151
|
Baskaran S, Ragusa MJ, Boura E, Hurley JH. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell 2012; 47:339-48. [PMID: 22704557 DOI: 10.1016/j.molcel.2012.05.027] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/02/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
Macroautophagy is essential to cell survival during starvation and proceeds by the growth of a double-membraned phagophore, which engulfs cytosol and other substrates. The synthesis and recognition of the lipid phosphatidylinositol 3-phosphate, PI(3)P, is essential for autophagy. The key autophagic PI(3)P sensors, which are conserved from yeast to humans, belong to the PROPPIN family. Here we report the crystal structure of the yeast PROPPIN Hsv2. The structure consists of a seven-bladed β-propeller and, unexpectedly, contains two pseudo-equivalent PI(3)P binding sites on blades 5 and 6. These two sites both contribute to membrane binding in vitro and are collectively required for full autophagic function in yeast. These sites function in concert with membrane binding by a hydrophobic loop in blade 6, explaining the specificity of the PROPPINs for membrane-bound PI(3)P. These observations thus provide a structural and mechanistic framework for one of the conserved central molecular recognition events in autophagy.
Collapse
Affiliation(s)
- Sulochanadevi Baskaran
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
152
|
Bridges D, Ma JT, Park S, Inoki K, Weisman LS, Saltiel AR. Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol Biol Cell 2012; 23:2955-62. [PMID: 22696681 PMCID: PMC3408421 DOI: 10.1091/mbc.e11-12-1034] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report here that phosphatidylinositol 3,5-bisphosphate is required for the full activation and localization of mTORC1 by insulin and amino acids, due to the direct interaction of the lipid with the Raptor subunit, which permits efficient activation by GTPases. The kinase complex mechanistic target of rapamycin 1 (mTORC1) plays an important role in controlling growth and metabolism. We report here that the stepwise formation of phosphatidylinositol 3-phosphate (PI(3)P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) regulates the cell type–specific activation and localization of mTORC1. PI(3)P formation depends on the class II phosphatidylinositol 3-kinase (PI3K) PI3K-C2α, as well as the class III PI3K Vps34, while PI(3,5)P2 requires the phosphatidylinositol-3-phosphate-5-kinase PIKFYVE. In this paper, we show that PIKFYVE and PI3K-C2α are necessary for activation of mTORC1 and its translocation to the plasma membrane in 3T3-L1 adipocytes. Furthermore, the mTORC1 component Raptor directly interacts with PI(3,5)P2. Together these results suggest that PI(3,5)P2 is an essential mTORC1 regulator that defines the localization of the complex.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
153
|
Ferguson CJ, Lenk GM, Jones JM, Grant AE, Winters JJ, Dowling JJ, Giger RJ, Meisler MH. Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet 2012; 21:3525-34. [PMID: 22581779 DOI: 10.1093/hmg/dds179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
FIG4 is a ubiquitously expressed phosphatase that, in complex with FAB1/PIKFYVE and VAC14, regulates the biosynthesis of the signaling lipid PI(3,5)P(2). Null mutation of Fig4 in the mouse results in spongiform degeneration of brain and peripheral ganglia, defective myelination and juvenile lethality. Partial loss-of-function of human FIG4 results in a severe form of Charcot-Marie-Tooth neuropathy. Neurons from null mice contain enlarged vacuoles derived from the endosome/lysosome pathway, and astrocytes accumulate proteins involved in autophagy. Other cellular defects include astrogliosis and microgliosis. To distinguish the contributions of neurons and glia to spongiform degeneration in the Fig4 null mouse, we expressed Fig4 under the control of the neuron-specific enolase promoter and the astrocyte-specific glial fibrillary acidic protein promoter in transgenic mice. Neuronal expression of Fig4 was sufficient to rescue cellular and neurological phenotypes including spongiform degeneration, gliosis and juvenile lethality. In contrast, expression of Fig4 in astrocytes prevented accumulation of autophagy markers and microgliosis but did not prevent spongiform degeneration or lethality. To confirm the neuronal origin of spongiform degeneration, we generated a floxed allele of Fig4 and crossed it with mice expressing the Cre recombinase from the neuron-specific synapsin promoter. Mice with conditional inactivation of Fig4 in neurons developed spongiform degeneration and the full spectrum of neurological abnormalities. The data demonstrate that expression of Fig4 in neurons is necessary and sufficient to prevent spongiform degeneration. Therapy for patients with FIG4 deficiency will therefore require correction of the deficiency in neurons.
Collapse
Affiliation(s)
- C J Ferguson
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-6518, USA
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
155
|
Fig4 expression in the rodent nervous system and its potential role in preventing abnormal lysosomal accumulation. J Neuropathol Exp Neurol 2012; 71:28-39. [PMID: 22157617 DOI: 10.1097/nen.0b013e31823deda8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The phosphatase FIG4 regulates the concentration of phosphatidylinositol 3,5-diphosphate (PI3,5P2), a molecule critical for endosomal/lysosomal membrane trafficking and neuron function. We investigated Fig4 expression in the developing CNS of mice and rats using Western blot, real-time polymerase chain reaction, and morphological techniques in situ and in vitro and after spinal cord injury. Fig4 was expressed at a high levels throughout development in myelinating cells, particularly Schwann cells, and dorsal root ganglia sensory neurons. Fig4 protein and mRNA in CNS neurons were markedly diminished in adult versus embryonal animals. Spinal cord hemisection induced upregulation of Fig4 in adult spinal cord tissues that was associated with accumulation of lysosomes in neurons and glia. This accumulation appeared similar to the abnormal lysosomal storage observed in dorsal root ganglia of young fig4-null mice. The results suggest that Fig4 is involved in normal neural development and the maintenance of peripheral nervous system myelin. We speculate that adequate levels of Fig4 may be required to prevent neurons and glia from excessive lysosomal accumulation after injury and in neurodegeneration.
