151
|
Novel GFAP Variant in Adult-onset Alexander Disease With Progressive Ataxia and Palatal Tremor. Neurologist 2017; 22:247-248. [PMID: 29095329 DOI: 10.1097/nrl.0000000000000153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Alexander disease is a rare neurodegenerative disease caused by variants in the glial fibrillary acidic protein gene (GFAP). This disorder can develop as an infantile, juvenile or adult-onset form and is characterized by several clinical features, including macrocephaly, seizures, ataxia, and bulbar/pseudobulbar signs. While the majority of these patients have the more progressive infantile form which causes severe leukodystrophy and early death; the less common adult form is more variable (ie, onset age, symptoms), with bulbar dysfunction as the primary feature. CASE REPORT In our investigation, we describe a patient with progressive neuromuscular issues including dyspnea, dysphagia, dysarthria and progressive ataxia with palatal tremor. CONCLUSIONS Through genetic testing, we determined that our patient has a novel variant in GFAP typical of Alexander disease.
Collapse
|
152
|
Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model. BMC Neurol 2017; 17:175. [PMID: 28882119 PMCID: PMC5590178 DOI: 10.1186/s12883-017-0938-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022] Open
Abstract
Background Alexander disease (AxD) is an astrogliopathy that predominantly affects the white matter of the central nervous system (CNS), and is caused by a mutation in the gene encoding the glial fibrillary acidic protein (GFAP), an intermediate filament primarily expressed in astrocytes and ependymal cells. The main pathologic feature of AxD is the presence of Rosenthal fibers (RFs), homogeneous eosinophilic inclusions found in astrocytes. Because of difficulties in procuring patient’ CNS tissues and the presence of RFs in other pathologic conditions, there is a need to develop an in vivo assay that can determine whether a mutation in the GFAP results in aggregation and is thus disease-causing. Methods We found a GFAP mutation (c.382G > A, p.Asp128Asn) in a 68-year-old man with slowly progressive gait disturbance with tendency to fall. The patient was tentatively diagnosed with AxD based on clinical and radiological findings. To develop a vertebrate model to assess the aggregation tendency of GFAP, we expressed several previously reported mutant GFAPs and p.Asp128Asn GFAP in zebrafish embryos. Results The most common GFAP mutations in AxD, p.Arg79Cys, p.Arg79His, p.Arg239Cys and p.Arg239His, and p.Asp128Asn induced a significantly higher number of GFAP aggregates in zebrafish embryos than wild-type GFAP. Conclusions The p.Asp128Asn GFAP mutation is likely to be a disease-causing mutation. Although it needs to be tested more extensively in larger case series, the zebrafish assay system presented here would help clinicians determine whether GFAP mutations identified in putative AxD patients are disease-causing.
Collapse
|
153
|
Ferrer I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 2017; 27:645-674. [PMID: 28804999 PMCID: PMC8029391 DOI: 10.1111/bpa.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Astrogliopathy refers to alterations of astrocytes occurring in diseases of the nervous system, and it implies the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Reactive astrocytosis refers to the response of astrocytes to different insults to the nervous system, whereas astrocytopathy indicates hypertrophy, atrophy/degeneration and loss of function and pathological remodeling occurring as a primary cause of a disease or as a factor contributing to the development and progression of a particular disease. Reactive astrocytosis secondary to neuron loss and astrocytopathy due to intrinsic alterations of astrocytes occur in neurodegenerative diseases, overlap each other, and, together with astrocyte senescence, contribute to disease-specific astrogliopathy in aging and neurodegenerative diseases with abnormal protein aggregates in old age. In addition to the well-known increase in glial fibrillary acidic protein and other proteins in reactive astrocytes, astrocytopathy is evidenced by deposition of abnormal proteins such as β-amyloid, hyper-phosphorylated tau, abnormal α-synuclein, mutated huntingtin, phosphorylated TDP-43 and mutated SOD1, and PrPres , in Alzheimer's disease, tauopathies, Lewy body diseases, Huntington's disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease, respectively. Astrocytopathy in these diseases can also be manifested by impaired glutamate transport; abnormal metabolism and release of neurotransmitters; altered potassium, calcium and water channels resulting in abnormal ion and water homeostasis; abnormal glucose metabolism; abnormal lipid and, particularly, cholesterol metabolism; increased oxidative damage and altered oxidative stress responses; increased production of cytokines and mediators of the inflammatory response; altered expression of connexins with deterioration of cell-to-cell networks and transfer of gliotransmitters; and worsening function of the blood brain barrier, among others. Increased knowledge of these aspects will permit a better understanding of brain aging and neurodegenerative diseases in old age as complex disorders in which neurons are not the only players.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Institute of NeuropathologyPathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos IIIMadridSpain
| |
Collapse
|
154
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
155
|
Jost M, Rijntjes M, Urbach H, Egger K, Meyer PT, Frings L, Weiller C, Klebe S. Ataxia and autonomic dysfunction as presenting symptoms in late-onset Alexander disease. Neurol Clin Pract 2017; 7:523-526. [PMID: 29431177 DOI: 10.1212/cpj.0000000000000392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Meike Jost
- Freiburg University Medical Center and Medical Faculty, Freiburg University, Germany
| | - Michel Rijntjes
- Freiburg University Medical Center and Medical Faculty, Freiburg University, Germany
| | - Horst Urbach
- Freiburg University Medical Center and Medical Faculty, Freiburg University, Germany
| | - Karl Egger
- Freiburg University Medical Center and Medical Faculty, Freiburg University, Germany
| | - Philipp T Meyer
- Freiburg University Medical Center and Medical Faculty, Freiburg University, Germany
| | - Lars Frings
- Freiburg University Medical Center and Medical Faculty, Freiburg University, Germany
| | - Cornelius Weiller
- Freiburg University Medical Center and Medical Faculty, Freiburg University, Germany
| | - Stephan Klebe
- Freiburg University Medical Center and Medical Faculty, Freiburg University, Germany
| |
Collapse
|
156
|
A novel three-base duplication, E243dup, of GFAP identified in a patient with Alexander disease. Hum Genome Var 2017; 4:17028. [PMID: 28690862 PMCID: PMC5498426 DOI: 10.1038/hgv.2017.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 11/08/2022] Open
Abstract
Alexander disease (AxD) is a rare hereditary neurodegenerative disorder caused by glial fibrillary acidic protein (GFAP) gene mutations, most of which are missense mutations. We present an AxD case with a novel de novo three-base duplication mutation in GFAP resulting in E243dup.
Collapse
|
157
|
Lin NH, Messing A, Perng MD. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One 2017; 12:e0180694. [PMID: 28700643 PMCID: PMC5503259 DOI: 10.1371/journal.pone.0180694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022] Open
Abstract
Alexander disease (AxD) is a neurodegenerative disease caused by heterozygous mutations in the GFAP gene, which encodes the major intermediate filament protein of astrocytes. This disease is characterized by the accumulation of cytoplasmic protein aggregates, known as Rosenthal fibers. Antibodies specific to GFAP could provide invaluable tools to facilitate studies of the normal biology of GFAP and to elucidate the pathologic role of this IF protein in disease. While a large number of antibodies to GFAP are available, few if any of them have defined epitopes. Here we described the characterization of a panel of commonly used anti-GFAP antibodies, which recognized epitopes at regions extending across the rod domain of GFAP. We show that all of the antibodies are useful for immunoblotting and immunostaining, and identify a subset that preferentially recognized human GFAP. Using these antibodies, we demonstrate the presence of biochemically modified forms of GFAP in brains of human AxD patients and mouse AxD models. These data suggest that this panel of anti-GFAP antibodies will be useful for studies of animal and cell-based models of AxD and related diseases in which cytoskeletal defects associated with GFAP modifications occur.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
158
|
Crompton LA, Cordero‐Llana O, Caldwell MA. Astrocytes in a dish: Using pluripotent stem cells to model neurodegenerative and neurodevelopmental disorders. Brain Pathol 2017; 27:530-544. [PMID: 28585380 PMCID: PMC8028895 DOI: 10.1111/bpa.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Neuroscience and Neurobiology have historically been neuron biased, yet up to 40% of the cells in the brain are astrocytes. These cells are heterogeneous and regionally diverse but universally essential for brain homeostasis. Astrocytes regulate synaptic transmission as part of the tripartite synapse, provide metabolic and neurotrophic support, recycle neurotransmitters, modulate blood flow and brain blood barrier permeability and are implicated in the mechanisms of neurodegeneration. Using pluripotent stem cells (PSC), it is now possible to study regionalised human astrocytes in a dish and to model their contribution to neurodevelopmental and neurodegenerative disorders. The evidence challenging the traditional neuron-centric view of degeneration within the CNS is reviewed here, with focus on recent findings and disease phenotypes from human PSC-derived astrocytes. In addition we compare current protocols for the generation of regionalised astrocytes and how these can be further refined by our growing knowledge of neurodevelopment. We conclude by proposing a functional and phenotypical characterisation of PSC-derived astrocytic cultures that is critical for reproducible and robust disease modelling.
