151
|
Pang JCS, Chang Q, Chung YF, Teo JGC, Poon WS, Zhou LF, Kong X, Ng HK. Epigenetic inactivation of DLC-1 in supratentorial primitive neuroectodermal tumor. Hum Pathol 2005; 36:36-43. [PMID: 15712180 DOI: 10.1016/j.humpath.2004.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supratentorial primitive neuroectodermal tumors (SPNETs) and medulloblastomas (MBs) are histologically similar intracranial tumors found in different anatomic locations of the brain. Our group has previously demonstrated that loss of chromosome 8p is a frequent event in MBs. The aim of this study was to evaluate whether DLC-1, a newly identified tumor-suppressor gene on chromosome 8p22, is involved in the tumorigenesis of MBs and the histologically similar SPNETs. We first assessed for alterations of gene expression in microdissected tumors and detected lack of DLC-1 transcript in 1 of 9 MBs (case M44) and 1 of 3 SPNETs (case M1). Neither somatic base substitutions nor homozygous deletion were found in tumors without DLC-1 transcript. We then explored the possibility of hypermethylation of the CpG island in DLC-1 as the mechanism of suppressed expression. Methylation-specific polymerase chain reaction revealed promotor hypermethylation of DLC-1 in M1 but not in M44. Bisulfite sequencing further verified a densely methylated pattern of 35 CpG sites studied in M1 that were not found in normal brain, indicating that inactivation of DLC-1 by hypermethylation is involved in SPNET. Based on this finding, we examined an additional 20 MBs, 8 SPNETs, and 4 MB and 2 SPNET cell lines for hypermethylation of the CpG island of DLC-1, finding that none of these samples exhibited DLC-1 methylation. In conclusion, our results demonstrate that transcriptional silencing of DLC-1 through promoter hypermethylation may contribute to tumorigenesis in a subset of SPNETs, and that loss of DLC-1 expression in MBs may be related to mechanisms other than promoter hypermethylation, genomic deletion, and mutation.
Collapse
Affiliation(s)
- Jesse Chung-Sean Pang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY. Rho/Rhotekin-mediated NF-kappaB activation confers resistance to apoptosis. Oncogene 2005; 23:8731-42. [PMID: 15480428 DOI: 10.1038/sj.onc.1208106] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rhotekin (RTKN), the gene coding for the Rho effector, RTKN, was shown to be overexpressed in human gastric cancer (GC). In this study, we further showed that RTKN is expressed at a low level in normal cells and is overexpressed in many cancer-derived cell lines. The function of RTKN as an effector protein in Rho GTPase-mediated pathways regulating apoptosis was investigated. By transfection and expression of RTKN in cells that expressed endogenous RTKN at a low basal level, we showed that RTKN overexpression conferred cell resistance to apoptosis induced by serum deprivation or treatment with sodium butyrate, and the increased resistance correlated to the level of RTKN. Conversely, reducing RTKN expression by small interfering RNAs greatly sensitized cells to apoptosis. The RTKN-mediated antiapoptotic effect was blocked by the nuclear factor-kappaB (NF-kappaB) inhibitors, curcumin or parthenolide, but not by the phosphatidylinositol 3'-OH-kinase inhibitor, LY294002, or the MAP kinase inhibitor, PD98059. Reporter gene assays and electrophoretic mobility shift assay confirmed that RTKN overexpression led to constitutive activation of NF-kappaB through the phosphorylation of IkappaB by IKKbeta. By using the RTKN truncation mutants, we showed that RTKN mediated Rho activity eliciting signaling pathway to activate NF-kappaB, with a concomitant induction of expression of the NF-kappaB antiapoptotic genes, cIAP-2, BCl-xL, A1, and A20. Consistent with these data, RTKN-expressing cells showed increased chemoresistance to 5-fluorouracil and paclitaxol, and the resistance was greatly attenuated by NF-kappaB inhibitor. In conclusion, overactivated Rho/RTKN/NF-kappaB signaling pathway through overexpression of RTKN may play a key role in gastric tumorigenesis by conferring cells resistance to apoptosis, and this signaling pathway may serve as an important target for novel therapeutic approaches to the treatment of human GC.
Collapse
Affiliation(s)
- Ching-Ann Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, ROC
| | | | | | | | | |
Collapse
|
153
|
Simpson KJ, Dugan AS, Mercurio AM. Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 2005; 64:8694-701. [PMID: 15574779 DOI: 10.1158/0008-5472.can-04-2247] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the RhoA and RhoC proteins comprise an important subset of the Rho GTPase family that have been implicated in invasive breast carcinomas, attributing specific functions to these individual members has been difficult. We have used a stable retroviral RNA interference approach to generate invasive breast carcinoma cells (SUM-159 cells) that lack either RhoA or RhoC expression. Analysis of these cells enabled us to deduce that RhoA impedes and RhoC stimulates invasion. Unexpectedly, this analysis also revealed a compensatory relationship between RhoA and RhoC at the level of both their expression and activation, and a reciprocal relationship between RhoA and Rac1 activation.
Collapse
Affiliation(s)
- Kaylene J Simpson
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston Massachusetts 02215, USA
| | | | | |
Collapse
|
154
|
Bourguignon LYW, Gilad E, Rothman K, Peyrollier K. Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J Biol Chem 2005; 280:11961-72. [PMID: 15655247 DOI: 10.1074/jbc.m411985200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this study, we have examined the interaction of hyaluronan (HA)-CD44 with IQGAP1 (one of the binding partners for the Rho GTPase Cdc42) in SK-OV-3.ipl human ovarian tumor cells. Immunological and biochemical analyses indicated that IQGAP1 (molecular mass of approximately 190 kDa) is expressed in SK-OV-3.ipl cells and that IQGAP1 interacts directly with Cdc42 in a GTP-dependent manner. Both IQGAP1 and Cdc42 were physically linked to CD44 in SK-OV-3.ipl cells following HA stimulation. Furthermore, the HA-CD44-induced Cdc42-IQGAP1 complex regulated cytoskeletal function via a close association with F-actin that led to ovarian tumor cell migration. In addition, the binding of HA to CD44 promoted the association of ERK2 with the IQGAP1 molecule, which stimulated both ERK2 phosphorylation and kinase activity. The activated ERK2 then increased the phosphorylation of both Elk-1 and estrogen receptor-alpha (ER alpha), resulting in Elk-1- and estrogen-responsive element-mediated transcriptional up-regulation. Down-regulation of IQGAP1 (by treating cells with IQGAP1-specific small interfering RNAs) not only blocked IQGAP1 association with CD44, Cdc42, F-actin, and ERK2 but also abrogated HA-CD44-induced cytoskeletal function, ERK2 signaling (e.g. ERK2 phosphorylation/activity, ERK2-mediated Elk-1/ER alpha phosphorylation, and Elk-1/ER alpha-specific transcriptional activation), and tumor cell migration. Taken together, these findings indicate that HA-CD44 interaction with IQGAP1 serves as a signal integrator by modulating Cdc42 cytoskeletal function, mediating Elk-1-specific transcriptional activation, and coordinating "cross-talk" between a membrane receptor (CD44) and a nuclear hormone receptor (ER alpha) signaling pathway during ovarian cancer progression.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California, and the Endocrine Unit, Veterans Affair Medical Center, San Francisco, California 94121, USA.
| | | | | | | |
Collapse
|
155
|
Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY. Overexpression of rho effector rhotekin confers increased survival in gastric adenocarcinoma. J Biomed Sci 2005; 11:661-70. [PMID: 15316142 DOI: 10.1007/bf02256132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 03/15/2004] [Indexed: 01/12/2023] Open
Abstract
Like many epithelial-derived cancers, gastric cancer (GC) results from a multistep tumorigenic process. However, the detailed mechanisms involved in GC formation are poorly characterized. Using an ordered differential display method, we have identified rhotekin (RTKN), the gene coding for the Rho effector, RTKN, as one of the genes differentially expressed in human GC. Northern analysis using human multiple tissue blots showed that RTKN is predominantly expressed in the kidney and spinal cord, and, to a lesser degree, in the thyroid, tongue, liver, brain, prostate, trachea, and stomach. RT-PCR analysis confirmed that RTKN was overexpressed in most (5/7; 71%) GC examined. By analyzing the Stanford Microarray Database for the expression profiles of gastric tissues, we also found a progressional increase in RTKN expression in nonneoplastic mucosa, GC, and then lymph node metastases (p < 0.005 by Jonckheere-Terpstra test), suggesting that RTKN expression correlates with GC progression. The role of RTKN in the pathogenic development of GC was investigated by transfection and expression of RTKN in AGS gastric cells, which express endogenous RTKN at a low basal level. Flow-cytometric analysis showed that RTKN-transfected AGS cells were significantly more resistant than vector-transfected cells to apoptosis upon treatment with sodium butyrate. To explore the mechanisms underlying RTKN-mediated cell survival, a reporter assay was performed. Since the NF-kappaB activation is known to promote cell survival and Rho GTPase may lead to NF-kappaB activation, we transfected AGS cells with the RTKN expression vector along with a pNF-kappaB-Luc reporter plasmid. Our results showed that overexpression of RTKN induced robust activation of NF-kappaB, and RTKN-mediated NF-kappaB activation was suppressed significantly by C3 transferase, an inhibitor of the small GTPase Rho. We conclude that Rho/RTKN-mediated NF-kappaB activation leading to cell survival may play a key role in gastric tumorigenesis. This study provides original documentation for the overrepresentation of the Rho GTPase effector rhotekin in human cancer and its links to cancer formation.
Collapse
Affiliation(s)
- Ching-Ann Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Veterans General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
156
|
Yang LY, Wang W, Peng JX, Yang JQ, Huang GW. Differentially expressed genes between solitary large hepatocellular carcinoma and nodular hepatocellular carcinoma. World J Gastroenterol 2004; 10:3569-73. [PMID: 15534908 PMCID: PMC4611994 DOI: 10.3748/wjg.v10.i24.3569] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To study the difference in gene expression between solitary large hepatocellular carcinoma (SLHCC) and nodular hepatocellular carcinoma (NHCC).
METHODS: Polymerase chain reaction (PCR) products of 8464 human genes were spotted on a chip in array. DNAs were then fixed on a glass plate. Total RNA was isolated from freshly excised human SLHCC (n = 7) and NHCC (n = 15) tissues, and was reversely transcribed to cDNAs with the incorporation of fluorescent dUTP for preparation of hybridization probes. The mixed probes were then hybridized to the cDNA microarray. After highly stringent washing, cDNA microarray was scanned for the fluorescent signals to display the difference between the two kinds of HCC. In addition, the expression of RhoC and protocadherin LKC was also detected with the reverse transcriptase polymerase chain reaction (RT-PCR) method.