Collapse
|
156
|
Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. J Neurosci 2012; 31:17736-51. [PMID: 22131434 DOI: 10.1523/jneurosci.1482-11.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The plt (pale tremor) mouse carries a null mutation in the Fig4(Sac3) gene that results in tremor, hypopigmentation, spongiform degeneration of the brain, and juvenile lethality. FIG4 is a ubiquitously expressed phosphatidylinositol 3,5-bisphosphate phosphatase that regulates intracellular vesicle trafficking along the endosomal-lysosomal pathway. In humans, the missense mutation FIG4(I41T) combined with a FIG4 null allele causes Charcot-Marie-Tooth 4J disease, a severe form of peripheral neuropathy. Here we show that Fig4 null mice exhibit a dramatic reduction of myelin in the brain and spinal cord. In the optic nerve, smaller-caliber axons lack myelin sheaths entirely, whereas many large- and intermediate-caliber axons are myelinated but show structural defects at nodes of Ranvier, leading to delayed propagation of action potentials. In the Fig4 null brain and optic nerve, oligodendrocyte (OL) progenitor cells are present at normal abundance and distribution, but the number of myelinating OLs is greatly compromised. The total number of axons in the Fig4 null optic nerve is not reduced. Developmental studies reveal incomplete myelination rather than elevated cell death in the OL linage. Strikingly, there is rescue of CNS myelination and tremor in transgenic mice with neuron-specific expression of Fig4, demonstrating a non-cell-autonomous function of Fig4 in OL maturation and myelin development. In transgenic mice with global overexpression of the human pathogenic FIG4 variant I41T, there is rescue of the myelination defect, suggesting that the CNS of CMT4J patients may be protected from myelin deficiency by expression of the FIG4(I41T) mutant protein.
Collapse
|
157
|
Gao XQ, Zhang XS. Metabolism and roles of phosphatidylinositol 3-phosphate in pollen development and pollen tube growth in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:165-9. [PMID: 22307045 PMCID: PMC3405687 DOI: 10.4161/psb.18743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphoinositides play important roles in eukaryotic cells, although they constitute a minor fraction of total cellular lipids. Specific kinases and phosphatases function on the regulation of phosphoinositide levels. Phosphatidylinositol 3-phosphate (PtdIns3P), a molecule of phosphoinositides regulates multiple aspects of plant growth and development. In this mini-review, we introduce and discuss the kinases and phosphatases involved in PtdIns3P metabolism and their roles in pollen development and pollen tube growth in Arabidopsis.
Collapse
|
158
|
Mayinger P. Phosphoinositides and vesicular membrane traffic. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1104-13. [PMID: 22281700 DOI: 10.1016/j.bbalip.2012.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/27/2011] [Accepted: 01/02/2012] [Indexed: 01/08/2023]
Abstract
Phosphoinositide lipids were initially discovered as precursors for specific second messengers involved in signal transduction, but have now taken the center stage in controlling many essential processes at virtually every cellular membrane. In particular, phosphoinositides play a critical role in regulating membrane dynamics and vesicular transport. The unique distribution of certain phosphoinositides at specific intracellular membranes makes these molecules uniquely suited to direct organelle-specific trafficking reactions. In this regulatory role, phosphoinositides cooperate specifically with small GTPases from the Arf and Rab families. This review will summarize recent progress in the study of phosphoinositides in membrane trafficking and organellar organization and highlight the particular relevance of these signaling pathways in disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Peter Mayinger
- Division of Nephrology & Hypertension and Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
159
|
Michaillat L, Baars TL, Mayer A. Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 2012; 23:881-95. [PMID: 22238359 PMCID: PMC3290646 DOI: 10.1091/mbc.e11-08-0703] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The size and copy number of an organelle depend on an equilibrium of membrane fusion and fission. In vitro reconstitution of yeast vacuole fission and fusion shows that TORC1 selectively stimulates fission but does not change fusion activity. This explains the morphological transitions of yeast vacuoles in response to nutrient availability. Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles—the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.
Collapse
Affiliation(s)
- Lydie Michaillat
- Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
160
|
Structural basis for membrane targeting by the MVB12-associated β-prism domain of the human ESCRT-I MVB12 subunit. Proc Natl Acad Sci U S A 2012; 109:1901-6. [PMID: 22232651 DOI: 10.1073/pnas.1117597109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MVB12-associated β-prism (MABP) domains are predicted to occur in a diverse set of membrane-associated bacterial and eukaryotic proteins, but their existence, structure, and biochemical properties have not been characterized experimentally. Here, we find that the MABP domains of the MVB12A and B subunits of ESCRT-I are functional modules that bind in vitro to liposomes containing acidic lipids depending on negative charge density. The MABP domain is capable of autonomously localizing to subcellular puncta and to the plasma membrane. The 1.3-Å atomic resolution crystal structure of the MVB12B MABP domain reveals a β-prism fold, a hydrophobic membrane-anchoring loop, and an electropositive phosphoinositide-binding patch. The basic patch is open, which explains how it senses negative charge density but lacks stereoselectivity. These observations show how ESCRT-I could act as a coincidence detector for acidic phospholipids and protein ligands, enabling it to function both in protein transport at endosomes and in cytokinesis and viral budding at the plasma membrane.
