151
|
Yu L, Peng G, Li C, Jiang B, Xu H, Ding N, Zheng Y, Leng JQ. A rapid and low-cost approach to evaluate the allergenicity of herbal injection using HPLC analysis. Fitoterapia 2013; 88:12-8. [PMID: 23587872 DOI: 10.1016/j.fitote.2013.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 10/27/2022]
Abstract
Herbal medicines have ever been thought harmless, but it is obviously not true. Many adverse reports emerged with the development of their popular application in the world. Allergic reactions, especially serious immediate hypersensitivity, frequently occurred when herbal injections were used in clinic and made this ever prevailing agent nearly disappear in China. The aim of this study is to establish a rapid and economical method for the prediction of the allergenicity of herbal injections. Ovalbumin (OVA) and four other herbal injections, in which two of them were well known for their allergenicity, were selected to sensitize and stimulate the animals. Serotonin in the animal serum was detected with HPLC to reflect the anaphylactic response and compared with the other cytokines which could mediate the anaphylaxis, including histamine, IgE and β-hexosaminidase. The results suggest that serotonin can be detected quickly and has good correlation with the other allergy-related cytokines. It is a promising way for predicting the allergenicity of the herbal injections and those complicated natural products.
Collapse
Affiliation(s)
- Li Yu
- Pharmacy College, Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Guoping Peng
- Pharmacy College, Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| | - Cunyu Li
- Pharmacy College, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Baoping Jiang
- Pharmacy College, Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Haokun Xu
- Pharmacy College, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Ning Ding
- Pharmacy College, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Yunfeng Zheng
- Pharmacy College, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - John Q Leng
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| |
Collapse
|
152
|
Novak N, Peng WM, Bieber T, Akdis C. FcεRI stimulation promotes the differentiation of histamine receptor 1-expressing inflammatory macrophages. Allergy 2013; 68:454-61. [PMID: 23414213 DOI: 10.1111/all.12109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Monocyte differentiation into dendritic cells or macrophages and recruitment to peripheral organs in chronic inflammatory diseases are directed by allergen challenge via FcεRI as well as the nature of soluble factors in the microenvironment. High-affinity receptor for IgE stimulation of effector cells results in the release of histamine, which acts on various histamine receptors (HR) 1-4, expressed by immune cells. METHODS We examined the effect of FcεRI stimulation of human monocytes on H1R expression and function of differentiating cells. The mRNA levels of H1R, H2R and histidine decarboxylase of differentiating cells were detected by quantitative real-time PCR. Expression of CD1c, CD11c, CD68 and CD163 was detected by flow cytometry. Amount of histamine, IL-6 and IL-12p70 in the cell culture was measured with the help of cytometric bead arrays or ELISA assays. Numbers of H1R-expressing macrophages were evaluated by immunofluorescence double staining of CD68 and H1R on human skin sections. RESULTS We demonstrated that FcεRI stimulation promotes the generation of H1R-expressing macrophage-like cells with enhanced histamine biosynthesis and H1R-mediated proinflammatory properties. Supporting our in vitro findings, high numbers of H1R-expressing CD68(pos) macrophages were detected in the dermis of atopic dermatitis (AD) skin lesions. CONCLUSION Our observations point to a close histamine-/HR-mediated activation of dermal macrophages, leading to modified cell differentiation and responsiveness via H1R, which might contribute to the aggravation of allergic skin inflammation in AD.
Collapse
Affiliation(s)
- N. Novak
- Department of Dermatology and Allergy; University of Bonn Medical Center; Bonn; Germany
| | - W. M. Peng
- Department of Dermatology and Allergy; University of Bonn Medical Center; Bonn; Germany
| | - T. Bieber
- Department of Dermatology and Allergy; University of Bonn Medical Center; Bonn; Germany
| | - C. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| |
Collapse
|
153
|
Kohanbash G, Okada H. Myeloid-derived suppressor cells (MDSCs) in gliomas and glioma-development. Immunol Invest 2013; 41:658-79. [PMID: 23017140 DOI: 10.3109/08820139.2012.689591] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells that inhibit anti-tumor immunity through a variety of mechanisms. Malignant gliomas are heavily infiltrated by myeloid cells, some of which appear to share biological functions of MDSCs. Our data with mouse de novo gliomas indicate critical roles of these cells in glioma development. This review summarizes the current understanding of MDSC biology in gliomas and discusses therapeutic interventions that can safely reverse the suppressive effects of MDSCs. The insight gained from these findings may lead to the development of novel immunotherapeutic strategies for gliomas.
Collapse
Affiliation(s)
- Gary Kohanbash
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
154
|
Marzaioli V, McMorrow JP, Angerer H, Gilmore A, Crean D, Zocco D, Rooney P, Veale D, Fearon U, Gogarty M, McEvoy AN, Stradner MH, Murphy EP. Histamine contributes to increased RANKL to osteoprotegerin ratio through altered nuclear receptor 4A activity in human chondrocytes. ACTA ACUST UNITED AC 2013; 64:3290-301. [PMID: 22674155 DOI: 10.1002/art.34554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To elucidate histamine receptor-mediated signaling pathways, transcriptional events, and target gene expression in human cartilage. METHODS Histamine modulation of cartilage destruction was assessed by Safranin O staining and proteoglycan release. H(1) , H(2) , H(3) , and H(4) histamine receptor-dependent regulation of transcription factors (nuclear receptor 4A1 [NR4A1], NR4A2, and NR4A3), RANKL, and osteoprotegerin (OPG) messenger RNA (mRNA) levels were measured in primary and SW-1353 chondrocyte cells using quantitative polymerase chain reaction and selective histamine receptor antagonists. Soluble RANKL and OPG protein levels were determined using enzyme-linked immunosorbent assays. NR4A protein levels and transactivity were evaluated by Western blot analysis, immunocytochemistry, and luciferase reporter assays. Stable depletion of NR4A1-3 was achieved by lentiviral transduction of NR4A short hairpin RNA. RESULTS Primary human chondrocyte cells expressed differential steady-state levels of H(1) -H(4) histamine receptor mRNA. In combination with tumor necrosis factor α, histamine significantly promoted cartilage proteoglycan depletion and release. Histamine modulated the expression of NR4A1-3 orphan receptors in primary and immortalized human chondrocyte cells in a time- and concentration-dependent manner. Histamine selectively signaled through H(1) and H(2) histamine receptors in chondrocytes to modulate RANKL and NR4A2 expression. The temporal effects of histamine on NR4A2 gene transcription were reduced in cells pretreated with inhibitors directed against protein kinase A, MAPK, and NF-κB signaling pathways. Histamine modulated the expression of RANKL with modest effects on OPG levels, leading to increased RANKL:OPG mRNA and protein ratios. Stable knockdown of NR4A1-3 expression resulted in reduced endogenous OPG levels and the loss of histamine-dependent regulation of RANKL expression. CONCLUSION Our findings indicate that histamine, via H(1) and H(2) histamine receptors, contributes to joint disease by enhancing the ratio of RANKL to OPG expression through altered NR4A activity in human chondrocyte cells.