RESULTS: Among the 8464 human genes, 668 (7.89%) genes were expressed differentially at the mRNA levels between SLHCC and NHCC. Three hundred and fifty five (4.19%) genes, including protocadherin LKC, were up-regulated, whereas 313 (3.70%) genes, including RhoC, were down-regulated. The mRNA expression levels of RhoC and protocadherin LKC were confirmed by RT-PCR. Analysis of differentially expressed genes confirmed that our molecular data obtained by cDNA microarray were consistent with the published biochemical and clinical observations of SLHCC and NHCC.
CONCLUSION: cDNA microarray is an effective technique in screening the difference in gene expression between SLHCC and NHCC. Many of these differentially expressed genes are involved in the invasion and metastasis of HCC. Further analysis of these genes will help to understand the different molecular mechanisms of SLHCC and NHCC.
Collapse
Affiliation(s)
- Lian-Yue Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Changsha 410008, Hunan Province, China.
| | | | | | | | | |
Collapse
|
157
|
Fan J, Ma LJ, Xia SJ, Yu L, Fu Q, Wu CQ, Huang XH, Jiang JM, Tang XD. Association between clinical characteristics and expression abundance of RTKN gene in human bladder carcinoma tissues from Chinese patients. J Cancer Res Clin Oncol 2004; 131:157-62. [PMID: 15599595 DOI: 10.1007/s00432-004-0638-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 09/15/2004] [Indexed: 11/30/2022]
Abstract
PURPOSE Bladder carcinoma is the most common urological malignancy in China. Gene mutation may be one of causes of carcinogenesis in the cancer. We therefore investigated the mRNA expression of RTKN gene in clinic malignant bladder carcinoma and explored the relationship between the novel gene and the cancer. METHODS Total RNA was extracted from 33 surgically resected specimens of bladder carcinoma and 19 specimens of tumor-free bladder tissues. After the optimal reverse-transcription polymerase chain reaction condition was established, the mRNA expression levels of the RTKN gene in the lesions and tumor-free bladder tissues were examined semiquantitatively, and the relationships between expression levels of RTKN and clinical pathological features were analyzed. RESULTS The expression of RTKN gene mRNA in 33 human bladder carcinoma tissues was significantly higher than that in 19 human tumor-free bladder tissues (0.937+/-0.103 vs. 0.350+/-0.082). The average ratio of RTKN expression in neoplasms to that in tumor-free bladder tissues was 0.350+/-0.164. Based on this ratio the 33 patients were divided into three groups: a down-regulated expression group (n=2), an up-regulated expression group (n=22), and an unchanged group (n=9). Although the chi(2) test demonstrated a statistically nonsignificant differences in RTKN expression between tumor stages Ta, T(1), and T(2) overall in the 33 human bladder carcinoma, the t test showed that there were statistically significant differences between solitary and multiple tumors, between the paired group aged younger or older than 70 years in 27 de novo bladder carcinoma patients, and between the groups with tumor larger or smaller than 2.25 cm(3). CONCLUSIONS These results suggest that the RTKN gene is involved in bladder carcinogenesis and progression in bladder carcinoma, indicating that RTKN gene could be a molecular target in cancer therapy.
Collapse
Affiliation(s)
- Jie Fan
- Department of Urology, Shanghai Jiaotong University, Shanghai First People's Hospital, 85 Wujin Road, 200080 Shanghai, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
The Rho-family proteins make up a major branch of the Ras superfamily of small GTPases. To date, 22 human genes encoding at least 25 proteins have been described. The best known 'classical' members are RhoA, Rac1 and Cdc42. Highly related isoforms of these three proteins have not been studied as intensively, in part because it has been assumed that they are functionally identical to their better-studied counterparts. This now appears not to be the case. Variations in C-terminal-signaled modifications and subcellular targeting cause otherwise highly biochemically related isoforms (e.g. RhoA, RhoB and RhoC) to exhibit surprisingly divergent biological activities. Whereas the classical Rho GTPases are regulated by GDP/GTP cycling, other Rho GTPases are also regulated by other mechanisms, particularly by transcriptional regulation. Newer members of the family possess additional sequence elements beyond the GTPase domain, which suggests they exhibit yet other mechanisms of regulation.
Collapse
Affiliation(s)
- Krister Wennerberg
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | | |
Collapse
|
159
|
Ikoma T, Takahashi T, Nagano S, Li YM, Ohno Y, Ando K, Fujiwara T, Fujiwara H, Kosai KI. A definitive role of RhoC in metastasis of orthotopic lung cancer in mice. Clin Cancer Res 2004; 10:1192-200. [PMID: 14871999 DOI: 10.1158/1078-0432.ccr-03-0275] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Lung cancer is a major cause of cancer death, and its incidence is increasing in the world. Conventional therapies remain less effective for metastases of lung cancer, leading to poor prognosis of this disorder. The present study investigates pathological roles of RhoC in metastasis of lung cancer using a clinically relevant mouse model of lung cancer. EXPERIMENTAL DESIGN RhoA, RhoC, dominant-negative Rho (dnRho) or green fluorescent protein gene was retrovirally transduced to murine lung cancer cells. For in vivo study, these transduced cells were intrapulmonary inoculated in syngeneic mice, and subsequently, growth and metastasis were analyzed. Migration and invasion activities were further investigated by in vitro chemotaxic chamber assays. Expression levels and activities of certain matrix metalloproteinases (MMPs) were explored by reverse transcription-PCR and gelatin zymography. RESULTS Metastasis of lung cancer in the animal model, as well as in vitro migration and invasion, were significantly enhanced or inhibited by overexpression of RhoC or dnRho, respectively, without affecting the growth of primary tumors. Expression levels of certain MMPs and the activity of MMP-2 were significantly enhanced or suppressed by overexpression of RhoC or dnRho, respectively. CONCLUSION RhoC plays a crucial role in metastasis of lung cancer. RhoC does not affect tumor growth but enhances the metastatic nature of lung cancer by not only stimulating cell motility but also up-regulating certain MMPs. Attenuation of RhoC activity may be a potential target in the development of a novel strategy for treating metastasis of lung cancer.
Collapse
Affiliation(s)
- Tetsuro Ikoma
- Department of Cardiology, Respiratory and Nephrology, Regeneration and Advanced Medical Science, Graduate School of Medicine, Gifu University, Gifu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Subramanian G, Schwarz RE, Higgins L, McEnroe G, Chakravarty S, Dugar S, Reiss M. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res 2004; 64:5200-11. [PMID: 15289325 DOI: 10.1158/0008-5472.can-04-0018] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) suppresses tumor formation by blocking cell cycle progression and maintaining tissue homeostasis. In pancreatic carcinomas, this tumor suppressive activity is often lost by inactivation of the TGF-beta-signaling mediator, Smad4. We found that human pancreatic carcinoma cell lines that have undergone deletion of MADH4 constitutively expressed high endogenous levels of phosphorylated receptor-associated Smad proteins (pR-Smad2 and pR-Smad3), whereas Smad4-positive lines did not. These elevated pR-Smad levels could not be attributed to a decreased dephosphorylation rate nor to increased expression of TGF-beta type I (TbetaR-I) or type II (TbetaR-II) receptors. Although minimal amounts of free bioactive TGF-beta1 and TGF-beta2 were detected in conditioned medium, treatment with a pan-specific (but not a TGF-beta3 specific) TGF-beta-neutralizing antibody and with anti-alpha(V)beta(6) integrin antibody decreased steady-state pSmad2 levels and activation of a TGF-beta-inducible reporter gene in neighboring cells, respectively. Thus, activation of TGF-beta at the cell surface was responsible for the increased autocrine endogenous and paracrine signaling. Blocking TbetaR-I activity using a selective kinase inhibitor (SD-093) strongly decreased the in vitro motility and invasiveness of the pancreatic carcinoma cells without affecting their growth characteristics, morphology, or the subcellular distribution of E-cadherin and F-actin. Moreover, exogenous TGF-beta strongly stimulated in vitro invasiveness of BxPC-3 cells, an effect that could also be blocked by SD-093. Thus, the motile and invasive properties of Smad4-deficient pancreatic cancer cells are at least partly driven by activation of endogenous TGF-beta signaling. Therefore, targeting the TbetaR-I kinase represents a potentially powerful novel therapeutic approach for the treatment of this disease.
