151
|
Mohammad MM, Howard KR, Movileanu L. Redesign of a plugged beta-barrel membrane protein. J Biol Chem 2011; 286:8000-8013. [PMID: 21189254 PMCID: PMC3048687 DOI: 10.1074/jbc.m110.197723] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/16/2010] [Indexed: 11/06/2022] Open
Abstract
The redesign of biological nanopores is focused on bacterial outer membrane proteins and pore-forming toxins, because their robust β-barrel structure makes them the best choice for developing stochastic biosensing elements. Using membrane protein engineering and single-channel electrical recordings, we explored the ferric hydroxamate uptake component A (FhuA), a monomeric 22-stranded β-barrel protein from the outer membrane of Escherichia coli. FhuA has a luminal cross-section of 3.1 × 4.4 nm and is filled by a globular N-terminal cork domain. Various redesigned FhuA proteins were investigated, including single, double, and multiple deletions of the large extracellular loops and the cork domain. We identified four large extracellular loops that partially occlude the lumen when the cork domain is removed. The newly engineered protein, FhuAΔC/Δ4L, was the result of a removal of almost one-third of the total number of amino acids of the wild-type FhuA (WT-FhuA) protein. This extensive protein engineering encompassed the entire cork domain and four extracellular loops. Remarkably, FhuAΔC/Δ4L forms a functional open pore in planar lipid bilayers, with a measured unitary conductance of ∼4.8 nanosiemens, which is much greater than the values recorded previously with other engineered FhuA protein channels. There are numerous advantages and prospects of using such an engineered outer membrane protein not only in fundamental studies of membrane protein folding and design, and the mechanisms of ion conductance and gating, but also in more applicative areas of stochastic single-molecule sensing of proteins and nucleic acids.
Collapse
Affiliation(s)
- Mohammad M Mohammad
- From the Department of Physics, Syracuse University, Syracuse, New York 13244-1130
| | - Khalil R Howard
- the Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York 13244-4100, and
| | - Liviu Movileanu
- From the Department of Physics, Syracuse University, Syracuse, New York 13244-1130,; the Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York 13244-4100, and; the Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
152
|
Wilson CP, Boglio C, Ma L, Cockroft SL, Webb SJ. Palladium(II)-Mediated Assembly of Biotinylated Ion Channels. Chemistry 2011; 17:3465-73. [DOI: 10.1002/chem.201002031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 10/12/2010] [Indexed: 11/10/2022]
|
153
|
Kukwikila M, Howorka S. Electrically sensing protease activity with nanopores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454103. [PMID: 21339591 DOI: 10.1088/0953-8984/22/45/454103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The enzymatic activity of a protease was electrically detected using nanopore recordings. A peptide substrate was tethered to microscale beads, and cleavage by the enzyme trypsin released a soluble fragment that was electrophoretically driven through the α-hemolysin protein pore, leading to detectable blockades in the ionic current. Owing to its simplicity, this approach to sense enzymatic activity may be applied to other proteases.
Collapse
|
154
|
Mussi V, Fanzio P, Repetto L, Firpo G, Scaruffi P, Stigliani S, Menotta M, Magnani M, Tonini GP, Valbusa U. Electrical characterization of DNA-functionalized solid state nanopores for bio-sensing. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454104. [PMID: 21339592 DOI: 10.1088/0953-8984/22/45/454104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present data concerning the electrical properties of a class of biosensor devices based on bio-functionalized solid state nanopores able to detect different kinds of interactions between probe molecules, chemically attached to the pore surface, and target molecules present in solution and electrophoretically drawn through the nanometric channel. The great potentiality of this approach resides in the fact that the functionalization of a quite large pore (up to 50-60 nm) allows a sufficient diameter reduction for the attainment of a single molecule sensing dimension and selective activation, without the need for further material deposition, such as metal or oxides, or localized surface modification. The results indicate that it will be possible, in the near future, to conceive and design devices for parallel analysis of biological samples made of arrays of nanopores differently functionalized, fabricated by standard lithographic techniques, with important applications in the field of molecular diagnosis.
Collapse
Affiliation(s)
- V Mussi
- Nanomed Labs, Physics Department, University of Genova, and Nanobiotechnologies, National Institute of Cancer Research (IST), Largo R Benzi, 10 Genova, 16132, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Bikwemu R, Wolfe AJ, Xing X, Movileanu L. Facilitated translocation of polypeptides through a single nanopore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454117. [PMID: 21339604 PMCID: PMC3108026 DOI: 10.1088/0953-8984/22/45/454117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The transport of polypeptides through nanopores is a key process in biology and medical biotechnology. Despite its critical importance, the underlying kinetics of polypeptide translocation through protein nanopores is not yet comprehensively understood. Here, we present a simple two-barrier, one-well kinetic model for the translocation of short positively charged polypeptides through a single transmembrane protein nanopore that is equipped with negatively charged rings, simply called traps. We demonstrate that the presence of these traps within the interior of the nanopore dramatically alters the free energy landscape for the partitioning of the polypeptide into the nanopore interior, as revealed by significant modifications in the activation free energies required for the transitions of the polypeptide from one state to the other. Our kinetic model permits the calculation of the relative and absolute exit frequencies of the short cationic polypeptides through either opening of the nanopore. Moreover, this approach enabled quantitative assessment of the kinetics of translocation of the polypeptides through a protein nanopore, which is strongly dependent on several factors, including the nature of the translocating polypeptide, the position of the traps, the strength of the polypeptide-attractive trap interactions and the applied transmembrane voltage.