Collapse
Affiliation(s)
- Viviana Marzaioli
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Oldford SA, Marshall JS. Mast Cell Modulation of the Tumor Microenvironment. THE TUMOR IMMUNOENVIRONMENT 2013:479-509. [DOI: 10.1007/978-94-007-6217-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
156
|
Longhini R, de Oliveira PA, de Souza Faloni AP, Sasso-Cerri E, Cerri PS. Increased apoptosis in osteoclasts and decreased RANKL immunoexpression in periodontium of cimetidine-treated rats. J Anat 2012. [PMID: 23198931 DOI: 10.1111/joa.12011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has been demonstrated that histamine interferes with the recruitment, formation and activity of osteoclasts via H(1)- and H(2)-receptors. Cimetidine is a H(2)-receptor antagonist used for treatment of gastric ulcers that seems to prevent bone resorption. In this study, a possible cimetidine interference was investigated in the number of alveolar bone osteoclasts. The incidence of osteoclast apoptosis and immunoexpression of RANKL (receptor activator of nuclear factor κB ligand) was also evaluated. Adult male rats were treated with 100 mg kg(-1) of cimetidine for 50 days (CimG); the sham group (SG) received saline. Maxillary fragments containing the first molars and alveolar bone were fixed, decalcified and embedded in paraffin. The sections were stained by H&E or submitted to tartrate-resistant acid phosphatase (TRAP) method. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) method and immunohistochemical reactions for detecting caspase-3 and RANKL were performed. The number of TRAP-positive osteoclasts, the frequency of apoptotic osteoclasts and the numerical density of RANKL-positive cells were obtained. Osteoclast death by apoptosis was confirmed by transmission electron microscopy (TEM). In CimG, TRAP-positive osteoclasts with TUNEL-positive nuclei and caspase-3-immunolabeled osteoclasts were found. A significant reduction in the number of TRAP-positive osteoclasts and a high frequency of apoptotic osteoclasts were observed in CimG. Under TEM, detached osteoclasts from the bone surface showed typical features of apoptosis. Moreover, a significant reduction in the numerical density of RANKL-positive cells was observed in CimG. The significant reduction in the number of osteoclasts may be due to cimetidine-induced osteoclast apoptosis. However, RANKL immunoexpression reduction also suggests a possible interference of cimetidine treatment in the osteoclastogenesis.
Collapse
Affiliation(s)
- Renata Longhini
- Federal University of São Paulo, Department of Morphology and Genetics, Brazil
| | | | | | | | | |
Collapse
|
157
|
Abstract
Over the past decade, a growing recognition of the importance of neutralizing antibodies in host defense combined with the success of B-cell depletion therapies in treating auto-immune disorders has led to an increased focus on better understanding the pathways underpinning B-cell antibody production. In general, B cells require cognate interaction with T helper cells in the germinal center of lymphoid follicles to generate protective antibodies. However, recent evidence shows that B cells receive additional help from invariant natural killer T cells, dendritic cells, and various granulocytes, including neutrophils, eosinophils, and basophils. These innate immune cells enhance T-cell-dependent antibody responses by delivering B-cell helper signals both in the germinal center and at postgerminal center lymphoid sites such as the bone marrow. In addition to enhancing and complementing the B-cell helper activity of canonical T cells, invariant natural killer T cells, dendritic cells, and granulocytes can deliver T cell-independent B-cell helper signals at the mucosal interface and in the marginal zone of the spleen to initiate rapid innate-like antibody responses. Here, we discuss recent advances in the role of adaptive and innate B-cell helper signals in antibody diversification and production.
Collapse
Affiliation(s)
- Andrea Cerutti
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona Biomedical Research Park, Barcelona, Spain.
| | | | | |
Collapse
|
158
|
Pathogenicity of Trichobilharzia spp. for Vertebrates. J Parasitol Res 2012; 2012:761968. [PMID: 23125918 PMCID: PMC3480016 DOI: 10.1155/2012/761968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/13/2012] [Indexed: 12/05/2022] Open
Abstract
Bird schistosomes, besides being responsible for bird schistosomiasis, are known as causative agents of cercarial dermatitis. Cercarial dermatitis develops after repeated contact with cercariae, mainly of the genus Trichobilharzia, and was described as a type I, immediate hypersensitivity response, followed by a late phase reaction. The immune response is Th2 polarized. Primary infection leads to an inflammatory reaction that is insufficient to eliminate the schistosomes and schistosomula may continue its migration through the body of avian as well as mammalian hosts. However, reinfections of experimental mice revealed an immune reaction leading to destruction of the majority of schistosomula in the skin. Infection with the nasal schistosome Trichobilharzia regenti probably represents a higher health risk than infections with visceral schistosomes. After the skin penetration by the cercariae, parasites migrate via the peripheral nerves, spinal cord to the brain, and terminate their life cycle in the nasal mucosa of waterfowl where they lay eggs. T. regenti can also get over skin barrier and migrate to CNS of experimental mice. During heavy infections, neuroinfections of both birds and mammals lead to the development of a cellular immune response and axonal damage in the vicinity of the schistosomulum. Such infections are manifest by neuromotor disorders.
Collapse
|
159
|
Lee CL, Hsu SH, Jong YJ, Hung CH, Suen JL. Inhibition of histamine H1 receptor activity modulates proinflammatory cytokine production of dendritic cells through c-Rel activity. Int Arch Allergy Immunol 2012; 160:265-74. [PMID: 23075496 DOI: 10.1159/000341637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 07/06/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Histamine exerts diverse effects on immune regulation through four types of histamine receptors (HRs). Among them, type 1 receptor (H1R) plays an important role in allergic inflammation. Dendritic cells (DCs), which express at least three types of HRs, are professional antigen-presenting cells controlling the development of allergic inflammation. However, the molecular mechanisms involved in H1R-mediated NF-ĸB signaling of DCs remain poorly defined. METHODS Bone-marrow (BM)-derived DCs (BM-DCs) were treated with H1R inverse agonists to interrupt basal H1R-mediated signaling. The crosstalk of H1R-mediated signaling and the NF-ĸB pathway was examined by NF-ĸB cellular activity using a luciferase reporter assay, NF-ĸB subunit analysis using Western blotting and TNF-α promoter activity using chromatin immunoprecipitation. RESULTS Blockage of H1R signaling by inverse agonists significantly inhibited TNF-α and IL-6 production of BM-DCs. H1R-specific agonists were able to enhance TNF-α production, but this overexpression was significantly inhibited by NF-ĸB inhibitor. The H1R inverse agonist ketotifen also suppressed cellular NF-ĸB activity, suggesting crosstalk between H1R and NF-ĸB signaling in DCs. After comprehensive analysis of NF-ĸB subunits, c-Rel protein expression was significantly down-regulated in ketotifen-treated BM-DCs, which led to inhibition of the promoter activity of TNF-α. Finally, adoptive transfer of the ketotifen-treated BM-DCs did not induce significant allergic airway inflammation compared to that of control cells in vivo. CONCLUSIONS Our results suggest that c-Rel controls H1R-mediated proinflammatory cytokine production in DCs. This study provides a potential mechanism of H1R-mediated signaling and NF-ĸB pathway crosstalk in allergic inflammation.
Collapse
Affiliation(s)
- Chin-Lai Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
160
|
Jafarzadeh A, Nemati M, Rezayati MT, Ebrahimi M, Hassan ZM. Cimetidine enhances delayed-type hypersensitivity responses and serum interleukin (IL)-2, -10, -12, and IL-17 levels after burn injury in an animal model. J Immunotoxicol 2012; 10:201-9. [DOI: 10.3109/1547691x.2012.708365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
161
|
Saligrama N, Noubade R, Case LK, del Rio R, Teuscher C. Combinatorial roles for histamine H1-H2 and H3-H4 receptors in autoimmune inflammatory disease of the central nervous system. Eur J Immunol 2012; 42:1536-46. [PMID: 22678907 DOI: 10.1002/eji.201141859] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system in which histamine (HA) and its receptors have been implicated in disease pathogenesis. HA exerts its effects through four different G protein-coupled receptors designated H(1)-H(4). We previously examined the effects of traditional single HA receptor (HR) knockouts (KOs) in experimental allergic encephalomyelitis (EAE), the autoimmune model of MS. Our results revealed that H(1) R and H(2) R are propathogenic, while H(3) R and H(4) R are antipathogenic. This suggests that combinatorial targeting of HRs may be an effective disease-modifying therapy (DMT) in MS. To test this hypothesis, we generated H(1) H(2) RKO and H(3) H(4) RKO mice and studied them for susceptibility to EAE. Compared with wild-type (WT) mice, H(1) H(2) RKO mice developed a less severe clinical disease course, whereas the disease course of H(3) H(4) RKO mice was more severe. H(1) H(2) RKO mice also developed less neuropathology and disrupted blood brain barrier permeability compared with WT and H(3) H(4) RKO mice. Additionally, splenocytes from immunized H(1) H(2) RKO mice produced less interferon(IFN)-γ and interleukin(IL)-17. These findings support the concept that combined pharmacological targeting of HRs may be an appropriate ancillary DMT in MS and other immunopathologic diseases.