Collapse
Affiliation(s)
- Gayathri Subramanian
- Departments of Internal Medicine (Medical Oncology), The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Zheng M, Simon R, Mirlacher M, Maurer R, Gasser T, Forster T, Diener PA, Mihatsch MJ, Sauter G, Schraml P. TRIO amplification and abundant mRNA expression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:63-9. [PMID: 15215162 PMCID: PMC1618551 DOI: 10.1016/s0002-9440(10)63275-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies by comparative genome hybridization have suggested that 5p amplification is related to tumor progression in urinary bladder cancer. In this study seven genes (TAS2R, ADCY2, DNAH5, CTNND2, TRIO, ANKH, and MYO10) located to 5p15.31-5p15.1 were analyzed by fluorescence in situ hybridization using a tissue microarray containing samples from tumors and cell lines with known 5p amplification by comparative genome hybridization. Amplification frequency was highest for TRIO, which maps to 5p15.2 and encodes a protein with a putative role in cell-cycle regulation. To further investigate the role of TRIO amplification in bladder cancer, a tissue microarray containing samples from 2317 bladder tumors was used for fluorescence in situ hybridization analysis. TRIO amplification was strongly associated with invasive tumor phenotype, high tumor grade, and rapid tumor cell proliferation (Ki67 LI) (P < 0.0001 each). Only 7 of 456 pTaG1/G2 tumors (1.5%) but 62 of 485 pT1-4 carcinomas (12.8%) had TRIO amplification. TRIO amplification was not associated with poor prognosis. Using a frozen bladder tumor tissue microarray RNA in situ hybridization confirmed that TRIO is up-regulated in amplified tumors. It is concluded that TRIO up-regulation through amplification has a potential role in bladder cancer progression.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Pathology, University of Basel, Schoenbeinstrasse 40, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Wang W, Yang LY, Huang GW, Lu WQ, Yang ZL, Yang JQ, Liu HL. Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis. Br J Cancer 2004; 90:2349-55. [PMID: 15150600 PMCID: PMC2409518 DOI: 10.1038/sj.bjc.6601749] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant human tumours because of its high incidence of metastasis. The mechanisms underlying the metastasis of HCC, however, remain poorly understood. In this study, we performed cDNA microarray analysis to profile gene expression patterns in two subtypes of HCC, solitary large HCC (SLHCC) and nodular HCC (NHCC), which differ significantly in the incidence of metastasis. Among 668 genes that were differentially expressed, we focused on RhoC, whose expression was significantly decreased in SLHCC compared to NHCC. The expression of RhoC in HCC and pericarcinomatous liver tissues (PCLT) was analysed at both the mRNA and protein levels by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. In addition, immunohistochemistry was also performed on 94 cases of HCC with follow-up information. Collectively, our data indicate that the expression of RhoC significantly increased in HCC compared to PCLT; extrahepatic metastatic lesions expressed significantly higher levels of RhoC than the corresponding intrahepatic HCC tissues. There is a highly significant correlation of the RhoC expression levels with tumour vein invasion, number of tumour nodes and the status of differentiation. Significantly, the HCC patients with RhoC-positive expression had shorter survival than those with RhoC-negative expression. Together, our findings suggest a strong correlation between the expression of RhoC and HCC metastasis, implicating RhoC as a potential prognosis marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- W Wang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan Province 410008, China
| | - L-Y Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan Province 410008, China
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan Province 410008, China. E-mail:
| | - G-W Huang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan Province 410008, China
| | - W-Q Lu
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan Province 410008, China
| | - Z-L Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan Province 410008, China
| | - J-Q Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan Province 410008, China
| | - H-L Liu
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan Province 410008, China
| |
Collapse
|
163
|
Yonemura S, Hirao-Minakuchi K, Nishimura Y. Rho localization in cells and tissues. Exp Cell Res 2004; 295:300-14. [PMID: 15093731 DOI: 10.1016/j.yexcr.2004.01.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 12/26/2003] [Indexed: 01/15/2023]
Abstract
Rho family small GTPases regulate cytoskeletal organization. Although their spatiotemporal activities appear to be important for cellular morphogenesis, there has been little characterization of the localization of Rho family GTPases in cells and tissues. Here we show precise localization of Rho subfamily proteins in mammalian cultured cells and tissues through evaluation of anti-Rho antibodies and fixation protocols. Although Rho is not a structural protein but functions as a switching molecule, it often localizes at several distinct domains or structures of cells. In cultured epithelial cells, Rho was highly accumulated at lateral membranes. However, in fibroblastic cells, Rho appeared to be distributed evenly in the cytoplasm. Rho concentration at the cleavage furrow at cytokinesis was generally observed. In A431 cells, Rho translocation from the cytoplasm to elongating microvilli at the apical membrane within 30 s after EGF stimulation was clearly demonstrated. Also, Myc- or GFP-tagged RhoA did not always reflect the localization of endogenous Rho, indicating a drawback of protein-tagging methods for localization research. In mouse tissues, Rho localization differed depending on cell type, probably reflecting the functional differences of each cell type.
Collapse
Affiliation(s)
- Shigenobu Yonemura
- Laboratory for Cellular Morphogenesis, RIKEN Center for Developmental Biology, Chuo, Kobe, Hyogo 650-0047, Japan.
| | | | | |
Collapse
|
164
|
Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 2004; 101:7618-23. [PMID: 15128949 PMCID: PMC419655 DOI: 10.1073/pnas.0307512101] [Citation(s) in RCA: 931] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 03/30/2004] [Indexed: 01/03/2023] Open
Abstract
The signaling pathways mediated by Rho family GTPases have been implicated in many aspects of cell biology. The specificity of the pathways is achieved in part by the selective interaction between Dbl family guanine nucleotide exchange factors (GEFs) and their Rho GTPase substrates. Here, we report a first-generation small-molecule inhibitor of Rac GTPase targeting Rac activation by GEF. The chemical compound NSC23766 was identified by a structure-based virtual screening of compounds that fit into a surface groove of Rac1 known to be critical for GEF specification. In vitro it could effectively inhibit Rac1 binding and activation by the Rac-specific GEF Trio or Tiam1 in a dose-dependent manner without interfering with the closely related Cdc42 or RhoA binding or activation by their respective GEFs or with Rac1 interaction with BcrGAP or effector PAK1. In cells, it potently blocked serum or platelet-derived growth factor-induced Rac1 activation and lamellipodia formation without affecting the activity of endogenous Cdc42 or RhoA. Moreover, this compound reduced Trio or Tiam1 but not Vav, Lbc, Intersectin, or a constitutively active Rac1 mutant-stimulated cell growth and suppressed Trio, Tiam1, or Ras-induced cell transformation. When applied to human prostate cancer PC-3 cells, it was able to inhibit the proliferation, anchorage-independent growth and invasion phenotypes that require the endogenous Rac1 activity. Thus, NSC23766 constitutes a Rac-specific small-molecule inhibitor that could be useful to study the role of Rac in various cellular functions and to reverse tumor cell phenotypes associated with Rac deregulation.
Collapse
Affiliation(s)
- Yuan Gao
- Division of Experimental Hematology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
165
|
Guo F, Zheng Y. Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene 2004; 23:5577-85. [PMID: 15122327 DOI: 10.1038/sj.onc.1207752] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Rho family GTPases Rac1, RhoA and Cdc42 function as molecular switches that transduce intracellular signals regulating multiple cell functions including gene expression, adhesion, migration and invasion. p53 and its regulator p19Arf, on the other hand, are tumor suppressors that are critical in regulating cell cycle progression and apoptosis. Previously, we have demonstrated that the Rho proteins contribute to the cell proliferation, gene transcription and migration phenotypes unleashed by p19Arf or p53 deletion in primary mouse embryo fibroblasts (MEFs). To further investigate their functional interaction in the present study, we have examined the involvement of Rho signaling pathways in p53-mediated cell invasion. We found that in primary MEFs (1) p53 or p19Arf deficiency led to a marked increase in the number of focal adhesion plaques and fibronectin production, and RhoA, Rac1 and Cdc42 contribute to the p53- and p19Arf-mediated focal adhesion regulation, but not fibronectin synthesis; (2) although endogenous Rac1 activity was required for the p19Arf or p53 deficiency-induced migration phenotype, hyperactive Rho GTPases could not further enhance cell migration, rather they suppressed cell-cell adhesion of p53-/- MEFs; (3) expression of the active mutant of RhoA, Rac1 or Cdc42, but not Ras, promoted an invasion phenotype of p53-/-, not p19Arf-/-, cells; (4) although ROCK activation can partially recapitulate Rho-induced invasion phenotype, multiple pathways regulated by RhoA, in addition to ROCK, are required to fully cooperate with p53 deficiency to promote cell invasion; and (5) extracellular proteases produced by the active RhoA-transduced cells are also required for the invasion phenotype of p53-/- cells. Combined with our previous observations, these results strongly suggest that mitogenic activation of Rho family GTPases can cooperate with p53 deficiency to promote primary cell invasion as well as transformation and that multiple signaling components regulated by the Rho proteins are involved in these processes.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | | |
Collapse
|
166
|
Aznar S, Fernández-Valerón P, Espina C, Lacal JC. Rho GTPases: potential candidates for anticancer therapy. Cancer Lett 2004; 206:181-91. [PMID: 15013523 DOI: 10.1016/j.canlet.2003.08.035] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 08/04/2003] [Indexed: 12/30/2022]
Abstract
Low molecular weight Rho GTPases are proteins that, in response to diverse stimuli, control key cellular processes such as cell proliferation, apoptosis, lipid metabolism, cytoarchitecture, adhesion, migration, cell polarity, and transcriptional regulation. The high incidence of overexpression of some members of the Rho family of GTPases in human tumors suggests that these proteins are important in the carcinogenic process, and therefore potential candidates for a therapeutic intervention. In recent years, the characterization of downstream effectors to Rho GTPases has increased our understanding of the general cellular effects that permit aberrant proliferation and motility of tumor cells. In addition, several transcription factors have been identified to play important roles at various levels of Rho-induced tumorigenesis. Accordingly, drugs that specifically alter Rho signaling display antineoplastic properties both at the level of tumor growth and tumor metastasis. In this review, a brief summary of the progress made in understanding the biological functions elicited by Rho GTPases that contribute to tumor biology will be made. In addition, a description of new drugs available targeted to specific elements of Rho signaling with antineoplastic or antimetastatic activity is included.
Collapse
Affiliation(s)
- Salvador Aznar
- Department of Molecular and Cellular Biology of Cancer, Instituto de Investigaciones Biomédicas, CSIC, Arturo Duperier 4, Madrid 28029, Spain
| | | | | | | |
Collapse
|
167
|
Mazieres J, Antonia T, Daste G, Muro-Cacho C, Berchery D, Tillement V, Pradines A, Sebti S, Favre G. Loss of RhoB Expression in Human Lung Cancer Progression. Clin Cancer Res 2004; 10:2742-50. [PMID: 15102679 DOI: 10.1158/1078-0432.ccr-03-0149] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE RhoB is a low molecular weight GTPase belonging to the Ras protein superfamily. Whereas most Rho proteins have been shown to have a positive role in proliferation and malignant transformation, the specific role of RhoB appears more divergent. We reported previously that RhoB inhibits cell proliferation in various human cancer cells. Here, we studied the specific role played by RhoB in human lung cancer. EXPERIMENTAL DESIGN We analyzed the expression of RhoB protein by immunostaining in human lung tissues ranging from normal to invasive carcinoma from different histological types in two large independent studies of, respectively, 94 and 45 samples. We then studied the cellular effect of RhoB overexpression in a model of lung cancer (A549, adenocarcinoma) and tumorigenicity in nude mice. RESULTS We showed in both studies that RhoB protein was expressed in normal lung and decreased dramatically through lung cancer progression (P < 0.01). Interestingly, RhoB expression was lost in 96% of invasive tumors and reduced by 86% in poorly differentiated tumors compared with the nonneoplastic epithelium. Moreover, the loss of expression of RhoB correlated significantly with tumor stage and proliferative index, whereas no correlation was found between RhoB and p53 or Bcl-2 expression. We then showed that ectopic expression of RhoB in lung cancer cell line A549 suppressed cell proliferation, anchorage-independent growth, and xenograft tumor growth in nude mice. CONCLUSIONS RhoB loss of expression occurs very frequently in lung carcinogenesis, reinforcing its putative tumor suppressive activity, and raising the value of its potential use in cancer therapy.