Collapse
Affiliation(s)
- Lucy A. Crompton
- School of Biochemistry, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Oscar Cordero‐Llana
- Bristol Medical School, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Maeve A. Caldwell
- Trinity College Institute for NeuroscienceTrinity College Dublin 2Ireland
| |
Collapse
|
159
|
Pasquini JM, Barrantes FJ, Quintá HR. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1. J Comp Neurol 2017; 525:2861-2875. [DOI: 10.1002/cne.24243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Juana M. Pasquini
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| | | | - Héctor R. Quintá
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
160
|
Gómez-Pinedo U, Sirerol-Piquer MS, Durán-Moreno M, García-Verdugo JM, Matias-Guiu J. Alexander Disease Mutations Produce Cells with Coexpression of Glial Fibrillary Acidic Protein and NG2 in Neurosphere Cultures and Inhibit Differentiation into Mature Oligodendrocytes. Front Neurol 2017; 8:255. [PMID: 28634469 PMCID: PMC5459916 DOI: 10.3389/fneur.2017.00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alexander disease (AxD) is a rare disease caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). The disease is characterized by presence of GFAP aggregates in the cytoplasm of astrocytes and loss of myelin. OBJECTIVES Determine the effect of AxD-related mutations on adult neurogenesis. METHODS We transfected different types of mutant GFAP into neurospheres using the nucleofection technique. RESULTS We find that mutations may cause coexpression of GFAP and NG2 in neurosphere cultures, which would inhibit the differentiation of precursors into oligodendrocytes and thus explain the myelin loss occurring in the disease. Transfection produces cells that differentiate into new cells marked simultaneously by GFAP and NG2 and whose percentage increased over days of differentiation. Increased expression of GFAP is due to a protein with an anomalous structure that forms aggregates throughout the cytoplasm of new cells. These cells display down-expression of vimentin and nestin. Up-expression of cathepsin D and caspase-3 in the first days of differentiation suggest that apoptosis as a lysosomal response may be at work. HSP27, a protein found in Rosenthal bodies, is expressed less at the beginning of the process although its presence increases in later stages. CONCLUSION Our findings seem to suggest that the mechanism of development of AxD may not be due to a function gain due to increase of GFAP, but to failure in the differentiation process may occur at the stage in which precursor cells transform into oligodendrocytes, and that possibility may provide the best explanation for the clinical and radiological images described in AxD.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Neurobiology Laboratory, Neuroscience Institute, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Salomé Sirerol-Piquer
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - María Durán-Moreno
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Jorge Matias-Guiu
- Neurobiology Laboratory, Neuroscience Institute, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
161
|
Yoshida T, Yasuda R, Mizuta I, Nakagawa M, Mizuno T. Quantitative Evaluation of Brain Stem Atrophy Using Magnetic Resonance Imaging in Adult Patients with Alexander Disease. Eur Neurol 2017; 77:296-302. [DOI: 10.1159/000475661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/07/2017] [Indexed: 11/19/2022]
|
162
|
McAuley J, Taylor R, Simonds A, Chawda S. Respiratory difficulty with palatal, laryngeal and respiratory muscle tremor in adult-onset Alexander's disease. BMJ Case Rep 2017; 2017:bcr-2016-218484. [PMID: 28438749 DOI: 10.1136/bcr-2016-218484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Sleep apnoea and respiratory difficulties are reported in adult-onset Alexander's disease (AOAD), an autosomal-dominant leukodystrophy that presents mainly with progressive ataxia. We demonstrate for the first time that the respiratory symptoms can result from association of palatal tremor with a similar tremor of laryngeal and respiratory muscles that interrupts normal inspiration and expiration.A 60-year-old woman presented with progressive ataxia, palatal tremor and breathlessness. MRI revealed medullary atrophy, bilateral T2 hyperintensities in the dentate nuclei and hypertrophic olivary degeneration (HOD). AOAD was confirmed genetically with a positive glial fibrillary acidic protein (GFAP) mutation. Electrophysiological study revealed 1.5 Hz rhythmic laryngeal and respiratory muscle activity. Her respiratory symptoms were significantly improved at night with variable positive pressure ventilation.This case illustrates that palatal tremor in AOAD, and potentially in other conditions, may be associated with treatable breathlessness due to a similar tremor of respiratory muscles.
Collapse
Affiliation(s)
- John McAuley
- Department of Neuroscience, Barking Havering and Redbridge University Hospitals NHS Trust, Romford, UK.,Department of Neuroscience, Queen Mary University of London, London, UK
| | - Rowena Taylor
- Department of Respiratory Medicine, Barts Health NHS Trust, London, UK
| | - Anita Simonds
- Sleep + Ventilation Unit, Royal Brompton Hospital, London, UK
| | - Sanjiv Chawda
- Department of Neuroradiology, BHR Hospitals, Romford, UK
| |
Collapse
|
163
|
Hayashi Y, Nagasawa M, Asano T, Yoshida T, Kimura A, Inuzuka T. Central hypothermia associated with Alexander disease. A case report. Clin Neurol Neurosurg 2017; 157:31-33. [PMID: 28384596 DOI: 10.1016/j.clineuro.2017.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Yuichi Hayashi
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Mamoru Nagasawa
- Department of Internal Medicine, Mino City Hospital, Mino, Japan
| | - Takahiko Asano
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomokatsu Yoshida
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akio Kimura
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Inuzuka
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
164
|
Moody LR, Barrett-Wilt GA, Sussman MR, Messing A. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease. J Biol Chem 2017; 292:5814-5824. [PMID: 28223355 DOI: 10.1074/jbc.m116.772020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
Mutations in the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP) lead to the rare and fatal disorder, Alexander disease (AxD). A prominent feature of the disease is aberrant accumulation of GFAP. It has been proposed that this accumulation occurs because of an increase in gene transcription coupled with impaired proteasomal degradation, yet this hypothesis remains untested. We therefore sought to directly investigate GFAP turnover in a mouse model of AxD that is heterozygous for a disease-causing point mutation (GfapR236H/+) (and thus expresses both wild-type and mutant protein). Stable isotope labeling by amino acids in cell culture, using primary cortical astrocytes, indicated that the in vitro half-lives of total GFAP in astrocytes from wild-type and mutant mice were similar at ∼3-4 days. Surprisingly, results obtained with stable isotope labeling of mammals revealed that, in vivo, the half-life of GFAP in mutant mice (15.4 ± 0.5 days) was much shorter than that in wild-type mice (27.5 ± 1.6 days). These unexpected in vivo data are most consistent with a model in which synthesis and degradation are both increased. Our work reveals that an AxD-causing mutation alters GFAP turnover kinetics in vivo and provides an essential foundation for future studies aimed at preventing or reducing the accumulation of GFAP. In particular, these data suggest that elimination of GFAP might be possible and occurs more quickly than previously surmised.