Collapse
Affiliation(s)
- Naresha Saligrama
- Department of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
162
|
Endothelial Semaphorin 7A promotes neutrophil migration during hypoxia. Proc Natl Acad Sci U S A 2012; 109:14146-51. [PMID: 22891341 DOI: 10.1073/pnas.1202165109] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies identified basic biological principles that are shared by the immune and the nervous system. One of these analogies applies to the orchestration of cellular migration where guidance proteins that serve as a stop signal for axonal migration can also serve as a stop signal for the migration of immune-competent cells. The control of leukocyte migration is of key interest during conditions associated with inflammatory tissue changes such as tissue hypoxia or hypoxic inflammation. Semaphorins are members of these axon guidance molecules. Previously unknown, we report here the expression and induction of semaphorin 7A (SEMA7A) on endothelium through hypoxia-inducible factor 1α during hypoxia. This induction of SEMA7A translates into increased transmigration of polymorphonuclear neutrophil granulocytes across endothelial cells. Extension of these findings demonstrated an attenuated extravasation of polymorphonuclear neutrophil granulocytes in Sema7a-deficient mice from the vasculature during hypoxia. Studies using chimeric animals identified the expression of Sema7A on nonhematopoietic tissue to be the underlying cause of the observed results. Taken together, our findings demonstrate that neuronal guidance proteins do not only serve as a stop signal for leukocyte migration but also can propagate the extravasation of leukocytes from the vascular space. Future anti-inflammatory strategies might be based on this finding.
Collapse
|
163
|
Activation of B cells by non-canonical helper signals. EMBO Rep 2012; 13:798-810. [PMID: 22868664 DOI: 10.1038/embor.2012.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/12/2012] [Indexed: 12/21/2022] Open
Abstract
Cognate interaction between T and B lymphocytes of the adaptive immune system is essential for the production of high-affinity antibodies against microbes, and for the establishment of long-term immunological memory. Growing evidence shows that--in addition to presenting antigens to T and B cells--macrophages, dendritic cells and other cells of the innate immune system provide activating signals to B cells, as well as survival signals to antibody-secreting plasma cells. Here, we discuss how these innate immune cells contribute to the induction of highly diversified and temporally sustained antibody responses, both systemically and at mucosal sites of antigen entry.
Collapse
|
164
|
H(1)R expression by CD11B(+) cells is not required for susceptibility to experimental allergic encephalomyelitis. Cell Immunol 2012; 278:27-34. [PMID: 23121973 DOI: 10.1016/j.cellimm.2012.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/08/2012] [Accepted: 06/29/2012] [Indexed: 01/03/2023]
Abstract
The histamine H(1) receptor (Hrh1/H(1)R) was identified as an autoimmune disease gene in experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis (MS). Previously, we showed that selective re-expression of H(1)R by endothelial cells or T cells in H(1)RKO mice significantly reduced or complemented EAE severity and cytokine responses, respectively. H(1)R regulates innate immune cells, which in turn influences peripheral and central nervous system CD4(+) T cell effector responses. Therefore, we selectively re-expressed H(1)R in CD11b(+) cells of H(1)RKO mice to test the hypothesis that H(1)R signaling in these cells contributes to EAE susceptibility. We demonstrate that transgenic re-expression of H(1)R by H(1)RKO-CD11b(+) cells neither complements EAE susceptibility nor T cell cytokine responses highlighting the cell-specific effects of Hrh1 in the pathogenesis of EAE and MS, and the need for cell-specific targeting in optimizing therapeutic interventions based on such genes.
Collapse
|
165
|
Novak N, Mete N, Bussmann C, Maintz L, Bieber T, Akdis M, Zumkehr J, Jutel M, Akdis C. Early suppression of basophil activation during allergen-specific immunotherapy by histamine receptor 2. J Allergy Clin Immunol 2012; 130:1153-1158.e2. [PMID: 22698521 DOI: 10.1016/j.jaci.2012.04.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/23/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Early desensitization of FcεRI-bearing mast cells and basophils has been demonstrated in allergen-specific immunotherapy and drug desensitization. However, its mechanisms have not been elucidated in detail. Histamine is one of the main mediators released on FcεRI triggering of basophils and mast cells, and it exerts its functions through histamine receptors (HRs). OBJECTIVES We sought to investigate HR expression on basophils of patients undergoing venom immunotherapy (VIT) and its effect on allergen, IgE, and FcεRI cross-linking-mediated basophil function and mediator release. METHODS Basophils were purified from the peripheral blood of patients undergoing VIT and control subjects and were studied functionally by using real-time PCR, flow cytometry and ELISA assays. RESULTS Rapid upregulation of H2R within the first 6 hours of the build-up phase of VIT was observed. H2R strongly suppressed FcεRI-induced activation and mediator release of basophils, including histamine and sulfidoleukotrienes, as well as cytokine production in vitro. CONCLUSION Immunosilencing of FcεRI-activated basophils by means of selective suppression mediated by H2R might be highly relevant for the very early induction of allergen tolerance and the so-called desensitization effect of VIT.
Collapse
Affiliation(s)
- Natalija Novak
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Li Z, Shen H, Zhang Y, Lu M, Qiao X, Meng X, Sun B, Xue D, Zhang W. Metabolomic study of serum from rabbits with acute acalculous cholecystitis. Inflamm Res 2012; 61:987-95. [PMID: 22618202 DOI: 10.1007/s00011-012-0491-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/17/2012] [Accepted: 05/07/2012] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES (1)H-NMR is a powerful approach of metabolomics. This study aimed to apply it to detect the serum metabolites in rabbits with acute acalculous cholecystitis (AAC), and to analyze their potential roles in AAC. METHODS Fourteen rabbits were randomly divided into two groups, the AAC group and the CON group. In the AAC rabbit model, Escherichia coli solution was injected into the gallbladder, while same volume of saline, instead of E. coli solution, was injected into the gallbladder of the CON rabbit. General morphological, light microscopic and transmission electron microscopic observations were used to evaluate the model. Metabolic profiles of serum from rabbits with AAC were investigated through (1)H-NMR spectroscopy coupled with multivariate statistical analysis, such as principal components analysis and orthogonal partial least-squares discriminant analysis. RESULTS The pathohistology of gallbladders showed a significant difference between the two groups, proving the successful induction of inflammation in the gallbladders of the AAC group. The serum concentration of lipids (LDL and VLDL) increased during AAC, while the concentrations of phospholipids, lactic acid, 3-hydroxybutyric acid, lysine, citric acid, asparagine, histidine, glucose and some other small molecular metabolites decreased. CONCLUSION The profiling of serum metabolites in rabbits with acute acalculous cholecystitis changed significantly. These changes referred to the metabolic disturbance of carbohydrate, amino acids and lipids, inhibition of immunological functions and inflammation reaction.