Collapse
Affiliation(s)
- Robert Bikwemu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Aaron J. Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Xiangjun Xing
- Institute of Natural Sciences and Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- The Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
156
|
Prabhu AS, Jubery TZN, Freedman KJ, Mulero R, Dutta P, Kim MJ. Chemically modified solid state nanopores for high throughput nanoparticle separation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454107. [PMID: 21339595 DOI: 10.1088/0953-8984/22/45/454107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was identified as a critical parameter that determines the selectivity of the membrane and the throughput of the separation process. Drawing from these simulations a single 150 nm pore was fabricated in a 50 nm thick free-standing silicon nitride membrane by focused-ion-beam milling and was chemically modified with (3-aminopropyl)triethoxysilane to change its surface charge density. This chemically modified membrane was then used to separate 22 and 58 nm polystyrene nanoparticles in solution. Once optimized, this approach can readily be scaled up to nanopore arrays which would function as a key component of next-generation nanosieving systems.
Collapse
Affiliation(s)
- Anmiv S Prabhu
- School of Biomedical Engineering and Health Science, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
157
|
Niedzwiecki DJ, Grazul J, Movileanu L. Single-molecule observation of protein adsorption onto an inorganic surface. J Am Chem Soc 2010; 132:10816-22. [PMID: 20681715 PMCID: PMC2917251 DOI: 10.1021/ja1026858] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the interactions between silicon-based materials and proteins from the bloodstream is of key importance in a myriad of realms, such as the design of nanofluidic devices and functional biomaterials, biosensors, and biomedical molecular diagnosis. By using nanopores fabricated in 20 nm-thin silicon nitride membranes and highly sensitive electrical recordings, we show single-molecule observation of nonspecific protein adsorption onto an inorganic surface. A transmembrane potential was applied across a single nanopore-containing membrane immersed into an electrolyte-filled chamber. Through the current fluctuations measured across the nanopore, we detected long-lived captures of bovine serum albumin (BSA), a major multifunctional protein present in the circulatory system. Based upon single-molecule electrical signatures observed in this work, we judge that the bindings of BSA to the nitride surface occurred in two distinct orientations. With some adaptation and further experimentation, this approach, applied on a parallel array of synthetic nanopores, holds potential for use in methodical quantitative studies of protein adsorption onto inorganic surfaces.
Collapse
Affiliation(s)
- David J. Niedzwiecki
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - John Grazul
- Cornell Center for Materials Research, Cornell University, 627 Clark Hall of Science, Ithaca, New York 14853, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, NY 13244, USA
| |
Collapse
|
158
|
Liu A, Zhao Q, Guan X. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges. Anal Chim Acta 2010; 675:106-15. [PMID: 20800721 DOI: 10.1016/j.aca.2010.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/01/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
Nanopore stochastic sensor works by monitoring the ionic current modulations induced by the passage of analytes of interest through a single pore, which can be obtained from a biological ion channel by self-assembly or artificially fabricated in a solid-state membrane. In this minireview, we overview the use of biological nanopores and artificial nanopores for the detection of terrorist agents including explosives, organophosphorus nerve agents, nitrogen mustards, organoarsenic compounds, toxins, and viruses. We also discuss the current challenge in the development of deployable nanopore sensors for real-world applications.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | | | | |
Collapse
|
159
|
Majd S, Yusko EC, Billeh YN, Macrae MX, Yang J, Mayer M. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 2010; 21:439-76. [PMID: 20561776 PMCID: PMC3121537 DOI: 10.1016/j.copbio.2010.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 12/29/2022]
Abstract
Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics.
Collapse
Affiliation(s)
- Sheereen Majd
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, USA
| | | | | | | | | | | |
Collapse
|
160
|
Mohammad MM, Movileanu L. Impact of distant charge reversals within a robust beta-barrel protein pore. J Phys Chem B 2010; 114:8750-9. [PMID: 20540583 PMCID: PMC2907733 DOI: 10.1021/jp101311s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among all beta-barrel pores, staphylococcal alpha-hemolysin (alphaHL), a heptameric transmembrane protein of known high-resolution crystal structure, features a high stability in planar lipid bilayers under a wide range of harsh experimental conditions. Here, we employed single-channel electrical recordings and standard protein engineering to explore the impact of two distant charge reversals within the interior of the beta-barrel part of the pore. The charge reversals were replacements of lysines with aspartic acids. A charge reversal within the structurally stiff region of the beta barrel near the pore constriction reduced the open-state current of the pore, but produced a quiet pore, showing current fluctuation-free channel behavior. In contrast, a charge reversal on the trans entrance, within the structurally flexible glycine-rich turn of the beta barrel, increased the open-state current and produced gating activity of the pore in the form of large-amplitude and frequent current fluctuations. Remarkably, cumulative insertion of the two distant charge reversals resulted in a large-amplitude permanent blockade of the beta barrel, as judged by both single-channel and macroscopic current measurements. The results from this work suggest that these distant charge reversals are energetically coupled, producing different impacts on the ionic transport, the unitary conductance and the open-state probability of the pore.
Collapse
Affiliation(s)
- Mohammad M. Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- The Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
161
|
Timko BP, Cohen-Karni T, Qing Q, Tian B, Lieber CM. Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2010; 9:269-280. [PMID: 21785576 PMCID: PMC3140208 DOI: 10.1109/tnano.2009.2031807] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanowire FETs (NWFETs) are promising building blocks for nanoscale bioelectronic interfaces with cells and tissue since they are known to exhibit exquisite sensitivity in the context of chemical and biological detection, and have the potential to form strongly coupled interfaces with cell membranes. We present a general scheme that can be used to assemble NWs with rationally designed composition and geometry on either planar inorganic or biocompatible flexible plastic surfaces. We demonstrate that these devices can be used to measure signals from neurons, cardiomyocytes, and heart tissue. Reported signals are in millivolts range, which are equal to or substantially greater than those recorded with either planar FETs or multielectrode arrays, and demonstrate one unique advantage of NW-based devices. Basic studies showing the effect of device sensitivity and cell/substrate junction quality on signal magnitude are presented. Finally, our demonstrated ability to design high-density arrays of NWFETs enables us to map signal at the subcellular level, a functionality not enabled by conventional microfabricated devices. These advances could have broad applications in high-throughput drug assays, fundamental biophysical studies of cellular function, and development of powerful prosthetics.