Collapse
Affiliation(s)
| | | | | | - Albee Messing
- From the Waisman Center, .,Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
165
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
166
|
Neurological Disorders Associated with Striatal Lesions: Classification and Diagnostic Approach. Curr Neurol Neurosci Rep 2016; 16:54. [PMID: 27074771 DOI: 10.1007/s11910-016-0656-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neostriatal abnormalities can be observed in a very large number of neurological conditions clinically dominated by the presence of movement disorders. The neuroradiological picture in some cases has been described as "bilateral striatal necrosis" (BSN). BSN represents a condition histo-pathologically defined by the involvement of the neostriata and characterized by initial swelling of putamina and caudates followed by degeneration and cellular necrosis. After the first description in 1975, numerous acquired and hereditary conditions have been associated with the presence of BSN. At the same time, a large number of disorders involving neostriata have been described as BSN, in some cases irrespective of the presence of signs of cavitation on MRI. As a consequence, the etiological spectrum and the nosographic boundaries of the syndrome have progressively become less clear. In this study, we review the clinical and radiological features of the conditions associated with MRI evidence of bilateral striatal lesions. Based on MRI findings, we have distinguished two groups of disorders: BSN and other neostriatal lesions (SL). This distinction is extremely helpful in narrowing the differential diagnosis to a small group of known conditions. The clinical picture and complementary exams will finally lead to the diagnosis. We provide an update on the etiological spectrum of BSN and propose a diagnostic flowchart for clinicians.
Collapse
|
167
|
Liu Y, Zhou H, Wang H, Gong X, Zhou A, Zhao L, Li X, Zhang X. Atypical MRI features in familial adult onset Alexander disease: case report. BMC Neurol 2016; 16:211. [PMID: 27814755 PMCID: PMC5097349 DOI: 10.1186/s12883-016-0734-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alexander disease (AxD) is a rare neurological disease, especially in adults. It shows variable clinical and radiological features. Case presentation We diagnosed a female with AxD presenting with paroxysmal numbness of the limbs at the onset age of 28-year-old, progressing gradually to spastic paraparesis at age 30. One year later, she had ataxia, bulbar paralysis, bowel and bladder urgency. Her mother had a similar neurological symptoms and died within 2 years after onset (at the age of 47), and her maternal aunt also had similar but mild symptoms at the onset age of 54-year-old. Her brain magnetic resonance imaging (MRI) showed abnormal signals in periventricular white matter with severe atrophy in the medulla oblongata and thoracic spinal cord, and mild atrophy in cervical spinal cord, which is unusual in the adult form of AxD. She and her daughter’s glial fibrillary acidic protein (GFAP) gene analysis revealed the same heterozygous missense mutation, c.1246C > T, p.R416W, despite of no neurological symptoms in her daughter. Conclusions Our case report enriches the understanding of the familial adult AxD. Genetic analysis is necessary when patients have the above mentioned symptoms and signs, MRI findings, especially with family history.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Heng Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Huabing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Xiaoqing Gong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Anna Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Lin Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Xindi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
168
|
Moeton M, Stassen OMJA, Sluijs JA, van der Meer VWN, Kluivers LJ, van Hoorn H, Schmidt T, Reits EAJ, van Strien ME, Hol EM. GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions. Cell Mol Life Sci 2016; 73:4101-20. [PMID: 27141937 PMCID: PMC5043008 DOI: 10.1007/s00018-016-2239-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 11/01/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is the characteristic intermediate filament (IF) protein in astrocytes. Expression of its main isoforms, GFAPα and GFAPδ, varies in astrocytes and astrocytoma implying a potential regulatory role in astrocyte physiology and pathology. An IF-network is a dynamic structure and has been functionally linked to cell motility, proliferation, and morphology. There is a constant exchange of IF-proteins with the network. To study differences in the dynamic properties of GFAPα and GFAPδ, we performed fluorescence recovery after photobleaching experiments on astrocytoma cells with fluorescently tagged GFAPs. Here, we show for the first time that the exchange of GFP-GFAPδ was significantly slower than the exchange of GFP-GFAPα with the IF-network. Furthermore, a collapsed IF-network, induced by GFAPδ expression, led to a further decrease in fluorescence recovery of both GFP-GFAPα and GFP-GFAPδ. This altered IF-network also changed cell morphology and the focal adhesion size, but did not alter cell migration or proliferation. Our study provides further insight into the modulation of the dynamic properties and functional consequences of the IF-network composition.
Collapse
Affiliation(s)
- Martina Moeton
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Oscar M J A Stassen
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Soft Tissue Biomechanics & Engineering, Department of biomedical engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Vincent W N van der Meer
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Liselot J Kluivers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Hedde van Hoorn
- Physics of Life Processes, Leiden Institute of Physics, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden, The Netherlands
| | - Eric A J Reits
- Cell Biology and Histology, AMC Medical Center, Amsterdam, The Netherlands
| | - Miriam E van Strien
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Elly M Hol
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
169
|
Sugio S, Tohyama K, Oku S, Fujiyoshi K, Yoshimura T, Hikishima K, Yano R, Fukuda T, Nakamura M, Okano H, Watanabe M, Fukata M, Ikenaka K, Tanaka KF. Astrocyte-mediated infantile-onset leukoencephalopathy mouse model. Glia 2016; 65:150-168. [DOI: 10.1002/glia.23084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Shouta Sugio
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki 444-8787 Japan
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki 444-8787 Japan
| | - Koujiro Tohyama
- Department of Physiology School of Dentistry, The Center of EM and Bio-Imaging Research, Nano-Neuroanatomy; Iwate Medical University; Morioka 020-8505 Japan
| | - Shinichiro Oku
- Division of Membrane Physiology, National Institute for Physiological Sciences; Okazaki 444-8787 Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopedic Surgery; Keio University School of Medicine; Tokyo 160-8582 Japan
- Department of Orthopedic Surgery; National Hospital Organization, Murayama Medical Center; Tokyo 208-0011 Japan
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki 444-8787 Japan
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki 444-8787 Japan
| | - Keigo Hikishima
- Department of Physiology; Keio University School of Medicine; Tokyo 160-8582 Japan
- Central Institute for Experimental Animals; Kawasaki 210-0821 Japan
| | - Ryutaro Yano
- Department of Physiology; Keio University School of Medicine; Tokyo 160-8582 Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Pathology; The Jikei University School of Medicine; Tokyo 105-8461 Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery; Keio University School of Medicine; Tokyo 160-8582 Japan
| | - Hideyuki Okano
- Department of Physiology; Keio University School of Medicine; Tokyo 160-8582 Japan
| | - Masahiko Watanabe
- Department of Anatomy; Hokkaido University Graduate School of Medicine; Sapporo 060-8638 Japan
| | - Masaki Fukata
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki 444-8787 Japan
- Division of Membrane Physiology, National Institute for Physiological Sciences; Okazaki 444-8787 Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki 444-8787 Japan
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki 444-8787 Japan
| | - Kenji F. Tanaka
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki 444-8787 Japan
- Department of Neuropsychiatry; Keio University School of Medicine; Tokyo 160-8582 Japan
| |
Collapse
|
170
|
Leukoencephalopathy with cerebral calcification and cysts: Cases report and literature review. J Neurol Sci 2016; 370:173-179. [PMID: 27772754 DOI: 10.1016/j.jns.2016.09.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND Leukoencephalopathy with calcifications and cysts (LCC) is a rare disease in which parenchymal cysts and calcifications within a widespread leukoencephalopathy can cause a broad spectrum of neurological symptoms. We present cases with adult LCC and discuss previously described entities in relevant literature. CASE PRESENTATION Two cases of adult-onset LCC confirmed by clinical presentations, typical neuroimaging and neuropathological findings are reported. LITERATURE REVIEW A detailed search of all relevant reports published in the English language between 1996 and 2015 via PubMed (http://www.ncbi.nlm.nih.gov/pubmed) was performed, with "Leukoencephalopathy", "cerebral calcifications" and "cysts" as keywords. Including the current cases, we summarized the clinical presentations, neuroimaging features, biopsy features, and genetic features of 38 LCC patients. CONCLUSION Our findings suggested that LCC could be diagnosed by clinical presentations, neuroimaging and gene detection, and biopsy might not be necessary. Therefore, we propose a diagnostic flow chart for neuroimaging in leukoencephalopathy, cerebral calcifications and cysts.
