151
|
Broadhead GK, Chang A, McCluskey P. Genetics in Age-Related Macular Degeneration: Current Research and Implications for Future Treatment. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2012; 1:312-8. [PMID: 26107603 DOI: 10.1097/apo.0b013e31826e1d4a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Age-related macular degeneration (AMD) remains a leading cause of visual loss in the developed world, and genetic factors are known risks for disease development, as well as affecting response to therapy. Here, we review genetic factors associated with AMD and the influence of genetics on the understanding of AMD pathogenesis. The potential role of genetics in assisting in the management of AMD and future research avenues are also discussed.
Collapse
Affiliation(s)
- Geoffrey Kenneth Broadhead
- From the *Sydney Retina Clinic & Day Surgery; †The Save Sight Institute, University of Sydney; and ‡The Sydney Eye Hospital, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
152
|
Strom SP, Gao YQ, Martinez A, Ortube C, Chen Z, Nelson SF, Nusinowitz S, Farber DB, Gorin MB. Molecular diagnosis of putative Stargardt Disease probands by exome sequencing. BMC MEDICAL GENETICS 2012; 13:67. [PMID: 22863181 PMCID: PMC3459799 DOI: 10.1186/1471-2350-13-67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/25/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND The commonest genetic form of juvenile or early adult onset macular degeneration is Stargardt Disease (STGD) caused by recessive mutations in the gene ABCA4. However, high phenotypic and allelic heterogeneity and a small but non-trivial amount of locus heterogeneity currently impede conclusive molecular diagnosis in a significant proportion of cases. METHODS We performed whole exome sequencing (WES) of nine putative Stargardt Disease probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Follow-up dideoxy sequencing was performed for confirmation and to screen for mutations in an additional set of affected individuals lacking a definitive molecular diagnosis. RESULTS Whole exome sequencing revealed seven likely disease-causing variants across four genes, providing a confident genetic diagnosis in six previously uncharacterized participants. We identified four previously missed mutations in ABCA4 across three individuals. Likely disease-causing mutations in RDS/PRPH2, ELOVL, and CRB1 were also identified. CONCLUSIONS Our findings highlight the enormous potential of whole exome sequencing in Stargardt Disease molecular diagnosis and research. WES adequately assayed all coding sequences and canonical splice sites of ABCA4 in this study. Additionally, WES enables the identification of disease-related alleles in other genes. This work highlights the importance of collecting parental genetic material for WES testing as the current knowledge of human genome variation limits the determination of causality between identified variants and disease. While larger sample sizes are required to establish the precision and accuracy of this type of testing, this study supports WES for inherited early onset macular degeneration disorders as an alternative to standard mutation screening techniques.
Collapse
Affiliation(s)
- Samuel P Strom
- Jules Stein Eye Institute, University of California Los Angeles, 200 Stein Plaza, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and optogenetic approaches that target appropriate classes of neurons in the remnant neural retina.
Collapse
|
154
|
Kniazeva M, Shen H, Euler T, Wang C, Han M. Regulation of maternal phospholipid composition and IP(3)-dependent embryonic membrane dynamics by a specific fatty acid metabolic event in C. elegans. Genes Dev 2012; 26:554-66. [PMID: 22426533 DOI: 10.1101/gad.187054.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Natural fatty acids (FAs) exhibit vast structural diversity, but the functional importance of FA variations and the mechanism by which they contribute to a healthy lipid composition in animals remain largely unexplored. A large family of acyl-CoA synthetases (ACSs) regulates FA metabolism by esterifying FA to coenyzme A. However, little is known about how particular FA-ACS combinations affect lipid composition and specific cellular functions. We analyzed how the activity of ACS-1 on branched chain FA C17ISO impacts maternal lipid content, signal transduction, and development in Caenorhabditis elegans embryos. We show that expression of ACS-1 in the somatic gonad guides the incorporation of C17ISO into certain phospholipids and thus regulates the phospholipid composition in the zygote. Disrupting this ACS-1 function causes striking defects in complex membrane dynamics, including exocytosis and cytokinesis, leading to early embryonic lethality. These defects are suppressed by hyperactive IP(3) signaling, suggesting that C17ISO and ACS-1 functions are necessary for optimal IP(3) signaling essential for early embryogenesis. This study shows a novel role of branched chain FAs whose functions in humans and animals are unknown and uncovers a novel intercellular regulatory pathway linking a specific FA-ACS interaction to specific developmental events.
Collapse
Affiliation(s)
- Marina Kniazeva
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
155
|
Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 2012; 149:1607-21. [PMID: 22579045 DOI: 10.1016/j.cell.2012.04.012] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/12/2012] [Accepted: 04/23/2012] [Indexed: 01/21/2023]
Abstract
We show that amino acid covariation in proteins, extracted from the evolutionary sequence record, can be used to fold transmembrane proteins. We use this technique to predict previously unknown 3D structures for 11 transmembrane proteins (with up to 14 helices) from their sequences alone. The prediction method (EVfold_membrane) applies a maximum entropy approach to infer evolutionary covariation in pairs of sequence positions within a protein family and then generates all-atom models with the derived pairwise distance constraints. We benchmark the approach with blinded de novo computation of known transmembrane protein structures from 23 families, demonstrating unprecedented accuracy of the method for large transmembrane proteins. We show how the method can predict oligomerization, functional sites, and conformational changes in transmembrane proteins. With the rapid rise in large-scale sequencing, more accurate and more comprehensive information on evolutionary constraints can be decoded from genetic variation, greatly expanding the repertoire of transmembrane proteins amenable to modeling by this method.
Collapse
Affiliation(s)
- Thomas A Hopf
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
156
|
Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE. Dietary fat and semen quality among men attending a fertility clinic. Hum Reprod 2012; 27:1466-74. [PMID: 22416013 PMCID: PMC3329193 DOI: 10.1093/humrep/des065] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/07/2011] [Accepted: 12/21/2011] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The objective of this study was to examine the relation between dietary fats and semen quality parameters. METHODS Data from 99 men with complete dietary and semen quality data were analyzed. Fatty acid levels in sperm and seminal plasma were measured using gas chromatography in a subgroup of men (n = 23). Linear regression was used to determine associations while adjusting for potential confounders. RESULTS Men were primarily Caucasian (89%) with a mean (SD) age of 36.4 (5.3) years; 71% were overweight or obese; and 67% were never smokers. Higher total fat intake was negatively related to total sperm count and concentration. Men in the highest third of total fat intake had 43% (95% confidence interval (CI): 62-14%) lower total sperm count and 38% (95% CI: 58-10%) lower sperm concentration than men in the lowest third (P(trend) = 0.01). This association was driven by intake of saturated fats. Levels of saturated fatty acids in sperm were also negatively related to sperm concentration (r= -0.53), but saturated fat intake was unrelated to sperm levels (r = 0.09). Higher intake of omega-3 polyunsaturated fats was related to a more favorable sperm morphology. Men in the highest third of omega-3 fatty acids had 1.9% (0.4-3.5%) higher normal morphology than men in the lowest third (P(trend) = 0.02). CONCLUSIONS In this preliminary cross-sectional study, high intake of saturated fats was negatively related to sperm concentration whereas higher intake of omega-3 fats was positively related to sperm morphology. Further, studies with larger samples are now required to confirm these findings.
Collapse
Affiliation(s)
- Jill A Attaman
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Abstract
BACKGROUND ACU-4429 is a first in class small-molecule visual cycle modulator that inhibits the isomerase complex and, in mouse models of retinal degeneration, prevents the accumulation of A2E. The purpose of this study was to assess the tolerability, pharmacokinetics, pharmacodynamics, and safety of a single, orally administered dose of ACU-4429 in healthy subjects. METHODS Sequential cohorts were administered single doses ranging from 2 mg to 75 mg. Full-field electroretinograms were recorded before and after exposure to full-field bleaching light. Pharmacokinetics samples were taken at predetermined times. Safety assessments included adverse events, vital signs, clinical laboratory assays, electrocardiograms, and ophthalmologic examination. RESULTS After 45-minute dark adaptation, electroretinographic findings demonstrated a dose-related slowing of the rate of recovery that reached its maximum on Day 2 and returned to baseline by Day 7. Mean area under the concentration curve and peak plasma concentration increased proportionally with increasing doses. Median time to peak concentration was 4 hours postdose. Mean elimination mean half-life was 4 hours to 6 hours. Adverse events were mild and visual in nature (dyschromatopsia and alteration in dark adaptation), transient, and resolved within a few days. Adverse event frequency was dose dependent. CONCLUSION Oral administration of ACU-4429 produced a dose-dependent inhibition of the b-wave of the electroretinograms, was well tolerated up to 75 mg, and demonstrated linear pharmacokinetics across doses.