Collapse
Affiliation(s)
- Brian P. Timko
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA. He is now with Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Tzahi Cohen-Karni
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Quan Qing
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
| | - Bozhi Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
162
|
Sexton LT, Mukaibo H, Katira P, Hess H, Sherrill SA, Horne LP, Martin CR. An Adsorption-Based Model for Pulse Duration in Resistive-Pulse Protein Sensing. J Am Chem Soc 2010; 132:6755-63. [DOI: 10.1021/ja100693x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lindsay T. Sexton
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Hitomi Mukaibo
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Parag Katira
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Henry Hess
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Stefanie A. Sherrill
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Lloyd P. Horne
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Charles R. Martin
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
163
|
Aksimentiev A. Deciphering ionic current signatures of DNA transport through a nanopore. NANOSCALE 2010; 2:468-83. [PMID: 20644747 PMCID: PMC2909628 DOI: 10.1039/b9nr00275h] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Within just a decade from the pioneering work demonstrating the utility of nanopores for molecular sensing, nanopores have emerged as versatile systems for single-molecule manipulation and analysis. In a typical setup, a gradient of the electrostatic potential captures charged solutes from the solution and forces them to move through a single nanopore, across an otherwise impermeable membrane. The ionic current blockades resulting from the presence of a solute in a nanopore can reveal the type of the solute, for example, the nucleotide makeup of a DNA strand. Despite great success, the microscopic mechanisms underlying the functionality of such stochastic sensors remain largely unknown, as it is not currently possible to characterize the microscopic conformations of single biomolecules directly in a nanopore and thereby unequivocally establish the causal relationship between the observables and the microscopic events. Such a relationship can be determined using molecular dynamics-a computational method that can accurately predict the time evolution of a molecular system starting from a given microscopic state. This article describes recent applications of this method to the process of DNA transport through biological and synthetic nanopores.
Collapse
Affiliation(s)
- Aleksei Aksimentiev
- Department of Physics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
164
|
Luo Y, Egwolf B, Walters DE, Roux B. Ion selectivity of alpha-hemolysin with a beta-cyclodextrin adapter. I. Single ion potential of mean force and diffusion coefficient. J Phys Chem B 2010; 114:952-8. [PMID: 20041673 DOI: 10.1021/jp906790f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha-hemolysin (alphaHL) is a self-assembling exotoxin that binds to the membrane of a susceptible host cell and causes its death. Experimental studies show that electrically neutral beta-cyclodextrin (betaCD) can insert into the alphaHL channel and significantly increase its anion selectivity. To understand how betaCD can affect ion selectivity, molecular dynamics simulations and potential of mean force (PMF) calculations are carried out for different alphaHL channels with and without the betaCD adapter. A multiscale approach based on the generalized solvent boundary potential is used to reduce the size of the simulated system. The PMF profiles reveal that betaCD has no anion selectivity by itself but can increase the Cl(-) selectivity of the alphaHL channel when lodged into the pore lumen. Analysis shows that betaCD causes a partial desolvation of ions and affects the orientation of nearby charged residues. The ion selectivity appears to result from increased electrostatic interaction between the ion and the channel due to a reduction in dielectric shielding by the solvent. These observations suggest a reasonable explanation of the ion selectivity and provide important information for further ion channel modification.
Collapse
Affiliation(s)
- Yun Luo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
165
|
Affiliation(s)
- Long Ma
- School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UK
| | | |
Collapse
|
166
|
Nanotechnology for early cancer detection. SENSORS 2010; 10:428-55. [PMID: 22315549 PMCID: PMC3270850 DOI: 10.3390/s100100428] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/14/2009] [Accepted: 12/29/2009] [Indexed: 12/19/2022]
Abstract
Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment.
Collapse
|
167
|
Caruana DJ, Howorka S. Biosensors and biofuel cells with engineered proteins. MOLECULAR BIOSYSTEMS 2010; 6:1548-56. [DOI: 10.1039/c004951d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
168
|
|
169
|
Abstract
Molecular-scale pore structures, called nanopores, can be assembled by protein ion channels through genetic engineering or be artificially fabricated on solid substrates using fashion nanotechnology. When target molecules interact with the functionalized lumen of a nanopore, they characteristically block the ion pathway. The resulting conductance changes allow for identification of single molecules and quantification of target species in the mixture. In this review, we first overview nanopore-based sensory techniques that have been created for the detection of myriad biomedical targets, from metal ions, drug compounds, and cellular second messengers to proteins and DNA. Then we introduce our recent discoveries in nanopore single molecule detection: (1) using the protein nanopore to study folding/unfolding of the G-quadruplex aptamer; (2) creating a portable and durable biochip that is integrated with a single-protein pore sensor (this chip is compared with recently developed protein pore sensors based on stabilized bilayers on glass nanopore membranes and droplet interface bilayer); and (3) creating a glass nanopore-terminated probe for single-molecule DNA detection, chiral enantiomer discrimination, and identification of the bioterrorist agent ricin with an aptamer-encoded nanopore.