Collapse
|
171
|
Fan Y, He JJ. HIV-1 Tat Induces Unfolded Protein Response and Endoplasmic Reticulum Stress in Astrocytes and Causes Neurotoxicity through Glial Fibrillary Acidic Protein (GFAP) Activation and Aggregation. J Biol Chem 2016; 291:22819-22829. [PMID: 27609520 DOI: 10.1074/jbc.m116.731828] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
HIV-1 Tat is a major culprit for HIV/neuroAIDS. One of the consistent hallmarks of HIV/neuroAIDS is reactive astrocytes or astrocytosis, characterized by increased cytoplasmic accumulation of the intermediate filament glial fibrillary acidic protein (GFAP). We have shown that that Tat induces GFAP expression in astrocytes and that GFAP activation is indispensable for astrocyte-mediated Tat neurotoxicity. However, the underlying molecular mechanisms are not known. In this study, we showed that Tat expression or GFAP expression led to formation of GFAP aggregates and induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in astrocytes. In addition, we demonstrated that GFAP up-regulation and aggregation in astrocytes were necessary but also sufficient for UPR/ER stress induction in Tat-expressing astrocytes and for astrocyte-mediated Tat neurotoxicity. Importantly, we demonstrated that inhibition of Tat- or GFAP-induced UPR/ER stress by the chemical chaperone 4-phenylbutyrate significantly alleviated astrocyte-mediated Tat neurotoxicity in vitro and in the brain of Tat-expressing mice. Taken together, these results show that HIV-1 Tat expression leads to UPR/ER stress in astrocytes, which in turn contributes to astrocyte-mediated Tat neurotoxicity, and raise the possibility of developing HIV/neuroAIDS therapeutics targeted at UPR/ER stress.
Collapse
Affiliation(s)
- Yan Fan
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Johnny J He
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
172
|
Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. Clin Case Rep 2016; 4:885-95. [PMID: 27648269 PMCID: PMC5018595 DOI: 10.1002/ccr3.655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/27/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023] Open
Abstract
A de novo GFAP variant, p.R376W, was identified in a child presenting with hypotonia, developmental delay, and abnormal brain MRI. Following the 2015 ACMG variant classification guidelines and the functional studies showing protein aggregate formation in vitro, p.R376W should be classified as a pathogenic variant, causative for Alexander disease.
Collapse
Affiliation(s)
- Nicole J. Boczek
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
| | - Ashley N. Sigafoos
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Rachel L. Maus
- Mayo Graduate School and the Department of ImmunologyMayo ClinicRochesterMinnesotaUSA
| | - Margot A. Cousin
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Raul Urrutia
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
- Department of Biophysics and MedicineMayo ClinicRochesterMinnesotaUSA
| | - Karl J. Clark
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
| | - Marc C. Patterson
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
- Departments of Neurology and PediatricsMayo ClinicRochesterMinnesotaUSA
| | - Myra J. Wick
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
- Department of Obstetrics and GynecologyMayo ClinicRochesterMinnesotaUSA
| | - Eric W. Klee
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Biomedical InformaticsMayo ClinicRochesterMinnesotaUSA
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
173
|
Shi Y, Wang C, Huang F, Chen Z, Sun Z, Wang J, Tang B, Ashizawa T, Klockgether T, Jiang H. High Serum GFAP Levels in SCA3/MJD May Not Correlate with Disease Progression. THE CEREBELLUM 2016; 14:677-81. [PMID: 25869927 DOI: 10.1007/s12311-015-0667-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spinocerebellar ataxia type 3(SCA3), also known as Machado-Joseph disease (MJD), is the most frequent subtype of autosomal dominant inherited spinocerebellar ataxias, which caused by the expansion of CAG repeats in the ATXN3 gene. The number of CAG repeats of the abnormal allele determines the rate of disease progression in patients with SCA3/MJD. Markers to assess the clinical severity, to predict the course of illness and to monitor the efficacy of therapeutic measures, can be clinical, biological, and radiological. Here, we aimed to explore whether the serum glial fibrillary acidic protein (GFAP) may act as a biomarker in SCA3/MJD patients and to evaluate the correlation between some markers with the number of CAG repeats in SCA3/MJD patients. We showed that the serum levels of GFAP were significantly higher in SCA3/MJD patients than in controls. There was a strong positive correlation between the age-adjusted GFAP levels with the number of CAG repeats. Age-adjusted International Cooperative Ataxia Rating Scale (ICARS) scores and Scale for the Assessment and Rating of Ataxia (SARA) scores correlated with the number of CAG repeats. Raw scores and disease duration-adjusted GFAP levels, ICARS scores, and SARA scores were not correlated with the number of CAG repeats. Our results reveal novel evidence for the role of the triplet expansion in SCA3/MJD-associated neuronal damage.
Collapse
Affiliation(s)
- Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Fengzhen Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Department of Neurology and Institute of Translational Medicine, University of South China, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zhanfang Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China.,State Key Lab of Medical Genetics, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Tetsuo Ashizawa
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Thomas Klockgether
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,State Key Lab of Medical Genetics, Central South University, Changsha, Hunan, 410078, People's Republic of China.
| |
Collapse
|
174
|
Kondo T, Funayama M, Miyake M, Tsukita K, Era T, Osaka H, Ayaki T, Takahashi R, Inoue H. Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes. Acta Neuropathol Commun 2016; 4:69. [PMID: 27402089 PMCID: PMC4940830 DOI: 10.1186/s40478-016-0337-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/15/2016] [Indexed: 01/28/2023] Open
Abstract
Alexander disease is a fatal neurological illness characterized by white-matter degeneration and formation of Rosenthal fibers, which contain glial fibrillary acidic protein as astrocytic inclusion. Alexander disease is mainly caused by a gene mutation encoding glial fibrillary acidic protein, although the underlying pathomechanism remains unclear. We established induced pluripotent stem cells from Alexander disease patients, and differentiated induced pluripotent stem cells into astrocytes. Alexander disease patient astrocytes exhibited Rosenthal fiber-like structures, a key Alexander disease pathology, and increased inflammatory cytokine release compared to healthy control. These results suggested that Alexander disease astrocytes contribute to leukodystrophy and a variety of symptoms as an inflammatory source in the Alexander disease patient brain. Astrocytes, differentiated from induced pluripotent stem cells of Alexander disease, could be a cellular model for future translational medicine.
Collapse
|
175
|
Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 2016; 132:1-21. [PMID: 26961251 PMCID: PMC6774634 DOI: 10.1007/s00401-016-1553-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022]
Abstract
Kir4.1 is an inwardly rectifying K(+) channel expressed exclusively in glial cells in the central nervous system. In glia, Kir4.1 is implicated in several functions including extracellular K(+) homeostasis, maintenance of astrocyte resting membrane potential, cell volume regulation, and facilitation of glutamate uptake. Knockout of Kir4.1 in rodent models leads to severe neurological deficits, including ataxia, seizures, sensorineural deafness, and early postnatal death. Accumulating evidence indicates that Kir4.1 plays an integral role in the central nervous system, prompting many laboratories to study the potential role that Kir4.1 plays in human disease. In this article, we review the growing evidence implicating Kir4.1 in a wide array of neurological disease. Recent literature suggests Kir4.1 dysfunction facilitates neuronal hyperexcitability and may contribute to epilepsy. Genetic screens demonstrate that mutations of KCNJ10, the gene encoding Kir4.1, causes SeSAME/EAST syndrome, which is characterized by early onset seizures, compromised verbal and motor skills, profound cognitive deficits, and salt-wasting. KCNJ10 has also been linked to developmental disorders including autism. Cerebral trauma, ischemia, and inflammation are all associated with decreased astrocytic Kir4.1 current amplitude and astrocytic dysfunction. Additionally, neurodegenerative diseases such as Alzheimer disease and amyotrophic lateral sclerosis demonstrate loss of Kir4.1. This is particularly exciting in the context of Huntington disease, another neurodegenerative disorder in which restoration of Kir4.1 ameliorated motor deficits, decreased medium spiny neuron hyperexcitability, and extended survival in mouse models. Understanding the expression and regulation of Kir4.1 will be critical in determining if this channel can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Vishnu A Cuddapah
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Kelsey C Patterson
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Anita C Randolph
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK.