Collapse
|
161
|
Abstract
The endo-lysosomal system is an interconnected tubulo-vesicular network that acts as a sorting station to process and distribute internalised cargo. This network accepts cargoes from both the plasma membrane and the biosynthetic pathway, and directs these cargos either towards the lysosome for degradation, the peri-nuclear recycling endosome for return to the cell surface, or to the trans-Golgi network. These intracellular membranes are variously enriched in different phosphoinositides that help to shape compartmental identity. These lipids act to localise a number of phosphoinositide-binding proteins that function as sorting machineries to regulate endosomal cargo sorting. Herein we discuss regulation of these machineries by phosphoinositides and explore how phosphoinositide-switching contributes toward sorting decisions made at this platform.
Collapse
Affiliation(s)
- Peter J Cullen
- Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, BS8 1TD, Bristol, United Kingdom,
| | | |
Collapse
|
162
|
Abstract
Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
163
|
Nicholson G, Lenk GM, Reddel SW, Grant AE, Towne CF, Ferguson CJ, Simpson E, Scheuerle A, Yasick M, Hoffman S, Blouin R, Brandt C, Coppola G, Biesecker LG, Batish SD, Meisler MH. Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P₂ phosphatase FIG4. ACTA ACUST UNITED AC 2011; 134:1959-71. [PMID: 21705420 DOI: 10.1093/brain/awr148] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Charcot-Marie-Tooth disease is a genetically heterogeneous group of motor and sensory neuropathies associated with mutations in more than 30 genes. Charcot-Marie-Tooth disease type 4J (OMIM 611228) is a recessive, potentially severe form of the disease caused by mutations of the lipid phosphatase FIG4. We provide a more complete view of the features of this disorder by describing 11 previously unreported patients with Charcot-Marie-Tooth disease type 4J. Three patients were identified from a small cohort selected for screening because of their early onset disease and progressive proximal as well as distal weakness. Eight patients were identified by large-scale exon sequencing of an unselected group of 4000 patients with Charcot-Marie-Tooth disease. In addition, 34 new FIG4 variants were detected. Ten of the new CMT4J cases have the compound heterozygous genotype FIG4(I41T/null) described in the original four families, while one has the novel genotype FIG4(L17P/nul)(l). The population frequency of the I41T allele was found to be 0.001 by genotyping 5769 Northern European controls. Thirty four new variants of FIG4 were identified. The severity of Charcot-Marie-Tooth disease type 4J ranges from mild clinical signs to severe disability requiring the use of a wheelchair. Both mild and severe forms have been seen in patients with the same genotype. The results demonstrate that Charcot-Marie-Tooth disease type 4J is characterized by highly variable onset and severity, proximal as well as distal and asymmetric muscle weakness, electromyography demonstrating denervation in proximal and distal muscles, and frequent progression to severe amyotrophy. FIG4 mutations should be considered in Charcot-Marie-Tooth patients with these characteristics, especially if found in combination with sporadic or recessive inheritance, childhood onset and a phase of rapid progression.
Collapse
Affiliation(s)
- Garth Nicholson
- Department of Neurology, University of Sydney, ANZAC Institute, Concord Hospital, NSW 2139, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Ho H, Ganesan AK. The pleiotropic roles of autophagy regulators in melanogenesis. Pigment Cell Melanoma Res 2011; 24:595-604. [PMID: 21777401 DOI: 10.1111/j.1755-148x.2011.00889.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Melanin pigments protect the skin and eyes from toxic insults and are critical for the normal functioning of multiple organ systems including the skin, eyes, and brain. Biochemical and genetic studies in both human and mice have revealed the molecular machinery controlling the transcription of genes encoding enzymes that produce melanin and the trafficking of these enzymes to the melanosome, a lysosome-related organelle dedicated to melanin synthesis. Recent functional genomic studies have identified a role for genes previously known to regulate autophagy, a cellular process that facilitates nutrient recycling during starvation, in the biogenesis of melanosomes in vitro and in vivo. In this review, we describe the pleiotropic roles of autophagy regulators in multiple vesicle trafficking processes, define a specific role for autophagy regulators in melanosome biogenesis, and shed light on how autophagy and autophagy regulators may play different roles in both the biogenesis of melanosomes and melanosome destruction.
Collapse
Affiliation(s)
- Hsiang Ho
- Department of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA
| | | |
Collapse
|
165
|
Abstract
Phosphoinositides play an important role in organelle identity by recruiting effector proteins to the host membrane organelle, thus decorating that organelle with molecular identity. Phosphatidylinositol-3,5-bisphos- phate [PtdIns(3,5)P(2) ] is a low-abundance phosphoinositide that predominates in endolysosomes in higher eukaryotes and in the yeast vacuole. Compared to other phosphoinositides such as PtdIns(4,5)P(2) , our understanding of the regulation and function of PtdIns(3,5)P(2) remained rudimentary until more recently. Here, we review many of the recent developments in PtdIns(3,5)P(2) function and regulation. PtdIns(3,5)P(2) is now known to espouse functions, not only in the regulation of endolysosome morphology, trafficking and acidification, but also in autophagy, signaling mediation in response to stresses and hormonal cues and control of membrane and ion transport. In fact, PtdIns(3,5)P(2) misregulation is now linked with several human neuropathologies including Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Given the functional versatility of PtdIns(3,5)P(2) , it is not surprising that regulation of PtdIns(3,5)P(2) metabolism is proving rather elaborate. PtdIns(3,5)P(2) synthesis and turnover are tightly coupled via a protein complex that includes the Fab1/PIKfyve lipid kinase and its antagonistic Fig4/Sac3 lipid phosphatase. Most interestingly, many PtdIns(3,5)P(2) regulators play simultaneous roles in its synthesis and turnover.