Collapse
|
158
|
Chavali VRM, Vasireddy V, Ayyagari R. Silencing the expression of CTRP5/C1QTNF5 and ELOVL4 genes by small interfering RNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:225-33. [PMID: 22183337 DOI: 10.1007/978-1-4614-0631-0_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
159
|
Harkewicz R, Du H, Tong Z, Alkuraya H, Bedell M, Sun W, Wang X, Hsu YH, Esteve-Rudd J, Hughes G, Su Z, Zhang M, Lopes VS, Molday RS, Williams DS, Dennis EA, Zhang K. Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function. J Biol Chem 2011; 287:11469-80. [PMID: 22199362 DOI: 10.1074/jbc.m111.256073] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Very long chain polyunsaturated fatty acid (VLC-PUFA)-containing glycerophospholipids are highly enriched in the retina; however, details regarding the specific synthesis and function of these highly unusual retinal glycerophospholipids are lacking. Elongation of very long chain fatty acids-4 (ELOVL4) has been identified as a fatty acid elongase protein involved in the synthesis of VLC-PUFAs. Mutations in ELOVL4 have also been implicated in an autosomal dominant form of Stargardt disease (STGD3), a type of juvenile macular degeneration. We have generated photoreceptor-specific conditional knock-out mice and used high performance liquid chromatography-mass spectrometry (HPLC-MS) to examine and analyze the fatty acid composition of retinal membrane glycerophosphatidylcholine and glycerophosphatidylethanolamine species. We also used immunofluorescent staining and histology coupled with electrophysiological data to assess retinal morphology and visual response. The conditional knock-out mice showed a significant decrease in retinal glycerophospholipids containing VLC-PUFAs, specifically contained in the sn-1 position of glycerophosphatidylcholine, implicating the role of Elovl4 in their synthesis. Conditional knock-out mice were also found to have abnormal accumulation of lipid droplets and lipofuscin-like granules while demonstrating photoreceptor-specific abnormalities in visual response, indicating the critical role of Elovl4 for proper rod or cone photoreceptor function. Altogether, this study demonstrates the essential role of ELOVL4 in VLC-PUFA synthesis and retinal function.
Collapse
Affiliation(s)
- Richard Harkewicz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, Zhou J. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 2011; 31:121-35. [PMID: 22209824 DOI: 10.1016/j.preteyeres.2011.12.001] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 02/07/2023]
Abstract
The retina exhibits an inherent autofluorescence that is imaged ophthalmoscopically as fundus autofluorescence. In clinical settings, fundus autofluorescence examination aids in the diagnosis and follow-up of many retinal disorders. Fundus autofluorescence originates from the complex mixture of bisretinoid fluorophores that are amassed by retinal pigment epithelial (RPE) cells as lipofuscin. Unlike the lipofuscin found in other cell-types, this material does not form as a result of oxidative stress. Rather, the formation is attributable to non-enzymatic reactions of vitamin A aldehyde in photoreceptor cells; transfer to RPE occurs upon phagocytosis of photoreceptor outer segments. These fluorescent pigments accumulate even in healthy photoreceptor cells and are generated as a consequence of the light capturing function of the cells. Nevertheless, the formation of this material is accelerated in some retinal disorders including recessive Stargardt disease and ELOVL4-related retinal degeneration. As such, these bisretinoid side-products are implicated in the disease processes that threaten vision. In this article, we review our current understanding of the composition of RPE lipofuscin, the structural characteristics of the various bisretinoids, their related spectroscopic features and the biosynthetic pathways by which they form. We will revisit factors known to influence the extent of the accumulation and therapeutic strategies being used to limit bisretinoid formation. Given their origin from vitamin A aldehyde, an isomer of the visual pigment chromophore, it is not surprising that the bisretinoids of retina are light sensitive molecules. Accordingly, we will discuss recent findings that implicate the photodegradation of bisretinoid in the etiology of age-related macular degeneration.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, 630 W. 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
161
|
Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet 2011; 89:745-50. [PMID: 22100072 DOI: 10.1016/j.ajhg.2011.10.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Very-long-chain fatty acids (VLCFAs) play important roles in membrane structure and cellular signaling, and their contribution to human health is increasingly recognized. Fatty acid elongases catalyze the first and rate-limiting step in VLCFA synthesis. Heterozygous mutations in ELOVL4, the gene encoding one of the elongases, are known to cause macular degeneration in humans and retinal abnormalities in mice. However, biallelic ELOVL4 mutations have not been observed in humans, and murine models with homozygous mutations die within hours of birth as a result of a defective epidermal water barrier. Here, we report on two human individuals with recessive ELOVL4 mutations revealed by a combination of autozygome analysis and exome sequencing. These individuals exhibit clinical features of ichthyosis, seizures, mental retardation, and spasticity-a constellation that resembles Sjögren-Larsson syndrome (SLS) but presents a more severe neurologic phenotype. Our findings identify recessive mutations in ELOVL4 as the cause of a neuro-ichthyotic disease and emphasize the importance of VLCFA synthesis in brain and cutaneous development.
Collapse
|
162
|
Vlckova M, Trkova M, Zemanova Z, Hancarova M, Novotna D, Raskova D, Puchmajerova A, Drabova J, Zmitkova Z, Tan Y, Sedlacek Z. Mechanism and genotype-phenotype correlation of two proximal 6q deletions characterized using mBAND, FISH, array CGH, and DNA sequencing. Cytogenet Genome Res 2011; 136:15-20. [PMID: 22156400 DOI: 10.1159/000334709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Proximal 6q deletions have a milder phenotype than middle and distal 6q deletions. We describe 2 patients with non-overlapping deletions of about 15 and 19 Mb, respectively, which subdivide the proximal 6q region into 2 parts. The aberrations were identified using karyotyping and analysed using mBAND and array CGH. The unaffected mother of the first patient carried a mosaic karyotype with the deletion in all metaphases analysed and a small supernumerary marker formed by the deleted material in about 77% of cells. Her chromosome 6 centromeric signal was split between the deleted chromosome and the marker, suggesting that this deletion arose through the centromere fission mechanism. In this family the location of the proximal breakpoint in the centromere prevented cloning of the deletion junction, but the junction of the more distal deletion in the second patient was cloned and sequenced. This analysis showed that the latter aberration was most likely caused by non-homologous end joining. The second patient also had a remarkably more severe phenotype which could indicate a partial overlap of his deletion with the middle 6q interval. The phenotypes of both patients could be partly correlated with the gene content of their deletions and with phenotypes of other published patients.
Collapse
Affiliation(s)
- M Vlckova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Tzekov R, Stein L, Kaushal S. Protein misfolding and retinal degeneration. Cold Spring Harb Perspect Biol 2011; 3:a007492. [PMID: 21825021 DOI: 10.1101/cshperspect.a007492] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The retina is a highly complex and specialized organ that performs preliminary analysis of visual information. Composed of highly metabolically active tissue, the retina requires a precise and well-balanced means of maintaining its functional activity during extended periods of time. Maintenance and regulation of a vast array of different structural and functional proteins is required for normal function of the retina. This process is referred to as protein homeostasis and involves a variety of activities, including protein synthesis, folding, transport, degradation, elimination, and recycling. Deregulation of any of these activities can lead to malfunctioning of the retina, from subtle subclinical signs to severe retinal degenerative diseases leading to blindness. Examples of retinal degenerative diseases caused by disruption of protein homeostasis include retinitis pigmentosa and Stargardt's disease. A detailed discussion of the role of disruption in protein homeostasis in these and other retinal diseases is presented, followed by examples of some existing and potential treatments.
Collapse
Affiliation(s)
- Radouil Tzekov
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
164
|
Zernant J, Schubert C, Im KM, Burke T, Brown CM, Fishman GA, Tsang SH, Gouras P, Dean M, Allikmets R. Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalmol Vis Sci 2011; 52:8479-87. [PMID: 21911583 DOI: 10.1167/iovs.11-8182] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To find all possible disease-associated variants in coding sequences of the ABCA4 gene in a large cohort of patients diagnosed with ABCA4-associated diseases. METHODS One hundred sixty-eight patients who had been clinically diagnosed with Stargardt disease, cone-rod dystrophy, and other ABCA4-associated phenotypes were prescreened for mutations in ABCA4 with the ABCA4 microarray, resulting in finding 1 of 2 expected mutations in 111 patients and 0 of 2 mutations in 57 patients. The next-generation sequencing (NGS) strategy was applied to these patients to sequence the entire coding region and the splice sites of the ABCA4 gene. Identified new variants were confirmed or rejected by Sanger sequencing and analyzed for possible pathogenicity by in silico programs and, where possible, by segregation analyses. RESULTS Sequencing was successful in 159 of 168 patients and identified the second disease-associated allele in 49 of 103 (~48%) of patients with one previously identified mutation. Among those with no mutations, both disease-associated alleles were detected in 4 of 56 patients, and one mutation was detected in 10 of 56 patients. The authors detected a total of 57 previously unknown, possibly pathogenic, variants: 29 missense, 4 nonsense, 9 small deletions and 15 splice-site-altering variants. Of these, 55 variants were deemed pathogenic by a combination of predictive methods and segregation analyses. CONCLUSIONS Many mutations in the coding sequences of the ABCA4 gene are still unknown, and many possibly reside in noncoding regions of the ABCA4 locus. Although the ABCA4 array remains a good first-pass screening option, the NGS platform is a time- and cost-efficient tool for screening large cohorts.