Collapse
Affiliation(s)
- Julien Mazieres
- Institut National de la Santé et de la Recherche Médicale U563, Department of Therapeutic Innovation and Molecular Oncology. Claudius Regaud Institute, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
McHardy LM, Sinotte R, Troussard A, Sheldon C, Church J, Williams DE, Andersen RJ, Dedhar S, Roberge M, Roskelley CD. The tumor invasion inhibitor dihydromotuporamine C activates RHO, remodels stress fibers and focal adhesions, and stimulates sodium-proton exchange. Cancer Res 2004; 64:1468-74. [PMID: 14973060 DOI: 10.1158/0008-5472.can-03-2733] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The motuporamines are macrocyclic alkaloids that inhibit tumor cell invasion by an, as yet, unknown mechanism. A structure-activity study recently identified dihydromotuporamine C (dhMotC) as a highly active and readily synthesized analogue. Here, we show that dhMotC causes subtle cytoskeletal alterations in highly invasive MDA231 breast tumor cells that include an increase in the thickness and number of cytoplasmic actin stress fibers. Experiments with serum-starved Swiss 3T3 fibroblasts showed that micromolar concentrations of dhMotC that inhibit tumor cell invasion induce the formation of new stress fibers and large focal adhesion complexes that are dispersed around the entire cell periphery. dhMotC treatment of Swiss 3T3 cells also initiates a strong, long-lived activation of the small GTP-binding protein Rho, and it stimulates Rho kinase-dependent sodium-proton exchanger activity. Liposome-mediated cell loading of C3 exoenzyme prevents dhMotC-mediated Rho activation and stress fiber formation in 3T3 cells. C3 exoenzyme loading also reestablishes elongated MDA231 breast tumor cell invasion in the presence of dhMotC. Taken together, these results indicate that the ability to activate Rho is one important determinant of the anti-invasive activity of dhMotC.
Collapse
Affiliation(s)
- Lianne M McHardy
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2177 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Wu M, Wu ZF, Kumar-Sinha C, Chinnaiyan A, Merajver SD. RhoC Induces Differential Expression of Genes Involved in Invasion and Metastasis in MCF10A Breast Cells. Breast Cancer Res Treat 2004; 84:3-12. [PMID: 14999149 DOI: 10.1023/b:brea.0000018426.76893.21] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Inflammatory breast cancer (IBC) is the most deadly form of breast cancer in humans presumably due to its ability to metastasize from its inception. In our laboratory, overexpression of RhoC GTPase was observed to be specific for IBC tumors, but not for stage-matched, non-IBC tumors. RhoC is known to contribute to an IBC-like phenotype in HPV-E6E7 immortalized breast cells. To further study the effect of RhoC overexpression on IBC metastasis, we generated stable transfectants of spontaneous immortalized mammary epithelial cells (MCF10A) overexpressing wild-type RhoC or a constitutively active RhoC mutant (G14V). Both the RhoC wild type and the G14V transfectants were highly invasive and proliferated more rapidly compared to vector-only control clones. Overexpression of RhoC led to an increase in actin stress fiber and focal adhesion contact formation. Comparative microarray analysis of these clones further revealed that RhoC overexpression upregulated 108 genes whereas seven genes were down-regulated. We have further verified by quantitative RT-PCR that genes involved in cell proliferation, invasion/adhesion, and angiogenesis were modulated by RhoC. This work suggests strong candidates for the downstream oncogenic functions of RhoC.
Collapse
Affiliation(s)
- Mei Wu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109-0948, USA
| | | | | | | | | |
Collapse
|
170
|
Guo F, Zheng Y. Involvement of Rho family GTPases in p19Arf- and p53-mediated proliferation of primary mouse embryonic fibroblasts. Mol Cell Biol 2004; 24:1426-38. [PMID: 14729984 PMCID: PMC321455 DOI: 10.1128/mcb.24.3.1426-1438.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho family GTPases Rac1, RhoA, and Cdc42 function as molecular switches that transduce intracellular signals regulating gene expression and cell proliferation as well as cell migration. p19(Arf) and p53, on the other hand, are tumor suppressors that act both independently and sequentially to regulate cell proliferation. To investigate the functional interaction and cooperativeness of Rho GTPases with the p19(Arf)-p53 pathway, we examined the contribution of Rho GTPases to the gene transcription and cell proliferation unleashed by deletion of p19Arf or p53 in primary mouse embryo fibroblasts. We found that (i) p19(Arf) or p53 deficiency led to a significant increase in PI 3-kinase activity, which in turn upregulated RhoA and Rac1 activities; (ii) deletion of p19Arf or p53 led to an increase in cell growth rate that was in part dependent on RhoA, Rac1, and Cdc42 activities; (iii) p19(Arf) or p53 deficiency caused an enhancement of the growth-related transcription factor NF-kappa B and cyclin D1 activities that are partly dependent on RhoA or Cdc42 but not on Rac1; (iv) forced expression of the activating mutants of Rac1, RhoA, or Cdc42 caused a hyperproliferative phenotype of the p19Arf(-/-) and p53(-/-) cells and promoted transformation of both cells; (v) RhoA appeared to contribute to p53-regulated cell proliferation by modulating cell cycle machinery, while hyperactivation of RhoA further suppressed a p53-independent apoptotic signal; and (vi) multiple pathways regulated by RhoA, including that of Rho-kinase, were required for RhoA to fully promote the transformation of p53(-/-) cells. Taken together, these results provide strong evidence indicating that signals through the Rho family GTPases can both contribute to cell growth regulation by p19Arf and p53 and cooperate with p19Arf or p53 deficiency to promote primary cell transformation.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
171
|
Abstract
Many features of cell behavior are regulated by Rho family GTPases, but the most profound effects of these proteins are on the actin cytoskeleton and it was these that first drew attention to this family of signaling proteins. Focusing on Rho and Rac, we will discuss how their effectors regulate the actin cytoskeleton. We will describe how the activity of Rho proteins is regulated downstream from growth factor receptors and cell adhesion molecules by guanine nucleotide exchange factors and GTPase activating proteins. Additionally, we will discuss how there is signaling crosstalk between family members and how various bacterial pathogens have developed strategies to manipulate Rho protein activity so as to enhance their own survival.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
172
|
Yang SC, Lin SC, Chiang WF, Yen CY, Lin CH, Liu SY. Areca nut extract treatment elicits the fibroblastoid morphological changes, actin re-organization and signaling activation in oral keratinocytes. J Oral Pathol Med 2003; 32:600-5. [PMID: 14632935 DOI: 10.1034/j.1600-0714.2003.00199.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Areca (named as betel) is an important etiological factor linked with the high prevalence of oral squamous cell carcinoma (OSCC) in South-Asian countries. This in vitro study investigated the cellular changes and signaling activation in oral keratinocytes in response to areca nut extract (ANE) treatment. METHODS Normal human oral keratinocyte (NHOK) and oral epidermoid carcinoma cell, Meng-1 (OECM-1) OSCC cell line were treated with variable dosages of ripen ANE. The morphological and cytoskeletal changes, as well as the activation of GTPase proteins and signaling kinases, were analyzed. RESULTS Most NHOK cells in culture were polygonal, with only <5% cells exhibiting fibroblastoid morphology. However, 10 microg/ml ANE elicited fibroblastoid morphological change, genesis of lamellipodia, loss of subcortical actin, and stress-fiber formation in approximately 25% cultivated NHOK cells. Similar morphological changes were observed in nearly all OECM-1 cells following the ANE treatment. The activation of Rac and Rho GTPase, together with the prominent phosphorylation of a stress-activated kinases, particularly JNK1, was identified in treated OECM-1 cells. CONCLUSION The novel evidences from the study that ANE impairs the actin organization and activates the signals in oral keratinocytes might bestow further insight into the impacts of ANE in oral pathogenesis.
Collapse
Affiliation(s)
- Shun-Chun Yang
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Taiwan
| | | | | | | | | | | |
Collapse
|
173
|
Nübel T, Dippold W, Kleinert H, Kaina B, Fritz G. Lovastatin inhibits Rho-regulated expression of E-selectin by TNFalpha and attenuates tumor cell adhesion. FASEB J 2003; 18:140-2. [PMID: 14630701 DOI: 10.1096/fj.03-0261fje] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
E-selectin mediated cell-cell adhesion plays an important role in inflammatory processes and extravasation of tumor cells. Tumor necrosis factor-alpha (TNF-alpha) induces E-selectin gene and protein expression in primary human endothelial cells (HUVEC) and in an endothelial cell line (EA.hy-926). As shown by ELISA and FACS analyses, HMG-CoA reductase inhibitors (e.g., lovastatin) impair the TNF-alpha stimulated increase in E-selectin protein expression. Similar results were obtained for E-selectin mRNA expression and promoter activity, indicating that the effect of lovastatin is based on inhibition of gene expression. The effective inhibitory concentration of lovastatin was in a physiologically relevant range (IC50<0.1 microM). Lovastatin-mediated block of TNF-alpha induced E-selectin expression is due to inhibition of protein geranylgeranylation rather than farnesylation. Down-regulation of Rho signaling by coexpression of dominant-negative Rho mutants (i.e RhoA, RhoB and Rac) impaired TNF-alpha driven E-selectin gene expression, indicating Rho signaling to be essential for transcriptional activation of the E-selectin gene. Inhibition of E-selectin expression by lovastatin gives rise to a significant reduction in TNF-alpha stimulated adhesion of colon carcinoma cells to HUVEC. Furthermore, low concentration of lovastatin (i.e., < or =1 microM) attenuated TNF-alpha induced tumor cell invasion in vitro. The data support the view that statins might be clinically useful in protection against E-selectin mediated metastasis.
Collapse
Affiliation(s)
- Tobias Nübel
- University of Mainz, Institute of Toxicology, Division of Applied Toxicology, Mainz, Germany
| | | | | | | | | |
Collapse
|
174
|
Wang L, Yang L, Luo Y, Zheng Y. A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells. J Biol Chem 2003; 278:44617-25. [PMID: 12939257 DOI: 10.1074/jbc.m308929200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Rho family GTPases RhoA, RhoB, and RhoC regulate the actin cytoskeleton, cell movement, and cell growth. Unlike Ras, up-regulation or overexpression of these GDP/GTP binding molecular switches, but not activating point mutations, has been associated with human cancer. Although they share over 85% sequence identity, RhoA, RhoB, and RhoC appear to play distinct roles in cell transformation and metastasis. In NIH 3T3 cells, RhoA or RhoB overexpression causes transformation whereas RhoC increases the cell migration rate. To specifically target RhoA, RhoB, or RhoC function, we have generated a set of chimeric molecules by fusing the RhoGAP domain of p190, a GTPase-activating protein that accelerates the intrinsic GTPase activity of all three Rho GTPases, with the C-terminal hypervariable sequences of RhoA, RhoB, or RhoC. The p190-Rho chimeras were active as GTPase-activating proteins toward RhoA in vitro, co-localized with the respective active Rho proteins, and specifically down-regulated Rho protein activities in cells depending on which Rho GTPase sequences were included in the chimeras. In particular, the p190-RhoA-C chimera specifically inhibited RhoA-induced transformation whereas p190-RhoC-C specifically reversed the migration phenotype induced by the active RhoC. In human mammary epithelial-RhoC breast cancer cells, p190-RhoC-C, but not p190-RhoA-C or p190-RhoB-C, reversed the anchorage-independent growth and invasion phenotypes caused by RhoC overexpression. In the highly metastatic A375-M human melanoma cells, p190-RhoC-C specifically reversed migration, and invasion phenotypes attributed to RhoC up-regulation. Thus, we have developed a novel strategy utilizing RhoGAP-Rho chimeras to specifically down-regulate individual Rho activity and demonstrate that this approach may be applied to multiple human tumor cells to reverse the growth and/or invasion phenotypes associated with disregulation of a distinct subtype of Rho GTPase.
