activity for transposition of nDart1-3 subgroup elements. In pyl-v plants, the promoter region of the aDart1-27 transposase gene was more hypomethylated than in other rice lines. Treatment with the methylation inhibitor 5-azacytidine (5-azaC) induced transposition of nDart1-3 subgroup elements in both pyl-stb and Nipponbare plants; the new insertion sites were frequently located in genic regions. 5-AzaC treatment principally induced expression of Dart1-34 transposase rather than the other 38 aDart1-related elements in both pyl-stb and Nipponbare treatment groups. Our observations show that transposition of nDart1-3 subgroup elements in the nDart1/aDart1 tagging system is correlated with the level of DNA methylation. Our system does not cause somaclonal variation due to an absence of transformed plants, offers the possibility of large-scale screening in the field and can identify dominant mutants. We therefore propose that this tagging system provides a valuable addition to the tools available for rice functional genomics.
Collapse
Affiliation(s)
- Chang-Ho Eun
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
170
|
Matsunaga W, Kobayashi A, Kato A, Ito H. The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:824-33. [PMID: 22173101 DOI: 10.1093/pcp/pcr179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Environmental stress influences genetic and epigenetic regulation in plant genomes. We previously reported that heat stress activated a copia-like retrotransposon named ONSEN. To investigate the heat sensitivity and transgenerational activation of ONSEN, we analyzed the stress response by temperature shift and multiple heat stress treatments. ONSEN was activated at 37°C, and the newly inserted ONSEN was transcriptionally active and mobile to the next generation subjected to heat stress, indicating that the regulation of ONSEN is independent of positional effects on the chromosome. Reciprocal crosses with activated ONSEN revealed that the transgenerational transposition was inherited from both sexes, indicating that the transposition is suppressed independently of gametophytic regulation. We showed previously that ONSEN was transposed in mutants deficient in small interfering RNA (siRNA) biogenesis, including nrpd2 and rdr2, but not dcl3. To define the functional redundancy of Dicer-like (DCL) proteins in Arabidopsis, we analyzed ONSEN activation in mutants deficient in DCL proteins, including dcl2, dcl3 and dcl4. ONSEN was nearly immobile in a single Dicer mutant; however, some transgenerational transpositions were observed in dcl2/dcl3/dcl4 triple mutants subjected to heat stress. This indicated that the Dicer family is redundant for ONSEN transposition. To examine the activation of ONSEN in undifferentiated cells, ONSEN transcripts and synthesized DNA were analyzed in heat-stressed callus tissue. In contrast to vegetative tissue, high accumulation of the transcripts and amplified DNA copies of ONSEN were detected in callus. This result indicated that ONSEN activation is controlled by cell-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Wataru Matsunaga
- Faculty of Science, Hokkaido University, Kita10 Nishi 8, Kitaku, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | |
Collapse
|
171
|
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. PLANT CELL REPORTS 2012; 31:597-620. [PMID: 22179259 DOI: 10.1007/s00299-011-1202-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/23/2023]
Abstract
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.
Collapse
|
172
|
Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:E981-8. [PMID: 22460791 DOI: 10.1073/pnas.1120742109] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Meiotic recombination is tightly regulated by cis- and trans-acting factors. Although DNA methylation and chromatin remodeling affect chromosome structure, their impact on meiotic recombination is not well understood. To study the effect of DNA methylation on the landscape of chromosomal recombination, we analyzed meiotic recombination in the decreased DNA methylation 1 (ddm1) mutant. DDM1 is a SWI2/SNF2-like chromatin-remodeling protein necessary for DNA methylation and heterochromatin maintenance in Arabidopsis thaliana. The rate of meiotic recombination between markers located in euchromatic regions was significantly higher in both heterozygous (DDM1/ddm1) and homozygous (ddm1/ddm1) backgrounds than in WT plants. The effect on recombination was similar for both male and female meiocytes. Contrary to expectations, ddm1 had no effect on the number of crossovers between markers in heterochromatic pericentric regions that underwent demethylation. These results are surprising, because the pericentromeric regions are hypermethylated and were expected to be the regions most affected by demethylation. Thus, DDM1 loss of function may trigger changes that enhance meiotic recombination in euchromatin regions but are not sufficient to induce the same events in heterochromatic segments. This work uncovers the repressive role of methylation on meiotic recombination in euchromatic regions and suggests that additional factors may have a role in controlling the suppression of recombination in heterochromatin.