| |
Collapse
|
176
|
Heaven MR, Flint D, Randall SM, Sosunov AA, Wilson L, Barnes S, Goldman JE, Muddiman DC, Brenner M. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res 2016; 15:2265-82. [PMID: 27193225 PMCID: PMC5036859 DOI: 10.1021/acs.jproteome.6b00316] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alexander disease (AxD) is a neurodegenerative disorder characterized by astrocytic protein aggregates called Rosenthal fibers (RFs). We used mouse models of AxD to determine the protein composition of RFs to obtain information about disease mechanisms including the hypothesis that sequestration of proteins in RFs contributes to disease. A method was developed for RF enrichment, and analysis of the resulting fraction using isobaric tags for relative and absolute quantitation mass spectrometry identified 77 proteins not previously associated with RFs. Three of five proteins selected for follow-up were confirmed enriched in the RF fraction by immunobloting of both the AxD mouse models and human patients: receptor for activated protein C kinase 1 (RACK1), G1/S-specific cyclin D2, and ATP-dependent RNA helicase DDX3X. Immunohistochemistry validated cyclin D2 as a new RF component, but results for RACK1 and DDX3X were equivocal. None of these was decreased in the non-RF fractions compared to controls. A similar result was obtained for the previously known RF component, alphaB-crystallin, which had been a candidate for sequestration. Thus, no support was obtained for the sequestration hypothesis for AxD. Providing possible insight into disease progression, the association of several of the RF proteins with stress granules suggests a role for stress granules in the origin of RFs.
Collapse
Affiliation(s)
- Michael R. Heaven
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama 35294
| | - Daniel Flint
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shan M. Randall
- Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Landon Wilson
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James E. Goldman
- Department of Pathology & Cell Biology, Columbia University, New York, New York, 10032
| | - David C. Muddiman
- Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Michael Brenner
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
177
|
An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease. J Neurosci 2016; 36:1445-55. [PMID: 26843629 DOI: 10.1523/jneurosci.0256-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The role that glia play in neurological disease is poorly understood but increasingly acknowledged to be critical in a diverse group of disorders. Here we use a simple genetic model of Alexander disease, a progressive and severe human degenerative nervous system disease caused by a primary astroglial abnormality, to perform an in vivo screen of 1987 compounds, including many FDA-approved drugs and natural products. We identify four compounds capable of dose-dependent inhibition of nervous system toxicity. Focusing on one of these hits, glycopyrrolate, we confirm the role for muscarinic cholinergic signaling in pathogenesis using additional pharmacologic reagents and genetic approaches. We further demonstrate that muscarinic cholinergic signaling works through downstream Gαq to control oxidative stress and death of neurons and glia. Importantly, we document increased muscarinic cholinergic receptor expression in Alexander disease model mice and in postmortem brain tissue from Alexander disease patients, and that blocking muscarinic receptors in Alexander disease model mice reduces oxidative stress, emphasizing the translational significance of our findings. We have therefore identified glial muscarinic signaling as a potential therapeutic target in Alexander disease, and possibly in other gliopathic disorders as well. SIGNIFICANCE STATEMENT Despite the urgent need for better treatments for neurological diseases, drug development for these devastating disorders has been challenging. The effectiveness of traditional large-scale in vitro screens may be limited by the lack of the appropriate molecular, cellular, and structural environment. Using a simple Drosophila model of Alexander disease, we performed a moderate throughput chemical screen of FDA-approved drugs and natural compounds, and found that reducing muscarinic cholinergic signaling ameliorated clinical symptoms and oxidative stress in Alexander disease model flies and mice. Our work demonstrates that small animal models are valuable screening tools for therapeutic compound identification in complex human diseases and that existing drugs can be a valuable resource for drug discovery given their known pharmacological and safety profiles.
Collapse
|
178
|
Bonthius DJ, Karacay B. Alexander Disease: A Novel Mutation in GFAP Leading to Epilepsia Partialis Continua. J Child Neurol 2016; 31:869-72. [PMID: 26719496 PMCID: PMC4865433 DOI: 10.1177/0883073815624762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/06/2015] [Indexed: 11/15/2022]
Abstract
Alexander disease is a genetically induced leukodystrophy, due to dominant mutations in the glial fibrillary acidic protein (GFAP ) gene, causing dysfunction of astrocytes. We have identified a novel GFAP mutation, associated with a novel phenotype for Alexander disease. A boy with global developmental delay and hypertonia was found to have a leukodystrophy. Genetic analysis revealed a heterozygous point mutation in exon 6 of the GFAP gene. The guanine-to-adenine change causes substitution of the normal glutamic acid codon (GAG) with a mutant lysine codon (AAG) at position 312 (E312 K mutation). At the age of 4 years, the child developed epilepsia partialis continua, consisting of unabating motor seizures involving the unilateral perioral muscles. Epilepsia partialis continua has not previously been reported in association with Alexander disease. Whether and how the E312 K mutation produces pathologic changes and clinical signs that are unique from other Alexander disease-inducing mutations in GFAP remain to be determined.
Collapse
Affiliation(s)
- Daniel J Bonthius
- Division of Child Neurology, Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Bahri Karacay
- Division of Child Neurology, Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
179
|
p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ 2016; 23:1515-28. [PMID: 27104929 DOI: 10.1038/cdd.2016.37] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/25/2022] Open
Abstract
Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases.
Collapse
|
180
|
Monaco A, Grimaldi MC, Ferrandino I. Neuroglial alterations in the zebrafish brain exposed to cadmium chloride. J Appl Toxicol 2016; 36:1629-1638. [PMID: 27080906 DOI: 10.1002/jat.3328] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
Cadmium is an extremely toxic heavy metal that widely occurs in industrial workplaces with various hazardous effects on brain functions. The cytotoxic effects of cadmium chloride (CdCl2 ) on the neuroglial components of the zebrafish brain were analysed by detecting the glial fibrillary acidic protein (GFAP) expression and the mRNA levels of myelin genes mbp, mpz and plp1 in adult specimens exposed to cadmium for 2, 7 and 16 days. A significant decrease in the GFAP protein by Western blotting experiments was observed after 2 days of treatment, reaching 55% after 16 days. No change was observed in the mRNA levels. Using immunohistochemistry, a reduction in GFAP-positive structures was revealed with a progressive trend in all the brains at 2, 7 and 16 days of treatment. In particular, a considerable reduction in GFAP-positive fibres, with a different course, was observed in the ventricle areas and at the pial surface and in blood vessels after 16 days. Our experiments also showed a structural and chemical alteration of myelin and upregulation of mpz mRNA levels, the oligodendrocyte gene that is upregulated in experiments of neuronal injury, but not of plp1 and mbp mRNA levels, other myelin structural genes. These data confirm the toxic action of cadmium on the zebrafish brain. This action is time-dependent and involves the glial cells, key components of the protection and function of nerve cells, hence the basis for many neurological diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Antonio Monaco
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Maria C Grimaldi
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Ida Ferrandino
- University of Naples Federico II, Department of Biology, Naples, Italy.