Collapse
Affiliation(s)
- Lei Wang
- Division of Experimental Hematology and Molecular Developmental Biology Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
175
|
Collisson EA, Kleer C, Wu M, De A, Gambhir SS, Merajver SD, Kolodney MS. Atorvastatin prevents RhoC isoprenylation, invasion, and metastasis in human melanoma cells. Mol Cancer Ther 2003; 2:941-8. [PMID: 14578459 PMCID: PMC4161126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Melanoma is a deadly cancer due to its propensity to metastasize. Pharmacological inhibition of cell motility may benefit patients with cutaneous melanoma by preventing metastasis to internal organs. The Rho GTPases are signaling molecules that drive metastasis by controlling cell motility. We found RhoC to be expressed in clinical melanoma specimens and hypothesized that inhibiting its activation might prevent metastasis. Some Rho proteins, such as RhoC, depend on posttranslational geranylgeranylation for biological activity. We investigated the effect that Atorvastatin, a 3-hydroxy 3-methylglutaryl CoA (HMG-CoA) reductase inhibitor that prevents Rho geranylgeranylation, had on subcellular localization and activity of Rho proteins as well as the metastatic ability of melanoma cells. Atorvastatin inhibited Rho activation and reverted the metastatic phenotype of human melanoma cells in vitro. Moreover, Atorvastatin, at plasma levels comparable to those used to treat of hypercholesterolemia, inhibited in vivo metastasis of melanoma cells overexpressing RhoC. These results support further examination of statins for primary prophylaxis of melanoma metastasis.
Collapse
Affiliation(s)
- Eric A. Collisson
- Department of Medicine, Division of Dermatology, Harbor-UCLA (University of California-Los Angeles),Torrance, CA
- Department of Medicine, Division of Dermatology
| | - Celina Kleer
- Breast and Ovarian Cancer Risk Evaluation Program, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Mei Wu
- Breast and Ovarian Cancer Risk Evaluation Program, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Abhijit De
- Crump Institute for Molecular Imaging
- Department of Molecular and Medical Pharmacology
| | - Sanjiv S. Gambhir
- Crump Institute for Molecular Imaging
- Department of Molecular and Medical Pharmacology
- Department of Biomathematics
| | - Sofia D. Merajver
- Breast and Ovarian Cancer Risk Evaluation Program, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Michael S. Kolodney
- Department of Medicine, Division of Dermatology, Harbor-UCLA (University of California-Los Angeles),Torrance, CA
- Department of Medicine, Division of Dermatology
- Division of Dermatology, Martin Luther King Jr./Charles R. Drew Medical Center, UCLA School of Medicine, Los Angeles, CA
| |
Collapse
|
176
|
Wang W, Yang LY, Yang ZL, Huang GW, Lu WQ. Expression and significance of RhoC gene in hepatocellular carcinoma. World J Gastroenterol 2003; 9:1950-3. [PMID: 12970882 PMCID: PMC4656650 DOI: 10.3748/wjg.v9.i9.1950] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of RhoC gene in hepatocellular carcinoma (HCC) and to evaluate the relationship between RhoC gene expression and invasion and metastasis of HCC.
METHODS: mRNA expression level of RhoC gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) in 25 cases of HCC and para-cancerous normal liver tissues. In addition, mutation of RhoC gene was examined by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP).
RESULTS: The mRNA expression levels of RhoC in tumor tissues were significantly higher than those in para-cancerous normal liver tissues (1.8 ± 1.1 vs 1.0 ± 0.7, P < 0.01). The metastatic lesions outside of liver also showed significantly higher RhoC mRNA levels than corresponding tumor tissues in liver (3.3 ± 0.5 vs 2.0 ± 0.7, P < 0.01). There were significant associations between RhoC gene expression and certain clinical and pathological findings, including cell differentiation, vein invasion, number of tumor nodes and metastatic lesions. Mutation of RhoC gene was not found by PCR-SSCP.
CONCLUSION: The RhoC gene may be related to malignant transformation and development of HCC and may play an important role in the invasion and metastasis of HCC by overexpression but not mutation.
Collapse
Affiliation(s)
- Wei Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | | | | | | | | |
Collapse
|
177
|
Billadeau DD. Cell growth and metastasis in pancreatic cancer: is Vav the Rho'd to activation? INTERNATIONAL JOURNAL OF GASTROINTESTINAL CANCER 2003; 31:5-13. [PMID: 12622410 DOI: 10.1385/ijgc:31:1-3:5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The best-known family of low molecular weight GTP-binding proteins is Ras, owing to their high incidence of gain of function mutations in a variety of human cancers including pancreatic cancer. Unlike Ras, no activating mutations have been observed thus far for Rho family GTP-binding proteins in cancer, yet there is increasing evidence that overexpression of Rho family members and/or dysregulation of the GDP-->GTP cycle play an important role in cancer development and progression. The activation of Rho family GTPases downstream of cell surface receptors results in the induction of several intracellular signaling cascades that have been shown to impact on such diverse cellular responses as reorganization of the actin cytoskeleton, gene transcription, cell survival, and cell proliferation. One family of guanine nucleotide exchange factors (GEFs) that have the potential to couple the activation of Rho family members to upstream growth factor receptor tyrosine kinases (RTKs) is the Vav family of proto-oncogenes. Recent experimental evidence has implicated Vav in the regulation of numerous Rho-mediated pathways downstream of RTKs and other cell surface receptors. In this review, we will discuss our current understanding of how Vav proteins are regulated, and how Vav and their target GTP-binding proteins participate in tumorigenesis.
Collapse
Affiliation(s)
- Daniel D Billadeau
- Division of Developmental Oncology Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
178
|
Bourguignon LYW, Singleton PA, Zhu H, Diedrich F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem 2003; 278:29420-34. [PMID: 12748184 DOI: 10.1074/jbc.m301885200] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we have examined CD44 (a hyaluronan (HA) receptor) interaction with a RhoA-specific guanine nucleotide exchange factor (p115RhoGEF) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunoprecipitation and immunoblot analyses indicate that both CD44 and p115RhoGEF are expressed in MDA-MB-231 cells and that these two proteins are physically associated as a complex in vivo. The binding of HA to MDA-MB-231 cells stimulates p115RhoGEF-mediated RhoA signaling and Rho kinase (ROK) activity, which, in turn, increases serine/threonine phosphorylation of the adaptor protein, Gab-1 (Grb2-associated binder-1). Phosphorylated Gab-1 promotes PI 3-kinase recruitment to CD44v3. Subsequently, PI 3-kinase is activated (in particular, alpha, beta, gamma forms but not the delta form of the p110 catalytic subunit), AKT signaling occurs, the cytokine (macrophage-colony stimulating factor (M-CSF)) is produced, and tumor cell-specific phenotypes (e.g. tumor cell growth, survival and invasion) are up-regulated. Our results also demonstrate that HA/CD44-mediated oncogenic events (e.g. AKT activation, M-CSF production and breast tumor cell-specific phenotypes) can be effectively blocked by a PI 3-kinase inhibitor (LY294002). Finally, we have found that overexpression of a dominant-negative form of ROK (by transfection of MBA-MD-231 cells with the Rho-binding domain cDNA of ROK) not only inhibits HA/CD44-mediated RhoA-ROK activation and Gab-1 phosphorylation but also down-regulates oncogenic signaling events (e.g. Gab-1.PI 3-kinase-CD44v3 association, PI 3-kinase-mediated AKT activation, and M-CSF production) and tumor cell behaviors (e.g. cell growth, survival, and invasion). Taken together, these findings strongly suggest that CD44 interaction with p115RhoGEF and ROK plays a pivotal role in promoting Gab-1 phosphorylation leading to Gab-1.PI 3-kinase membrane localization, AKT signaling, and cytokine (M-CSF) production during HA-mediated breast cancer progression.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California at San Francisco and the Endocrine Unit (111N), Veterans Affairs Medical Center, San Francisco, Calfornia 94121, USA.
| | | | | | | |
Collapse
|
179
|
Laudanna C, Sorio C, Tecchio C, Butcher EC, Bonora A, Bassi C, Scarpa A. Motility analysis of pancreatic adenocarcinoma cells reveals a role for the atypical zeta isoform of protein kinase C in cancer cell movement. J Transl Med 2003; 83:1155-63. [PMID: 12920244 DOI: 10.1097/01.lab.0000081390.92179.f3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The acquisition of an invasive and metastatic phenotype is accompanied by profound alterations of intracellular mechanisms controlling cell movement. Analysis of quantitative parameters of cell motility in cancer cells may help in the identification of intracellular signaling events determining invasion and metastasis. Here we developed a novel procedure of quantification of cell motility based on time-lapse video microscopy and digital image analysis. Three kinetic parameters, including area change, plasma membrane remodeling, and speed of linear movement, are quantified and combined in one single, time-normalized value we defined motility score (MS). Through calculation of the MS for various human pancreatic adenocarcinoma cell subclones, we identified clones characterized by low or high spontaneous motility in vitro. Analysis of the signaling mechanisms involved in the regulation of pancreatic adenocarcinoma cell motility showed that the atypical zeta isozyme of the serine-threonine protein kinase C (PKC) plays a critical role in maintaining a high MS in motile subclones, as demonstrated by the inhibitory effect of cell permeable peptides with sequence corresponding to the pseudosubstrate inhibitory region of the atypical zeta PKC. Other PKC isozymes, either classic or novel, seem not involved. Furthermore, biochemical analysis showed that in motile cells, zeta PKC is constitutively associated with the plasma membrane, whereas in nonmotile cells, zeta PKC is totally excluded from the plasma membrane. These data suggest that the disregulation of the function of atypical zeta PKC might be involved in the acquisition of an invasive and metastatic phenotype in pancreatic adenocarcinoma cells.