Collapse
Affiliation(s)
- Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Liu A, Lin Y, Terry R, Nelson K, Bernstein PS. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies. ACTA ACUST UNITED AC 2011; 6:593-613. [PMID: 25324899 DOI: 10.2217/clp.11.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macular degeneration is a progressive, bilateral eye disorder that damages the macula of the human eye. The most common form of macular degeneration is age-related macular degeneration (AMD), which is the leading cause of irreversible blindness in people older than 50 years in developed countries. Autosomal dominant Stargardt disease-3 (STGD3) is an inherited macular dystrophy that has clinical features similar to dry AMD, but occurs at a much earlier age. It is caused by a mutation in the elongation of very-long-chain fatty acids-like 4 (ELOVL4) gene, which is responsible for encoding the elongase enzyme that converts shorter chain fatty acids into C28-C38 very long-chain polyunsaturated fatty acids (VLCPUFAs, total number of carbons ≥24). Diets rich in long-chain polyunsaturated fatty acids (LCPUFAs) have inverse associations with the progression of AMD and STGD3, and a deficiency in retinal LCPUFAs and VLCPUFAs has been detected in AMD retinas and STGD3 animal models. This article systematically summarizes the roles of LCPUFAs and VLCPUFAs in AMD and STGD3, and discusses future research directions.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Yanhua Lin
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ryan Terry
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kelly Nelson
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
166
|
Misfolded proteins and retinal dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 664:115-21. [PMID: 20238009 DOI: 10.1007/978-1-4419-1399-9_14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many mutations associated with retinal degeneration lead to the production of misfolded proteins by cells of the retina. Emerging evidence suggests that these abnormal proteins cause cell death by activating the Unfolded Protein Response, a set of conserved intracellular signaling pathways that detect protein misfolding within the endoplasmic reticulum and control protective and proapoptotic signal transduction pathways. Here, we review the misfolded proteins associated with select types of retinitis pigmentosa, Stargadt-like macular degeneration, and Doyne Honeycomb Retinal Dystrophy and discuss the role that endoplasmic reticulum stress and UPR signaling play in their pathogenesis. Last, we review new therapies for these diseases based on preventing protein misfolding in the retina.
Collapse
|
167
|
Uchida Y. The role of fatty acid elongation in epidermal structure and function. DERMATO-ENDOCRINOLOGY 2011; 3:65-9. [PMID: 21695014 PMCID: PMC3117004 DOI: 10.4161/derm.3.2.14662] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 12/28/2010] [Indexed: 11/22/2022]
Abstract
Heterogeneous molecular species of epidermal ceramide (Cer) play critical roles in forming a competent permeability barrier of lamellar membrane structures in the stratum corneum, which is a prerequisite to preventing excess water loss for terrestrial mammals. Lipids containing very long chain lengths of fatty acids (VLCFA) (hydrocarbon chain lengths over 28) have been found in selected tissues, including epidermis. In particular, ω-hydroxy (ω-OH) VLCFA as well as Cer containing ω-OH VLCFA and ω-O-acylCer (acylCer) are unique to epidermis. The fatty acid elongation system that generates VLCFA, which requires four enzymatic steps, has been characterized, while recent studies using transgenic animals have further revealed the importance of ω-OH Cer species for barrier formation and have also elucidated the synthetic pathway of these essential Cer species in conjunction with VLCFA metabolism. This review article discusses the generation of VLCFA and unique epidermal Cer species containing VLFCA in the relation to their roles in epidermis.
Collapse
Affiliation(s)
- Yoshikazu Uchida
- Department of Dermatology; School of Medicine; University of California San Francisco; Dermatology Service and Research Unit; Veterans Affairs Medical Center; and Northern California Institute for Research and Education; San Francisco, CA USA
| |
Collapse
|
168
|
McMahon A, Butovich IA, Kedzierski W. Epidermal expression of an Elovl4 transgene rescues neonatal lethality of homozygous Stargardt disease-3 mice. J Lipid Res 2011; 52:1128-1138. [PMID: 21429867 DOI: 10.1194/jlr.m014415] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elongase of very long chain fatty acids-4 (ELOVL4) is the only mammalian enzyme known to synthesize C28-C36 fatty acids. In humans, ELOVL4 mutations cause Stargardt disease-3 (STGD3), a juvenile dominant macular degeneration. Heterozygous Stgd3 mice that carry a pathogenic mutation in the mouse Elovl4 gene demonstrate reduced levels of retinal C28-C36 acyl phosphatidylcholines (PC) and epidermal C28-C36 acylceramides. Homozygous Stgd3 mice die shortly after birth with signs of disrupted skin barrier function. In this study, we report generation of transgenic (Tg) mice with targeted Elovl4 expression driven by an epidermal-specific involucrin promoter. In homozygous Stgd3 mice, this transgene reinstates both epidermal Elovl4 expression and synthesis of two missing epidermal lipid groups: C28-C36 acylceramides and (O-linoleoyl)-omega-hydroxy C28-C36 fatty acids. Transgene expression also restores skin barrier function and rescues the neonatal lethality of homozygous Stgd3 mice. These studies establish the critical requirement for epidermal C28-C36 fatty acid synthesis for animal viability. In addition to the skin, Elovl4 is also expressed in other tissues, including the retina, brain, and testes. Thus, these mice will facilitate future studies to define the roles of C28-C36 fatty acids in the Elovl4-expressing tissues.
Collapse
Affiliation(s)
- Anne McMahon
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390.
| | - Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Wojciech Kedzierski
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
169
|
Jastrzebska B, Debinski A, Filipek S, Palczewski K. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. Prog Lipid Res 2011; 50:267-77. [PMID: 21435354 DOI: 10.1016/j.plipres.2011.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| | | | | | | |
Collapse
|
170
|
Lee YJ, Wang S, Slone SR, Yacoubian TA, Witt SN. Defects in very long chain fatty acid synthesis enhance alpha-synuclein toxicity in a yeast model of Parkinson's disease. PLoS One 2011; 6:e15946. [PMID: 21264320 PMCID: PMC3019226 DOI: 10.1371/journal.pone.0015946] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/30/2010] [Indexed: 12/20/2022] Open
Abstract
We identified three S. cerevisiae lipid elongase null mutants (elo1Δ, elo2Δ, and elo3Δ) that enhance the toxicity of alpha-synuclein (α-syn). These elongases function in the endoplasmic reticulum (ER) to catalyze the elongation of medium chain fatty acids to very long chain fatty acids, which is a component of sphingolipids. Without α-syn expression, the various elo mutants showed no growth defects, no reactive oxygen species (ROS) accumulation, and a modest decrease in survival of aged cells compared to wild-type cells. With (WT, A53T or E46K) α-syn expression, the various elo mutants exhibited severe growth defects (although A30P had a negligible effect on growth), ROS accumulation, aberrant protein trafficking, and a dramatic decrease in survival of aged cells compared to wild-type cells. Inhibitors of ceramide synthesis, myriocin and FB1, were extremely toxic to wild-type yeast cells expressing (WT, A53T, or E46K) α-syn but much less toxic to cells expressing A30P. The elongase mutants and ceramide synthesis inhibitors enhance the toxicity of WT α-syn, A53T and E46K, which transit through the ER, but have a negligible effect on A30P, which does not transit through the ER. Disruption of ceramide-sphingolipid homeostasis in the ER dramatically enhances the toxicity of α-syn (WT, A53T, and E46K).
Collapse
Affiliation(s)
- Yong Joo Lee
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, United States of America
| | | | | | | | | |
Collapse
|
171
|
Zadravec D, Tvrdik P, Guillou H, Haslam R, Kobayashi T, Napier JA, Capecchi MR, Jacobsson A. ELOVL2 controls the level of n-6 28:5 and 30:5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice. J Lipid Res 2010; 52:245-55. [PMID: 21106902 DOI: 10.1194/jlr.m011346] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ELOVL2 is a member of the mammalian microsomal ELOVL fatty acid enzyme family, involved in the elongation of very long-chain fatty acids including PUFAs required for various cellular functions in mammals. Here, we used ELOVL2-ablated (Elovl2(-/-)) mice to show that the PUFAs with 24-30 carbon atoms of the ω-6 family in testis are indispensable for normal sperm formation and fertility in male mice. The lack of Elovl2 was associated with a complete arrest of spermatogenesis, with seminiferous tubules displaying only spermatogonia and primary spermatocytes without further germinal cells. Furthermore, based on acyl-CoA profiling, heterozygous Elovl2(+/-) male mice exhibited haploinsufficiency, with reduced levels of C28:5 and C30:5n-6 PUFAs, which gave rise to impaired formation and function of haploid spermatides. These new insights reveal a novel mechanism involving ELOVL2-derived PUFAs in mammals and previously unrecognized roles for C28 and C30 n-6 PUFAs in male fertility. In accordance with the function suggested for ELOVL2, the Elovl2(-/-) mice show distorted levels of serum C20 and C22 PUFAs from both the n-3 and the n-6 series. However, dietary supplementation with C22:6n-3 could not restore male fertility to Elovl2(+/-) mice, suggesting that the changes in n-6 fatty acid composition seen in the testis of the Elovl2(+/-) mice, cannot be compensated by increased C22:6n-3 content.