Collapse
Affiliation(s)
- Zhituo Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St, Nangang Dist, Harbin, 150001, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Passani MB, Ballerini C. Histamine and neuroinflammation: insights from murine experimental autoimmune encephalomyelitis. Front Syst Neurosci 2012; 6:32. [PMID: 22563309 PMCID: PMC3342557 DOI: 10.3389/fnsys.2012.00032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/14/2012] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, neurodegenerative disease of the CNS whose pathogenesis remains largely unknown, and available therapies are rarely successful in reversing neurological deficits or stopping disease progression. Ongoing studies on MS and the widely used murine model of experimental autoimmune encephalomyelitis (EAE) are focused on the many components of this complex and heterogeneous neurodegenerative disease in the hope of providing a mechanism-based characterization of MS that will afford successful strategies to limit and repair the neuronal damage. Recently, histamine has been postulated to have a key regulatory role in EAE and MS pathogenesis. Histamine is a mediator of inflammation and immune responses, exerting its many actions through four G protein-coupled receptors (H1,2,3,4R) that signal through distinct intracellular pathways and have different therapeutic potentials as they vary in expression, isoform distribution, signaling properties, and function. Immune cells involved in MS/EAE, including dendritic cells (DCs) and T lymphocytes, express H1R, H2R and H4R, and histamine may have varying and counteracting effects on a particular cell type, depending on the receptor subtypes being activated. Here, we review evidence of the complex and controversial role of histamine in the pathogenesis of MS and EAE and evaluate the therapeutic potential of histaminergic ligands in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Maria B Passani
- Dipartimento di Farmacologia Preclinica e Clinica, Universita' di Firenze Firenze, Italy
| | | |
Collapse
|
168
|
Baldo BA, Pham NH. Histamine-releasing and allergenic properties of opioid analgesic drugs: resolving the two. Anaesth Intensive Care 2012; 40:216-35. [PMID: 22417016 DOI: 10.1177/0310057x1204000204] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Opioid analgesics are amongst the most commonly administered drugs in hospitals. Whether natural or synthetic, they show some common structural features, morphine-like pharmacological action and binding specificity for complementary opioid receptors. Tramadol differs from the other opioid analgesics in possessing monoaminergic activity in addition to its affinity for the µ opioid receptor. Many opioids are potent histamine releasers producing a variety of haemodynamic changes and anaphylactoid reactions, but the relationship of the appearance of these effects to the histamine plasma concentration is complex and there is no direct and invariable relationship between the two. Studies of the histamine-releasing effects, chiefly centred on morphine, reveal variable findings and conclusions often due to a range of factors including differences in technical measurements, dose, mode of administration, site of injection, the anatomical distribution of histamine receptors and heterogeneity of patient responses. Morphine itself has multiple direct effects on the vasculature and other haemodynamically-active mediators released along with histamine contribute to the variable responses to opioid drug administration. Despite their heavy use and occasional apparent anaphylactic-like side-effects, immunoglobulin E antibody-mediated immediate hypersensitivity reactions to the drugs are not often encountered. Uncertainties associated with skin testing with these known histamine-releasers, and the general unavailability of opioid drug-specific immunoglobulin E antibody tests contribute to the frequent failure to adequately investigate and establish underlying mechanisms of reactions by distinguishing anaphylactoid from true anaphylactic reactions. Clinical implications for diagnosis of reactions and some speculations on the rarity of true Type 1 allergies to these drugs are presented.
Collapse
|
169
|
Vauth M, Möhner D, Beermann S, Seifert R, Neumann D. Histamine via the Histamine H2-Receptor Reduces α-CD3-Induced Interferon-γ Synthesis in Murine CD4+ T Cells in an Indirect Manner. J Interferon Cytokine Res 2012; 32:185-90. [DOI: 10.1089/jir.2011.0082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Marcus Vauth
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Desirée Möhner
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Silke Beermann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
170
|
Immunological, biochemical and histopathological evaluation of histamine receptors (H1R, H2R, H3R and H4R)-antagonist in rabbit experimental model: A short term study. ACTA ACUST UNITED AC 2012; 64:259-66. [DOI: 10.1016/j.etp.2010.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/14/2010] [Accepted: 08/27/2010] [Indexed: 11/23/2022]
|
171
|
Kmiecik T, Otocka-Kmiecik A, Górska-Ciebiada M, Ciebiada M. T lymphocytes as a target of histamine action. Arch Med Sci 2012; 8:154-61. [PMID: 22457689 PMCID: PMC3309451 DOI: 10.5114/aoms.2012.27295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/27/2010] [Accepted: 10/17/2010] [Indexed: 11/17/2022] Open
Abstract
Histamine is one of the most important biogenic amines in medicine and biology but its role in allergy, autoimmune and neoplastic diseases has not yet been fully defined. The last few years have brought many discoveries concerning important modulatory effects of histamine and its receptors on basic mechanisms of the immunological processes. The role of histamine H1 and H2 receptors in immunomodulation has been established. The immunomodulatory function of a newly described histamine H4 receptor has been revealed. One of the most important modulatory effects of histamine currently studied is its influence on T lymphocyte differentiation and function. Our present knowledge suggests that histamine may have a wider influence on various immunological processes than is now accepted; therefore, we need further studies to fully clarify the role of histamine and its receptors. This knowledge can bring new therapeutic solutions in allergies, autoimmune diseases and malignancies.
Collapse
Affiliation(s)
- Tomasz Kmiecik
- Department of Pneumonology and Allergy, Medical University of Lodz, Poland
| | | | | | - Maciej Ciebiada
- Department of Pneumonology and Allergy, Medical University of Lodz, Poland
| |
Collapse
|
172
|
Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 2012; 7:e31951. [PMID: 22384111 PMCID: PMC3285189 DOI: 10.1371/journal.pone.0031951] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/20/2012] [Indexed: 02/06/2023] Open
Abstract
Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s) produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC) separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA), histidine/histamine antiporter (hdcP), and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2)-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H2 receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA) and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases.
Collapse
Affiliation(s)
- Carissa M. Thomas
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Teresa Hong
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jan Peter van Pijkeren
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Peera Hemarajata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dan V. Trinh
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Weidong Hu
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Robert A. Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Markus Kalkum
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
173
|
Conrad ML, Renz H, Blaser K. Immunological approaches for tolerance induction in allergy. Curr Top Microbiol Immunol 2012; 352:1-26. [PMID: 21598104 DOI: 10.1007/82_2011_128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergy is the consequence of an inappropriate inflammatory immune response generated against harmless environmental antigens. In allergic disorders such as asthma and rhinitis, the Th2 mediated phenotype is a result of loss of peripheral tolerance mechanisms. In cases such as these, approaches such as immunotherapy attempt to treat the underlying cause of allergic disease by restoring tolerance. Immunotherapy initiates many complex mechanisms within the immune system that result in initiation of innate immunity, activation of both cellular and humoral B cell immunity, as well as triggering T regulatory subsets which are major players in the establishment of peripheral tolerance. Though studies clearly demonstrate immunotherapy to be efficacious, research to improve this treatment is ongoing. Investigation of allergenicity versus immunogenicity, native versus modified allergens, and the use of adjuvant and modality of dosing are all current strategies for immunotherapy advancement that will be reviewed in this article.
Collapse
Affiliation(s)
- Melanie L Conrad
- Department of Clinical Chemistry and Molecular Diagnostics, Biomedical Research Centre, Philipps University of Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.
| | | | | |
Collapse
|
174
|
Opposite effects of mepyramine on JNJ 7777120-induced amelioration of experimentally induced asthma in mice in sensitization and provocation. PLoS One 2012; 7:e30285. [PMID: 22272324 PMCID: PMC3260279 DOI: 10.1371/journal.pone.0030285] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/17/2011] [Indexed: 12/03/2022] Open
Abstract
Background Histamine is detected in high concentrations in the airways during an allergic asthma response. In a murine model of allergic asthma, JNJ 7777120, an antagonist at the histamine H4 receptor, reduces asthmatic symptoms, while the histamine H1 receptor-selective antagonist mepyramine is virtually without effect. In the present study, we analyzed the effect of combined antagonism at the histamine H1 and H4 receptors in a murine asthma model in relation to the timing of their application, i.e. sensitization or provocation. Methodology/Principal Findings Asthma was induced in mice by sensitization and provocation with ovalbumin. JNJ 7777120 and/or mepyramine were injected subcutaneously either during sensitization or during provocation, and typical asthma parameters were analyzed. JNJ 7777120, but not mepyramine, reduced serum concentrations of anti-OVA IgE, inflammatory infiltrations in lung tissue, and eosinophilia in bronchoalveolar-lavage (BAL)-fluids independently of the timing of application. Upon application of JNJ 7777120 plus mepyramine in combination during provocation, mepyramine inhibited the effects of JNJ 7777120. In contrast, when applied during sensitization, mepyramine enhanced the disease-ameliorating effects of JNJ 7777120. Conclusions/Significance Our study indicates that both histamine H1 and H4 receptors play important roles in the course of murine experimental asthma. Unexpectedly, the contribution of these receptors to the pathogenesis differs between the two phases, sensitization or provocation. Since in human asthma, repeated contact to the allergen is not only provocation but also a boost of sensitization, a combined pharmacological targeting of histamine H1 and H4 receptors could be taken into consideration as an option for the prevention of asthma and maybe other allergic diseases.