Collapse
|
180
|
Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003; 5:711-9. [PMID: 12844144 DOI: 10.1038/ncb1019] [Citation(s) in RCA: 897] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 06/02/2003] [Indexed: 01/04/2023]
Abstract
Rho family GTPases regulate the cytoskeleton and cell migration and are frequently overexpressed in tumours. Here, we identify two modes of tumour-cell motility in 3D matrices that involve different usage of Rho signalling. Rho signalling through ROCK promotes a rounded bleb-associated mode of motility that does not require pericellular proteolysis. This form of motility requires ezrin, which is localized in the direction of cell movement. In contrast, elongated cell motility is associated with Rac-dependent F-actin-rich protrusions and does not require Rho, ROCK or ezrin function. Combined blockade of extracellular proteases and ROCK negates the ability of tumour cells to switch between modes of motility and synergises to prevent tumour cell invasion.
Collapse
Affiliation(s)
- Erik Sahai
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | | |
Collapse
|
181
|
Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 2003; 162:233-43. [PMID: 12860969 PMCID: PMC2172802 DOI: 10.1083/jcb.200301080] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Growth inhibitory proteins in the central nervous system (CNS) block axon growth and regeneration by signaling to Rho, an intracellular GTPase. It is not known how CNS trauma affects the expression and activation of RhoA. Here we detect GTP-bound RhoA in spinal cord homogenates and report that spinal cord injury (SCI) in both rats and mice activates RhoA over 10-fold in the absence of changes in RhoA expression. In situ Rho-GTP detection revealed that both neurons and glial cells showed Rho activation at SCI lesion sites. Application of a Rho antagonist (C3-05) reversed Rho activation and reduced the number of TUNEL-labeled cells by approximately 50% in both injured mouse and rat, showing a role for activated Rho in cell death after CNS injury. Next, we examined the role of the p75 neurotrophin receptor (p75NTR) in Rho signaling. After SCI, an up-regulation of p75NTR was detected by Western blot and observed in both neurons and glia. Treatment with C3-05 blocked the increase in p75NTR expression. Experiments with p75NTR-null mutant mice showed that immediate Rho activation after SCI is p75NTR dependent. Our results indicate that blocking overactivation of Rho after SCI protects cells from p75NTR-dependent apoptosis.
Collapse
Affiliation(s)
- Catherine I Dubreuil
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | | |
Collapse
|
182
|
Vicente-Manzanares M, Rey M, Pérez-Martínez M, Yáñez-Mó M, Sancho D, Cabrero JR, Barreiro O, de la Fuente H, Itoh K, Sánchez-Madrid F. The RhoA effector mDia is induced during T cell activation and regulates actin polymerization and cell migration in T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1023-34. [PMID: 12847276 DOI: 10.4049/jimmunol.171.2.1023] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regulation of actin polymerization is critical for many different functions of T lymphocytes, including cell migration. Here we show that the RhoA effector mDia is induced in vitro in activated PBL and is highly expressed in vivo in diseased tissue-infiltrating activated lymphocytes. mDia localizes at the leading edge of polarized T lymphoblasts in an area immediately posterior to the leading lamella, in which its effector protein profilin is also concentrated. Overexpression of an activated mutant of mDia results in an inhibition of both spontaneous and chemokine-directed T cell motility. mDia does not regulate the shape of the cell, which involves another RhoA effector, p160 Rho-coiled coil kinase, and is not involved in integrin-mediated cell adhesion. However, mDia activation blocked CD3- and PMA-mediated cell spreading. mDia activation increased polymerized actin levels, which resulted in the blockade of chemokine-induced actin polymerization by depletion of monomeric actin. Moreover, mDia was shown to regulate the function of the small GTPase Rac1 through the control of actin availability. Together, our data demonstrate that RhoA is involved in the control of the filamentous actin/monomeric actin balance through mDia, and that this balance is critical for T cell responses.
Collapse
|
183
|
Zhu G, Reynolds L, Crnogorac-Jurcevic T, Gillett CE, Dublin EA, Marshall JF, Barnes D, D'Arrigo C, Van Trappen PO, Lemoine NR, Hart IR. Combination of microdissection and microarray analysis to identify gene expression changes between differentially located tumour cells in breast cancer. Oncogene 2003; 22:3742-8. [PMID: 12802281 DOI: 10.1038/sj.onc.1206428] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Comparison of gene expression changes between cancer cells at the periphery and in the centre of breast cancers was performed using a combination of microdissection and microarray analysis. Cancer cells from the two areas were pooled separately from five patients with ductal carcinoma in situ and separately from five patients with frankly invasive cancer. Limited total RNA, 100-200 ng, from this microdissected tissue required use of the Atlas SMART trade mark Probe Amplification Kit to synthesize and amplify cDNA and make (33)P-labelled probes. Probes were then hybridized to Atlas Human Cancer 1.2 Arrays containing 1176 known genes. Triplicate analysis revealed that 22 genes changed their expression levels in the periphery relative to the central region: 15 upregulated and seven downregulated (arbitrary threshold of 1.5-fold or greater). Differences in RNA levels were confirmed by quantitative real-time PCR for two of the genes and by changes in protein levels, detected by immunohistochemistry, for a couple of representative gene products. Thus, changes in gene expression associated with variation in microanatomical location of neoplastic cells can be detected within even small developing tumour masses.
Collapse
Affiliation(s)
- Gang Zhu
- Richard Dimbleby Department of Cancer Research/Cancer Research UK Laboratory, GKT School of Medicine, St Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Turcotte S, Desrosiers RR, Béliveau R. HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci 2003; 116:2247-60. [PMID: 12697836 DOI: 10.1242/jcs.00427] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small G proteins of the Rho family are involved in reorganization of the actin cytoskeleton, cell migration and in the regulation of gene transcription. Hypoxia-induced ATP depletion results in the disruption of actin organization which could affect Rho functions. In solid tumors, regions with low oxygen tension stimulate angiogenesis in order to increase oxygen and nutrient supply. This process is mediated by stabilization of the transcriptional factor hypoxia inducible factor 1 (HIF-1), which increases vascular endothelial growth factor (VEGF) production. In this study, we investigated the activities of Rho proteins, which are key regulators of cytoskeleton organization during hypoxia in renal cell carcinoma. Caki-1 cells were exposed to hypoxia (1% O2) and exhibited increased Cdc42, Rac1 and RhoA protein expression. Immunoprecipitation of metabolically labelled RhoA showed that overexpression was at least due to neo-synthesis. The Rho GTPases overexpressed during hypoxia were mainly located at membranes and pull-down assays demonstrated that they were active since they bound GTP. RT-PCR analysis indicated that the increase in RhoA protein expression was also reflected at the mRNA level. Overexpression and activation of Rho proteins were downstream of, and dependent on, the production of reactive oxygen species (ROS) since, in the presence of an inhibitor, both the rise of ROS and upregulation of Rho proteins were abolished. Importantly, preincubation of cells with the toxin C3, which inhibits RhoA, reduced HIF-1alpha protein accumulation by 84% during hypoxia. Together, these results support a model where ROS upregulate Rho protein expression and where active RhoA is required for HIF-1alpha accumulation during hypoxia.
Collapse
Affiliation(s)
- Sandra Turcotte
- Laboratoire de médecine moléculaire, Hôpital Sainte-Justine, Université du Québec à Montréal, CP 8888, Succursale centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | |
Collapse
|
185
|
Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. J Transl Med 2003; 83:861-70. [PMID: 12808121 DOI: 10.1097/01.lab.0000073128.16098.31] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To clarify the role of small GTPases Rho in the biologic behavior of ovarian carcinoma, we first examined the mRNA expression of RhoA, RhoB, and RhoC in benign, borderline, and malignant ovarian tumors using RT-PCR and real-time RT-PCR. The expression and localization of RhoA protein were also analyzed by Western blotting and immunohistochemistry. Finally, we examined whether up-regulation of Rho enhances the invasiveness of ovarian cancer cells in vitro. Analysis of mRNA levels of the Rho family genes revealed that levels of both RhoA and RhoC were significantly higher in carcinomas than in benign tumors (RhoA, p = 0.0035; RhoC, p = 0.0006). According to histologic subtype, both RhoA and RhoC mRNA levels in serous carcinomas were significantly higher than those in other histologic types. With regard to the International Federation of Gynecological and Obstetrics stage classification, both of RhoA and RhoC mRNA levels were significantly higher in tumors of Stages III+IV than in those of Stages I+II (RhoA, p = 0.0200; RhoC, p = 0.0057). In addition, analysis of matched pairs of primary and disseminated lesions demonstrated that expression of both RhoA and RhoC mRNA was significantly higher in metastatic than in primary tumors. Examination of the protein level showed that expression of RhoA was also increased in advanced ovarian carcinomas, especially those of serous histology. Accordingly, we hypothesized that up-regulation of Rho GTPases plays an important role in the progression of ovarian carcinoma. Matrigel invasion assay using the ovarian cancer cell line, SKOV3, showed that up-regulation and activation after treatment with lysophosphatidic acid was associated with enhanced invasion of the cancer cells. This increase in invasiveness was suppressed by the addition of C3, a specific inhibitor of Rho. These findings suggest that up-regulation of Rho GTPases is important in the tumor progression of ovarian carcinoma and that Rho family proteins could be a molecular target in cancer therapy.
Collapse
Affiliation(s)
- Akiko Horiuchi
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
186
|
Lozano E, Betson M, Braga VMM. Tumor progression: Small GTPases and loss of cell-cell adhesion. Bioessays 2003; 25:452-63. [PMID: 12717816 DOI: 10.1002/bies.10262] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tumor progression involves the transition from normal to malignant cells, through a series of cumulative alterations. During this process, invasive and migratory properties are acquired, enabling cells to metastasize (reach and grow in tissues far from their origin). Numerous cellular changes take place during epithelial malignancy, and disruption of E-cadherin based cell-cell adhesion is a major event. The small Rho GTPases (Rho, Rac and Cdc42) have been implicated in multiple steps during cellular transformation, including alterations on the adhesion status of the tumor cells. This review focuses on recent in vivo evidence that implicates RhoGTPases in epithelial tumor progression. In addition, we discuss different hypotheses to explain disruption of cadherin-mediated cell-cell adhesion, directly or indirectly, through activation of Rho GTPases. Understanding the molecular mechanism of how cadherin adhesion and RhoGTPases interplay in normal cells and how this balance is altered during cellular transformation will provide clues as to how to interfere with tumor progression.