Collapse
Affiliation(s)
- Damir Zadravec
- The Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder. The disease is characterized by the accumulation of very long-chain fatty acids (VLCFA; >C22) in plasma and tissues. X-ALD is caused by mutations in the ABCD1 gene encoding ALDP, an adenosine triphosphate (ATP)-binding-cassette (ABC) transporter located in the peroxisomal membrane. In this paper, we describe the current knowledge on the function of ALDP, its role in peroxisomal VLCFA beta-oxidation and the consequences of a defect in ALDP on VLCFA metabolism. Furthermore, we pay special attention to the role of the VLCFA elongation system in VLCFA homeostasis, with elongation of very long-chain fatty acids like-1 (ELOVL1) as key player, and its relevance to X-ALD.
Collapse
Affiliation(s)
- Stephan Kemp
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Departments of Pediatrics/Emma Children's Hospital and Clinical Chemistry, Amsterdam, the Netherlands.
| | | |
Collapse
|
173
|
Kawamura T, Ohtsubo M, Mitsuyama S, Ohno-Nakamura S, Shimizu N, Minoshima S. KMeyeDB: a graphical database of mutations in genes that cause eye diseases. Hum Mutat 2010; 31:667-74. [PMID: 20232414 DOI: 10.1002/humu.21240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.
Collapse
Affiliation(s)
- Takashi Kawamura
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
174
|
Retinoids for treatment of retinal diseases. Trends Pharmacol Sci 2010; 31:284-95. [PMID: 20435355 DOI: 10.1016/j.tips.2010.03.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/31/2022]
Abstract
Knowledge about retinal photoreceptor signal transduction and the visual cycle required for normal eyesight has increased exponentially over the past decade. Substantial progress in human genetics has facilitated the identification of candidate genes and complex networks underlying inherited retinal diseases. Natural mutations in animal models that mimic human diseases have been characterized and advanced genetic manipulation can now be used to generate small mammalian models of human retinal diseases. Pharmacological repair of defective visual processes in animal models not only validates their involvement in vision, but also provides great promise for the development of improved therapies for millions who are progressing towards blindness or are almost completely robbed of their eyesight.
Collapse
|
175
|
Loss of lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in rd11 mice. Proc Natl Acad Sci U S A 2010; 107:15523-8. [PMID: 20713727 DOI: 10.1073/pnas.1002897107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinal degenerative diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are a leading cause of untreatable blindness with substantive impact on the quality of life of affected individuals and their families. Mouse mutants with retinal dystrophies have provided a valuable resource to discover human disease genes and helped uncover pathways critical for photoreceptor function. Here we show that the rd11 mouse mutant and its allelic strain, B6-JR2845, exhibit rapid photoreceptor dysfunction, followed by degeneration of both rods and cones. Using linkage analysis, we mapped the rd11 locus to mouse chromosome 13. We then identified a one-nucleotide insertion (c.420-421insG) in exon 3 of the Lpcat1 gene. Subsequent screening of this gene in the B6-JR2845 strain revealed a seven-nucleotide deletion (c.14-20delGCCGCGG) in exon 1. Both sequence changes are predicted to result in a frame-shift, leading to premature truncation of the lysophosphatidylcholine acyltransferase-1 (LPCAT1) protein. LPCAT1 (also called AYTL2) is a phospholipid biosynthesis/remodeling enzyme that facilitates the conversion of palmitoyl-lysophosphatidylcholine to dipalmitoylphosphatidylcholine (DPPC). The analysis of retinal lipids from rd11 and B6-JR2845 mice showed substantially reduced DPPC levels compared with C57BL/6J control mice, suggesting a causal link to photoreceptor dysfunction. A follow-up screening of LPCAT1 in retinitis pigmentosa and Leber congenital amaurosis patients did not reveal any obvious disease-causing mutations. Previously, LPCAT1 has been suggested to be critical for the production of lung surfactant phospholipids and biosynthesis of platelet-activating factor in noninflammatory remodeling pathway. Our studies add another dimension to an essential role for LPCAT1 in retinal photoreceptor homeostasis.
Collapse
|
176
|
Liu A, Chang J, Lin Y, Shen Z, Bernstein PS. Long-chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J Lipid Res 2010; 51:3217-29. [PMID: 20688753 DOI: 10.1194/jlr.m007518] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Retinal long-chain PUFAs (LC-PUFAs, C(12)-C(22)) play important roles in normal human retinal function and visual development, and some epidemiological studies of LC-PUFA intake suggest a protective role against the incidence of advanced age-related macular degeneration (AMD). On the other hand, retinal very long-chain PUFAs (VLC-PUFAs, C(n>22)) have received much less attention since their identification decades ago, due to their minor abundance and more difficult assays, but recent discoveries that defects in VLC-PUFA synthetic enzymes are associated with rare forms of inherited macular degenerations have refocused attention on their potential roles in retinal health and disease. We thus developed improved GC-MS methods to detect LC-PUFAs and VLC-PUFAs, and we then applied them to the study of their changes in ocular aging and AMD. With ocular aging, some VLC-PUFAs in retina and retinal pigment epithelium (RPE)/choroid peaked in middle age. Compared with age-matched normal donors, docosahexaenoic acid, adrenic acid, and some VLC-PUFAs in AMD retina and RPE/choroid were significantly decreased, whereas the ratio of n-6/n-3 PUFAs was significantly increased. All these findings suggest that deficiency of LC-PUFAs and VLC-PUFAs, and/or an imbalance of n-6/n-3 PUFAs, may be involved in AMD pathology.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
177
|
Molday RS, Zhang K. Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Prog Lipid Res 2010; 49:476-92. [PMID: 20633576 DOI: 10.1016/j.plipres.2010.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stargardt disease is a common inherited macular degeneration characterized by a significant loss in central vision in the first or second decade of life, bilateral atrophic changes in the central retina associated with degeneration of photoreceptors and underlying retinal pigment epithelial cells, and the presence of yellow flecks extending from the macula. Autosomal recessive Stargardt disease, the most common macular dystrophy, is caused by mutations in the gene encoding ABCA4, a photoreceptor ATP binding cassette (ABC) transporter. Biochemical studies together with analysis of abca4 knockout mice and Stargardt patients have implicated ABCA4 as a lipid transporter that facilitates the removal of potentially toxic retinal compounds from photoreceptors following photoexcitation. An autosomal dominant form of Stargardt disease also known as Stargardt-like dystrophy is caused by mutations in a gene encoding ELOVL4, an enzyme that catalyzes the elongation of very long-chain fatty acids in photoreceptors and other tissues. This review focuses on the molecular characterization of ABCA4 and ELOVL4 and their role in photoreceptor cell biology and the pathogenesis of Stargardt disease.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre of Macular Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada.
| | | |
Collapse
|
178
|
Chavali VRM, Sommer JR, Petters RM, Ayyagari R. Identification of a promoter for the human C1Q-tumor necrosis factor-related protein-5 gene associated with late-onset retinal degeneration. Invest Ophthalmol Vis Sci 2010; 51:5499-507. [PMID: 20554618 DOI: 10.1167/iovs.10-5543] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The Complement-1q tumor necrosis factor-related protein 5 (C1QTNF5/CTRP5) gene is located in the 3' untranslated region of the Membrane Frizzled Related Protein (MFRP) gene, and these two genes are reported to be dicistronic. The authors examined the 5' upstream sequence of CTRP5 for the presence of a promoter regulating the expression of this gene. METHODS The sequence upstream of the translational start site of human CTRP5 (hCTRP5) was analyzed by Promoter Inspector software. A series of plasmids containing segments of hCTRP5 putative promoter sequence (-29 bp to -3.6 kb) upstream of the luciferase gene were generated. Cells were transiently transfected with these plasmids, and luciferase activity was measured. 5' RACE analysis was performed to determine the functional transcription start site. V5 tagged-pig CTRP5 (pCTRP5) gene, cloned downstream of the hCTRP5 putative promoter, was expressed in a human retinal cell line (ARPE-19) and a Chinese hamster ovary cell line (CHO-K1) to study the functionality of the putative promoter. RESULTS Bioinformatic analysis identified a putative promoter region between nt -1322 and +1 sequence of hCTRP5. 5' RACE analysis revealed the presence of the transcriptional start site (TSS) at 62 bp upstream of the start codon in the CTRP5. The 1.3-kb sequence of the hCTRP5 predicted promoter produced higher levels of luciferase activity, indicating the strength of the cloned CTRP5 promoter. The promoter sequence between nt -1322 bp to -29 bp upstream of the first ATG of CTRP5 was found to be essential for this promoter activity. The predicted hCTRP5 promoter was found to control the expression of V5-tagged pCTRP5 and nuclear GFP, indicating that the promoter was functional. CONCLUSIONS This study revealed the presence of a functional promoter for the CTRP5 gene located 5' of its start site. Understanding the regulation of CTRP5 gene transcription may provide insights into the possible role of CTRP5 in the retina and the pathology underlying late-onset retinal degeneration caused by mutations in this gene. In addition, these studies will determine whether CTRP5 and MFRP are functionally dicistronic.