Collapse
|
175
|
Swartzendruber JA, Byrne AJ, Bryce PJ. Cutting edge: histamine is required for IL-4-driven eosinophilic allergic responses. THE JOURNAL OF IMMUNOLOGY 2011; 188:536-40. [PMID: 22156496 DOI: 10.4049/jimmunol.1101795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histamine is an important allergic mediator, and studies have defined roles for both histamine 1 and 4 receptors in allergic airway inflammation. In this study, we show that histamine is necessary to generate IL-4-driven eosinophilic inflammation, as histamine-deficient mice cannot generate eosinophilic lung inflammation in response to intratracheal IL-4 and exogenous histamine restores responsiveness. This is histamine 2 receptor (H2R) dependent because H2R knockout mice fail to respond to IL-4, and a H2R agonist restores inflammation in histidine decarboxylase knockout. Furthermore, alveolar epithelial cells require H2R to produce CCL24, an eosinophil recruitment factor, whereas H2R blockade reduces CCL24 production from wild-type cells. In an allergic inflammation model, H2R knockout mice show significantly reduced eosinophilic inflammation and CCL24 expression. These data demonstrate a previously unidentified role for H2R in allergic inflammation and establishes a synergy between endogenous histamine and IL-4 that supports eosinophilic recruitment to the lung.
Collapse
Affiliation(s)
- Julie A Swartzendruber
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
176
|
Cichocka-Jarosz E, Diwakar L, Brzyski P, Tobiasz-Adamczyk B, Lis G, Pietrzyk JJ. Congruence of the current practices in Hymenoptera venom allergic patients in Poland with EAACI guidelines. Arch Med Sci 2011; 7:832-9. [PMID: 22291828 PMCID: PMC3258816 DOI: 10.5114/aoms.2011.25558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/05/2010] [Accepted: 10/26/2010] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Venom immunotherapy (VIT) practice is the definitive treatment for patients with potentially fatal allergic reactions to Hymenoptera stings. The aim is assesing compliance of VIT practice in Poland with the current European Academy of Allergy and Clinical Immunology (EAACI) guidance. MATERIAL AND METHODS A multicentre study was carried out using a structured questionnaire which was sent by post to all VIT practitioners in Poland. Some questionnaire items were altered, in comparison to original version by adding additional answer options or alowing multiple answer option. The response rate was 100%. The obtained results were compared with the published EAACI guidelines. RESULTS Twenty-six Polish centres took part in the survey. SSIgE and skin prick tests (SPT) are together used as the first line of investigation, whereas confirmatory intradermal tests (IDT) are applied in half of centres. Only a few centres measure baseline serum tryptase levels. The ultra-rush protocol is preferred. Antihistamine pre-medication is routinely practiced. A target dose equal to 100 µg is used in most centres. A 6-week interval between booster doses is the most frequent. Five years is considered as an optimal VIT duration. Before the VIT completion, SSIgE is evaluated in fifty percent of centres, whereas sting challenge is considered by half of responders. CONCLUSIONS There are some differences between current practice in Poland and the EAACI recommendations, indicating areas requiring better compliance. Comparision between Poland and the United Kingdom revealed that health service organization and health care funding may play a major role in the provision of allergy services. This may affect the extent to which international guidance may be applied in individual countries. It is worth considering conducting the same survey in other European countries.
Collapse
Affiliation(s)
- Ewa Cichocka-Jarosz
- Department of Pediatrics, Polish-American Children's Hospital, Jagiellonian University Medical College, Krakow, Poland
- Corresponding author: Ewa Cichocka-Jarosz MD, PhD, Department of Pediatrics Polish-American Children's Hospital, Jagiellonian University Medical College, 265 Wielicka, 30-663 Krakow, Poland, Phone: 48 12 658 20 11, ext. 1655, Fax: 48 12 658 44 46. E-mail:
| | - Lavanya Diwakar
- Department of Allergy and Immunology, Heartlands Hospital, Birmingham, United Kingdom
| | - Piotr Brzyski
- Department of Medical Sociology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Tobiasz-Adamczyk
- Department of Medical Sociology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Lis
- Department of Pediatrics, Polish-American Children's Hospital, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek J. Pietrzyk
- Department of Pediatrics, Polish-American Children's Hospital, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
177
|
Masuda K, Kimura A, Hanieh H, Nguyen NT, Nakahama T, Chinen I, Otoyo Y, Murotani T, Yamatodani A, Kishimoto T. Aryl hydrocarbon receptor negatively regulates LPS-induced IL-6 production through suppression of histamine production in macrophages. Int Immunol 2011; 23:637-45. [PMID: 21930594 DOI: 10.1093/intimm/dxr072] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Macrophages play a pivotal role in innate immune responses to pathogens via toll-like receptors. We previously demonstrated that aryl hydrocarbon receptor (Ahr) in combination with signal transducer and activator of transcription 1 (Stat1) negatively regulates pro-inflammatory cytokine production by inhibiting nuclear factor-κB activation in macrophages after LPS stimulation. Here, we show that Ahr also negatively regulates production of the pro-inflammatory cytokine IL-6 by suppressing histamine production in macrophages stimulated by LPS. We found that Ahr-Sp1 complex, independent of Stat1, represses histidine decarboxylase expression by inhibiting LPS-induced Sp1 phosphorylation on Ser residues in macrophages; this leads to suppression of histamine production. Moreover, we found that loratadine and chlorpromazine, histamine 1 receptor (H1R) antagonists, more effectively impair the production of LPS-induced IL-6 than that of other inflammatory cytokines in Ahr(-/-) macrophages. Collectively, these results demonstrate that Ahr negatively regulates IL-6 production via H1R signaling through the suppression of histamine production in macrophages following LPS stimulation.
Collapse
Affiliation(s)
- Kazuya Masuda
- Laboratory of Immune Regulation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Arae K, Oboki K, Ohno T, Hirata M, Nakae S, Taguchi H, Saito H, Nakajima T. Cimetidine enhances antigen-specific IgE and Th2 cytokine production. Allergol Int 2011; 60:339-44. [PMID: 21502804 DOI: 10.2332/allergolint.10-oa-0255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/12/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Treatment with anti-ulcer drugs has been shown to enhance IgE production against food antigens. However, little is known about the immunological effects of cimetidine, a histamine receptor type 2 (H2R) antagonist that is widely used as an anti-ulcer drug, in allergy. Therefore, the present study investigated the role of cimetidine in Th2 immune responses in mice. METHODS BALB/c mice were immunized intraperitoneally with ovalbumin (OVA) with and without cimetidine. The levels of cytokines in supernatants of spleen cells cultured in the presence of OVA for 4 days and the levels of total and OVA-specific IgG(1), IgG(2a) and/or IgE in sera from these mice were determined by ELISA. RESULTS Administration of cimetidine to OVA-sensitized BALB/c mice promoted Th2 cytokine secretion by OVA-stimulated spleen cells in vitro and increased serum levels of OVA-specific IgE, IgG(1) and IgG(2a). CONCLUSIONS These results indicate that cimetidine can enhance Th2 responses, suggesting that cimetidine may contribute to IgE production in allergies.
Collapse
Affiliation(s)
- Ken Arae
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Regulation of the immune response and inflammation by histamine and histamine receptors. J Allergy Clin Immunol 2011; 128:1153-62. [PMID: 21824648 DOI: 10.1016/j.jaci.2011.06.051] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/01/2011] [Accepted: 06/23/2011] [Indexed: 02/04/2023]
Abstract
Histamine is a biogenic amine with extensive effects on many cell types, including important immunologic cells, such as antigen-presenting cells, natural killer cells, epithelial cells, and T and B lymphocytes. Histamine and its 4 receptors represent a complex system of immunoregulation with distinct effects dependent on receptor subtypes and their differential expression. These are influenced by the stage of cell differentiation, as well as microenvironmental influences, leading to the selective recruitment of effector cells into tissue sites accompanied by effects on cellular maturation, activation, polarization, and effector functions, which lead to tolerogenic or proinflammatory responses. In this review we discuss the regulation of histamine secretion, receptor expression, and differential activation of cells within both the innate and adaptive immune responses. It is clear that the effects of histamine on immune homeostasis are dependent on the expression and activity of the 4 currently known histamine receptors, and we also recognize that 100 years after the original identification of this biogenic amine, we still do not fully understand the complex regulatory interactions between histamine and the host immune response to everyday microbial and environmental challenges.