Collapse
Affiliation(s)
- Cheuk Y Ho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
166
|
Sahab ZJ, Man YG, Byers SW, Sang QXA. Putative biomarkers and targets of estrogen receptor negative human breast cancer. Int J Mol Sci 2011; 12:4504-21. [PMID: 21845093 PMCID: PMC3155366 DOI: 10.3390/ijms12074504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/27/2011] [Accepted: 07/04/2011] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER), progesterone receptor (PR), and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self-renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.
Collapse
Affiliation(s)
- Ziad J. Sahab
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA; E-Mail:
| | - Yan-Gao Man
- Diagnostic and Translational Research Center, Henry Jackson Foundation for the Advancement of Military Medicine, Gaithersburg, MD 20789, USA; E-Mail:
- Jilin University, Changchun 130012, China
| | - Stephen W. Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA; E-Mail:
| | - Qing-Xiang A. Sang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, 102 Varsity Way, Tallahassee, FL 32306, USA; E-Mail:
| |
Collapse
|
167
|
Lenk GM, Ferguson CJ, Chow CY, Jin N, Jones JM, Grant AE, Zolov SN, Winters JJ, Giger RJ, Dowling JJ, Weisman LS, Meisler MH. Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet 2011; 7:e1002104. [PMID: 21655088 PMCID: PMC3107197 DOI: 10.1371/journal.pgen.1002104] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/08/2011] [Indexed: 11/18/2022] Open
Abstract
CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5× higher than endogenous Fig4 completely rescued lethality, whereas 2× expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein. Charcot-Marie-Tooth disease type 4J is a severe neurological disorder with childhood or adult onset and progression to loss of mobility and death. Patients inherit a mutation that changes amino acid residue 41 of the FIG4 protein from isoleucine to threonine. We report that this mutation destabilizes the FIG4 protein by blocking its interaction with a stabilizing protein partner. We developed a mouse model of CMT4J and found that a low level of expression of the mutant protein, 10% of wildtype level, is sufficient to prevent lethality. This work provides the scientific basis for development of a directed treatment for this rare, lethal disorder.
Collapse
Affiliation(s)
- Guy M. Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cole J. Ferguson
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Natsuko Jin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Julie M. Jones
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adrienne E. Grant
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sergey N. Zolov
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jesse J. Winters
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James J. Dowling
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lois S. Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
168
|
Shen D, Wang X, Xu H. Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes. Bioessays 2011; 33:448-57. [PMID: 21538413 DOI: 10.1002/bies.201000152] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane-bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta-organellar Ca(2+) , which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca(2+) channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca(2+) and Ca(2+) channels in the membrane trafficking of endolysosomes. SNAREs, Rab GTPases, and phosphoinositides have been reported to regulate plasma membrane ion channels, thereby suggesting that these trafficking regulators may also modulate endolysosomal dynamics by controlling Ca(2+) flux across endolysosomal membranes. In this paper, we discuss the roles of phosphoinositides, Ca(2+) , and potential interactions between endolysosomal Ca(2+) channels and phosphoinositides in endolysosomal dynamics.
Collapse
Affiliation(s)
- Dongbiao Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
169
|
Hirano T, Sato MH. Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters. PLANT SIGNALING & BEHAVIOR 2011; 6:583-5. [PMID: 21412048 PMCID: PMC3142398 DOI: 10.4161/psb.6.4.15023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fab1/PIKfyve produces Phosphatidylinositol 3,5-bisphosphate (PtdIns (3,5) P2) from Phosphatidylinositol 3-phosphate (PtdIns 3-P), and is involved not only in vacuole/lysosome homeostasis, but also in transporting various proteins to the vacuole or recycling proteins on the plasma membrane (PM) through the use of endosomes in a variety of eukaryotic cells. We previously demonstrated that Arabidopsis FAB1A/B functions as PtdIns 3,5-kinase in both Arabidopsis and fission yeast and plays a key role in vacuolar acidification and endocytosis. Although the conditional FAB1A/B knockdown mutant revealed an auxin-resistant phenotype to a membrane impermeable auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), the mutant did not exhibit this phenotype to a membrane-permeable artificial auxin, naphthalene 1-acetic acid (NAA). The difference in the sensitivities to 2,4-D and NAA is similar to those of the auxin-resistant mutants such as aux1. Taken together, these results suggest that impairment of the function of Arabidopsis FAB1A/B might cause a defect in the membrane recycling capabilities of the auxin transporters and inhibit proper auxin transport into the cells in Arabidopsis.
Collapse
Affiliation(s)
- Tomoko Hirano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
170
|
Hirano T, Sato MH. Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters. PLANT SIGNALING & BEHAVIOR 2011. [PMID: 21412048 DOI: 10.1104/pp.110.16798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fab1/PIKfyve produces Phosphatidylinositol 3,5-bisphosphate (PtdIns (3,5) P2) from Phosphatidylinositol 3-phosphate (PtdIns 3-P), and is involved not only in vacuole/lysosome homeostasis, but also in transporting various proteins to the vacuole or recycling proteins on the plasma membrane (PM) through the use of endosomes in a variety of eukaryotic cells. We previously demonstrated that Arabidopsis FAB1A/B functions as PtdIns 3,5-kinase in both Arabidopsis and fission yeast and plays a key role in vacuolar acidification and endocytosis. Although the conditional FAB1A/B knockdown mutant revealed an auxin-resistant phenotype to a membrane impermeable auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), the mutant did not exhibit this phenotype to a membrane-permeable artificial auxin, naphthalene 1-acetic acid (NAA). The difference in the sensitivities to 2,4-D and NAA is similar to those of the auxin-resistant mutants such as aux1. Taken together, these results suggest that impairment of the function of Arabidopsis FAB1A/B might cause a defect in the membrane recycling capabilities of the auxin transporters and inhibit proper auxin transport into the cells in Arabidopsis.