Collapse
Affiliation(s)
- Venkata R M Chavali
- Department of Ophthalmology, University of California San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
179
|
Ofman R, Dijkstra IME, van Roermund CWT, Burger N, Turkenburg M, van Cruchten A, van Engen CE, Wanders RJA, Kemp S. The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol Med 2010; 2:90-7. [PMID: 20166112 PMCID: PMC3377275 DOI: 10.1002/emmm.201000061] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). X-ALD is characterized by the accumulation of very long-chain fatty acids (VLCFA; ≥C24) in plasma and tissues. In this manuscript we provide insight into the pathway underlying the elevated levels of C26:0 in X-ALD. ALDP transports VLCFacyl-CoA across the peroxisomal membrane. A deficiency in ALDP impairs peroxisomal β-oxidation of VLCFA but also raises cytosolic levels of VLCFacyl-CoA which are substrate for further elongation. We identify ELOVL1 (elongation of very-long-chain-fatty acids) as the single elongase catalysing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1). ELOVL1 expression is not increased in X-ALD fibroblasts suggesting that increased levels of C26:0 result from increased substrate availability due to the primary deficiency in ALDP. Importantly, ELOVL1 knockdown reduces elongation of C22:0 to C26:0 and lowers C26:0 levels in X-ALD fibroblasts. Given the likely pathogenic effects of high C26:0 levels, our findings highlight the potential of modulating ELOVL1 activity in the treatment of X-ALD.
Collapse
Affiliation(s)
- Rob Ofman
- Academic Medical Center, Departments of Pediatrics and Clinical Chemistry, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Diagnostic and therapeutic challenges. Retina 2010; 31:413-8. [PMID: 20458258 DOI: 10.1097/iae.0b013e3181dc58db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
181
|
Agbaga MP, Mandal MNA, Anderson RE. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res 2010; 51:1624-42. [PMID: 20299492 DOI: 10.1194/jlr.r005025] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compared with other mammalian tissues, retina is highly enriched in PUFA. Long-chain PUFA (LC-PUFA; C18-C24) are essential FAs that are enriched in the retina and are necessary for maintenance of normal retinal development and function. The retina, brain, and sperm also contain very LC-PUFA (VLC-PUFA; >C24). Although VLC-PUFA were discovered more than two decades ago, very little is known about their biosynthesis and functional roles in the retina. This is due mainly to intrinsic difficulties associated with working on these unusually long polyunsaturated hydrocarbon chains and their existence in small amounts. Recent studies on the FA elongase elongation of very long chain fatty acids-4 (ELOVL4) protein, however, suggest that VLC-PUFA probably play some uniquely important roles in the retina as well as the other tissues. Mutations in the ELOVL4 gene are found in patients with autosomal dominant Stargardt disease. Here, we review the recent literature on VLC-PUFA with special emphasis on the elongases responsible for their synthesis. We focus on a novel elongase, ELOVL4, involved in the synthesis of VLC-PUFA, and the importance of these FAs in maintaining the structural and functional integrity of retinal photoreceptors.
Collapse
Affiliation(s)
- Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
182
|
Ramkumar HL, Zhang J, Chan CC. Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD). Prog Retin Eye Res 2010; 29:169-90. [PMID: 20206286 DOI: 10.1016/j.preteyeres.2010.02.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. The pathology of dry AMD consists of macular degeneration of photoreceptors and the RPE, lipofuscin (A2E) accumulation, and drusen formation. Mice have been widely used for generating models that simulate human AMD features for investigating the pathogenesis, treatment and prevention of the disease. Although the mouse has no macula, focal atrophy of photoreceptors and RPE, lipofuscin accumulation, and increased A2E can develop in aged mouse eyes. However, drusen are rarely seen in mice because of their simpler Bruch's membrane and different process of lipofuscin extrusion compared with humans. Thus, analyzing basal deposits at the ultrastructural level and understanding the ultrastructural pathologic differences between various mouse AMD models are critical to comprehending the significance of research findings and response to possible therapeutic options for dry AMD. Based on the multifactorial pathogenesis of AMD, murine dry AMD models can be classified into three groups. First, genetically engineered mice that target genes related to juvenile macular dystrophies are the most common models, and they include abcr(-/-) (Stargardt disease), transgenic ELOVL4 (Stargardt-3 dominant inheritary disease), Efemp1(R345W/R345W) (Doyne honeycomb retinal dystrophy), and Timp3(S156C/S156C) (Sorsby fundus dystrophy) mice. Other murine models target genes relevant to AMD, including inflammatory genes such as Cfh(-/-), Ccl2(-/-), Ccr2(-/-), Cx3cr1(-/-), and Ccl2(-/-)/cx3cr1(-/-), oxidative stress associated genes such as Sod1(-/-) and Sod2 knockdown, metabolic pathway genes such as neprilysin(-/-) (amyloid beta), transgenic mcd/mcd (cathepsin D), Cp(-/-)/Heph(-/Y) (ferroxidase ceruloplasmin/hepaestin, iron metabolism), and transgenic ApoE4 on high fat and high cholesterol diet (lipid metabolism). Second, mice have also been immunologically manipulated by immunization with carboxyethylpyrrole (CEP), an oxidative fragment of DHA found in drusen, and found to present with dry AMD features. Third, natural mouse strains such as arrd2/arrd2 (Mdm gene mutation) and the senescence accelerated mice (SAM) spontaneously develop features of dry AMD like photoreceptor atrophy and thickening of Bruch's membrane. All the aforementioned models develop retinal lesions with various features that simulate dry AMD lesions: focal photoreceptor degeneration, abnormal RPE with increased lipofuscin, basal infolding, decreased melanosomes and degeneration. However, Bruch's membrane changes are less common. Most mice develop retinal lesions at an older age (6-24 months, depending on the models), while the Ccl2(-/-)/cx3cr1(-/-) mice develop lesions by 4-6 weeks. Although murine models present various degrees of retinal and/or RPE degeneration, classical drusen is extremely rare. Using electron microscopy, small drusenoid deposits are found between RPE and Bruch's membrane in a few models including Efemp1(R345W/R345W), Ccl2(-/-)/cx3cr1(-/-), neprilysin(-/-), transgenic mcd/mcd, and ApoE4 transgenic mice on a high fat diet. High A2E levels are measured in the retinas of abcr(-/-), transgenic ELOVL4, and Ccl2(-/-)/cx3cr1(-/-) mice. In summary, murine models provide useful tools for studying AMD pathogenesis and evaluating novel therapies for this disease. This review compares the major dry AMD murine models and discusses retinal pathology at the ultrastructural level.
Collapse
Affiliation(s)
- Hema L Ramkumar
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | | | | |
Collapse
|
183
|
Abstract
Stargardt-like macular degeneration (STGD3) is an early onset, autosomal dominant macular degeneration. STGD3 is characterized by a progressive pathology, the loss of central vision, atrophy of the retinal pigment epithelium, and accumulation of lipofuscin, clinical features that are also characteristic of age-related macular degeneration. The onset of clinical symptoms in STGD3, however, is typically observed within the second or third decade of life (i.e., starting in the teenage years). The clinical profile at any given age among STGD3 patients can be variable suggesting that, although STGD3 is a single gene defect, other genetic or environmental factors may play a role in moderating the final disease phenotype. Genetic studies localized the STGD3 disease locus to a small region on the short arm of human chromosome 6, and application of a positional candidate gene approach identified protein truncating mutations in the elongation of very long chain fatty acids-4 gene (ELOVL4) in patients with this disease. The ELOVL4 gene encodes a protein homologous to the ELO group of proteins that participate in fatty acid elongation in yeast. Pathogenic mutations found in the ELOVL4 gene result in altered trafficking of the protein and behave with a dominant negative effect. Mice carrying an Elovl4 mutation developed photoreceptor degeneration and depletion of very long chain fatty acids (VLCFA). ELOVL4 protein participates in the synthesis of fatty acids with chain length longer than 26 carbons. Studies on ELOVL4 indicate that VLCFA may be necessary for normal function of the retina, and the defective protein trafficking and/or altered VLCFA elongation underlies the pathology associated with STGD3. Determining the role of VLCFA in the retina and discerning the implications of abnormal trafficking of mutant ELOVL4 and depleted VLCFA content in the pathology of STGD3 will provide valuable insight in understanding the retinal structure, function, and pathology underlying STGD3 and may lead to a better understanding of the process of macular disease in general.