Collapse
|
180
|
Clemastine causes immune suppression through inhibition of extracellular signal-regulated kinase-dependent proinflammatory cytokines. J Allergy Clin Immunol 2011; 128:1286-94. [PMID: 21807405 DOI: 10.1016/j.jaci.2011.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Antihistamines are considered safe and used worldwide against allergy, pruritus, nausea, and cough and as sleeping aids. Nonetheless, a growing number of reports suggest that antihistamines also have immunoregulatory functions. OBJECTIVE We examined the extent and by what potential mechanisms histamine-1-receptor (H1R) antagonists exert immune suppressive effects. METHODS Immune suppression by antihistamines and immunosuppressants was tested in mice infected with Listeria monocytogenes. Potential modes of action were studied in vitro by using murine and human cells. We also tested whether injection of clemastine in healthy volunteers affected the activation of peripheral macrophages and monocytes. Finally, therapeutic application of clemastine-mediated immune suppression was tested in a murine model of sepsis. RESULTS Clemastine and desloratadine strongly reduced innate responses to Listeria monocytogenes in mice as did dexamethasone. The immune suppression was MyD88 independent and characterized by inhibition of the mitogen-activated protein kinase-extracellular signal-regulated kinase signaling pathway, leading to overall impaired innate immunity with reduced TNF-α and IL-6 production. Surprisingly, the observed effects were H1R independent as demonstrated in H1R-deficient mice. Moreover, in a double-blind placebo-controlled clinical trial, 1 intravenous administration of clemastine reduced the TNF-α secretion potential of peripheral blood macrophages and monocytes. This inhibition could be exploited to treat sepsis in mice. CONCLUSIONS The safety profile of antihistamines may need to be revisited. However, antihistamine-mediated immune suppression may also be exploited and find applications in the treatment of inflammatory diseases.
Collapse
|
181
|
Ohtsu H. Histamine synthesis and lessons learned from histidine decarboxylase deficient mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 709:21-31. [PMID: 21618884 DOI: 10.1007/978-1-4419-8056-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This chapter summarizes the information about the transcriptional regulation of histidine decarboxylase (HDC), which is the catabolic enzyme of histamine synthesis, and the activity of histamine in vivo as clarified using HDC gene deficient mice (HDC-KO). The research of the regulatory mechanism of histamine synthesis has been focused on transcriptional and posttranslational aspects. The generation ofHDC-KO mice clarified several new pathophysiological functions of histamine. It is now recognized that the activity of histamine is not limited to allergic, peptic and neurological functions as in the old paradigm, but extends to other fields such as cardiology, immunology and infectious diseases. Therefore, this chapter will focus on these newly revealed functions of histamine. For example, histamine was known to be involved in the effector phase of allergic responses, but a role has now been shown in the sensitization phases and in innate immunity. In the allergic bronchial asthma model using HDC-KO mice it was found that histamine positively controls eosinophilia, but not bronchial hypersensitivity. The effect on eosinophils was afterwards shown to be mediated through the activity of the histamine H4 receptor. The recent advances in the understanding of histamine synthesis and the activity of HDC have dramatically expanded our understanding of the scope of histamine function.
Collapse
Affiliation(s)
- Hiroshi Ohtsu
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
182
|
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. Mechanisms of immunotherapy to wasp and bee venom. Clin Exp Allergy 2011; 41:1226-34. [PMID: 21729181 DOI: 10.1111/j.1365-2222.2011.03812.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hymenoptera venoms are important allergens that can elicit both local and systemic allergic reactions, including life-threatening anaphylaxis. Venom immunotherapy (VIT) remains the most effective treatment, reducing the risk of systemic reactions in individuals with Hymenoptera venom allergy. VIT can restore normal immunity against venom allergens and provide patients with a lifetime of tolerance to venoms. During VIT, peripheral tolerance is induced by the generation of allergen-specific regulatory T (Treg) cells, which suppress proliferative and cytokine responses against the venom allergens. Treg cells are characterized by IL-10 secretion that directly or indirectly influence effector cells of allergic inflammation, such as mast cells, basophils and eosinophils. Treg cells also have influence on B cells, suppressing IgE production and inducing the production of blocking type IgG4 antibodies against venom allergens. An accumulating body of evidence suggests that Treg cells may affect allergen sensitization and methods for enhancing this cell population may eventually improve the efficacy of VIT. In this article, immune mechanisms enrolled in bee and wasp VIT are reviewed.
Collapse
Affiliation(s)
- C Ozdemir
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | | | | | | |
Collapse
|
183
|
Walter M, Kottke T, Stark H. The histamine H₄ receptor: targeting inflammatory disorders. Eur J Pharmacol 2011; 668:1-5. [PMID: 21741967 DOI: 10.1016/j.ejphar.2011.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 01/14/2023]
Abstract
The discovery of the histamine H(4) receptor has added a new chapter to the century of extensive biogenic amine research. The human histamine H(4) receptor is mainly expressed in cells of the human immune system (e.g. mast cells, eosinophils, monocytes, dendritic cells, T cells) and mediates several effects on chemotaxis with numerous cell types. The distinct expression pattern and the immunomodulatory role highlight its physiological relevance in inflammatory and immunological processes. Inflammatory conditions, e.g. allergy, asthma and autoimmune diseases, were for a long time thought to be mainly mediated by activation of the histamine H(1) receptor subtype. However, in the treatment of diseases as chronic pruritus, asthma and allergic rhinitis the use of histamine H(1) receptor antagonists is unsatisfying. Selective H(4) receptor ligands and/or synergism of histamine H(1) and H(4) receptor modulation may be more effective in such pathophysiological conditions. Promising preclinical studies underline its role as an attractive target in the treatment of inflammatory and autoimmune disorders. Meanwhile, first histamine H(4) receptor antagonist has reached clinical phases for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Miriam Walter
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, ZAFES/LiFF/CMP/ICNF, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
184
|
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. Specific immunotherapy and turning off the T cell: how does it work? Ann Allergy Asthma Immunol 2011; 107:381-92. [PMID: 22018608 DOI: 10.1016/j.anai.2011.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/08/2011] [Accepted: 05/17/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine T-regulatory (Treg) cell functions in allergic immune responses and their roles during allergen specific immunotherapy based on recent developments and current understanding of immune regulation. DATA SOURCES PubMed search of English-language articles regarding Treg cells and allergen specific immunotherapy. STUDY SELECTION Articles on the subject matter were selected and reviewed. RESULTS Allergen specific immunotherapy is the ultimate treatment modality targeting the immunopathogenic mechanisms of allergic disorders. A diminished allergen-specific T-cell proliferation and suppressed secretion of T(H)1- and T(H)2-type cytokines are the characteristic hallmarks. In addition, Treg cells inhibit the development of allergen-specific T(H)2 and T(H)1 cell responses and therefore exert key roles in healthy immune response to allergens. Treg cells potently suppress IgE production and directly or indirectly control the activity of effector cells of allergic inflammation, such as eosinophils, basophils, and mast cells. CONCLUSION As advancements in the field of allergen specific immunotherapy ensue, they may provide novel progression of more rational and safer approaches for the prevention and treatment of allergic disorders. Currently, the Treg cell field is an open research area to increase our understanding in mechanisms of peripheral tolerance to allergens.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | | | | | | |
Collapse
|
185
|
Abstract
The studies on the mechanisms of specific immunotherapy (SIT) point out its targets that decide on the efficacy of SIT and hence might be used for its further improvement. Several mechanisms have been proposed to explain the beneficial effects of immunotherapy. The knowledge of the mechanisms underlying allergic diseases and curative treatment possibilities has experienced exciting advances over the last three decades. Studies in several clinical trials in allergen-SIT have demonstrated that the induction of a tolerant state against allergens in many ways represents a key step in the development of a healthy immune response against allergens. Several cellular and molecular mechanisms have been demonstrated: allergen-specific suppressive capacities of both inducible subsets of CD4(+) CD25(+) forkhead box P3(+) T-regulatory and IL-10-secreting type 1 T-regulatory cells increase in peripheral blood; suppression of eosinophils, mast cells, and basophils; Ab isotype change from IgE to IgG4. This review aims at the better understanding of the observed immunological changes associated with allergen SIT.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wrocław, Poland.