Collapse
Affiliation(s)
- Li-Qun Gu
- Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park, Columbia, Missouri 65211, USA.
| | | |
Collapse
|
170
|
Wendell D, Jing P, Geng J, Subramaniam V, Lee TJ, Montemagno C, Guo P. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. NATURE NANOTECHNOLOGY 2009; 4:765-72. [PMID: 19893523 PMCID: PMC2777743 DOI: 10.1038/nnano.2009.259] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 08/04/2009] [Indexed: 05/18/2023]
Abstract
Biological pores have been used to study the transport of DNA and other molecules, but most pores have channels that allow only the movement of small molecules and single-stranded DNA and RNA. The bacteriophage phi29 DNA-packaging motor, which allows double-stranded DNA to enter the virus during maturation and exit during an infection, contains a connector protein with a channel that is between 3.6 and 6 nm wide. Here we show that a modified version of this connector protein, when reconstituted into liposomes and inserted into planar lipid bilayers, allows the translocation of double-stranded DNA. The measured conductance of a single connector channel was 4.8 nS in 1 M KCl. This engineered and membrane-adapted phage connector is expected to have applications in microelectromechanical sensing, microreactors, gene delivery, drug loading and DNA sequencing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peixuan Guo
- Address correspondence to: Peixuan Guo, Vontz Center for Molecular Studies Rm 1301, 3125 Eden Ave., Cincinnati, OH 45267-0508, Phone: (513)558-0024 (Lab), (513)558-0041 (Office), FAX: (513)558-0024,
| |
Collapse
|
171
|
Kitta M, Tanaka H, Kawai T. Rapid fabrication of Teflon micropores for artificial lipid bilayer formation. Biosens Bioelectron 2009; 25:931-4. [PMID: 19733472 DOI: 10.1016/j.bios.2009.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
A number of recent studies have dealt with the development of biosensors using single-channel recording with an artificial lipid bilayer. However, the fragility of these bilayers and current noise present serious problems in their application towards biosensor development. To address this problem, many experimental investigations employing micropores in the formation of lipid bilayers have been reported. In this work, we present a method for the fabrication of micropores using commercially available low-melting Teflon film and a heated tip. This method allowed for the rapid (in a few seconds) and reproducible fabrication of micropores 2-3 microm in diameter. We employed a single-channel recording using a gramicidin channel and confirmed that the bilayer membrane can form on micropores by the painting method. The bilayer formed is stable under high voltage (+1000mV). Fabricated micropores possess a conical shape with sharp edges, features which facilitated the formation of artificial lipid bilayers which could be utilized for low-noise and high voltage recording due to decreased access resistance and increased bilayer stability. These advantages promise to improve the performance of artificial lipid bilayers when employed in the development of flexible biosensors.
Collapse
Affiliation(s)
- Mitsunori Kitta
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
172
|
Ding S, Gao C, Gu LQ. Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal Chem 2009; 81:6649-55. [PMID: 19627120 PMCID: PMC3009471 DOI: 10.1021/ac9006705] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanopore-based single-molecule biosensors have been extensively studied. Protein pores that have receptors attached to them are target-selective, but their real-time applications are limited by the fragility of the lipid membrane into which the protein pores are embedded. Synthetic nanopores are more stable and provide flexible pore sizes, but the selectivity is low when detecting in the translocation mode. In spite of modifications with probing molecules, such as antibodies, to potentiate specific targeting, these nanopores fail to bind individual target molecules. Distinguishing between binding and translocation blocks remains unsolved. Here, we propose an aptamer-encoded nanopore that overcomes these challenges. Aptamers are well-known probing oligonucleotides that have high sensitivity and selectivity. In contrast to antibodies, aptamers are much smaller than their targets, rendering target blockades in the nanopore much more distinguishable. We used aptamer-encoded nanopores to detect single molecules of immunoglobulin E and the bioterrorist agent ricin, sequentially captured by the immobilized aptamer in the sensing zone of the pore. The functional nanopore also probed sequence-dependent aptamer-protein interactions. These findings will facilitate the development of a universal nanopore for multitarget detection.
Collapse
Affiliation(s)
- Shu Ding
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri – Columbia, MO 65211, USA
| | - Changlu Gao
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri – Columbia, MO 65211, USA
| | - Li-Qun Gu
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri – Columbia, MO 65211, USA
| |
Collapse
|
173
|
Astier Y, Uzun O, Stellacci F. Electrophysiological study of single gold nanoparticle/alpha-Hemolysin complex formation: a nanotool to slow down ssDNA through the alpha-Hemolysin nanopore. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1273-1278. [PMID: 19242940 DOI: 10.1002/smll.200801779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Yann Astier
- Instituto de Quimica e Technologia Biologica Universidade Nova de Lisboa Av. Da Republica, EAN, 2784-505, Oeiras, Portugal.
| | | | | |
Collapse
|
174
|
Peng H, Ling XS. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. NANOTECHNOLOGY 2009; 20:185101. [PMID: 19420602 PMCID: PMC2716733 DOI: 10.1088/0957-4484/20/18/185101] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Voltage-driven DNA translocation through nanopores has attracted wide interest for many potential applications in molecular biology and biotechnology. However, it is intrinsically difficult to control the DNA motion in standard DNA translocation processes in which a strong electric field is required in drawing DNA into the pore, but it also leads to uncontrollable fast DNA translocation. Here we explore a new type of DNA translocation. We dub it 'reverse DNA translocation', in which the DNA is pulled through a nanopore mechanically by a magnetic bead, driven by a magnetic-field gradient. This technique is compatible with simultaneous ionic current measurements and is suitable for multiple nanopores, paving the way for large scale applications. We report the first experiment of reverse DNA translocation through a solid-state nanopore using magnetic tweezers.
Collapse
Affiliation(s)
- Hongbo Peng
- Department of Physics, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
175
|
Lemay SG. Nanopore-based biosensors: the interface between ionics and electronics. ACS NANO 2009; 3:775-779. [PMID: 19397344 DOI: 10.1021/nn900336j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Techniques for translating the binding or the activity of single molecules directly into electrical signals are of interest for both fundamental and applied science. A paper in this issue describes experiments in which the ionic current through a biological nanopore is employed both to control and to monitor the attachment of individual DNA polymerase enzymes to their binding site on a single DNA molecule. This Perspective briefly sketches some of the factors that ultimately limit the performance of such nanoscale sensors, emphasizing in particular the interface between nanofluidic systems and external control electronics.