Collapse
|
184
|
Arora A, Guduric-Fuchs J, Harwood L, Dellett M, Cogliati T, Simpson DA. Prediction of microRNAs affecting mRNA expression during retinal development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:1. [PMID: 20053268 PMCID: PMC2821300 DOI: 10.1186/1471-213x-10-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 01/06/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small RNA molecules (~22 nucleotides) which have been shown to play an important role both in development and in maintenance of adult tissue. Conditional inactivation of miRNAs in the eye causes loss of visual function and progressive retinal degeneration. In addition to inhibiting translation, miRNAs can mediate degradation of targeted mRNAs. We have previously shown that candidate miRNAs affecting transcript levels in a tissue can be deduced from mRNA microarray expression profiles. The purpose of this study was to predict miRNAs which affect mRNA levels in developing and adult retinal tissue and to confirm their expression. RESULTS Microarray expression data from ciliary epithelial retinal stem cells (CE-RSCs), developing and adult mouse retina were generated or downloaded from public repositories. Analysis of gene expression profiles detected the effects of multiple miRNAs in CE-RSCs and retina. The expression of 20 selected miRNAs was confirmed by RT-PCR and the cellular distribution of representative candidates analyzed by in situ hybridization. The expression levels of miRNAs correlated with the significance of their predicted effects upon mRNA expression. Highly expressed miRNAs included miR-124, miR-125a, miR-125b, miR-204 and miR-9. Over-expression of three miRNAs with significant predicted effects upon global mRNA levels resulted in a decrease in mRNA expression of five out of six individual predicted target genes assayed. CONCLUSIONS This study has detected the effect of miRNAs upon mRNA expression in immature and adult retinal tissue and cells. The validity of these observations is supported by the experimental confirmation of candidate miRNA expression and the regulation of predicted target genes following miRNA over-expression. Identified miRNAs are likely to be important in retinal development and function. Misregulation of these miRNAs might contribute to retinal degeneration and disease. Conversely, manipulation of their expression could potentially be used as a therapeutic tool in the future.
Collapse
Affiliation(s)
- Amit Arora
- Centre for Vision and Vascular Science, Queen's University Belfast, Ophthalmic Research Centre, Institute of Clinical Science, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | | | | | | | | | | |
Collapse
|
185
|
Role of Elovl4 protein in the biosynthesis of docosahexaenoic acid. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:233-42. [PMID: 20238022 DOI: 10.1007/978-1-4419-1399-9_27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The disk membranes of retinal photoreceptor outer segments and other neuronal and reproductive tissues are enriched in docosahexaenoic acid (DHA, 22:6n3), which is essential for their normal function and development. The fatty acid condensing enzyme Elongation of Very Long chain fatty acids-4 (ELOVL4) is highly expressed in retina photoreceptors as well as other tissues with high 22:6n3 content. Mutations in the ELOVL4 gene are associated with autosomal dominant Stargardt-like macular dystrophy (STGD3) and results in synthesis of a truncated protein that cannot be targeted to the endoplasmic reticulum (ER), the site of fatty acid biosynthesis. Considering the abundance and essential roles of 22:6n3 in ELOVL4-expressing tissues (except the skin), it was proposed that the ELOVL4 protein may be involved in 22:6n3 biosynthesis. We tested the hypothesis that the ELOVL4 protein is involved in 22:6n3 biosynthesis by selectively silencing expression of the protein in the cone photoreceptors derived cell line 661 w and showed that the ELOVL4 protein is not involved in DHA biosynthesis from the short chain fatty acid precursors 18:3n3 and 22:5n3.
Collapse
|
186
|
Tikhonenko M, Lydic TA, Wang Y, Chen W, Opreanu M, Sochacki A, McSorley KM, Renis RL, Kern T, Jump DB, Reid GE, Busik JV. Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 2010; 59:219-27. [PMID: 19875612 PMCID: PMC2797925 DOI: 10.2337/db09-0728] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The results of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort study revealed a strong association between dyslipidemia and the development of diabetic retinopathy. However, there are no experimental data on retinal fatty acid metabolism in diabetes. This study determined retinal-specific fatty acid metabolism in control and diabetic animals. RESEARCH DESIGN AND METHODS Tissue gene and protein expression profiles were determined by quantitative RT-PCR and Western blot in control and streptozotocin-induced diabetic rats at 3-6 weeks of diabetes. Fatty acid profiles were assessed by reverse-phase high-performance liquid chromatography, and phospholipid analysis was performed by nano-electrospray ionization tandem mass spectrometry. RESULTS We found a dramatic difference between retinal and liver elongase and desaturase profiles with high elongase and low desaturase gene expression in the retina compared with liver. Elovl4, an elongase expressed in the retina but not in the liver, showed the greatest expression level among retinal elongases, followed by Elovl2, Elovl1, and Elovl6. Importantly, early-stage diabetes induced a marked decrease in retinal expression levels of Elovl4, Elovl2, and Elovl6. Diabetes-induced downregulation of retinal elongases translated into a significant decrease in total retinal docosahexaenoic acid, as well as decreased incorporation of very-long-chain polyunsaturated fatty acids (PUFAs), particularly 32:6n3, into retinal phosphatidylcholine. This decrease in n3 PUFAs was coupled with inflammatory status in diabetic retina, reflected by an increase in gene expression of proinflammatory markers interleukin-6, vascular endothelial growth factor, and intercellular adhesion molecule-1. CONCLUSIONS This is the first comprehensive study demonstrating diabetes-induced changes in retinal fatty acid metabolism. Normalization of retinal fatty acid levels by dietary means or/and modulating expression of elongases could represent a potential therapeutic target for diabetes-induced retinal inflammation.
Collapse
Affiliation(s)
- Maria Tikhonenko
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | | | - Weiqin Chen
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Madalina Opreanu
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Andrew Sochacki
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Kelly M. McSorley
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Rebecca L. Renis
- Department of Chemistry, Michigan State University, East Lansing, Michigan
| | - Timothy Kern
- Department of Medicine, Division of Endocrinology, Case Western Reserve University, Cleveland, Ohio
| | - Donald B. Jump
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Gavin E. Reid
- Department of Chemistry, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Corresponding author: Julia V. Busik,
| |
Collapse
|
187
|
Mizutani T, Ishikawa S, Nagase T, Takahashi H, Fujimura T, Sasaki T, Nagumo A, Shimamura K, Miyamoto Y, Kitazawa H, Kanesaka M, Yoshimoto R, Aragane K, Tokita S, Sato N. Discovery of novel benzoxazinones as potent and orally active long chain fatty acid elongase 6 inhibitors. J Med Chem 2009; 52:7289-300. [PMID: 19883081 DOI: 10.1021/jm900915x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of benzoxazinones was synthesized and evaluated as novel long chain fatty acid elongase 6 (ELOVL6) inhibitors. Exploration of the SAR of the UHTS lead 1a led to the identification of (S)-1y that possesses a unique chiral quarternary center and a pyrazole ring as critical pharmacophore elements. Compound (S)-1y showed potent and selective inhibitory activity toward human ELOVL6 while displaying potent inhibitory activity toward both mouse ELOVL3 and 6 enzymes. Compound (S)-1y showed acceptable pharmacokinetic profiles after oral dosing in mice. Furthermore, (S)-1y significantly suppressed the elongation of target fatty acids in mouse liver at 30 mg/kg oral dosing.
Collapse
Affiliation(s)
- Takashi Mizutani
- Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd, Okubo 3, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 2009; 27:2126-35. [PMID: 19521979 DOI: 10.1002/stem.149] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assessments of safety and efficacy are crucial before human ESC (hESC) therapies can move into the clinic. Two important early potential hESC applications are the use of retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration and Stargardt disease, an untreatable form of macular dystrophy that leads to early-onset blindness. Here we show long-term functional rescue using hESC-derived RPE in both the RCS rat and Elov14 mouse, which are animal models of retinal degeneration and Stargardt, respectively. Good Manufacturing Practice-compliant hESC-RPE survived subretinal transplantation in RCS rats for prolonged periods (>220 days). The cells sustained visual function and photoreceptor integrity in a dose-dependent fashion without teratoma formation or untoward pathological reactions. Near-normal functional measurements were recorded at >60 days survival in RCS rats. To further address safety concerns, a Good Laboratory Practice-compliant study was carried out in the NIH III immune-deficient mouse model. Long-term data (spanning the life of the animals) showed no gross or microscopic evidence of teratoma/tumor formation after subretinal hESC-RPE transplantation. These results suggest that hESCs could serve as a potentially safe and inexhaustible source of RPE for the efficacious treatment of a range of retinal degenerative diseases.