| | | |
Collapse
|
186
|
Anaplasma phagocytophilum infects mast cells via alpha1,3-fucosylated but not sialylated glycans and inhibits IgE-mediated cytokine production and histamine release. Infect Immun 2011; 79:2717-26. [PMID: 21536789 DOI: 10.1128/iai.00181-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mast cells are sentinels for infection. Upon exposure to pathogens, they release their stores of proinflammatory cytokines, chemokines, and histamine. Mast cells are also important for the control of certain tick-borne infections. Anaplasma phagocytophilum is an obligate intracellular tick-transmitted bacterium that infects neutrophils to cause the emerging disease granulocytic anaplasmosis. A. phagocytophilum adhesion to and infection of neutrophils depend on sialylated and α1,3-fucosylated glycans. We investigated the hypotheses that A. phagocytophilum invades mast cells and inhibits mast cell activation. We demonstrate that A. phagocytophilum binds and/or infects murine bone marrow-derived mast cells (BMMCs), murine peritoneal mast cells, and human skin-derived mast cells. A. phagocytophilum infection of BMMCs depends on α1,3-fucosylated, but not sialylated, glycans. A. phagocytophilum binding to and invasion of BMMCs do not elicit proinflammatory cytokine secretion. Moreover, A. phagocytophilum-infected cells are inhibited in the release of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-13, and histamine following stimulation with IgE or antigen. Thus, A. phagocytophilum mitigates mast cell activation. These findings potentially represent a novel means by which A. phagocytophilum usurps host defense mechanisms and shed light on the interplay between mast cells and vector-borne bacterial pathogens.
Collapse
|
187
|
Abstract
Histamine and the histamine receptors are important regulators of a plethora of biological processes, including immediate hypersensitivity reactions and acid secretion in the stomach. In these roles, antihistamines have found widespread therapeutic applications, while the last receptor to be discovered, the H4 histamine receptor, has become a major target of novel therapeutics. Recent studies involving human genetic variance and the development of mice lacking specific receptors or the ability to generate histamine have shown roles for the histamine pathway that extend well beyond the established roles. These include identification of previously unappreciated mechanisms through which histamine regulates inflammation in allergy, as well as roles in autoimmunity, infection, and pain. As a result, antihistamines may have wider applications in the future than previously predicted.
Collapse
Affiliation(s)
- Craig Smuda
- Department of Medicine/Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, McGaw M315, 240 E. Huron St., Chicago, IL 60611, USA
| | - Paul J. Bryce
- Department of Medicine/Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, McGaw M315, 240 E. Huron St., Chicago, IL 60611, USA
| |
Collapse
|
188
|
Histamine receptor H1 signaling on dendritic cells plays a key role in the IFN-γ/IL-17 balance in T cell–mediated skin inflammation. J Allergy Clin Immunol 2011; 127:943-53.e1-10. [DOI: 10.1016/j.jaci.2010.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/18/2010] [Accepted: 12/01/2010] [Indexed: 11/23/2022]
|
189
|
Fujimoto S, Komine M, Karakawa M, Uratsuji H, Kagami S, Tada Y, Saeki H, Ohtsuki M, Tamaki K. Histamine differentially regulates the production of Th1 and Th2 chemokines by keratinocytes through histamine H1 receptor. Cytokine 2011; 54:191-9. [PMID: 21324712 DOI: 10.1016/j.cyto.2010.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/25/2010] [Accepted: 12/16/2010] [Indexed: 11/17/2022]
Abstract
Histamine is a biological amine that plays an important role in allergic responses. However, the involvement of histamine signaling in late allergic responses in the skin is poorly understood. Therefore, we attempted to investigate the involvement of histamine signaling in late allergic responses, especially in keratinocytes (KCs). HaCaT KCs and normal human KCs (NHKs) predominantly expressed histamine H1 receptor (H1R) and H2 receptor (H2R). Histamine suppressed tumor necrosis factor α (TNF-α)- and interferon-γ (IFN-γ)-induced production of CC chemokine ligand 17(CCL17), a type 2 T-helper (Th2) chemokine, by HaCaT KCs. It suppressed the phosphorylation of p38 mitogen-activated protein (MAP) kinase, but not that of extracellular signal-regulated kinases (ERKs), and TNF-α- and IFN-γ-induced nuclear factor κB (NFκB) activity. In contrast, histamine enhanced the production of CXC chemokine ligand 10 (CXCL10), a Th1 chemokine, by TNF-α- and IFN-γ-stimulated HaCaT KCs and NHKs. TNF-α- and IFN-γ-induced CXCL10 production was upregulated by suppression of p38 MAP kinase or NF-κB activity, which could explain histamine involvement. We concluded that histamine suppresses CCL17 production by KCs by suppressing p38 MAP kinase and NF-κB activity through H1R and may act as a negative-feedback signal for existing Th2-dominant inflammation by suppressing CCL17 and enhancing CXCL10 production.
Collapse
Affiliation(s)
- Seiki Fujimoto
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Neural pathways in allergic inflammation. J Allergy (Cairo) 2011; 2010:491928. [PMID: 21331366 PMCID: PMC3038426 DOI: 10.1155/2010/491928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/30/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022] Open
Abstract
Allergy is on the rise worldwide. Asthma, food allergy, dermatitis, and systemic anaphylaxis are amongst the most common allergic diseases. The association between allergy and altered behavior patterns has long been recognized. The molecular and cellular pathways in the bidirectional interactions of nervous and immune systems are now starting to be elucidated. In this paper, we outline the consequences of allergic diseases, especially food allergy and asthma, on behavior and neural activity and on the neural modulation of allergic responses.
Collapse
|
191
|
Lapilla M, Gallo B, Martinello M, Procaccini C, Costanza M, Musio S, Rossi B, Angiari S, Farina C, Steinman L, Matarese G, Constantin G, Pedotti R. Histamine regulates autoreactive T cell activation and adhesiveness in inflamed brain microcirculation. J Leukoc Biol 2011; 89:259-67. [PMID: 21071626 DOI: 10.1189/jlb.0910486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine may contribute to the pathology of MS and its animal model EAE. We explored the effects of histamine and specific HR agonists on activation and migratory capacity of myelin-autoreactive T cells. We show that histamine in vitro inhibits proliferation and IFN-γ production of mouse T cells activated against PLP(139-151). These effects were mimicked by the H1R agonist HTMT and the H2R agonist dimaprit and were associated with reduced activation of ERK½ kinase and with increased levels of cell cycle inhibitor p27Kip-1, both involved in T cell proliferation and anergy. H1R and H2R agonists reduced spontaneous and chemokine-induced adhesion of autoreactive T cells to ICAM-1 in vitro and blocked firm adhesion of these cells in inflamed brain microcirculation in vivo. Thus histamine, through H1R and H2R, inhibits activation of myelin-autoreactive T cells and their ability to traffic through the inflamed BBB. Strategies aimed at interfering with the histamine axis might have relevance in the therapy of autoimmune disease of the CNS.