| |
Collapse
|
181
|
Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, Zetterberg H. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol 2016; 15:673-684. [PMID: 27068280 DOI: 10.1016/s1474-4422(16)00070-3] [Citation(s) in RCA: 1399] [Impact Index Per Article: 155.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/25/2016] [Accepted: 02/17/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alzheimer's disease biomarkers are important for early diagnosis in routine clinical practice and research. Three core CSF biomarkers for the diagnosis of Alzheimer's disease (Aβ42, T-tau, and P-tau) have been assessed in numerous studies, and several other Alzheimer's disease markers are emerging in the literature. However, there have been no comprehensive meta-analyses of their diagnostic performance. We systematically reviewed the literature for 15 biomarkers in both CSF and blood to assess which of these were most altered in Alzheimer's disease. METHODS In this systematic review and meta-analysis, we screened PubMed and Web of Science for articles published between July 1, 1984, and June 30, 2014, about CSF and blood biomarkers reflecting neurodegeneration (T-tau, NFL, NSE, VLP-1, and HFABP), APP metabolism (Aβ42, Aβ40, Aβ38, sAPPα, and sAPPβ), tangle pathology (P-tau), blood-brain-barrier function (albumin ratio), and glial activation (YKL-40, MCP-1, and GFAP). Data were taken from cross-sectional cohort studies as well as from baseline measurements in longitudinal studies with clinical follow-up. Articles were excluded if they did not contain a cohort with Alzheimer's disease and a control cohort, or a cohort with mild cognitive impairment due to Alzheimer's disease and a stable mild cognitive impairment cohort. Data were extracted by ten authors and checked by two for accuracy. For quality assessment, modified QUADAS criteria were used. Biomarker performance was rated by random-effects meta-analysis based on the ratio between biomarker concentration in patients with Alzheimer's disease and controls (fold change) or the ratio between biomarker concentration in those with mild cognitive impariment due to Alzheimer's disease and those with stable mild cognitive impairment who had a follow-up time of at least 2 years and no further cognitive decline. FINDINGS Of 4521 records identified from PubMed and 624 from Web of Science, 231 articles comprising 15 699 patients with Alzheimer's disease and 13 018 controls were included in this analysis. The core biomarkers differentiated Alzheimer's disease from controls with good performance: CSF T-tau (average ratio 2·54, 95% CI 2·44-2·64, p<0·0001), P-tau (1·88, 1·79-1·97, p<0·0001), and Aβ42 (0·56, 0·55-0·58, p<0·0001). Differentiation between cohorts with mild cognitive impairment due to Alzheimer's disease and those with stable mild cognitive impairment was also strong (average ratio 0·67 for CSF Aβ42, 1·72 for P-tau, and 1·76 for T-tau). Furthermore, CSF NFL (2·35, 1·90-2·91, p<0·0001) and plasma T-tau (1·95, 1·12-3·38, p=0·02) had large effect sizes when differentiating between controls and patients with Alzheimer's disease, whereas those of CSF NSE, VLP-1, HFABP, and YKL-40 were moderate (average ratios 1·28-1·47). Other assessed biomarkers had only marginal effect sizes or did not differentiate between control and patient samples. INTERPRETATION The core CSF biomarkers of neurodegeneration (T-tau, P-tau, and Aβ42), CSF NFL, and plasma T-tau were strongly associated with Alzheimer's disease and the core biomarkers were strongly associated with mild cognitive impairment due to Alzheimer's disease. Emerging CSF biomarkers NSE, VLP-1, HFABP, and YKL-40 were moderately associated with Alzheimer's disease, whereas plasma Aβ42 and Aβ40 were not. Due to their consistency, T-tau, P-tau, Aβ42, and NFL in CSF should be used in clinical practice and clinical research. FUNDING Swedish Research Council, Swedish State Support for Clinical Research, Alzheimer's Association, Knut and Alice Wallenberg Foundation, Torsten Söderberg Foundation, Alzheimer Foundation (Sweden), European Research Council, and Biomedical Research Forum.
Collapse
Affiliation(s)
- Bob Olsson
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Ronald Lautner
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Annika Öhrfelt
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Maria Bjerke
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Mikko Hölttä
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christoffer Rosén
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Caroline Olsson
- Department of Radiation Physics, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Max Petzold
- Unit for Health Metrics, Department of Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
182
|
Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L, Mercimek-Mahmutoglu S, Ebrahimi-Fakhari D, Warner TT, Durr A, Assmann B, Lohmann K, Kostic V, Klein C. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord 2016; 31:436-57. [PMID: 27079681 DOI: 10.1002/mds.26527] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/21/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
The system of assigning locus symbols to specify chromosomal regions that are associated with a familial disorder has a number of problems when used as a reference list of genetically determined disorders,including (I) erroneously assigned loci, (II) duplicated loci, (III) missing symbols or loci, (IV) unconfirmed loci and genes, (V) a combination of causative genes and risk factor genes in the same list, and (VI) discordance between phenotype and list assignment. In this article, we report on the recommendations of the International Parkinson and Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders and present a system for naming genetically determined movement disorders that addresses these problems. We demonstrate how the system would be applied to currently known genetically determined parkinsonism, dystonia, dominantly inherited ataxia, spastic paraparesis, chorea, paroxysmal movement disorders, neurodegeneration with brain iron accumulation, and primary familial brain calcifications. This system provides a resource for clinicians and researchers that, unlike the previous system, can be considered an accurate and criterion-based list of confirmed genetically determined movement disorders at the time it was last updated.
Collapse
Affiliation(s)
- Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Anthony Lang
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital and Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
- School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Darius Ebrahimi-Fakhari
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Department of Neurology & F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, Department of Molecular Neurosciences, UCL Institute of Neurology, London, UK
| | - Alexandra Durr
- Sorbonne Université, UPMC, Inserm and Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | - Birgit Assmann
- Division of Pediatric Neurology, Department of Pediatrics I, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vladimir Kostic
- Institute of Neurology, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
183
|
Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC. The multifaceted role of astrocytes in regulating myelination. Exp Neurol 2016; 283:541-9. [PMID: 26988764 PMCID: PMC5019113 DOI: 10.1016/j.expneurol.2016.03.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Astrocytes are the major glial cell of the central nervous system (CNS), providing both metabolic and physical support to other neural cells. After injury, astrocytes become reactive and express a continuum of phenotypes which may be supportive or inhibitory to CNS repair. This review will focus on the ability of astrocytes to influence myelination in the context of specific secreted factors, cytokines and other neural cell targets within the CNS. In particular, we focus on how astrocytes provide energy and cholesterol to neurons, influence synaptogenesis, affect oligodendrocyte biology and instigate cross-talk between the many cellular components of the CNS.
Collapse
Affiliation(s)
- Hülya Kıray
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Susan L Lindsay
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Sara Hosseinzadeh
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom..
| |
Collapse
|
184
|
Ogura H, Maki F, Sasaki N, Yoshida T, Hasegawa Y. Familial Adult-Onset Alexander Disease with a Novel GFAP Mutation. Mov Disord Clin Pract 2016; 3:300-302. [PMID: 30363563 DOI: 10.1002/mdc3.12296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 01/17/2023] Open
Abstract
The patient was a 65-year-old woman who became gradually more prone to falling from age 30 and who was visiting the hospital on an outpatient basis following a diagnosis of multiple system atrophy, cerebellar type. While eating, she started choking as a result of aspiration and was transported to our hospital by ambulance. Head magnetic resonance imaging (MRI) revealed tadpole-like atrophy of the brainstem, i.e. marked atrophy of the medulla oblongata and cervical spinal cord with disproportionately slight atrophy of the pons. Her eldest son also had the same symptoms, suggesting Alexander disease. A search of the glial fibrillary acidic protein gene revealed the previously unreported mutation Y242N. The same MRI findings and genetic mutation were confirmed in her 38-year-old son. Adult onset Alexander disease is a rare condition with very few reported familial cases. We hereby report this case with a discussion of the literature.