Collapse
Affiliation(s)
- Serge G Lemay
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| |
Collapse
|
176
|
Movileanu L. Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol 2009; 27:333-41. [PMID: 19394097 DOI: 10.1016/j.tibtech.2009.02.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 11/18/2022]
Abstract
A single nanopore represents an amazingly versatile single-molecule probe that can be employed to reveal several important features of polypeptides, such as their folding state, backbone flexibility, mechanical stability, binding affinity to other interacting ligands and enzymatic activity. Moreover, groundwork in this area using engineered protein nanopores has demonstrated new opportunities for discovering the biophysical rules that govern the transport of proteins through transmembrane protein pores. In this review, I summarize the current knowledge in the field and discuss how nanopore probe techniques will provide a new generation of research tools in nanomedicine for quantitatively examining the details of complex recognition and, furthermore, will represent a crucial step in designing other pore-based nanostructures and high-throughput devices for molecular biomedical diagnosis.
Collapse
Affiliation(s)
- Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA.
| |
Collapse
|
177
|
Shirono K, Tatsumi N, Daiguji H. Molecular simulation of ion transport in silica nanopores. J Phys Chem B 2009; 113:1041-7. [PMID: 19123824 DOI: 10.1021/jp805453r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion distribution and transport of KCl aqueous solutions at the junction of hydrophobic and hydrophilic regions inside silica nanopores were studied by using two kinds of molecular simulation: grand canonical Monte Carlo (GCMC) simulations and nonequilibrium molecular dynamics (NEMD) simulations. The nanopores were 2 nm diameter silica pores in which surface functional groups, -SiOH, had been modified by hydrophobic surface functional groups, -SiCH(3), within three different lengths along the pore direction (z-direction), L(z0) = 0, 2, and 4 nm. If L(z0) is long enough, water could not enter the hydrophobic region, but for all L(z0) studied here, water entered the hydrophobic region. When an external electric field was applied along the z-direction, ions could not pass through the hydrophobic region when the external electric field was less than a threshold level, E(0), whereas the ionic current increased relatively linearly with increasing electric field strength above E(0). In 2 nm diameter fluidic pores, the electrical potential barrier appeared at the junction between the hydrophilic and hydrophobic regions due to the difference in dipole moment of the surface functional groups, although the overall surface charge of the pore was neutral. This junction formed an electrical potential threshold, and the ionic current could be modulated by adjusting the external electric field.
Collapse
Affiliation(s)
- Katsuhiro Shirono
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8564, Japan
| | | | | |
Collapse
|
178
|
Aksimentiev A, Brunner RK, Cruz-Chú E, Comer J, Schulten K. Modeling Transport Through Synthetic Nanopores. IEEE NANOTECHNOLOGY MAGAZINE 2009; 3:20-28. [PMID: 21909347 DOI: 10.1109/mnano.2008.931112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article.
Collapse
|
179
|
Zhao Q, Jayawardhana DA, Wang D, Guan X. Study of Peptide Transport through Engineered Protein Channels. J Phys Chem B 2009; 113:3572-8. [DOI: 10.1021/jp809842g] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qitao Zhao
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| | - Dilani A. Jayawardhana
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| | - Deqiang Wang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| | - Xiyun Guan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| |
Collapse
|
180
|
Shim JW, Tan Q, Gu LQ. Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity. Nucleic Acids Res 2009; 37:972-82. [PMID: 19112078 PMCID: PMC2647319 DOI: 10.1093/nar/gkn968] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/12/2008] [Accepted: 11/16/2008] [Indexed: 11/12/2022] Open
Abstract
Guanine-rich nucleic acids can form G-quadruplexes that are important in gene regulation, biosensor design and nano-structure construction. In this article, we report on the development of a nanopore encapsulating single-molecule method for exploring how cations regulate the folding and unfolding of the G-quadruplex formed by the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG). The signature blocks in the nanopore revealed that the G-quadruplex formation is cation-selective. The selectivity sequence is K(+) > NH(4)(+) approximately Ba(2+) > Cs(+) approximately Na(+) > Li(+), and G-quadruplex was not detected in Mg(2+) and Ca(2+). Ba(2+) can form a long-lived G-quadruplex with TBA. However, the capability is affected by the cation-DNA interaction. The cation-selective formation of the G-quadruplex is correlated with the G-quadruplex volume, which varies with cation species. The high formation capability of the K(+)-induced G-quadruplex is contributed largely by the slow unfolding reaction. Although the Na(+)- and Li(+)-quadruplexes feature similar equilibrium properties, they undergo radically different pathways. The Na(+)-quadruplex folds and unfolds most rapidly, while the Li(+)-quadruplex performs both reactions at the slowest rates. Understanding these ion-regulated properties of oligonucleotides is beneficial for constructing fine-tuned biosensors and nano-structures. The methodology in this work can be used for studying other quadruplexes and protein-aptamer interactions.
Collapse
Affiliation(s)
| | | | - Li-Qun Gu
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
181
|
|
182
|
|
183
|
Gao C, Ding S, Tan Q, Gu LQ. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. Anal Chem 2009; 81:80-6. [PMID: 19061410 PMCID: PMC2642537 DOI: 10.1021/ac802348r] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanopores are increasingly utilized as tools for single-molecule detection in biotechnology. Many nanopores are fabricated through procedures that require special materials, expensive facilities and experienced operators, which limit their usefulness on a wider scale. We have developed a simple method of fabricating a robust, low-noise nanopore by externally penetrating a nanocavity enclosed in the terminal of a capillary pipet. The nanocavity was shown to have a pore size on the scale of a single molecule, verified by translocation of molecules of known sizes, including double-stranded DNA (2 nm), gold nanoparticles (10 nm), and ring-shaped cyclodextrin (1.5 nm). The small pore size allows entrapment of a single cyclodextrin molecule. The glass nanopore with a trapped cyclodextrin proves useful in single-molecule discrimination of chiral enantiomers.