Collapse
Affiliation(s)
- Bin Lu
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Kuny S, Gaillard F, Mema SC, Freund PR, Zhang K, Macdonald IM, Sparrow JR, Sauvé Y. Inner retina remodeling in a mouse model of stargardt-like macular dystrophy (STGD3). Invest Ophthalmol Vis Sci 2009; 51:2248-62. [PMID: 19933199 DOI: 10.1167/iovs.09-4718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose. To investigate the impact of progressive age-related photoreceptor degeneration on retinal integrity in Stargardt-like macular dystrophy (STGD3). Methods. The structural design of the inner retina of the ELOVL4 transgenic mouse model of STGD3 was compared with that of age-matched littermate wild-type (WT) mice from 1 to 24 months of age by using immunohistofluorescence and confocal microscopy and by relying on antibodies against cell-type-specific markers, synapse-associated proteins, and neurotransmitters. Results. Müller cell reactivity occurred at the earliest age studied, before photoreceptor loss. This finding is perhaps not surprising, considering the cell's ubiquitous roles in retina homeostasis. Second-order neurons displayed salient morphologic changes as a function of photoreceptoral input loss. Age-related sprouting of dendritic fibers from rod bipolar and horizontal cells into the ONL did not occur. In contrast, with the loss of photoreceptor sensory input, these second-order neurons progressively bore fewer synapses. After rod loss, the few remaining cones showed abnormal opsin expression, revealing tortuous branched axons. After complete ONL loss (beyond 18 months of age), localized areas of extreme retinal disruptions were observed in the central retina. RPE cell invasion, dense networks of strongly reactive Müller cell processes, and invagination of axons and blood vessels were distinctive features of these regions. In addition, otherwise unaffected cholinergic amacrine cells displayed severe perturbation of their cell bodies and synaptic plexi in these areas. Conclusions. Remodeling in ELOVL4 transgenic mice follows a pattern similar to that reported after other types of hereditary retinopathies in animals and humans, pointing to a potentially common pathophysiologic mechanism.
Collapse
Affiliation(s)
- Sharee Kuny
- Department of Ophthalmology, University of Alberta, Edmonton Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Park H, Haynes CA, Nairn AV, Kulik M, Dalton S, Moremen K, Merrill AH. Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. J Lipid Res 2009; 51:480-9. [PMID: 19786568 PMCID: PMC2817578 DOI: 10.1194/jlr.m000984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceramides (Cers) are important in embryogenesis, but no comprehensive analysis of gene expression for Cer metabolism nor the Cer amounts and subspecies has been conducted with an often used model: mouse embryonic stem cells (mESCs) versus embroid bodies (EBs). Measuring the mRNA levels by quantitative RT-PCR and the amounts of the respective metabolites by LC-ESI/MS/MS, notable differences between R1 mESCs and EBs were: EBs have higher mRNAs for CerS1 and CerS3, which synthesize C18- and C>or=24-carbons dihydroceramides (DH)Cer, respectively; EBs have higher CerS2 (for C24:0- and C24:1-); and EBs have lower CerS5 + CerS6 (for C16-). In agreement with these findings, EBs have (DH)Cer with higher proportions of C18-, C24- and C26- and less C16-fatty acids, and longer (DH)Cer are also seen in monohexosyl Cers and sphingomyelins. EBs had higher mRNAs for fatty acyl-CoA elongases that produce C18-, C24-, and C26-fatty acyl-CoAs (Elovl3 and Elovl6), and higher amounts of these cosubstrates for CerS. Thus, these studies have found generally good agreement between genomic and metabolomic data in defining that conversion of mESCs to EBs is accompanied by a large number of changes in gene expression and subspecies distributions for both sphingolipids and fatty acyl-CoAs.
Collapse
Affiliation(s)
- Hyejung Park
- School of Biology & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
191
|
Morais S, Monroig O, Zheng X, Leaver MJ, Tocher DR. Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of ELOVL5- and ELOVL2-like elongases. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:627-39. [PMID: 19184219 DOI: 10.1007/s10126-009-9179-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/05/2009] [Indexed: 05/09/2023]
Abstract
Fish species vary in their capacity to biosynthesize the n-3 long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. The synthesis of LC-PUFA involves enzyme-mediated fatty acyl desaturation and elongation. Previously, a complementary DNA (cDNA) for an elongase, now termed elovl5a, had been cloned from Atlantic salmon. Here, we report on the cloning of two new elongase cDNAs: a second elovl5b elongase, corresponding to a 294-amino-acid (aa) protein, and an elovl2-like elongase, coding for a 287-aa protein, characterized for the first time in a nonmammalian vertebrate. Heterologous expression in yeast showed that the salmon Elovl5b elongated C18 and C20 PUFA, with low activity towards C22, while Elovl2 elongated C20 and C22 PUFA with lower activity towards C18 PUFA. All three transcripts showed predominant expression in the intestine and liver, followed by the brain. Elongase expression showed differential nutritional regulation. Levels of elovl5b and particularly of elovl2, but not of elovl5a, transcripts were significantly increased in liver of salmon fed vegetable oils (VO) compared to fish fed fish oil (FO). Intestinal expression showed a similar pattern. Phylogenetic comparisons indicate that, in contrast to salmon and zebra fish, Acanthopterygian fish species lack elovl2 which is consistent with their negligible ability to biosynthesize LC-PUFA and to adapt to VO dietary inclusion, compared to predominantly freshwater salmonids. Thus, the presence of elovl2 in salmon explains the ability of this species to biosynthesize LC-PUFA and may provide a biotechnological tool to produce enhanced levels of LC-PUFA, particularly DHA, in transgenic organisms.
Collapse
Affiliation(s)
- Sofia Morais
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | | | | | | | | |
Collapse
|
192
|
Nagase T, Takahashi T, Sasaki T, Nagumo A, Shimamura K, Miyamoto Y, Kitazawa H, Kanesaka M, Yoshimoto R, Aragane K, Tokita S, Sato N. Synthesis and biological evaluation of a novel 3-sulfonyl-8-azabicyclo[3.2.1]octane class of long chain fatty acid elongase 6 (ELOVL6) inhibitors. J Med Chem 2009; 52:4111-4. [PMID: 19522500 DOI: 10.1021/jm900488k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long chain fatty acid elongase 6 (ELOVL6) catalyzes the elongation of long chain fatty acyl-CoAs and is a potential target for the treatment of metabolic disorders. The ultrahigh throughput screen of our corporate chemical collections resulted in the identification of a novel 3-sulfonyl-8-azabicyclo[3.2.1]octane class of ELOVL6 inhibitor 1a. Optimization of lead 1a led to the identification of the potent, selective, and orally available ELOVL6 inhibitor 1w.
Collapse
Affiliation(s)
- Tsuyoshi Nagase
- Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co, Ltd, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Vasireddy V, Jablonski MM, Khan NW, Wang XF, Sahu P, Sparrow JR, Ayyagari R. Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofuscin. Exp Eye Res 2009; 89:905-12. [PMID: 19682985 DOI: 10.1016/j.exer.2009.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 11/29/2022]
Abstract
The mechanism underlying photoreceptor degeneration in autosomal dominant Stargardt-like macular degeneration (STGD3) due to mutations in the elongation of very long chain fatty acids-4 (ELOVL4) gene is not fully understood. To evaluate the pathological events associated with STGD3, we used a mouse model that mimics the human STGD3 phenotype and studied the progression of retinal degeneration. Morphological changes in the retina of Elovl4 5-bp deletion knock-in mice (E_mut(+/-)) were evaluated at 22 months of age. The localization of ELOVL4, and the expression pattern of inner retinal tissue marker proteins, and ubiquitin were determined by immunofluorescence labeling of retinal sections. Levels of the retinal pigment epithelium (RPE) lipofuscin fluorophores were measured by quantitative HPLC. Morphological evaluation of the retina revealed an accumulation of RPE debris in the subretinal space. A significant increase in the amount of ELOVL4 was observed in the outer plexiform layer in E_mut(+/-) mice compared to controls. Apart from the accumulation of ELOVL4, E_mut(+/-) mice also exhibited high expression of ubiquitin in the retina. Analysis of lipofuscin fluorophores in the RPE showed a significant elevation of A2E and compounds of the all-trans-retinal dimer series in retinas from four and ten month old E_mut(+/-) mice compared to wild-type littermates. These observations suggest that abnormal accumulation of ELOVL4 protein and lipofuscin may lead to photoreceptor degeneration in E_mut(+/-) mice.