Collapse
Affiliation(s)
- Tomoko Hirano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
171
|
Katona I, Zhang X, Bai Y, Shy ME, Guo J, Yan Q, Hatfield J, Kupsky WJ, Li J. Distinct pathogenic processes between Fig4-deficient motor and sensory neurons. Eur J Neurosci 2011; 33:1401-10. [DOI: 10.1111/j.1460-9568.2011.07651.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
172
|
Modifier genes for mouse phosphatidylinositol transfer protein α (vibrator) that bypass juvenile lethality. Genetics 2011; 187:1185-91. [PMID: 21321132 DOI: 10.1534/genetics.110.125906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol transfer proteins (PITPs) mediate lipid signaling and membrane trafficking in eukaryotic cells. Loss-of-function mutations of the gene encoding PITPα in mice result in a range of dosage-sensitive phenotypes, including neurological dysfunction, neurodegeneration, and premature death. We have previously reported genetic suppression of a strong hypomorphic allele, vibrator, by a wild-derived variant of Nxf1, which increases the level of PITPα made from vibrator alleles and suppresses each of the neurological and survival phenotypes. Here we report discovery and genetic mapping of additional vibrator modifiers, Mvb2 and Mvb3, from a different strain background that suppresses juvenile lethality without suppressing visible phenotypes or gene expression. Genotype-specific survival analysis predicts molecular heterosis at Mvb3. These results indicate a mechanism of suppression that bypasses a quantitative requirement for PITPα function.
Collapse
|
173
|
Ho H, Kapadia R, Al-Tahan S, Ahmad S, Ganesan AK. WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J Biol Chem 2011; 286:12509-23. [PMID: 21317285 DOI: 10.1074/jbc.m110.200543] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies implicate a role for WD repeat domain, phosphoinositide-interacting 1 (WIPI1) in the biogenesis of melanosomes, cell type-specific lysosome-related organelles. In this study, we determined that WIPI1, an ATG18 homologue that is shown to localize to both autophagosomes and early endosomes, inhibited mammalian target of rapamycin (MTOR) signaling, leading to increased transcription of melanogenic enzymes and the formation of mature melanosomes. WIPI1 suppressed the target of rapamycin complex 1 (TORC1) activity, resulting in glycogen synthase kinase 3β inhibition, β-Catenin stabilization, and increased transcription of microphthalmia transcription factor and its target genes. WIPI1-depleted cells accumulated stage I melanosomes but lacked stage III-IV melanosomes. Inhibition of TORC1 by rapamycin treatment resulted in the accumulation of stage IV melanosomes but not autophagosomes, whereas starvation resulted in the formation of autophagosomes but not melanin accumulation. Taken together, our studies define a distinct role for WIPI1 and TORC1 signaling in controlling the transcription of melanogenic enzymes and melanosome maturation, a process that is distinct from starvation-induced autophagy.
Collapse
Affiliation(s)
- Hsiang Ho
- Department of Biological Chemistry, University of California, Irvine, CA 92697-2400, USA
| | | | | | | | | |
Collapse
|
174
|
|
175
|
Rodriguez-Navarro JA, Cuervo AM. Autophagy and lipids: tightening the knot. Semin Immunopathol 2010; 32:343-53. [PMID: 20730586 DOI: 10.1007/s00281-010-0219-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/08/2010] [Indexed: 12/22/2022]
Abstract
The degradation of intracellular components in lysosomes, also known as autophagy, participates in a broad range of cellular functions from cellular quality control to cellular remodeling or as mechanism of defense against cellular aggressors. In this review, we focus on the role of autophagy as an alternative source of cellular energy, particularly important when nutrients are scarce. Almost since the discovery of autophagy, it has been known that amino acids obtained through the breakdown of proteins in lysosomes are essential to maintaining the cellular energetic balance during starvation. However, it is only recently that the ability of autophagy to mobilize intracellular lipid stores as an additional source of energy has been described. Autophagy contributes thus to modulating the amount of cellular lipids and allows cells to adapt to lipogenic stimuli. Interestingly, this interplay between autophagy and lipid metabolism is bidirectional, as changes in the intracellular lipid content also contribute to modulating autophagic activity. In this review, we describe the recent findings on the contribution of autophagy to lipid metabolism in different tissues and the consequences that impairments in autophagy have on cellular physiology. In addition, we comment on the regulatory role that lipid molecules and their modifying enzymes play on different steps of the autophagic process.