Collapse
Affiliation(s)
- Changlu Gao
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
184
|
Zhao Q, Wang D, Jayawardhana DA, Guan X. Stochastic sensing of biomolecules in a nanopore sensor array. NANOTECHNOLOGY 2008; 19:505504. [PMID: 19942772 DOI: 10.1088/0957-4484/19/50/505504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study, we demonstrate that a pattern-recognition stochastic sensor can be constructed by employing an array of protein pores modified with a variety of non-covalent bonding sites as effective sensing elements. The collective responses of each of the individual component nanopores to a compound produce diagnostic patterns characterized by event dwell time, amplitude, and voltage dependence, which can independently or collectively serve as (an) analyte signature(s). With an increase in the dimensionality of the signal, the nanopore sensor array provides enhanced resolution for the differentiation of analytes compared to a single-pore configuration. This allows identification of a target analyte from a mixture or the potential for simultaneous detection. The pattern-recognition nanopore method is envisaged for further development as a miniaturized and automated sensing technique, which could find potential use as a laboratory or clinical tool for routine sensor applications, including environmental monitoring, drug discovery, medical diagnosis, and homeland security.
Collapse
Affiliation(s)
- Qitao Zhao
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019-0065, USA
| | | | | | | |
Collapse
|
185
|
Jayawardhana DA, Crank JA, Zhao Q, Armstrong DW, Guan X. Nanopore Stochastic Detection of a Liquid Explosive Component and Sensitizers Using Boromycin and an Ionic Liquid Supporting Electrolyte. Anal Chem 2008; 81:460-4. [DOI: 10.1021/ac801877g] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dilani A. Jayawardhana
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| | - Jeffrey A. Crank
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| | - Qitao Zhao
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| | - Xiyun Guan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065
| |
Collapse
|
186
|
Kececi K, Sexton LT, Buyukserin F, Martin CR. Resistive-pulse detection of short dsDNAs using a chemically functionalized conical nanopore sensor. Nanomedicine (Lond) 2008; 3:787-96. [DOI: 10.2217/17435889.3.6.787] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To develop nanopore resistive-pulse sensors for the detection of short (50 base-pair [bp] and 100 bp) DNAs. Materials & methods: Conically shaped nanopores were chemical etched into polyethylene terphthalate membranes. The as-etched membrane had anionic carboxylate sites on the pore walls. Neutral and hydrophilic ethanolamine functional groups were attached to these carboxylate sites using well-established EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride) chemistry. Results & discussion: The ethanolamine-functionalized pores were used to detect 50 and 100 bp DNAs via the resistive-pulse method. The resistive-pulse signature produced by the 50 bp DNA could be distinguished from that of the 100 bp DNA with these sensors. Conclusions: Attachment of ethanolamine to the carboxylate groups on the pore wall lowered the anionic charge density on the wall. This mitigated the problem of electrostatic rejection of the anionic DNAs from the pore and enabled the detection of these DNA analytes.
Collapse
Affiliation(s)
- Kaan Kececi
- Departments of Chemistry & Anesthesiology, Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL 32611-7200, USA
| | - Lindsay T Sexton
- Departments of Chemistry & Anesthesiology, Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL 32611-7200, USA
| | - Fatih Buyukserin
- Departments of Chemistry & Anesthesiology, Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL 32611-7200, USA
| | - Charles R Martin
- Departments of Chemistry & Anesthesiology, Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
187
|
Moretti M, Di Fabrizio E, Cabrini S, Musetti R, De Angelis F, Firrao G. An ON/OFF biosensor based on blockade of ionic current passing through a solid-state nanopore. Biosens Bioelectron 2008; 24:141-7. [DOI: 10.1016/j.bios.2008.03.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/10/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
188
|
Abstract
We examine the voltage-driven polymer translocation from a spacious region into a confined region imposed by two parallel planes, so that the entry is impeded by the entropic confinement but aided by the electric field inside the confined region. Two modes of entry are examined: linear translocation where a chain enters the confined region with chain ends, and hairpin translocation where a chain enters the confined region by forming a hairpin. Our calculation shows that translocation time increases with polymer length for linear entries but decreases with polymer length for hairpin entries. Applying to electrophoresis of DNA molecules through periodic spacious and confined regions, our theory shows that the dominance of hairpin translocations leads to the experimentally observed faster migration of longer DNA molecules. Our theory predicts experimental conditions for the validity of this law in terms of polymer length, size of the confined region, and solution conditions.
Collapse
|
189
|
|
190
|
Shim JW, Gu LQ. Encapsulating a single G-quadruplex aptamer in a protein nanocavity. J Phys Chem B 2008; 112:8354-60. [PMID: 18563930 DOI: 10.1021/jp0775911] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alpha-hemolysin (alphaHL) protein pore has many applications in biotechnology. This article describes a single-molecule manipulation system that utilizes the nanocavity enclosed by this pore to noncovalently encapsulate a guest molecule. The guest is the thrombin-binding aptamer (TBA) that folds into the G-quadruplex in the presence of cations. Trapping the G-quadruplex in the nanocavity resulted in characteristic changes to the pore conductance that revealed important molecular processes, including spontaneous unfolding of the quartet structure and translocation of unfolded DNA in the pore. Through detection with Tag-TBA, we localized the G-quadruplex near the entry of the beta-barrel inside the nanocavity, where the molecule vibrates and rotates to different orientations. This guest-nanocavity supramolecular system has potential for helping to understand single-molecule folding and unfolding kinetics.
Collapse
Affiliation(s)
- Ji Wook Shim
- Department of Biological Engineering and Dalton Cardiovascular Research Center University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
191
|
Abstract
The alpha-hemolysin toxin self-assembles in lipid bilayers to form water-filled pores. In recent years, alpha-hemolysin has received great attention, mainly due to its possible usage as a sensing element. We measured the ion currents through single alpha-hemolysin channels and confirmed the presence of two different subpopulations of channels with conductance levels of 465 +/- 30 pS and 280 +/- 30 pS. Different oligomerization states could be responsible for these two conductances. In fact, a heptameric structure of the channel was revealed by x-ray crystallography, whereas atomic force microscopy revealed a hexameric structure. Due to the low resolution of atomic force microscopy the atomic details of the hexameric structure are still unknown, and are here predicted by computational methods. Several possible structures of the hexameric channel were defined, and were simulated by molecular dynamics. The conductances of these channel models were computed by a numerical method based on the Poisson-Nernst-Planck electrodiffusion theory, and the values were compared to experimental data. In this way, we identified a model of the alpha-hemolysin hexameric state with conductance characteristics consistent with the experimental data. Since the oligomerization state of the channel may affect its behavior as a molecular sensor, knowing the atomic structure of the hexameric state will be useful for biotechnological applications of alpha-hemolysin.