Collapse
|
187
|
Kamai T, Kawakami S, Koga F, Arai G, Takagi K, Arai K, Tsujii T, Yoshida KI. RhoA is associated with invasion and lymph node metastasis in upper urinary tract cancer. BJU Int 2003; 91:234-8. [PMID: 12581011 DOI: 10.1046/j.1464-410x.2003.03063.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To assess the roles of RhoA small GTPase (RhoA) in upper urinary tract cancer by analysing the mRNA and protein levels of RhoA. PATIENTS AND METHODS The mRNA and protein levels of RhoA in matched sets of tumour, non-tumour and metastatic lymph node tissues of surgical specimens were analysed in 47 consecutive patients with renal pelvic/ureteric cancer, using the polymerase chain reaction after reverse transcription and Western blotting. The relationship between mRNA and protein levels of RhoA in tumour tissues and the clinicopathological features of the patients was also assessed. RESULTS The mRNA levels of RhoA and RhoA protein were greater in tumour and metastatic lymph node tissues than in non-tumour tissues (all P < 0.001). The expression levels of RhoA mRNA and protein levels in primary tumours was related to poorly differentiated grade (both P < 0.05) and muscle invasion (P < 0.01 and < 0.001, respectively). Kaplan-Meier plots of survival in patients with low or high RhoA showed that high mRNA and protein levels were associated with a shorter disease-free (P < 0.01) and overall survival (P < 0.001). Multivariate analysis using the Cox proportional hazards model showed that a high RhoA protein level was an independent prognostic factor, second to stage, in disease-free and overall survival (both P < 0.05). CONCLUSIONS These findings suggest that RhoA is involved in the invasion and metastasis of upper urinary tract cancer, indicating that RhoA may be a useful prognostic factor in this disease.
Collapse
Affiliation(s)
- T Kamai
- Department of Urology, Dokkyo University School of Medicine, Tochigi, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Turpin E, Bièche I, Bertheau P, Plassa LF, Lerebours F, de Roquancourt A, Olivi M, Espié M, Marty M, Lidereau R, Vidaud M, de Thé H. Increased incidence of ERBB2 overexpression and TP53 mutation in inflammatory breast cancer. Oncogene 2002; 21:7593-7. [PMID: 12386822 DOI: 10.1038/sj.onc.1205932] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2001] [Revised: 08/05/2002] [Accepted: 08/05/2002] [Indexed: 11/10/2022]
Abstract
Inflammatory breast cancer (IBC) is one of the most aggressive forms of breast cancer. We studied the biological characteristics of these tumours by comparing the overexpression of oncogenes ERBB2, MYC, CCND1 and RHOC and TP53 gene mutation rates in IBC with those found in locally advanced and not otherwise specified breast cancers. The prevalence of the TP53 mutation was much higher in IBC than in the two other types of cancer (57% vs 30). Unexpectedly, however, in IBC tumours, histological grade was independent of TP53 status. In addition, ERBB2 overexpression was twice as frequent in inflammatory as in non-inflammatory tumours, whereas the frequencies of MYC, CCND1 and RHOC overexpression did not vary significantly among the three types of breast cancer. These findings suggest that IBC tumours constitute a distinct subset with a specific pathogenesis. Given the importance of TP53 and ERBB2 in the response to treatments, our observations have important therapeutic implications for the clinical management of IBC patients.
Collapse
Affiliation(s)
- Elizabeth Turpin
- Service de Biochimie B and CNRS UPR9051, Hôpital Saint Louis, 1, Avenue Claude Vellefaux, F-75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Ramos S, Khademi F, Somesh BP, Rivero F. Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene 2002; 298:147-57. [PMID: 12426103 DOI: 10.1016/s0378-1119(02)00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Members of the RhoBTB subfamily of Rho GTPases are present in vertebrates, Drosophila and Dictyostelium. RhoBTB proteins are characterized by a modular organization, consisting of a GTPase (guanosine triphosphatase) domain, a proline rich region, a tandem of two BTB (Broad-Complex, Tramtrack, and Bric à brac) domains and a C-terminal region of unknown function and might act as docking points for multiple components participating in signal transduction cascades. We have determined the genomic organization and the expression pattern of the three RHOBTB genes of human and mouse. The exon-intron organization of each gene is conserved in three vertebrate species (human, mouse and Fugu). RHOBTB1 and RHOBTB2 have a similar exon-intron organization and are closely related to the single gene encoding the RhoBTB orthologs of two insect species. By contrast, the exon-intron organization of RHOBTB3 differed substantially from that of the two other genes, indicating that this gene arose by a duplication event independent of the one that gave rise to RHOBTB1 and RHOBTB2. RHOBTB1 (located on chromosome 10) and RHOBTB3 (located on chromosome 5) appear ubiquitously expressed. However, they display a differential pattern of expression: RHOBTB1 showed high levels in stomach, skeletal muscle, placenta, kidney and testis, whereas RHOBTB3 was highly expressed in neural and cardiac tissues, pancreas, placenta and testis. RHOBTB2 (located on chromosome 8) showed much lower levels of expression than the other two human RHOBTB genes and it was most abundant in neural tissues. The expression patterns of the human and mouse genes were roughly comparable. All three genes were also detected in fetal tissues, and in a number of cell lines RHOBTB3 predominates. RHOBTB genes are upregulated in some cancer cell lines, suggesting that these proteins might participate in tumorigenesis.
Collapse
Affiliation(s)
- Sonia Ramos
- Institut für Biochemie I, Medizinische Fakultät, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
190
|
Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer 2002; 87:635-44. [PMID: 12237774 PMCID: PMC2364248 DOI: 10.1038/sj.bjc.6600510] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 07/01/2002] [Accepted: 07/01/2002] [Indexed: 12/14/2022] Open
Abstract
In the present study, we addressed the question of a putative relevance of Rho proteins in tumour progression by analysing their expression on protein and mRNA level in breast tumours. We show that the level of RhoA, RhoB, Rac1 and Cdc42 protein is largely enhanced in all tumour samples analysed (n=15) as compared to normal tissues originating from the same individual. The same is true for (32)P-ADP-ribosylation of Rho proteins which is catalysed by Clostridium botulinum exoenzyme C3. Also the amount of Rho-GDI and ERK2 as well as the level of overall (32)P-GTP binding activity was tumour-specific elevated, yet to a lower extent than Rho proteins. Although the amount of Rho proteins was enhanced in tumours, most of them did not show changes in rho mRNA expression as compared to the corresponding normal tissue. Thus, elevated gene expression seems not to be the underlying mechanism of tumour-specific overexpression of Rho proteins. Sequence analysis of RhoA, RhoB, RhoC and Rac1 failed to detect any mutations in both the GTP-binding site and effector binding region. By analysing >50 tumour samples, the amount of RhoA-like proteins (i.e. RhoA, B, C), but not of Rac1, was found to significantly increase with histological grade and proliferation index. Rho protein expression was neither related to p53 nor to HER-2/neu oncogene status. Expression of rho mRNAs did not show a significant increase with histological grade. Overall the data show that (1) Rho proteins are overexpressed in breast tumours (2) overexpression is not regulated on the mRNA level (3) the expression level of RhoA-like proteins correlates with malignancy and (4) Rho proteins are not altered by mutation in breast tumours.
Collapse
Affiliation(s)
- G Fritz
- Institute of Toxicology, Division of Applied Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
191
|
Winton MJ, Dubreuil CI, Lasko D, Leclerc N, McKerracher L. Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J Biol Chem 2002; 277:32820-9. [PMID: 12091381 DOI: 10.1074/jbc.m201195200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation state of Rho is an important determinant of axon growth and regeneration in neurons. Axons can extend neurites on growth inhibitory substrates when Rho is inactivated by C3-ADP-ribosyltransferase (C3). We found by Rho-GTP pull-down assay that inhibitory substrates activate Rho. To inactivate Rho, scrape-loading of C3 was necessary because it does not freely enter cells. To overcome the poor permeability of C3, we made and characterized five new recombinant C3-like chimeric proteins designed to cross the cell membrane by receptor-independent mechanisms. These proteins were constructed by the addition of short transport peptides to the carboxyl-terminal of C3 and tested using a bioassay measuring neurite outgrowth of PC-12 cells plated on growth inhibitory substrates. All five constructs stimulated neurite outgrowth but with different dose-response profiles. Biochemical properties of the chimeric proteins were examined using C3-05, the most effective construct tested. Gel shift assays showed that C3-05 retained the ability to ADP-ribosylate Rho. Western blots and immunocytochemistry were used to verify the presence of C3 inside treated cells. C3-05 was also effective at promoting neurite outgrowth in primary neuronal cultures, as well as causing the disassembly of actin stress fibers and focal adhesions complexes in fibroblasts. These studies demonstrate that the new C3-like proteins are effective in delivering biologically active C3 into different cell types, thereby, inactivating Rho.
Collapse
Affiliation(s)
- Matthew J Winton
- Département de Pathologie et Biologie Cellulaire, Université de Montréal and BioAxone Thérapeutique Inc., 2900 Edouard Montpetit, P-906 Pavillon Principal, Montréal, Québec H3T 1J4, Canada
| | | | | | | | | |
Collapse
|
192
|
Abstract
During the development and progression of human cancer, cells undergo numerous changes in morphology, proliferation, and transcriptional profile. Over the past couple of decades there have been intense efforts to understand the molecular mechanisms involved, and members of the Ras superfamily of small GTPases have emerged as important players. Mutated versions of the Ras genes were first identified in human cancers some 20 years ago, but more recently, the Rho branch of the family has been receiving increased attention. In addition to the experimental evidence implicating Rho GTPase signaling in promoting malignant transformation, genetic analysis of human cancers has now revealed a few examples of direct alterations in the genes encoding regulators of Rho GTPases. In this review, we discuss the evidence implicating Rho GTPases in transformation and metastasis, as well as the progress made toward identifying their biochemical mechanism of action.