Collapse
|
173
|
Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-i T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T. Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 2012; 26:705-13. [PMID: 22431508 DOI: 10.1101/gad.183871.111] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The plant genome evolves with rapid proliferation of LTR-type retrotransposons, which is associated with their clustered accumulation in gene-poor regions, such as centromeres. Despite their major role for plant genome evolution, no mobile LTR element with targeted integration into gene-poor regions has been identified in plants. Here, we report such targeted integrations de novo. We and others have previously shown that an ATCOPIA93 family retrotransposon in Arabidopsis thaliana is mobilized when the DNA methylation machinery is compromised. Although ATCOPIA93 family elements are low copy number in the wild-type A. thaliana genome, high-copy-number related elements are found in the wild-type Arabidopsis lyrata genome, and they show centromere-specific localization. To understand the mechanisms for the clustered accumulation of the A. lyrata elements directly, we introduced one of them, named Tal1 (Transposon of Arabidopsis lyrata 1), into A. thaliana by transformation. The introduced Tal1 was retrotransposed in A. thaliana, and most of the retrotransposed copies were found in centromeric repeats of A. thaliana, suggesting targeted integration. The targeted integration is especially surprising because the centromeric repeat sequences differ considerably between A. lyrata and A. thaliana. Our results revealed unexpectedly dynamic controls for evolution of the transposon-rich heterochromatic regions.
Collapse
Affiliation(s)
- Sayuri Tsukahara
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Arase S, Kasai M, Kanazawa A. In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein. PLANT METHODS 2012; 8:10. [PMID: 22424588 PMCID: PMC3362751 DOI: 10.1186/1746-4811-8-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/19/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cytosine methylation is involved in epigenetic control of gene expression in a wide range of organisms. An increasing number of examples indicate that changing the frequency of cytosine methylation in the genome is a feasible tool to engineer novel traits in plants. Although demethylating effects of compounds have been analyzed in human cultured cells in terms of suppressing cancer, their effect in plant cells has not been analyzed extensively. Here, we developed in planta assay systems to detect inhibition of cytosine methylation using plants that contain a transgene transcriptionally silenced by an epigenetic mechanism. RESULTS Seeds of two transgenic plants were used: a petunia line that has been identified as a revertant of the co-suppression of the chalcone synthase-A (CHS-A) gene and contains CHS-A transgenes whose transcription is repressed; Nicotiana benthamiana plants that contain the green fluorescent protein (GFP) reporter gene whose transcription is repressed through virus-induced transcriptional gene silencing. Seeds of these plants were sown on a medium that contained a demethylating agent, either 5-azacytidine or trichostatin A, and the restoration of the transcriptionally active state of the transgene was detected in seedlings. Using these systems, we found that genistein, a major isoflavonoid compound, inhibits cytosine methylation, thus restoring transgene transcription. Genistein also restored the transcription of an epigenetically silenced endogenous gene in Arabidopsis plants. CONCLUSIONS Our assay systems allowed us to assess the inhibition of cytosine methylation, in particular of maintenance of methylation, by compounds in plant cells. These results suggest a novel role of flavonoids in plant cells and that genistein is useful for modifying the epigenetic state of plant genomes.
Collapse
Affiliation(s)
- Sachiko Arase
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
175
|
Schmitz RJ, Ecker JR. Epigenetic and epigenomic variation in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2012; 17:149-54. [PMID: 22342533 PMCID: PMC3645451 DOI: 10.1016/j.tplants.2012.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana (Arabidopsis) is ideally suited for studies of natural phenotypic variation. This species has also provided an unparalleled experimental system to explore the mechanistic link between genetic and epigenetic variation, especially with regard to cytosine methylation. Using high-throughput sequencing methods, genotype to epigenotype to phenotype observations can now be extended to plant populations. We review the evidence for induced and spontaneous epigenetic variants that have been identified in Arabidopsis in the laboratory and discuss how these experimental observations could explain existing variation in the wild.