Collapse
Affiliation(s)
- Marilena Lapilla
- Neurological Institute Foundation, IRCCS Carlo Besta, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Mast Cells and Immunoregulation/Immunomodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:186-211. [DOI: 10.1007/978-1-4419-9533-9_11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
193
|
Yang XD, Ai W, Asfaha S, Bhagat G, Friedman RA, Jin G, Park H, Shykind B, Diacovo TG, Falus A, Wang TC. Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nat Med 2011; 17:87-95. [PMID: 21170045 PMCID: PMC3075560 DOI: 10.1038/nm.2278] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/16/2010] [Indexed: 12/17/2022]
Abstract
Histidine decarboxylase (HDC), the unique enzyme responsible for histamine generation, is highly expressed in myeloid cells, but its function in these cells is poorly understood. Here we show that Hdc-knockout mice show a high rate of colon and skin carcinogenesis. Using Hdc-EGFP bacterial artificial chromosome (BAC) transgenic mice in which EGFP expression is controlled by the Hdc promoter, we show that Hdc is expressed primarily in CD11b(+)Ly6G(+) immature myeloid cells (IMCs) that are recruited early on in chemical carcinogenesis. Transplant of Hdc-deficient bone marrow to wild-type recipients results in increased CD11b(+)Ly6G(+) cell mobilization and reproduces the cancer susceptibility phenotype of Hdc-knockout mice. In addition, Hdc-deficient IMCs promote the growth of tumor allografts, whereas mouse CT26 colon cancer cells downregulate Hdc expression through promoter hypermethylation and inhibit myeloid cell maturation. Exogenous histamine induces the differentiation of IMCs and suppresses their ability to support the growth of tumor allografts. These data indicate key roles for Hdc and histamine in myeloid cell differentiation and CD11b(+)Ly6G(+) IMCs in early cancer development.
Collapse
Affiliation(s)
- Xiang Dong Yang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Center, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Ortonne N, Ram-Wolff C, Giustiniani J, Marie-Cardine A, Bagot M, Mecheri S, Bensussan A. Human and mouse mast cells express and secrete the GPI-anchored isoform of CD160. J Invest Dermatol 2010; 131:916-24. [PMID: 21191401 DOI: 10.1038/jid.2010.412] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD160 is expressed by human and mouse natural killer (NK) cells and other cytotoxic lymphocyte subpopulations. CD160 is mostly expressed as a trimeric 83 kDa glycosylphosphatidylinositol (GPI)-anchored activating NK receptor, cleaved upon IL-15 stimulation in a secreted trimeric soluble form (sCD160) that binds to major histocompatibility complex (MHC) class I molecules, while a transmembrane isoform appears. sCD160 exhibits immunoregulatory function as it inhibits CD8(+) T-lymphocyte cytotoxic activity. We show that human mast cells (MCs) express CD160. In human and mouse skin, resident MCs expressed CD160, whereas in C57BL/6-Kit(W-sh/W-sh) mice, CD160(+) cells were only identified at the site of reconstitution with syngeneic cultured MCs. In the human mast cell line, HMC-1, we only identified the transcripts of the GPI-anchored CD160 isoform. Furthermore, CD160 was identified in HMC-1 and mouse MC supernatants, suggesting that MCs release sCD160. Supporting this hypothesis, HMC-1 express the GPI-specific phospholipase D variant 2 involved in the NK lymphocyte membrane cleavage of CD160, and morphological studies highlighted a relative loss of CD160 expression in inflammatory skin sites, where MC degranulation is expected to occur. We also demonstrated an inhibition of T-cell cytotoxicity by HMC-1 supernatant that was partially reversed by anti-CD160 mAb. In conclusion, sCD160, produced by MCs, may have a role in T-cell-MC interactions in vivo.
Collapse
Affiliation(s)
- Nicolas Ortonne
- AP-HP, Groupe Hospitalier Henri Mondor-Albert Chenevier, Department of Pathology, and Université Paris 12, Faculté de Médecine, Créteil, France.
| | | | | | | | | | | | | |
Collapse
|
195
|
Jones BL, Kearns GL. Histamine: New Thoughts About a Familiar Mediator. Clin Pharmacol Ther 2010; 89:189-97. [DOI: 10.1038/clpt.2010.256] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
196
|
Cyclic AMP-mediated immune regulation--overview of mechanisms of action in T cells. Cell Signal 2010; 23:1009-16. [PMID: 21130867 DOI: 10.1016/j.cellsig.2010.11.018] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 01/21/2023]
Abstract
The canonical second messenger cAMP is well established as a potent negative regulator of T cell immune function. Through protein kinase A (PKA) it regulates T cell function at the level of transcription factors, members of the mitogen-activated protein kinase pathway, phospholipases (PLs), Ras homolog (Rho)A and proteins involved in the control of cell cycle progression. Type I PKA is the predominant PKA isoform in T cells. Furthermore, whereas type II PKA is located at the centrosome, type I PKA is anchored close to the T cell receptor (TCR) in lipid rafts by the Ezrin-ERM-binding phosphoprotein of 50 kDa (EBP50)-phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG) scaffold complex. The most TCR-proximal target for type I PKA is C-terminal Src kinase (Csk), which upon activation by raft recruitment and phosphorylation inhibits the Src family tyrosine kinases Lck and Fyn and thus functions to maintain T cell homeostasis. Recently, induction of cAMP levels in responder T cells has emerged as one of the mechanisms by which regulatory T (T(R)) cells execute their suppressive action. Thus, the cAMP-type I PKA-Csk pathway emerges as a putative target for therapeutic intervention in autoimmune disorders as well as in cancer, where T(R) cell-mediated suppression contributes to suboptimal local immune responses.
Collapse
|
197
|
Abstract
Mast cells have been regarded for a long time as effector cells in IgE mediated type I reactions and in host defence against parasites. However, they are resident in all environmental exposed tissues and express a wide variety of receptors, suggesting that these cells can also function as sentinels in innate immune responses. Indeed, studies have demonstrated an important role of mast cells during the induction of life-saving antibacterial responses. Furthermore, recent findings have shown that mast cells promote and modulate the development of adaptive immune responses, making them an important hinge of innate and acquired immunity. In addition, mast cells and several mast cell-produced mediators have been shown to be important during the development of allergic airway diseases. In the present review, we will summarize findings on the role of mast cells during the development of adaptive immune responses and highlight their function, especially during the development of allergic asthma.
Collapse
Affiliation(s)
- Sebastian Reuter
- III Medical Clinic, Johannes Gutenberg-University, Langenbeckstr 1, 55131 Mainz, Germany.
| | | | | |
Collapse
|
198
|
Mast cells: Emerging sentinel innate immune cells with diverse role in immunity. Mol Immunol 2010; 48:14-25. [DOI: 10.1016/j.molimm.2010.07.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 12/31/2022]
|
199
|
Rogers ML, Bailey S, Matusica D, Nicholson I, Muyderman H, Pagadala PC, Neet KE, Zola H, Macardle P, Rush RA. ProNGF mediates death of Natural Killer cells through activation of the p75NTR-sortilin complex. J Neuroimmunol 2010; 226:93-103. [PMID: 20547427 PMCID: PMC2937071 DOI: 10.1016/j.jneuroim.2010.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 12/30/2022]
Abstract
The common neurotrophin receptor P75NTR, its co-receptor sortilin and ligand proNGF, have not previously been investigated in Natural Killer (NK) cell function. We found freshly isolated NK cells express sortilin but not significant amounts of P75NTR unless exposed to interleukin-12 (IL-12), or cultured in serum free conditions, suggesting this receptor is sequestered. A second messenger associated with p75NTR, neurotrophin-receptor-interacting-MAGE-homologue (NRAGE) was identified in NK cells. Cleavage resistant proNGF123 killed NK cells in the presence of IL-12 after 20h and without IL-12 in serum free conditions at 48h. This was reduced by blocking sortilin with neurotensin. We conclude that proNGF induced apoptosis of NK cells may have important implications for limiting the innate immune response.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Department of Human Physiology, School of Medicine, Flinders University, GPO Box 2100 Adelaide 5001, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Tripathi T, Shahid M, Khan HM, Pal Singh Negi M, Siddiqui M, Khan RA. Modulation of in vivo immunoglobulin production by endogenous histamine and H1R and H2R agonists and antagonists. Pharmacol Rep 2010; 62:917-25. [DOI: 10.1016/s1734-1140(10)70352-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 03/09/2010] [Indexed: 11/15/2022]
|