Collapse
Affiliation(s)
- Aron B Jaffe
- CRC Oncogene and Signal Transduction Group, University College London, UK
| | | |
Collapse
|
193
|
Riebeling C, Forsea AM, Raisova M, Orfanos CE, Geilen CC. The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro. Br J Cancer 2002; 87:366-71. [PMID: 12177810 PMCID: PMC2364216 DOI: 10.1038/sj.bjc.6600476] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Revised: 04/22/2002] [Accepted: 05/10/2002] [Indexed: 02/06/2023] Open
Abstract
Pamidronate belongs to the class of nitrogen-containing bisphosphonates that are potent inhibitors of bone resorption frequently used for the treatment of osteoporosis and cancer-induced osteolysis. The inhibition of osteoclasts' growth has been suggested as the main mechanism of the inhibitory effect of pamidronate on bone metastases. Recent findings indicated that bisphosphonates also have a direct apoptotic effect on other types of tumour cells. Nitrogen-containing bisphosphonates were shown to inhibit farnesyl diphosphate synthase, thus blocking the synthesis of higher isoprenoids. By this mechanism they inactivate monomeric G-proteins of the Ras and Rho families for which prenylation is a functional requirement. On the background of the known key role of G-proteins in tumorigenesis, we investigated a possible beneficial use of pamidronate in the treatment of malignant melanoma. Our results indicate that pamidronate inhibits the cell growth and induces apoptosis in human melanoma cells in vitro. Susceptibility to pamidronate did not correlate to CD95 ligand sensitivity or p53 mutational status. Furthermore it is interesting to note that overexpression of bcl-2 did not abolish pamidronate-induced apoptosis. These data suggests that pamidronate has a direct anti-tumour effect on malignant melanoma cells, independently of the Bax/Bcl-2 level.
Collapse
Affiliation(s)
- C Riebeling
- Department of Dermatology, University Medical Center Benjamin Franklin, The Free University of Berlin, Fabeckstr. 60-62, 14 195-Berlin, Germany
| | | | | | | | | |
Collapse
|
194
|
van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD. Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 2002; 19:301-11. [PMID: 12090470 DOI: 10.1023/a:1015518114931] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory breast cancer (IBC) is the most lethal form of locally advanced breast cancer known. IBC carries a guarded prognosis primarily due to rapid onset of disease, typically within six months, and the propensity of tumor emboli to invade the dermal lymphatics and spread systemically. Although the clinical manifestations of IBC have been well documented, until recently little was known about the genetic mechanisms underlying the disease. In a comprehensive study aimed at identifying the molecular mechanisms responsible for the unique IBC phenotype, our laboratory identified overexpression of RhoC GTPase in over 90% of IBC tumors in contrast to 36% of stage-matched non-IBC tumors. We also demonstrated that overexpression of RhoC GTPase in human mammary epithelial (HME) cells nearly recapitulated the IBC phenotype with regards to invasion, motility and angiogenesis. In the current study we sought to delineate which signaling pathways were responsible for each aspect of the IBC phenotype. Using well-established inhibitors to the mitogen activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K) pathways. We found that activation of the MAPK pathway was responsible for motility, invasion and production of angiogenic factors. In contrast, growth under anchorage independent conditions was dependent on the PI3K pathway.
Collapse
Affiliation(s)
- Kenneth L van Golen
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor 48109-0948, USA
| | | | | | | | | | | |
Collapse
|
195
|
Forget MA, Desrosiers RR, Del M, Moumdjian R, Shedid D, Berthelet F, Béliveau R. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin Exp Metastasis 2002; 19:9-15. [PMID: 11918088 DOI: 10.1023/a:1013884426692] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Astrocytic tumors are the most common human brain tumors. Establishment of tumor grade is a key determinant both in the choice of a therapeutic approach and in the prognosis. The diagnosis of astrocytic tumors is currently determined following histopathological analysis. The identification of molecular markers would offer a complementary tool for characterizing tumors with respect to their clinical behavior. In this study we determined the expression levels of 3 small GTP binding proteins (RhoA, RhoB and Rac1), of their inhibitor RhoGDI and of caveolin-1 in 24 human astrocytic tumors of grades I to IV. Our results demonstrated that the expression of RhoA and RhoB decreased significantly in all brain tumors studied and was inversely related with tumor of grade II to IV malignancy. The amount of caveolin-1 immunodetected was not significantly different from normal brain samples while the Rac1 expression level was diminished in astrocytic tumors of grades III and IV. Our finding that RhoA and RhoB expression levels are correlated to tumor malignancy suggests that they may serve as novel and efficient diagnostic markers for astrocytic brain tumors of histological grade II to IV and complement currently applied histopathological analysis.
Collapse
Affiliation(s)
- Marie-Annick Forget
- Laboratoire de Médecine Moléculaire, Hôpital Sainte-Justine-Université du Québec à Montréal, Canada
| | | | | | | | | | | | | |
Collapse
|
196
|
Price JT, Thompson EW. Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opin Ther Targets 2002; 6:217-33. [PMID: 12223082 DOI: 10.1517/14728222.6.2.217] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The progression of a tumour from one of benign and delimited growth to one that is invasive and metastatic is the major cause of poor clinical outcome in cancer patients. The invasion and metastasis of tumours is a highly complex and multistep process that requires a tumour cell to modulate its ability to adhere, degrade the surrounding extracellular matrix, migrate, proliferate at a secondary site and stimulate angiogenesis. Knowledge of the process has greatly increased and this has resulted in the identification of a number of molecules that are fundamental to the process. The involvement of these molecules has been shown to relate not only to the survival and proliferation of the tumour cell but, also to the processes of tumour cell adhesion, migration, and the tumour cells ability to degrade and escape the primary site as well as play a role in angiogenesis. These molecules may provide important therapeutic targets that represent the ability to target specific steps in the process of invasion and metastasis and provide additional therapies. The review focuses on representative key targets in each of these processes and summarises the state of play in each case.
Collapse
Affiliation(s)
- John T Price
- Bone Metastasis and Cell Migration Laboratory, St Vincent's Institute of Medical Research, Department of Surgery, University of Melbourne, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia.
| | | |
Collapse
|
197
|
Kaneko K, Satoh K, Masamune A, Satoh A, Shimosegawa T. Expression of ROCK-1 in human pancreatic cancer: its down-regulation by morpholino oligo antisense can reduce the migration of pancreatic cancer cells in vitro. Pancreas 2002; 24:251-7. [PMID: 11893932 DOI: 10.1097/00006676-200204000-00007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION Invasion and metastasis of cancer cells require cell motility and adhesion. The small GTPase Rho and one of its effector molecules ROCK regulate cytoskeleton and actomyosin contractility, and play a crucial role in cell adhesion and motility. Results of previous studies showed that the elevated activity of ROCK-1, one of the isomers of ROCK kinases, led to an increase in the activity of invasion and metastasis of cancer cell lines. AIM To investigate the importance of ROCK-1 in cancer invasion and metastasis. METHODOLOGY We investigated the expression of ROCK-1 in two cancer cell lines and 31 human pancreatic tissues (21 pancreatic cancers [PC] and 10 histologically normal tissues) by immunoblotting and immunohistochemistry. We also examined by haptotaxis assay whether the migratory activity of PC cells could be suppressed by treatment with the morpholino antisense oligonucleotide in vitro. RESULTS The expression of ROCK-1 was found in 18 of 21 PC tissues (85.7%), but not in normal pancreatic tissues by immunoblotting and immunohistochemistry. Antisense oligo against ROCK-1 significantly inhibited the haptotaxis of Panc-1 in a dose-dependent manner, compared with the control oligo. CONCLUSION These results suggest that ROCK-1 may contribute to pancreatic cancer cell invasion and/or metastasis by facilitating cancer cell migration.
Collapse
Affiliation(s)
- Kenzo Kaneko
- Department of Gastroenterology, Division of Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | |
Collapse
|
198
|
Abstract
The functionality and efficacy of Rho GTPase signaling is pivotal for a plethora of biological processes. Due to the integral nature of these molecules, the dysregulation of their activities can result in diverse aberrant phenotypes. Dysregulation can, as will be described below, be based on an altered signaling strength on the level of a specific regulator or that of the respective GTPase itself. Alternatively, effector pathways emanating from a specific Rho GTPase may be under- or overactivated. In this review, we address the role of the Rho-type GTPases as a subfamily of the Ras-superfamily of small GTP-binding proteins in the development of various disease phenotypes. The steadily growing list of genetic alterations that specifically impinge on proper Rho GTPase function corresponds to pathological categories such as cancer progression, mental disabilities and a group of quite diverse and unrelated disorders. We will provide an overview of disease-rendering mutations in genes that have been positively correlated with Rho GTPase signaling and will discuss the cellular and molecular mechanisms that may be affected by them.
Collapse
Affiliation(s)
- Benjamin Boettner
- Cold Spring Harbor Laboratories, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
199
|
Kamai T, Arai K, Sumi S, Tsujii T, Honda M, Yamanishi T, Yoshida KI. The rho/rho-kinase pathway is involved in the progression of testicular germ cell tumour. BJU Int 2002; 89:449-53. [PMID: 11872041 DOI: 10.1046/j.1464-4096.2001.01920.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To clarify the role of one of the downstream effectors of Rho (Rho-kinase) in testicular germ cell tumour (GCT) by quantifying mRNA expression for Rho-kinase in patients with this disease. MATERIALS AND METHODS The mRNA levels of the RhoA and Rho-kinase genes were analysed in surgical specimens of testicular GCT tissues from 57 consecutive Japanese patients, and in the corresponding non-tumour tissue originating from the same patient, using the polymerase chain reaction after reverse transcription. The expression levels of these genes were compared between the tissues and the relationship between their expression levels evaluated within tumours and with tumour stage. The difference in the expression levels of the mRNAs of RhoA and Rho-kinase genes were also assessed between tumours that were seminoma only and mixed tumours of seminoma and nonseminoma. RESULTS RhoA and Rho-kinase mRNAs were more abundant in tumour tissue than in non-tumour tissue (P < 0.01 and < 0.05, respectively). High RhoA and Rho-kinase mRNA expressions were related to tumour stage (P < 0.05 and < 0.01, respectively). The mRNA levels of RhoA and Rho-kinase in mixed tumours were higher than in tumours with seminoma only (P < 0.01 and < 0.05, respectively). There was a positive relationship between expression levels of mRNAs of RhoA and Rho-kinase in tumour tissues (P < 0.001). CONCLUSIONS These findings suggest that the RhoA/Rho-kinase pathway is involved in the progression of testicular GCT. This pathway might be a molecular target for new treatment strategies for this disease.
Collapse
Affiliation(s)
- T Kamai
- Department of Urology, Dokkyo University School of Medicine, Tochigi, Japan.
| | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
The RAS oncogenes were identified almost 20 years ago. Since then, we have learnt that they are members of a large family of small GTPases that bind GTP and hydrolyse it to GDP. This is then exchanged for GTP and the cycle is repeated. The switching between these two states regulates a wide range of cellular processes. A branch of the RAS family--the RHO proteins--is also involved in cancer, but what is the role of these proteins and would they make good therapeutic targets?
Collapse
Affiliation(s)
- Erik Sahai
- Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | | |
Collapse
|