Collapse
Affiliation(s)
- Jose Antonio Rodriguez-Navarro
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | |
Collapse
|
176
|
Ikonomov OC, Sbrissa D, Fligger J, Delvecchio K, Shisheva A. ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem 2010; 285:26760-26764. [PMID: 20630877 DOI: 10.1074/jbc.c110.154658] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mammalian phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P(2)) phosphatase Sac3 and ArPIKfyve, the associated regulator of the PtdIns3P-5 kinase PIKfyve, form a stable binary complex that associates with PIKfyve in a ternary complex to increase PtdIns(3,5)P(2) production. Whether the ArPIKfyve-Sac3 subcomplex functions outside the PIKfyve context is unknown. Here we show that stable or transient expression of ArPIKfyve(WT) in mammalian cells elevates steady-state protein levels and the PtdIns(3,5)P(2)-hydrolyzing activity of Sac3, whereas knockdown of ArPIKfyve has the opposite effect. These manipulations do not alter the Sac3 mRNA levels, suggesting that ArPIKfyve might control Sac3 protein degradation. Inhibition of protein synthesis in COS cells by cycloheximide reveals remarkably rapid turnover of expressed Sac3(WT) (t((1/2)) = 18.8 min), resulting from a proteasome-dependent clearance as evidenced by the extended Sac3(WT) half-life upon inhibiting proteasome activity. Coexpression of ArPIKfyve(WT), but not the N- or C-terminal halves, prolongs the Sac3(WT) half-life consistent with enhanced Sac3 protein stability through association with full-length ArPIKfyve. We further demonstrate that mutant Sac3, harboring the pathogenic Ile-to-Thr substitution at position 41 found in patients with CMT4J disorder, is similar to Sac3(WT) with regard to PtdIns(3,5)P(2)-hydrolyzing activity, association with ArPIKfyve, or rapid proteasome-dependent clearance. Remarkably, however, neither is the steady-state Sac3(I41T) elevated nor is the Sac3(I41T) half-life extended by coexpressed ArPIKfyve(WT), indicating that unlike with Sac3(WT), ArPIKfyve fails to prevent Sac3(I41T) rapid loss. Together, our data indentify a novel regulatory mechanism whereby ArPIKfyve enhances Sac3 abundance by attenuating Sac3 proteasome-dependent degradation and suggest that a failure of this mechanism could be the primary molecular defect in the pathogenesis of CMT4J.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Jason Fligger
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Khortnal Delvecchio
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
177
|
PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 2010; 1:38. [PMID: 20802798 DOI: 10.1038/ncomms1037] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/16/2010] [Indexed: 01/22/2023] Open
Abstract
Membrane fusion and fission events in intracellular trafficking are controlled by both intraluminal Ca(2+) release and phosphoinositide (PIP) signalling. However, the molecular identities of the Ca(2+) release channels and the target proteins of PIPs are elusive. In this paper, by direct patch-clamping of the endolysosomal membrane, we report that PI(3,5)P(2), an endolysosome-specific PIP, binds and activates endolysosome-localized mucolipin transient receptor potential (TRPML) channels with specificity and potency. Both PI(3,5)P(2)-deficient cells and cells that lack TRPML1 exhibited enlarged endolysosomes/vacuoles and trafficking defects in the late endocytic pathway. We find that the enlarged vacuole phenotype observed in PI(3,5)P(2)-deficient mouse fibroblasts is suppressed by overexpression of TRPML1. Notably, this PI(3,5)P(2)-dependent regulation of TRPML1 is evolutionarily conserved. In budding yeast, hyperosmotic stress induces Ca(2+) release from the vacuole. In this study, we show that this release requires both PI(3,5)P(2) production and a yeast functional TRPML homologue. We propose that TRPMLs regulate membrane trafficking by transducing information regarding PI(3,5)P(2) levels into changes in juxtaorganellar Ca(2+), thereby triggering membrane fusion/fission events.
Collapse
|
178
|
Xu X, Kedlaya R, Higuchi H, Ikeda S, Justice MJ, Setaluri V, Ikeda A. Mutation in archain 1, a subunit of COPI coatomer complex, causes diluted coat color and Purkinje cell degeneration. PLoS Genet 2010; 6:e1000956. [PMID: 20502676 PMCID: PMC2873907 DOI: 10.1371/journal.pgen.1000956] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 04/19/2010] [Indexed: 11/18/2022] Open
Abstract
Intracellular trafficking is critical for delivering molecules and organelles to their proper destinations to carry out normal cellular functions. Disruption of intracellular trafficking has been implicated in the pathogenesis of various neurodegenerative disorders. In addition, a number of genes involved in vesicle/organelle trafficking are also essential for pigmentation, and loss of those genes is often associated with mouse coat-color dilution and human hypopigmentary disorders. Hence, we postulated that screening for mouse mutants with both neurological defects and coat-color dilution will help identify additional factors associated with intracellular trafficking in neuronal cells. In this study, we characterized a mouse mutant with a unique N-ethyl-N-nitrosourea (ENU)-induced mutation, named nur17. nur17 mutant mice exhibit both coat-color dilution and ataxia due to Purkinje cell degeneration in the cerebellum. By positional cloning, we identified that the nur17 mouse carries a T-to-C missense mutation in archain 1 (Arcn1) gene which encodes the delta subunit of the coat protein I (COPI) complex required for intracellular trafficking. Consistent with this function, we found that intracellular trafficking is disrupted in nur17 melanocytes. Moreover, the nur17 mutation leads to common characteristics of neurodegenerative disorders such as abnormal protein accumulation, ER stress, and neurofibrillary tangles. Our study documents for the first time the physiological consequences of the impairment of the ARCN1 function in the whole animal and demonstrates a direct association between ARCN1 and neurodegeneration.