Collapse
Affiliation(s)
- Robert J Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
176
|
McCue AD, Nuthikattu S, Reeder SH, Slotkin RK. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet 2012; 8:e1002474. [PMID: 22346759 PMCID: PMC3276544 DOI: 10.1371/journal.pgen.1002474] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022] Open
Abstract
The epigenetic activity of transposable elements (TEs) can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs) in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs). Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA–binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21–22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3′ untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3′ untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs the lines between TE and gene-regulating small RNAs. The portion of the genome that does not encode for genes is often overlooked as a source of cellular regulatory information. Here, we demonstrate that regulatory information controlling expression and protein production from a gene called UBP1b is coming from a distant non-gene transposable element (TE). TEs are fragments of DNA that, unlike genes, are capable of duplicating themselves from one location in the genome to another, and occupy nearly half of the human genome. TEs are often referred to as “junk DNA,” as the study of cellular regulation and function is focused on genes. The regulation of TEs is distinct from genes, as a process termed epigenetic silencing heritably represses TE expression and activity. We have demonstrated that the epigenetic status (active versus silenced) of the Athila TE family regulates the UBP1b gene through the activity of a TE small RNA. The function of the UPB1b gene is to respond to and regulate cellular stress, and the epigenetic regulatory status of the Athila TE therefore modulates this stress response. This demonstrates that the epigenetic regulation of TEs can be a source of gene regulatory information, influencing a basic cellular function such as the stress response.
Collapse
Affiliation(s)
- Andrea D. McCue
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Saivageethi Nuthikattu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah H. Reeder
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - R. Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
177
|
Horns F, Petit E, Yockteng R, Hood ME. Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi. Genome Biol Evol 2012; 4:240-7. [PMID: 22250128 PMCID: PMC3318451 DOI: 10.1093/gbe/evs005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are ubiquitous genomic parasites that have prompted the evolution of genome defense systems that restrict their activity. Repeat-induced point mutation (RIP) is a homology-dependent genome defense that introduces C-to-T transition mutations in duplicated DNA sequences and is thought to control the proliferation of selfish repetitive DNA. Here, we determine the taxonomic distribution of hypermutation patterns indicative of RIP among basidiomycetes. We quantify C-to-T transition mutations in particular di- and trinucleotide target sites for TE-like sequences from nine fungal genomes. We find evidence of RIP-like patterns of hypermutation at TpCpG trinucleotide sites in repetitive sequences from all species of the Pucciniomycotina subphylum of the Basidiomycota, Microbotryum lychnidis-dioicae, Puccinia graminis, Melampsora laricis-populina, and Rhodotorula graminis. In contrast, we do not find evidence for RIP-like hypermutation in four species of the Agaricomycotina and Ustilaginomycotina subphyla of the Basidiomycota. Our results suggest that a RIP-like process and the specific nucleotide context for mutations are conserved within the Pucciniomycotina subphylum. These findings imply that coevolutionary interactions between TEs and a hypermutating genome defense are stable over long evolutionary timescales.
Collapse
|
178
|
Saze H. Transgenerational inheritance of induced changes in the epigenetic state of chromatin in plants. Genes Genet Syst 2012; 87:145-52. [DOI: 10.1266/ggs.87.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University
- PRESTO, Japan Science and Technology Agency (JST)
| |
Collapse
|
179
|
|
180
|
Abstract
Transposons are highly conserved in plants and have created a symbiotic relationship with the host genome. An important factor of the successful communication between transposons and host plants is epigenetic modifications including DNA methylation and the modifications of the histone tail. In plants, small interfering RNAs (siRNAs) are responsible for RNA-directed DNA methylation (RdDM) that suppresses transposon activities. Although most transposons are silent in their host plants, certain genomic shocks, such as an environmental stress or a hybridization event, might trigger transposon activation. Further, since transposons can affect the regulation mechanisms of host genes, it is possible that transposons have co-evolved as an important mechanism for plant development and adaptation. Recent new findings reveal that siRNAs control not only transcriptional activation, but also suppress transgenerational transposition of mobile elements making siRNAs critically important towards maintaining genome stability. Together these data suggest host-mediated siRNA regulation of transposons appears to have been adapted for controlling essential systems of plant development, morphogenesis, and reproduction.