Collapse
Affiliation(s)
- Hana Ogura
- Division of Neurology Department of Internal Medicine St. Marianna University School of Medicine Kanagawa Japan
| | - Futaba Maki
- Division of Neurology Department of Internal Medicine St. Marianna University School of Medicine Kanagawa Japan
| | - Naoshi Sasaki
- Division of Neurology Department of Internal Medicine St. Marianna University School of Medicine Kanagawa Japan
| | - Tomokatsu Yoshida
- Department of Neurology Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yasuhiro Hasegawa
- Division of Neurology Department of Internal Medicine St. Marianna University School of Medicine Kanagawa Japan
| |
Collapse
|
185
|
Lanciotti A, Brignone MS, Visentin S, De Nuccio C, Catacuzzeno L, Mallozzi C, Petrini S, Caramia M, Veroni C, Minnone G, Bernardo A, Franciolini F, Pessia M, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes. Hum Mol Genet 2016; 25:1543-58. [DOI: 10.1093/hmg/ddw032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 01/13/2023] Open
|
186
|
Labauge P, Ayrignac X, Carra-Dallière C, Menjot de Champfleur N. Leucodistrofie dell’adulto. Neurologia 2016. [DOI: 10.1016/s1634-7072(15)76144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
187
|
Khairallah MI, Kassem LA, Yassin NA, Gamal el Din MA, Zekri M, Attia M. Activation of migration of endogenous stem cells by erythropoietin as potential rescue for neurodegenerative diseases. Brain Res Bull 2016; 121:148-57. [PMID: 26802509 DOI: 10.1016/j.brainresbull.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/09/2016] [Accepted: 01/18/2016] [Indexed: 01/21/2023]
Abstract
UNLABELLED Neurodegenerative disorders such as Alzheimer's disease (AD) are characterized by progressive cognitive dysfunction and memory loss. There is deposition of amyloid plaques in the brain and subsequent neuronal loss. Neuroinflammation plays a key role in the pathogenesis of AD. There is still no effective curative therapy for these patients. One promising strategy involves the stimulation of endogenous stem cells. This study investigated the therapeutic effect of erythropoietin (EPO) in neurogenesis, and proved its manipulation of the endogenous mesenchymal stem cells in model of lipopolysaccharide (LPS)-induced neuroinflammation. METHODS Forty five adult male mice were divided equally into 3 groups: Group I (control), group II (LPS untreated group): mice were injected with single dose of lipopolysaccharide (LPS) 0.8 mg/kg intraperitoneally (ip) to induce neuroinflammation, group III (EPO treated group): in addition to (LPS) mice were further injected with EPO in dose of 40 μg/kg of body weight three times weekly for 5 consecutive weeks. Groups were tested for their locomotor activity and memory using open field test and Y-maze. Cerebral specimens were subjected to histological and morphometric studies. Glial fibrillary acidic protein (GFAP) and mesenchymal stem cell marker CD44 were assessed using immunostaining. Gene expression of brain derived neurotrophic factor (BDNF) was examined in brain tissue. RESULTS LPS decreased locomotor activity and percentage of correct choices in Y-maze test. Cerebral sections of LPS treated mice showed increased percentage area of dark nuclei and amyloid plaques. Multiple GFAP positive astrocytes were detected in affected cerebral sections. In addition, decrease BDNF gene expression was noted. On the other hand, EPO treated group, showed improvement in locomotor and cognitive function. Examination of the cerebral sections showed multiple neurons exhibiting less dark nuclei and less amyloid plaques in comparison to the untreated group. GFAP positive astrocytes were also reduced. Cerebral sections of the EPO treated group showed multiple branched and spindle CD44 positive cells inside and around blood vessels more than in LPS group. This immunostaining was negative in the control group. EPO administration increased BDNF gene expression. CONCLUSION This study proved that EPO provides excellent neuroprotective and neurotrophic effects in vivo model of LPS induced neuroinflammation. It enhances brain tissue regeneration via stimulation of endogenous mesenchymal stem cells proliferation and their migration to the site of inflammation. EPO also up regulates cerebral BDNF expression and production, which might contributes to EPO mediated neurogenesis. It also attenuates reactive gliosis thus reduces neuroinflammation. These encouraging results obtained with the use of EPO proved that it may be a promising candidate for future clinical application and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Khairallah
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt.
| | - L A Kassem
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - N A Yassin
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M A Gamal el Din
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M Zekri
- Department of Histology, Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M Attia
- Department of Histology, Egypt; Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
188
|
Tonduti D, Ardissone A, Ceccherini I, Giaccone G, Farina L, Moroni I. Unusual presentations and intrafamilial phenotypic variability in infantile onset Alexander disease. Neurol Sci 2016; 37:973-7. [DOI: 10.1007/s10072-015-2466-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/22/2015] [Indexed: 11/24/2022]
|
189
|
Dahmoush HM, Melhem ER, Vossough A. Metabolic, endocrine, and other genetic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:1221-1259. [PMID: 27430466 DOI: 10.1016/b978-0-444-53486-6.00063-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metabolic, endocrine, and genetic diseases of the brain include a very large array of disorders caused by a wide range of underlying abnormalities and involving a variety of brain structures. Often these disorders manifest as recognizable, though sometimes overlapping, patterns on neuroimaging studies that may enable a diagnosis based on imaging or may alternatively provide enough clues to direct further diagnostic evaluation. The diagnostic workup can include various biochemical laboratory or genetic studies. In this chapter, after a brief review of normal white-matter development, we will describe a variety of leukodystrophies resulting from metabolic disorders involving the brain, including mitochondrial and respiratory chain diseases. We will then describe various acidurias, urea cycle disorders, disorders related to copper and iron metabolism, and disorders of ganglioside and mucopolysaccharide metabolism. Lastly, various other hypomyelinating and dysmyelinating leukodystrophies, including vanishing white-matter disease, megalencephalic leukoencephalopathy with subcortical cysts, and oculocerebrorenal syndrome will be presented. In the following section on endocrine disorders, we will examine various disorders of the hypothalamic-pituitary axis, including developmental, inflammatory, and neoplastic diseases. Neonatal hypoglycemia will also be briefly reviewed. In the final section, we will review a few of the common genetic phakomatoses. Throughout the text, both imaging and brief clinical features of the various disorders will be discussed.
Collapse
Affiliation(s)
- Hisham M Dahmoush
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
190
|
Esmer C, Villegas-Aguilera M, Morales-Ibarra JJ, Bravo-Oro A. [An atypical presentation of Infantile Alexander disease lacking macrocephaly]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:196-201. [PMID: 29421207 DOI: 10.1016/j.bmhimx.2016.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/17/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Alexander disease is a rare form of leukodystrophy that involves mainly astrocytes; it is inherited in an autosomal recessive manner and occurs by mutations in the GFAP gene, located on chromosome 17q21. It can occur at any age and its infantile form is characterized by macrocephaly, seizures, severe motor and cognitive delay, and progressive spasticity or ataxia. CASE REPORT An 8-month-old female was evaluated with a history of neurodevelopmental delay and unprovoked focal motor seizures. Physical examination showed normal head circumference, increased motor responses to tactile and noise stimuli, pyramidal signs and no visceromegalies. Widespread hypodense white matter was found on magnetic resonance and lumbar puncture showed hyperproteinorrachia. Krabbe disease was ruled out by enzymatic assay and gene sequencing of GALC. In the reassessment of the case, abnormalities in neuroimaging lead to suspicion of Alexander disease, and GFAP gene sequencing reported a pathogenic mutation in exon 4 c.716G>A, which caused a change of arginine to histidine at position 239 of the protein (p.Arg239His). CONCLUSIONS The radiographic signs observed in the resonance were decisive for the diagnosis, later confirmed by molecular study. It is important to consider that certain mutations are not associated with macrocephaly, which may cause delay in diagnosis.
Collapse
Affiliation(s)
- Carmen Esmer
- Departamento de Neurogenética, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Miguel Villegas-Aguilera
- Departamento de Neuropediatría, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Juan José Morales-Ibarra
- Departamento de Neuropediatría, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Antonio Bravo-Oro
- Departamento de Neuropediatría, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
191
|
Elsayed M, Magistretti PJ. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Front Cell Neurosci 2015; 9:468. [PMID: 26733803 PMCID: PMC4679853 DOI: 10.3389/fncel.2015.00468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022] Open
Abstract
Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.
Collapse
Affiliation(s)
- Maha Elsayed
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Pierre J Magistretti
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Department of Psychiatry, Center for Psychiatric Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
192
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
193
|
Nitric oxide mediates glial-induced neurodegeneration in Alexander disease. Nat Commun 2015; 6:8966. [PMID: 26608817 PMCID: PMC4674772 DOI: 10.1038/ncomms9966] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction. Alexander disease is a rare neurological disorder caused by mutations in GFAP, yet it is unclear how glial disruptions lead to neural death. Here, Wang et al. identify a mechanism by which glial-derived nitric oxide leads to neuronal degeneration in fly and mouse models of the disease.