Collapse
Affiliation(s)
- Xinjie Xu
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Rajendra Kedlaya
- Department of Dermatology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
179
|
Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J 2010; 29:1489-98. [PMID: 20389282 DOI: 10.1038/emboj.2010.57] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/08/2010] [Indexed: 01/06/2023] Open
Abstract
Sac family phosphoinositide (PI) phosphatases are an essential family of CX(5)R(T/S)-based enzymes, involved in numerous aspects of cellular function such as PI homeostasis, cellular signalling, and membrane trafficking. Genetic deletions of several Sac family members result in lethality in animal models and mutations of the Sac3 gene have been found in human hereditary diseases. In this study, we report the crystal structure of a founding member of this family, the Sac phosphatase domain of yeast Sac1. The 2.0 A resolution structure shows that the Sac domain comprises of two closely packed sub-domains, a novel N-terminal sub-domain and the PI phosphatase catalytic sub-domain. The structure further shows a striking conformation of the catalytic P-loop and a large positively charged groove at the catalytic site. These findings suggest an unusual mechanism for its dephosphorylation function. Homology structural modeling of human Fig4/Sac3 allows the mapping of several disease-related mutations and provides a framework for the understanding of the molecular mechanisms of human diseases.
Collapse
|
180
|
Ikonomov OC, Sbrissa D, Fenner H, Shisheva A. PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J Biol Chem 2010; 284:35794-806. [PMID: 19840946 DOI: 10.1074/jbc.m109.037515] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) metabolizing enzymes, the kinase PIKfyve and the phosphatase Sac3, constitute a single multiprotein complex organized by the PIKfyve regulator ArPIKfyve and its ability to homodimerize. We previously established that PIKfyve is activated within the triple PIKfyve-ArPIKfyve-Sac3 (PAS) core. These data assign an atypical function for the phosphatase in PtdIns(3,5)P(2) biosynthesis, thus raising the question of whether Sac3 retains its PtdIns(3,5)P(2) hydrolyzing activity within the PAS complex. Herein, we address the issue of Sac3 functionality by a combination of biochemical and morphological assays in triple-transfected COS cells using a battery of truncated or point mutants of the three proteins. We identified the Cpn60_TCP1 domain of PIKfyve as a major determinant for associating the ArPIKfyve-Sac3 subcomplex. Neither Sac3 nor PIKfyve enzymatic activities affected the PAS complex formation or stability. Using the well established formation of aberrant cell vacuoles as a sensitive functional measure of localized PtdIns(3,5)P(2) reduction, we observed a mitigated vacuolar phenotype by kinase-deficient PIKfyve(K1831E) if its ArPIKfyve-Sac3 binding region was deleted, suggesting reduced Sac3 access to, and turnover of PtdIns(3,5)P(2). In contrast, PIKfyve(K1831E), which displays intact ArPIKfyve-Sac3 binding, triggered a more severe vacuolar phenotype if coexpressed with ArPIKfyve(WT)-Sac3(WT) but minimal defects when coexpressed with ArPIKfyve(WT) and phosphatase-deficient Sac3(D488A). These data indicate that Sac3 assembled in the PAS regulatory core complex is an active PtdIns(3,5)P(2) phosphatase. Based on these and other data, presented herein, we propose a model of domain interactions within the PAS core and their role in regulating the enzymatic activities.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
181
|
Botelho RJ. Changing phosphoinositides "on the fly": how trafficking vesicles avoid an identity crisis. Bioessays 2009; 31:1127-36. [PMID: 19708025 DOI: 10.1002/bies.200900060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Joining an antagonistic phosphoinositide (PtdInsP) kinase and phosphatase into a single protein complex may regulate rapid and local PtdInsP changes. This may be important for processes such as membrane fission that require a specific PtdInsP and that are innately local and rapid. Such a complex could couple vesicle formation, with erasing of the identity of the donor organelle from the vesicle prior to its fusion with target organelles, thus preventing organelle identity intermixing. Coordinating signals are postulated to switch the relative activities of the kinase and phosphatase in a spatio-temporal manner that matches membrane fission events. The discovery of two such complexes supports this hypothesis. One regulates the interconversion of phosphatidylinositol and PtdIns(3)P by joining the Vps34 PtdIns 3-kinase and the myotubularin 3-phosphatases. The other regulates the interconversion between PtdIns(3)P and PtdIns(3,5)P(2) through the Fab1/PIKfyve kinase and the Fig4/mFig4 phosphatase. These lipids are essential components of the endosomal identity code.
Collapse
Affiliation(s)
- Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, ON, Canada.
| |
Collapse
|
182
|
Katoh Y, Ritter B, Gaffry T, Blondeau F, Höning S, McPherson PS. The clavesin family, neuron-specific lipid- and clathrin-binding Sec14 proteins regulating lysosomal morphology. J Biol Chem 2009; 284:27646-54. [PMID: 19651769 PMCID: PMC2785693 DOI: 10.1074/jbc.m109.034884] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/20/2009] [Indexed: 11/06/2022] Open
Abstract
Clathrin-coated vesicles (CCVs) originating from the trans-Golgi network (TGN) provide a major transport pathway from the secretory system to endosomes/lysosomes. Herein we describe paralogous Sec14 domain-bearing proteins, clavesin 1/CRALBPL and clavesin 2, identified through a proteomic analysis of CCVs. Clavesins are enriched on CCVs and form a complex with clathrin heavy chain (CHC) and adaptor protein-1, major coat components of TGN-derived CCVs. The proteins co-localize with markers of endosomes and the TGN as well as with CHC and adaptor protein-1. A membrane mimic assay using the Sec14 domain of clavesin 1 reveals phosphatidylinositol 3,5-bisphosphate as a specific lipid partner. Phosphatidylinositol 3,5-bisphosphate is localized to late endosomes/lysosomes, and interestingly, isoform-specific knockdown of clavesins in neurons using lentiviral delivery of interfering RNA leads to enlargement of a lysosome-associated membrane protein 1-positive membrane compartment with no obvious influence on the CCV machinery at the TGN. Since clavesins are expressed exclusively in neurons, this new protein family appears to provide a unique neuron-specific regulation of late endosome/lysosome morphology.