Collapse
Affiliation(s)
- Hidetaka Ito
- Faculty of Science, Hokkaido University, Kita 10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810 Japan.
| |
Collapse
|
181
|
Jaligot E, Adler S, Debladis É, Beulé T, Richaud F, Ilbert P, Finnegan EJ, Rival A. Epigenetic imbalance and the floral developmental abnormality of the in vitro-regenerated oil palm Elaeis guineensis. ANNALS OF BOTANY 2011; 108:1453-62. [PMID: 21224269 PMCID: PMC3219487 DOI: 10.1093/aob/mcq266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/19/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND The large-scale clonal propagation of oil palm (Elaeis guineensis) is being stalled by the occurrence of the mantled somaclonal variation. Indeed, this abnormality which presents a homeotic-like conversion of male floral organs into carpelloid structures, hampers oil production since the supernumerary female organs are either sterile or produce fruits with poor oil yields. SCOPE In the last 15 years, the prevailing point of view on the origin of the mantled floral phenotype has evolved from a random mutation event triggered by in vitro culture to a hormone-dependent dysfunction of gene regulation processes. In this review, we retrace the history of the research on the mantled variation in the light of the parallel advances made in the understanding of plant development regulation in model systems and more specifically in the role of epigenetic mechanisms. An overview of the current state of oil palm genomic and transcriptomic resources, which are key to any comparison with model organisms, is given. We show that, while displaying original characteristics, the mantled phenotype of oil palm is morphologically, and possibly molecularly, related to MADS-box genes mutants described in model plants. We also discuss the occurrence of comparable floral phenotypes in other palm species. CONCLUSIONS Beyond its primary interest in the search for discriminating markers against an economically crippling phenotype, the study of the mantled abnormality also provides a unique opportunity to investigate the regulation of reproductive development in a perennial tropical palm. On the basis of recent results, we propose that future efforts should concentrate on the epigenetic regulation targeting MADS-box genes and transposable elements of oil palm, since both types of sequences are most likely to be involved in the mantled variant phenotype.
Collapse
Affiliation(s)
- Estelle Jaligot
- UMR DIADE (IRD, UM2), IRD/CIRAD Palm Development Group, 911 avenue Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Borowska N, Idziak D, Hasterok R. DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment. Chromosome Res 2011; 19:955-67. [PMID: 22076608 PMCID: PMC3228944 DOI: 10.1007/s10577-011-9243-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 01/07/2023]
Abstract
Sequential immunolocalisation of 5-methylcytosine (5-MeC) and fluorescence in situ hybridisation with chromosome-specific BAC clones were performed on Brachypodium distachyon mitotic metaphase chromosomes to determine specific DNA methylation patterns of each chromosome in the complement. In the majority of cells examined, chromosomes Bd4 and Bd5, which bear the loci of 5S and 35S ribosomal DNA, respectively, had characteristic 5-MeC patterns. In contrast, the distribution of 5-MeC along the metacentric chromosome pairs Bd1, Bd2 and Bd3 was more variable. There were numerous differences in distribution of methylated sites between homologous chromosomes as well as between chromosome arms. Some chromosome sites, such as pericentromeric regions, were highly methylated in all chromosomes. Additionally, the influence of a hypomethylating agent, 5-azacytidine, on B. distachyon chromosome methylation patterns was confirmed. It was found that some chromosome pairs underwent demethylation more easily than others, but there was no apparent regularity in demethylation of particular chromosome segments.
Collapse
Affiliation(s)
- Natalia Borowska
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | | | | |
Collapse
|
183
|
Fujimoto R, Taylor JM, Sasaki T, Kawanabe T, Dennis ES. Genome wide gene expression in artificially synthesized amphidiploids of Arabidopsis. PLANT MOLECULAR BIOLOGY 2011; 77:419-31. [PMID: 21882042 DOI: 10.1007/s11103-011-9820-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/22/2011] [Indexed: 05/12/2023]
Abstract
The merging of two different genomes occurs during the formation of amphidiploids, and the merged regulatory networks have the potential to generate a new gene expression pattern. We examined the genome-wide gene expression of two newly synthesized amphidiploids between Arabidopsis thaliana and the related species Arabidopsis lyrata subsp. lyrata and Arabidopsis halleri subsp. gemmifera. 1,137 (4.7%) and 1,316 (5.4%) of probesets showed differential gene expression in A. thaliana-A. halleri and A. thaliana-A. lyrata hybrids respectively, compared to the mid parent value and of these, 489 were in common. Genes that differed in expression between the parental lines tended to have an expression level in both hybrids differing from the mid parent value. In contrast to protein coding genes, there is little differential expression of transposons. Genes in the categories of chloroplast-targeted and response to stress were overrepresented in the non-additively expressed genes in both amphidiploids. As these genes have the potential to contribute directly to the plant phenotype, we suggest that rapid changes of gene expression in amphidiploids might be important for producing greater biomass.