Collapse
|
194
|
Sun J, Groppi VE, Gui H, Chen L, Xie Q, Liu L, Omary MB. High-Throughput Screening for Drugs that Modulate Intermediate Filament Proteins. Methods Enzymol 2015; 568:163-85. [PMID: 26795471 DOI: 10.1016/bs.mie.2015.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intermediate filament (IF) proteins have unique and complex cell and tissue distribution. Importantly, IF gene mutations cause or predispose to more than 80 human tissue-specific diseases (IF-pathies), with the most severe disease phenotypes being due to mutations at conserved residues that result in a disrupted IF network. A critical need for the entire IF-pathy field is the identification of drugs that can ameliorate or cure these diseases, particularly since all current therapies target the IF-pathy complication, such as diabetes or cardiovascular disease, rather than the mutant IF protein or gene. We describe a high-throughput approach to identify drugs that can normalize disrupted IF proteins. This approach utilizes transduction of lentivirus that expresses green fluorescent protein-tagged keratin 18 (K18) R90C in A549 cells. The readout is drug "hits" that convert the dot-like keratin filament distribution, due to the R90C mutation, to a wild-type-like filamentous array. A similar strategy can be used to screen thousands of compounds and can be utilized for practically any IF protein with a filament-disrupting mutation, and could therefore potentially target many IF-pathies. "Hits" of interest require validation in cell culture then using in vivo experimental models. Approaches to study the mechanism of mutant IF normalization by potential drugs of interest are also described. The ultimate goal of this drug screening approach is to identify effective and safe compounds that can potentially be tested for clinical efficacy in patients.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Vincent E Groppi
- Department of Pharmacology, The Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan, USA
| | - Honglian Gui
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Lu Chen
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.
| |
Collapse
|
195
|
CSF and Blood Levels of GFAP in Alexander Disease. eNeuro 2015; 2:eN-NWR-0080-15. [PMID: 26478912 PMCID: PMC4603256 DOI: 10.1523/eneuro.0080-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/28/2023] Open
Abstract
Alexander disease is a rare, progressive, and generally fatal neurological disorder that results from dominant mutations affecting the coding region of GFAP, the gene encoding glial fibrillary acidic protein, the major intermediate filament protein of astrocytes in the CNS. A key step in pathogenesis appears to be the accumulation of GFAP within astrocytes to excessive levels. Studies using mouse models indicate that the severity of the phenotype correlates with the level of expression, and suppression of GFAP expression and/or accumulation is one strategy that is being pursued as a potential treatment. With the goal of identifying biomarkers that indirectly reflect the levels of GFAP in brain parenchyma, we have assayed GFAP levels in two body fluids in humans that are readily accessible as biopsy sites: CSF and blood. We find that GFAP levels are consistently elevated in the CSF of patients with Alexander disease, but only occasionally and modestly elevated in blood. These results provide the foundation for future studies that will explore whether GFAP levels can serve as a convenient means to monitor the progression of disease and the response to treatment.
Collapse
|
196
|
Di Giovanni M, Poggiani A, Bianchi S, Rosini F, Rufa A, Federico A. Adult Alexander disease with de novo c.1193C>T heterozygous variant in GFAP gene. Neurol Sci 2015; 37:143-145. [PMID: 26396075 DOI: 10.1007/s10072-015-2378-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/31/2015] [Indexed: 11/27/2022]
Affiliation(s)
- M Di Giovanni
- Unit of Clinical Neurology and Neurometabolic Diseases, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, Policlinico Santa Maria alle Scotte, 53100, Siena, Italy
| | - A Poggiani
- Unit of Clinical Neurology and Neurometabolic Diseases, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, Policlinico Santa Maria alle Scotte, 53100, Siena, Italy
| | - S Bianchi
- Unit of Clinical Neurology and Neurometabolic Diseases, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, Policlinico Santa Maria alle Scotte, 53100, Siena, Italy
| | - F Rosini
- Unit of Clinical Neurology and Neurometabolic Diseases, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, Policlinico Santa Maria alle Scotte, 53100, Siena, Italy.,Eye Tracking and Visual Application Lab (EVALab), University of Siena, Viale Bracci 2, Policlinico Santa Maria alle Scotte, 53100, Siena, Italy
| | - A Rufa
- Unit of Clinical Neurology and Neurometabolic Diseases, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, Policlinico Santa Maria alle Scotte, 53100, Siena, Italy.,Eye Tracking and Visual Application Lab (EVALab), University of Siena, Viale Bracci 2, Policlinico Santa Maria alle Scotte, 53100, Siena, Italy
| | - A Federico
- Unit of Clinical Neurology and Neurometabolic Diseases, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, Policlinico Santa Maria alle Scotte, 53100, Siena, Italy.
| |
Collapse
|
197
|
LaPash Daniels CM, Paffenroth E, Austin EV, Glebov K, Lewis D, Walter J, Messing A. Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease. PLoS One 2015; 10:e0138132. [PMID: 26378915 PMCID: PMC4574949 DOI: 10.1371/journal.pone.0138132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway for protein degradation. In addition, lithium has also been reported to decrease activation of the transcription factor STAT3, which is a regulator of GFAP transcription and astrogliogenesis. Here we tested whether lithium treatment would decrease levels of GFAP in a mouse model of Alexander disease. Mice with the Gfap-R236H point mutation were fed lithium food pellets for 4 to 8 weeks. Four weeks of treatment with LiCl at 0.5% in food pellets decreased GFAP protein and transcripts in several brain regions, although with mild side effects and some mortality. Extending the duration of treatment to 8 weeks resulted in higher mortality, and again with a decrease in GFAP in the surviving animals. Indicators of autophagy, such as LC3, were not increased, suggesting that lithium may decrease levels of GFAP through other pathways. Lithium reduced the levels of phosphorylated STAT3, suggesting this as one pathway mediating the effects on GFAP. In conclusion, lithium has the potential to decrease GFAP levels in Alexander disease, but with a narrow therapeutic window separating efficacy and toxicity.
Collapse
Affiliation(s)
| | - Elizabeth Paffenroth
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth V. Austin
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - Diana Lewis
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
198
|
Ferreira MC, Dorboz I, Rodriguez D, Boespflug Tanguy O. Screening for GFAP rearrangements in a cohort of Alexander disease and undetermined leukoencephalopathy patients. Eur J Med Genet 2015. [DOI: 10.1016/j.ejmg.2015.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
199
|
Deng H, Zheng W, Jankovic J. Genetics and molecular biology of brain calcification. Ageing Res Rev 2015; 22:20-38. [PMID: 25906927 DOI: 10.1016/j.arr.2015.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
Brain calcification is a common neuroimaging finding in patients with neurological, metabolic, or developmental disorders, mitochondrial diseases, infectious diseases, traumatic or toxic history, as well as in otherwise normal older people. Patients with brain calcification may exhibit movement disorders, seizures, cognitive impairment, and a variety of other neurologic and psychiatric symptoms. Brain calcification may also present as a single, isolated neuroimaging finding. When no specific cause is evident, a genetic etiology should be considered. The aim of the review is to highlight clinical disorders associated with brain calcification and provide summary of current knowledge of diagnosis, genetics, and pathogenesis of brain calcification.
Collapse
Affiliation(s)
- Hao Deng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Wen Zheng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
200
|
Abstract
Astrocytes form borders (glia limitans) that separate neural from non-neural tissue along perivascular spaces, meninges and tissue lesions in the CNS. Transgenic loss-of-function studies reveal that astrocyte borders and scars serve as functional barriers that restrict the entry of inflammatory cells into CNS parenchyma in health and disease. Astrocytes also have powerful pro-inflammatory potential. Thus, astrocytes are emerging as pivotal regulators of CNS inflammatory responses. This Review discusses evidence that astrocytes have crucial roles in attracting and restricting CNS inflammation, with important implications for diverse CNS disorders.
Collapse
Affiliation(s)
- Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|