Collapse
|
194
|
Sparrow JR, Wu Y, Kim CY, Zhou J. Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J Lipid Res 2009; 51:247-61. [PMID: 19666736 DOI: 10.1194/jlr.r000687] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The lipid phase of the photoreceptor outer segment membrane is essential to the photon capturing and signaling functions of rhodopsin. Rearrangement of phospholipids in the bilayer accompanies the formation of the active intermediates of rhodopsin following photon absorption. Furthermore, evidence for the formation of a condensation product between the photolyzed chromophore all-trans-retinal and phosphatidylethanolamine indicates that phospholipid may also participate in the movement of the retinoid in the membrane. The downside of these interactions is the formation of bisretinoid-phosphatidylethanolamine compounds that accumulate in retinal pigment epithelial cells with age and that are particularly abundant in some retinal disorders. The propensity of these compounds to negatively impact on the cells has been linked to the pathogenesis of some retinal disorders including juvenile onset recessive Stargardt disease and age-related macular degeneration.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
195
|
Synthesis and evaluation of a novel 2-azabicyclo[2.2.2]octane class of long chain fatty acid elongase 6 (ELOVL6) inhibitors. Bioorg Med Chem 2009; 17:5639-47. [DOI: 10.1016/j.bmc.2009.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/06/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
|
196
|
Tong Z, Yang Z, Meyer JJ, McInnes AW, Xue L, Azimi AM, Baird J, Zhao Y, Pearson E, Wang C, Chen Y, Zhang K. A Novel Locus for X-linked Retinitis Pigmentosa. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2009. [DOI: 10.47102/annals-acadmedsg.v35n7p476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Introduction: Retinitis pigmentosa (RP) is the most prevalent group of inherited retinopathies and demonstrates considerable clinical and genetic heterogeneity, with wide variations in disease severity, progression, and gene involvement. We studied a large family with RP to determine the pattern of inheritance and to identify the disease-causing gene/locus.
Materials and Methods: Ophthalmic examination was performed on 35 family members to identify affected individuals and carriers and to characterise the disease phenotype. Genetic linkage analysis was performed using short tandem repeat (STR) polymorphic markers encompassing the known loci for X-linked RP (xlRP) including RP2, RP3, RP6, RP23, and RP24. Mutation screening was performed by direct sequencing of PCR-amplified genomic DNA of the RP2 and RPGR genes of the affected individuals.
Results: A highly penetrant, X-linked form of RP was observed in this family. Age of onset was from 5 to 8 years and visual acuity ranged from 20/25 in children to light perception in older adults. Linkage analysis and direct sequencing showed that no known loci/genes were associated with the phenotype in this kindred.
Conclusion: A novel disease gene locus/loci is responsible for the xlRP phenotype in this family.
Key words: Genetic linkage, Mutation screening, Retinopathy
Collapse
Affiliation(s)
- Zongzhong Tong
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Zhenglin Yang
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jay J Meyer
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Allen W McInnes
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Lai Xue
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Asif M Azimi
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jenn Baird
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Yu Zhao
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Erik Pearson
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | - Yali Chen
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Kang Zhang
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
197
|
Development of a high-density assay for long-chain fatty acyl-CoA elongases. Lipids 2009; 44:765-73. [PMID: 19575253 DOI: 10.1007/s11745-009-3320-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/10/2009] [Indexed: 01/05/2023]
Abstract
We established a convenient assay method for measuring elongation of very long chain fatty acids (ELOVLs) using a Unifilter-96 GF/C plate. The Unifilter GF/C plate preferentially interacts with hydrophobic end products of ELOVLs (i.e., long chain fatty acid), with minimal malonyl-CoA (C2 unit donor for fatty acid elongation) interaction. This new method results in the quick separation and detection of [(14)C] incorporated end products (e.g., [(14)C] palmitoyl-CoA) from reaction mixtures containing excessive amounts of [(14)C] malonyl-CoA. In the Unifilter-96 GF/C plate assay, recombinantly expressed human ELOVLs (i.e., ELOVL1,-2,-3,-5 and -6) displayed appreciable assay windows (>2-fold vs. mock-transfected control), enabling us to conduct comprehensive substrate profiling of ELOVLs. The substrate concentration profile of ELOVL6 in the Unifilter-96 GF/C plate assay is consistent with that obtained from the conventional liquid extraction method, thus, supporting the reliability of the Unifilter-96 GF/C plate assay. We then examined the substrate specificities of ELOVLs in a comprehensive fashion. As previously reported, ELOVL1, -3 and -6 preferably elongated the saturated fatty acyl-CoAs while ELOVL2 and ELOVL5 preferentially elongated the polyunsaturated fatty acyl-CoAs. This further confirms the Unifilter-96 GF/C plate assay reliability. Taken together, our newly developed assay provides a convenient and comprehensive assay platform for ELOVLs, allowing investigators to conduct high density screening and characterization of ELOVLs chemical tools.
Collapse
|
198
|
Abd El-Aziz MM, El-Ashry MF, Barragan I, Marcos I, Borrego S, Antiñolo G, Bhattacharya SS. Molecular Genetic Analysis of Two Functional Candidate Genes in the Autosomal Recessive Retinitis Pigmentosa, RP25, Locus. Curr Eye Res 2009; 30:1081-7. [PMID: 16354621 DOI: 10.1080/02713680500351039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To identify the disease gene in five Spanish families with autosomal recessive retinitis pigmentosa (arRP) linked to the RP25 locus. Two candidate genes, EEF1A1 and IMPG1, were selected from the region between D6S280 and D6S1644 markers where the families are linked. The genes were selected as good candidates on the basis of their function, tissue expression pattern, and/or genetic data. METHODS A molecular genetic study was performed on DNA extracted from one parent and one affected member of each studied family. The coding exons, splice sites, and the 5' UTR of the genes were amplified by polymerase chain reaction (PCR). For mutation detection, direct sequence analysis was performed using the ABI 3100 automated sequencer. Segregation of an IMPG1 single nucleotide polymorphism (SNP) in all the families studied was analyzed by restriction enzyme digest of the amplified gene fragments. RESULTS In total, 15 SNPs were identified of which 7 were novel. Of the identified SNPs, one was insertion, two were deletions, five were intronic, six were missense, and one was located in the 5' UTR. These changes, however, were also identified in unaffected members of the families and/or 50 control Caucasians. The examined known IMPG1 SNP was not segregating with the disease phenotype but was correlating with the genetic data in all families studied. CONCLUSIONS Our results indicate that neither EEF1A1 nor IMPG1 could be responsible for RP25 in the studied families due to absence of any pathogenic variants. However, it is important to notice that the methodology used in this study cannot detect larger deletions that lie outside the screened regions or primer site mutations that exist in the heterozygous state. A role of both genes in other inherited forms of RP and/or retinal degenerations needs to be elucidated.
Collapse
Affiliation(s)
- Mai M Abd El-Aziz
- Department of Ophthalmology, Tanta University Hospital, Tanta, Egypt.
| | | | | | | | | | | | | |
Collapse
|
199
|
Condomines M, Hose D, Rème T, Requirand G, Hundemer M, Schoenhals M, Goldschmidt H, Klein B. Gene expression profiling and real-time PCR analyses identify novel potential cancer-testis antigens in multiple myeloma. THE JOURNAL OF IMMUNOLOGY 2009; 183:832-40. [PMID: 19542363 DOI: 10.4049/jimmunol.0803298] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer-testis (CT) Ags are attractive targets for immunotherapeutic strategies since they are aberrantly expressed in malignant cells and not, or in limited number, in somatic tissues, except germ cells. To identify novel CT genes in multiple myeloma, we used Affymetrix HG-U133 gene expression profiles of 5 testis, 64 primary multiple myeloma cells (MMC), and 24 normal tissue samples. A 5-filter method was developed to keep known CT genes while deleting non-CT genes. Starting from 44,928 probe sets, including probe sets for 18 previously described CT genes, we have obtained 82 genes expressed in MMC and testis and not detected in more than 6 normal tissue samples. This list includes 14 of the 18 known CT genes and 68 novel putative CT genes. Real-time RT-PCR was performed for 34 genes in 12 normal tissue samples, 5 MMC samples, and one sample of five pooled testes. It has validated the CT status of 23 of 34 genes (67%). We found one novel "testis-restricted" gene (TEX14, expression in testis and tumor only), eight "tissue-restricted" (mRNA detected in one or two nongametogenic tissues), and seven "differentially expressed" (mRNA detected in three to six nongametogenic tissues) CT genes. Further studies are warranted to determine the immunogenicity of these novel CT Ag candidates.
Collapse
Affiliation(s)
- Maud Condomines
- Centre Hospitalier Universitaire Montpellier, Institute of Research in Biotherapy, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Diagnostic and therapeutic challenges. Retina 2009; 29:708-14. [PMID: 19430282 DOI: 10.1097/iae.0b013e3181a0bde9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|