Collapse
Affiliation(s)
- Ryo Fujimoto
- CSIRO Plant Industry, Canberra, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
184
|
Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park KII, Nakashima A, Deguchi A, Tatsuzawa F, Doi M, Iida S, Yazawa S. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5105-16. [PMID: 21765172 PMCID: PMC3193017 DOI: 10.1093/jxb/err216] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 05/18/2023]
Abstract
Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in 'Michael J' (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse transcription-PCR analysis showed that expression of chalcone synthase 1 (DvCHS1), flavanone 3-hydroxylase (DvF3H), dihydroflavonol 4-reductase (DvDFR), anthocyanidin synthase (DvANS), and DvIVS encoding a basic helix-loop-helix transcription factor were suppressed, whereas that of chalcone isomerase (DvCHI) and DvCHS2, another CHS with 69% nucleotide identity with DvCHS1, was not suppressed in the yellow ray florets of MJY. A 5.4 kb CACTA superfamily transposable element, transposable element of Dahlia variabilis 1 (Tdv1), was found in the fourth intron of the DvIVS gene of MJW and MJY, and footprints of Tdv1 were detected in the variegated flowers of MJW. It is shown that only one type of DvIVS gene was expressed in MJOr, whereas these plants are likely to have three types of the DvIVS gene. On the basis of these results, the mechanism regulating the formation of orange and yellow ray florets in dahlia is discussed.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Munetaka Hosokawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- To whom correspondence should be addressed. E-mail:
| | - Atsushi Hoshino
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yoshikuni Kitamura
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasumasa Morita
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Kyeung-II Park
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Akiko Nakashima
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ayumi Deguchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigeru Iida
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Susumu Yazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
185
|
Van Ex F, Jacob Y, Martienssen RA. Multiple roles for small RNAs during plant reproduction. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:588-93. [PMID: 21807552 PMCID: PMC3389783 DOI: 10.1016/j.pbi.2011.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/10/2011] [Accepted: 07/11/2011] [Indexed: 05/05/2023]
Abstract
Germline development and early embryogenesis in eukaryotes are characterized by large-scale genome reprogramming events. In companion cells of the Arabidopsis male gametophyte, epigenome reorganization leads to loss of heterochromatin and production of a distinct small RNA (sRNA) population. A specific class of sRNA derived from transposons appears to be mobile and can accumulate in germ cells. In the germline of maize, rice, and Arabidopsis, specific ARGONAUTE-sRNA silencing complexes appear to play key roles in reproductive development, including meiosis and regulation of germ cell fate. These results reveal new roles for sRNAs during plant reproduction and suggest that mobility of sRNAs could be critical for some of these functions.
Collapse
Affiliation(s)
- Frédéric Van Ex
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
186
|
A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proc Natl Acad Sci U S A 2011; 108:15498-503. [PMID: 21896764 DOI: 10.1073/pnas.1112704108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counteract transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.
Collapse
|
187
|
Carey N, Marques CJ, Reik W. DNA demethylases: a new epigenetic frontier in drug discovery. Drug Discov Today 2011; 16:683-90. [PMID: 21601651 DOI: 10.1016/j.drudis.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/20/2011] [Accepted: 05/06/2011] [Indexed: 12/20/2022]
Abstract
DNA methylation is one of the most extensively studied, and one of the most stable, of all epigenetic modifications. Two drugs that target DNA methyltransferase enzymes are licensed for clinical use in oncology but relatively little attention has focused on the enzymatic pathways by which DNA methylation can be reversed. Recent breakthroughs have identified at least two classes of enzymes that can achieve functional reversal. This review discusses the significance of DNA demethylation in a range of human diseases, the candidate proteins that mediate the demethylation and the opportunities and challenges in targeting these candidates to develop new therapeutics.