Collapse
|
192
|
Uram JD, Ke K, Mayer M. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS NANO 2008; 2:857-72. [PMID: 19206482 DOI: 10.1021/nn700322m] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanopores and submicrometer pores have recently been explored for applications ranging from detection of single molecules, assemblies of nanoparticles, nucleic acids, occurrence of chemical reactions, and unfolding of proteins. Most of these applications rely on monitoring electrical current through these pores, hence the noise and signal bandwidth of these current recordings are critical for achieving accurate and sensitive measurements. In this report, we present a detailed theoretical and experimental study on the noise and signal bandwidth of current recordings from glass and polyethylene terephthalate (PET) membranes that contain a single submicrometer pore or nanopore. We examined the theoretical signal bandwidth of two different pore geometries, and we measured the signal bandwidth of the electronics used to record the ionic current. We also investigated the theoretical noise generated by the substrate material, the pore, and the electronics used to record the current. Employing a combination of theory and experimental results, we were able to predict the noise in current traces recorded from glass and PET pores with no applied voltage with an error of less than 12% in a range of signal bandwidths from 1 to 40 kHz. In approximately half of all experiments, application of a voltage did not significantly increase the noise. In the other half of experiments, however, application of a voltage resulted in an additional source of noise. For these pores, predictions of the noise were usually still accurate within 35% error at signal bandwidths of at least 10 kHz. The power spectra of this extra noise suggested a 1/f(alpha) origin with best fits to the power spectrum for alpha = 0.4-0.8. This work provides the theoretical background and experimental data for understanding the bandwidth requirements and the main sources of noise in current recordings; it will be useful for minimizing noise and achieving accurate recordings.
Collapse
Affiliation(s)
- Jeffrey D Uram
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
193
|
Mehnert T, Routh A, Judge PJ, Lam YH, Fischer D, Watts A, Fischer WB. Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism. Proteins 2008; 70:1488-97. [PMID: 17910056 PMCID: PMC7167847 DOI: 10.1002/prot.21642] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vpu from HIV‐1 is an 81 amino acid type I integral membrane protein which consists of a cytoplasmic and a transmembrane (TM) domain. The TM domain is known to alter membrane permeability for ions and substrates when inserted into artificial membranes. Peptides corresponding to the TM domain of Vpu (Vpu1‐32) and mutant peptides (Vpu1‐32‐W23L, Vpu1‐32‐R31V, Vpu1‐32‐S24L) have been synthesized and reconstituted into artificial lipid bilayers. All peptides show channel activity with a main conductance level of around 20 pS. Vpu1‐32‐W23L has a considerable flickering pattern in the recordings and longer open times than Vpu1‐32. Whilst recordings for Vpu1‐32‐R31V are almost indistinguishable from those of the WT peptide, recordings for Vpu1‐32‐S24L do not exhibit any noticeable channel activity. Recordings of WT peptide and Vpu1‐32‐W23L indicate Michaelis–Menten behavior when the salt concentration is increased. Both peptide channels follow the Eisenman series I, indicative for a weak ion channel with almost pore like characteristics. Proteins 2008. © 2007 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- T. Mehnert
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom
| | - A. Routh
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom
| | - P. J. Judge
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom
| | - Y. H. Lam
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom
| | - D. Fischer
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom
| | - A. Watts
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom
| | - W. B. Fischer
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom
- Bionanotechnology Interdisciplinary Research Collaboration, Clarendon Laboratory, Department of Physics, Oxford University, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
194
|
Mohammad MM, Movileanu L. Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:913-25. [PMID: 18368402 DOI: 10.1007/s00249-008-0309-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 01/04/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
Despite its fundamental and critical importance in molecular biology and practical medical biotechnology, how a polypeptide interacts with a transmembrane protein pore is not yet comprehensively understood. Here, we employed single-channel electrical recordings to reveal the interactions of short polypeptides and small folded proteins with a robust beta-barrel protein pore. The short polypeptides were approximately 25 residues in length, resembling positively charged targeting presequences involved in protein import. The proteins were consisted of positively charged pre-cytochrome b2 fragments (pb2) fused to the small ribonuclease barnase (approximately 110 residues, Ba). Single-molecule experiments exploring the interaction of a folded pb2-Ba protein with a single beta-barrel pore, which contained negatively charged electrostatic traps, revealed the complexity of a network of intermolecular forces, including driving and electrostatic ones. In addition, the interaction was dependent on other factors, such as the hydrophobic content of the interacting polypeptide, the location of the electrostatic trap, the length of the pb2 presequence and temperature. This single-molecule approach together with protein design of either the interacting polypeptide or the pore lumen opens new opportunities for the exploration of the polypeptide-pore interaction at high temporal resolution. Such future studies are also expected to unravel the advantages and limitations of the nanopore technique for the detection and exploration of individual polypeptides.