Collapse
Affiliation(s)
- Nessa Carey
- CellCentric Ltd., Chesterford Research Park, Little Chesterford, CB10 1XL, UK.
| | | | | |
Collapse
|
188
|
Kawagoe T, Shimizu KK, Kakutani T, Kudoh H. Coexistence of trichome variation in a natural plant population: a combined study using ecological and candidate gene approaches. PLoS One 2011; 6:e22184. [PMID: 21811571 PMCID: PMC3139618 DOI: 10.1371/journal.pone.0022184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 06/17/2011] [Indexed: 11/19/2022] Open
Abstract
The coexistence of distinct phenotypes within populations has long been investigated in evolutionary ecology. Recent studies have identified the genetic basis of distinct phenotypes, but it is poorly understood how the variation in candidate loci is maintained in natural environments. In this study, we examined fitness consequences and genetic basis of variation in trichome production in a natural population of Arabidopsis halleri subsp. gemmifera. Half of the individuals in the study population produced trichomes while the other half were glabrous, and the leaf beetle Phaedon brassicae imposed intensive damage to both phenotypes. The fitness of hairy and glabrous plants showed no significant differences in the field during two years. A similar result was obtained when sibling hairy and glabrous plants were transplanted at the same field site, whereas a fitness cost of trichome production was detected under a weak herbivory condition. Thus, equivalent fitness of hairy and glabrous plants under natural herbivory allows their coexistence in the contemporary population. The pattern of polymorphism of the candidate trichome gene GLABROUS1 (GL1) showed no evidence of long-term maintenance of trichome variation within the population. Although balancing selection under fluctuating biotic environments is often proposed to explain the maintenance of defense variation, the lack of clear evidence of balancing selection in the study population suggests that other factors such as gene flow and neutral process may have played relatively large roles in shaping trichome variation at least for the single population level.
Collapse
Affiliation(s)
- Tetsuhiro Kawagoe
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|
189
|
Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:267-74. [PMID: 21450514 DOI: 10.1016/j.pbi.2011.03.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 05/18/2023]
Abstract
Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and genetic variation, which could improve long-term plant adaptation to environmental challenges and, thus, increase productivity.
Collapse
Affiliation(s)
- Marie Mirouze
- Department of Plant Biology, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4, Switzerland.
| | | |
Collapse
|
190
|
Trap-Gentil MV, Hébrard C, Lafon-Placette C, Delaunay A, Hagège D, Joseph C, Brignolas F, Lefebvre M, Barnes S, Maury S. Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2585-97. [PMID: 21227931 DOI: 10.1093/jxb/erq433] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An epigenetic control of vernalization has been demonstrated in annual plants such as Arabidopsis and cereals, but the situation remains unclear in biennial plants such as sugar beet that has an absolute requirement for vernalization. The role of DNA methylation in flowering induction and the identification of corresponding target loci also need to be clarified. In this context, sugar beet (Beta vulgaris altissima) genotypes differing in bolting tolerance were submitted to various bolting conditions such as different temperatures and/or methylating drugs. DNA hypomethylating treatment was not sufficient to induce bolting while DNA hypermethylation treatment inhibits and delays bolting. Vernalizing and devernalizing temperatures were shown to affect bolting as well as DNA methylation levels in the shoot apical meristem. In addition, a negative correlation was established between bolting and DNA methylation. Genotypes considered as resistant or sensitive to bolting could also be distinguished by their DNA methylation levels. Finally, sugar beet homologues of the Arabidopsis vernalization genes FLC and VIN3 exhibited distinct DNA methylation marks during vernalization independently to the variations of global DNA methylation. These vernalization genes also displayed differences in mRNA accumulation and methylation profiles between genotypes resistant or sensitive to bolting. Taken together, the data suggest that the time course and amplitude of DNA methylation variations are critical points for the induction of sugar beet bolting and represent an epigenetic component of the genotypic bolting tolerance, opening up new perspectives for sugar beet breeding.
Collapse
Affiliation(s)
- Marie-Véronique Trap-Gentil
- Université d'Orléans, UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, rue de Chartres, BP 6759, F-45067 Orléans, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Rigal M, Mathieu O. A "mille-feuille" of silencing: epigenetic control of transposable elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:452-8. [PMID: 21514406 DOI: 10.1016/j.bbagrm.2011.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 11/16/2022]
Abstract
Despite their abundance in the genome, transposable elements (TEs) and their derivatives are major targets of epigenetic silencing mechanisms, which restrain TE mobility at different stages of the life cycle. DNA methylation, post-translational modification of histone tails and small RNA-based pathways contribute to maintain TE silencing; however, some of these epigenetic marks are tightly interwoven and this complicates the delineation of the exact contribution of each in TE silencing. Recent studies have confirmed that host genomes have evolved versatility in the use of these mechanisms to individualize silencing of particular TEs. These studies also revealed that silencing of TEs is much more dynamic than had been previously thought and can be reversed on the genomic scale in particular cell types or under special environmental conditions. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".
Collapse
|
192
|
Calarco JP, Martienssen RA. Genome reprogramming and small interfering RNA in the Arabidopsis germline. Curr Opin Genet Dev 2011; 21:134-9. [PMID: 21330131 PMCID: PMC3073301 DOI: 10.1016/j.gde.2011.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/18/2011] [Indexed: 12/31/2022]
Abstract
The movement of mobile small RNA signals between cells has garnered much interest over the last few years, and has recently been extended to germ cells during gamete development. Focusing on plants, we review mobile RNA signals that arise following reprogramming in the germline, and their effect on transposable element silencing on the one hand and on meiotic and apomictic germ cell fate on the other. A potential role for reprogramming and small RNA in hybrid formation and speciation is proposed.
Collapse
Affiliation(s)
- Joseph P. Calarco
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
193
|
Piperi C, Papavassiliou AG. Strategies for DNA methylation analysis in developmental studies. Dev Growth Differ 2011; 53:287-99. [PMID: 21447098 DOI: 10.1111/j.1440-169x.2011.01253.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developmental processes in eukaryotes are highly dependent on DNA methylation. 5-methylcytosine (m(5) C) is the most prevalent and best understood DNA modification implicated in maintenance of genomic integrity and function across species. Although m(5) C occurs almost exclusively in symmetrical CpG context in vertebrates, additional asymmetrical distribution in CpHpG and CpHpH sites has been observed in plants and embryonic stem cells. To this end, accurate and reproducible methodology for full analysis of the DNA methylome is highly demanded. Fortunately, a variety of methods enable quantitative DNA methylation mapping at a single-base resolution and in a large scale. Here, we provide a critical overview of methods applied primarily to m(5) C detection with particular emphasis on technical improvements of the classical bisulfite-conversion protocol. We further describe strategies in combination with emerging technologies that allow acquisition of highly reliable data for developmental studies.
Collapse
Affiliation(s)
- Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | | |
Collapse
|
194
|
An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 2011; 472:115-9. [PMID: 21399627 DOI: 10.1038/nature09861] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/13/2011] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes consist to a significant extent of retrotransposons that are suppressed by host epigenetic mechanisms, preventing their uncontrolled propagation. However, it is not clear how this is achieved. Here we show that in Arabidopsis seedlings subjected to heat stress, a copia-type retrotransposon named ONSEN (Japanese 'hot spring') not only became transcriptionally active but also synthesized extrachromosomal DNA copies. Heat-induced ONSEN accumulation was stimulated in mutants impaired in the biogenesis of small interfering RNAs (siRNAs); however, there was no evidence of transposition occurring in vegetative tissues. After stress, both ONSEN transcripts and extrachromosomal DNA gradually decayed and were no longer detected after 20-30 days. Surprisingly, a high frequency of new ONSEN insertions was observed in the progeny of stressed plants deficient in siRNAs. Insertion patterns revealed that this transgenerational retrotransposition occurred during flower development and before gametogenesis. Therefore in plants with compromised siRNA biogenesis, memory of stress was maintained throughout development, priming ONSEN to transpose during differentiation of generative organs. Retrotransposition was not observed in the progeny of wild-type plants subjected to stress or in non-stressed mutant controls, pointing to a crucial role of the siRNA pathway in restricting retrotransposition triggered by environmental stress. Finally, we found that natural and experimentally induced variants in ONSEN insertions confer heat responsiveness to nearby genes, and therefore mobility bursts may generate novel, stress-responsive regulatory gene networks.
Collapse
|
195
|
Abstract
DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review.
Collapse
Affiliation(s)
- Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
| | - Taiping Chen
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Jian-Kang Zhu
- Plant Stress Genomics Research Center, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Horticulture and Landscape Architecture Department, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
196
|
Saze H, Kakutani T. Differentiation of epigenetic modifications between transposons and genes. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:81-7. [PMID: 20869294 DOI: 10.1016/j.pbi.2010.08.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 05/23/2023]
Abstract
Transposable elements (TEs) and repeats are methylated and silenced epigenetically in a variety of organisms including plants. Recent results in Arabidopsis suggest that the TE silencing can be reprogrammed by small RNA during gametogenesis. On the other hand, TE-specific DNA methylation independent of small RNA can be induced by H3K9 methylation through mechanisms conserved between plants and fungi. Methylation of CG sites is found not only in TEs but also in the body of constitutively transcribed genes. Although the function of gene-body methylation is still elusive, the distribution and control of this type of DNA methylation are very similar between plants and animals. Possible interactions of these multiple layers of epigenetic marks and their evolution are discussed.