Collapse
Affiliation(s)
- Mohammad M Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | | |
Collapse
|
195
|
Mohammad MM, Prakash S, Matouschek A, Movileanu L. Controlling a single protein in a nanopore through electrostatic traps. J Am Chem Soc 2008; 130:4081-8. [PMID: 18321107 DOI: 10.1021/ja710787a] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein pore interaction is a fundamental and ubiquitous process in biology and medical biotechnology. Here, we employed high-resolution time-resolved single-channel electrical recording along with protein engineering to examine a protein-protein pore interaction at single-molecule resolution. The pore was formed by Staphylococcus aureus alpha-hemolysin (alphaHL) protein and contained electrostatic traps formed by rings of seven aspartic acid residues placed at two different positions within the pore lumen. The protein analytes were positively charged presequences (pb2) of varying length fused to the small ribonuclease barnase (Ba). The presence of the electrostatic traps greatly enhanced the interaction of the pb2-Ba protein with the alphaHL protein pore. This study demonstrates the high sensitivity of the nanopore technique to an array of factors that govern the protein-protein pore interaction, including the length of the pb2 presequence, the position of the electrostatic traps within the pore lumen, the ionic strength of the aqueous phase, and the transmembrane potential. Alterations in the functional properties of the pb2-Ba protein and the alphaHL protein pore and systematic changes of the experimental parameters revealed the balance between forces driving the pb2-Ba protein into the pore and forces driving it out.
Collapse
Affiliation(s)
- Mohammad M Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | | | | | | |
Collapse
|
196
|
Wang J, Martin CR. A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine (Lond) 2008; 3:13-20. [DOI: 10.2217/17435889.3.1.13] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To utilize the ion-current rectification phenomenon observed for conically shaped nanopores as the basis for designing sensors for drug molecules that adsorb to the walls of the nanopore. Methods: The conically shaped nanopore was prepared by the well-known track-etch method in a polyimide (Kapton) membrane. The ion current flowing through the nanopore was measured as a function of applied transmembrane potential in the presence of the analyte drug molecule, Hoechst 33258. Results: The pore walls in the Kapton membrane are hydrophobic yet have fixed carboxylate groups that give the walls a net negative charge. This fixed anionic surface charge causes the nanopore to rectify the ion current flowing through it. The analyte drug molecule, Hoechst 33258, is cationic yet also hydrophobic. When the membrane is exposed to this molecule, it adsorbs to the pore walls and neutralizes the anionic surface charge, thus lowering the extent of ion-current rectification. The change in rectification is proportional to the concentration of the drug. Conclusions: This nanopore sensor is selective for hydrophobic cations relative to anions, neutral molecules and less hydrophobic cations. Future work will explore ways of augmenting this hydrophobic effect-based selectivity so that more highly selective sensors can be obtained.
Collapse
Affiliation(s)
- JiaHai Wang
- University of Florida, Department of Chemistry & Center for Research at the Bio/Nano Interface, Gainesville, FL 32605, USA
| | - Charles R Martin
- University of Florida, Department of Chemistry & Center for Research at the Bio/Nano Interface, Gainesville, FL 32605, USA
| |
Collapse
|
197
|
Höfler L, Gyurcsányi R. Coarse Grained Molecular Dynamics Simulation of Electromechanically-Gated DNA Modified Conical Nanopores. ELECTROANAL 2008. [DOI: 10.1002/elan.200704058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
198
|
Mayer M, Semetey V, Gitlin I, Yang J, Whitesides GM. Using ion channel-forming peptides to quantify protein-ligand interactions. J Am Chem Soc 2008; 130:1453-65. [PMID: 18179217 DOI: 10.1021/ja077555f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper proposes a method for sensing affinity interactions by triggering disruption of self-assembly of ion channel-forming peptides in planar lipid bilayers. It shows that the binding of a derivative of alamethicin carrying a covalently attached sulfonamide ligand to carbonic anhydrase II (CA II) resulted in the inhibition of ion channel conductance through the bilayer. We propose that the binding of the bulky CA II protein (MW approximately 30 kD) to the ion channel-forming peptides (MW approximately 2.5 kD) either reduced the tendency of these peptides to self-assemble into a pore or extracted them from the bilayer altogether. In both outcomes, the interactions between the protein and the ligand lead to a disruption of self-assembled pores. Addition of a competitive inhibitor, 4-carboxybenzenesulfonamide, to the solution released CA II from the alamethicin-sulfonamide conjugate and restored the current flow across the bilayer by allowing reassembly of the ion channels in the bilayer. Time-averaged recordings of the current over discrete time intervals made it possible to quantify this monovalent ligand binding interaction. This method gave a dissociation constant of approximately 2 microM for the binding of CA II to alamethicin-sulfonamide in the bilayer recording chamber: this value is consistent with a value obtained independently with CA II and a related sulfonamide derivative by isothermal titration calorimetry.
Collapse
Affiliation(s)
- Michael Mayer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | |
Collapse
|
199
|
Cockroft SL, Chu J, Amorin M, Ghadiri MR. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc 2008; 130:818-20. [PMID: 18166054 DOI: 10.1021/ja077082c] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to monitor DNA polymerase activity with single-nucleotide resolution has been the cornerstone of a number of advanced single-molecule DNA sequencing concepts. Toward this goal, we report the first observation of the base-by-base DNA polymerase activity with single-base resolution at the single-molecule level. We describe the design and characterization of a supramolecular nanopore device capable of detecting up to nine consecutive DNA polymerase-catalyzed single-nucleotide primer extensions with high sensitivity and spatial resolution (<or=2.4 A). The device is assembled in a suspended lipid membrane by threading and mechanically capturing a single strand of DNA-PEG copolymer inside an alpha-hemolysin protein pore. Single-nucleotide primer extensions result in successive displacements of the template DNA strand within the protein pore, which can be monitored by the corresponding stepped changes in the ion current flowing through the pore under an applied transmembrane potential. The system described thus represents a promising advance toward nanopore-mediated single-molecule DNA sequencing concept and, in addition, might be applicable to studying a number of other biopolymer-protein interactions and dynamics.
Collapse
Affiliation(s)
- Scott L Cockroft
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
200
|
Bayley H, Luchian T, Shin SH, Steffensen MB. Single-Molecule Covalent Chemistry in a Protein Nanoreactor. SINGLE MOLECULES AND NANOTECHNOLOGY 2008. [DOI: 10.1007/978-3-540-73924-1_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|