Collapse
Affiliation(s)
- Hidetoshi Saze
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima 411-8540, Shizuoka, Japan
| | | |
Collapse
|
197
|
Sasaki T, Fujimoto R, Kishitani S, Nishio T. Analysis of target sequences of DDM1s in Brassica rapa by MSAP. PLANT CELL REPORTS 2011; 30:81-8. [PMID: 21072521 DOI: 10.1007/s00299-010-0946-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 05/08/2023]
Abstract
DNA methylation is an important epigenetic modification regulating gene expression and transposon silencing. Although epigenetic regulation is involved in some agricultural traits, there has been relatively little research on epigenetic modifications of genes in Brassica rapa, which includes many important vegetables. In B. rapa, orthologs of DDM1, a chromatin remodeling factor required for maintenance of DNA methylation, have been characterized and DNA hypomethylated knock-down plants by RNAi (ddm1-RNAi plants) have been generated. In this study, we investigated differences of DNA methylation status at the genome-wide level between a wild-type (WT) plant and a ddm1-RNAi plant by methylation-sensitive amplification polymorphism (MSAP) analysis. MSAP analysis detected changes of DNA methylation of many repetitive sequences in the ddm1-RNAi plant. Search for body methylated regions in the WT plant revealed no difference in gene body methylation levels between the WT plant and the ddm1-RNAi plant. These results indicate that repetitive sequences are preferentially methylated by DDM1 genes in B. rapa.
Collapse
Affiliation(s)
- Taku Sasaki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | | | | | | |
Collapse
|
198
|
Ishikawa K, Fukuda E, Kobayashi I. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 2010; 17:325-42. [PMID: 21059708 PMCID: PMC2993543 DOI: 10.1093/dnares/dsq027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
199
|
Lewis ZA, Adhvaryu KK, Honda S, Shiver AL, Knip M, Sack R, Selker EU. DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC. PLoS Genet 2010; 6:e1001196. [PMID: 21079689 PMCID: PMC2973830 DOI: 10.1371/journal.pgen.1001196] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/04/2010] [Indexed: 01/14/2023] Open
Abstract
Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora.
Collapse
Affiliation(s)
- Zachary A. Lewis
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Keyur K. Adhvaryu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Shinji Honda
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Anthony L. Shiver
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Marijn Knip
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
200
|
The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet 2010; 6:e1001182. [PMID: 21060858 PMCID: PMC2965745 DOI: 10.1371/journal.pgen.1001182] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 09/28/2010] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic DNA cytosine methylation can be used to transcriptionally silence repetitive sequences, including transposons and retroviruses. This silencing is stable between cell generations as cytosine methylation is maintained epigenetically through DNA replication. The Arabidopsis thaliana Dnmt3 cytosine methyltransferase ortholog DOMAINS rearranged methyltransferase2 (DRM2) is required for establishment of small interfering RNA (siRNA) directed DNA methylation. In mammals PIWI proteins and piRNA act in a convergently evolved RNA-directed DNA methylation system that is required to repress transposon expression in the germ line. De novo methylation may also be independent of RNA interference and small RNAs, as in Neurospora crassa. Here we identify a clade of catalytically mutated DRM2 paralogs in flowering plant genomes, which in A.thaliana we term domains rearranged methyltransferase3 (DRM3). Despite being catalytically mutated, DRM3 is required for normal maintenance of non-CG DNA methylation, establishment of RNA-directed DNA methylation triggered by repeat sequences and accumulation of repeat-associated small RNAs. Although the mammalian catalytically inactive Dnmt3L paralogs act in an analogous manner, phylogenetic analysis indicates that the DRM and Dnmt3 protein families diverged independently in plants and animals. We also show by site-directed mutagenesis that both the DRM2 N-terminal UBA domains and C-terminal methyltransferase domain are required for normal RNA-directed DNA methylation, supporting an essential targeting function for the UBA domains. These results suggest that plant and mammalian RNA-directed DNA methylation systems consist of a combination of ancestral and convergent features.
Collapse
|