Collapse
Affiliation(s)
- Yohei Katoh
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada and
| | - Brigitte Ritter
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada and
| | - Thomas Gaffry
- the Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Francois Blondeau
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada and
| | - Stefan Höning
- the Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Peter S. McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada and
| |
Collapse
|
183
|
Jiao J, Sun K, Walker WP, Bagher P, Cota CD, Gunn TM. Abnormal regulation of TSG101 in mice with spongiform neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1027-35. [PMID: 19703557 PMCID: PMC2755232 DOI: 10.1016/j.bbadis.2009.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 11/27/2022]
Abstract
Spongiform neurodegeneration is characterized by the appearance of vacuoles throughout the central nervous system. It has many potential causes, but the underlying cellular mechanisms are not well understood. Mice lacking the E3 ubiquitin ligase Mahogunin Ring Finger-1 (MGRN1) develop age-dependent spongiform encephalopathy. We identified an interaction between a "PSAP" motif in MGRN1 and the ubiquitin E2 variant (UEV) domain of TSG101, a component of the endosomal sorting complex required for transport I (ESCRT-I), and demonstrate that MGRN1 multimonoubiquitinates TSG101. We examined the in vivo consequences of loss of MGRN1 on TSG101 expression and function in the mouse brain. The pattern of TSG101 ubiquitination differed in the brains of wild-type mice and Mgrn1 null mutant mice: at 1 month of age, null mutant mice had less ubiquitinated TSG101, while in adults, mutant mice had more ubiquitinated, insoluble TSG101 than wild-type mice. There was an associated increase in epidermal growth factor receptor (EGFR) levels in mutant brains. These results suggest that loss of MGRN1 promotes ubiquitination of TSG101 by other E3s and may prevent its disassociation from endosomal membranes or cause it to form insoluble aggregates. Our data implicate loss of normal TSG101 function in endo-lysosomal trafficking in the pathogenesis of spongiform neurodegeneration in Mgrn1 null mutant mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Teresa M. Gunn
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
184
|
Ferguson CJ, Lenk GM, Meisler MH. Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 2009; 18:4868-78. [PMID: 19793721 PMCID: PMC2778378 DOI: 10.1093/hmg/ddp460] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations affecting the conversion of PI3P to the signaling lipid PI(3,5)P2 result in spongiform degeneration of mouse brain and are associated with the human disorders Charcot–Marie–Tooth disease and amyotrophic lateral sclerosis (ALS). We now report accumulation of the proteins LC3-II, p62 and LAMP-2 in neurons and astrocytes of mice with mutations in two components of the PI(3,5)P2 regulatory complex, Fig4 and Vac14. Cytoplasmic inclusion bodies containing p62 and ubiquinated proteins are present in regions of the mutant brain that undergo degeneration. Co-localization of p62 and LAMP-2 in affected cells indicates that formation or recycling of the autolysosome is impaired. These results establish a role for PI(3,5)P2 in autophagy in the mammalian central nervous system (CNS) and demonstrate that mutations affecting PI(3,5)P2 can contribute to inclusion body disease.
Collapse
Affiliation(s)
- Cole J Ferguson
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | | | | |
Collapse
|
185
|
Ikonomov OC, Sbrissa D, Ijuin T, Takenawa T, Shisheva A. Sac3 is an insulin-regulated phosphatidylinositol 3,5-bisphosphate phosphatase: gain in insulin responsiveness through Sac3 down-regulation in adipocytes. J Biol Chem 2009; 284:23961-71. [PMID: 19578118 DOI: 10.1074/jbc.m109.025361] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-regulated stimulation of glucose entry and mobilization of fat/muscle-specific glucose transporter GLUT4 onto the cell surface require the phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) pathway for optimal performance. The reduced insulin responsiveness observed under ablation of the PtdIns(3,5)P(2)-synthesizing PIKfyve and its associated activator ArPIKfyve in 3T3L1 adipocytes suggests that dysfunction of the PtdIns(3,5)P(2)-specific phosphatase Sac3 may yield the opposite effect. Paradoxically, as uncovered recently, in addition to turnover Sac3 also supports PtdIns(3,5)P(2) biosynthesis by allowing optimal PIKfyve-ArPIKfyve association. These opposing inputs raise the key question as to whether reduced Sac3 protein levels and/or hydrolyzing activity will produce gain in insulin responsiveness. Here we report that small interfering RNA-mediated knockdown of endogenous Sac3 by approximately 60%, which resulted in a slight but significant elevation of PtdIns(3,5)P(2) in 3T3L1 adipocytes, increased GLUT4 translocation and glucose entry in response to insulin. In contrast, ectopic expression of Sac3(WT), but not phosphatase-deficient Sac3(D488A), reduced GLUT4 surface abundance in the presence of insulin. Endogenous Sac3 physically assembled with PIKfyve and ArPIKfyve in both membrane and soluble fractions of 3T3L1 adipocytes, but this remained insulin-insensitive. Importantly, acute insulin markedly reduced the in vitro C8-PtdIns(3,5)P(2) hydrolyzing activity of Sac3. The insulin-sensitive Sac3 pool likely controls a discrete PtdIns(3,5)P(2) subfraction as the high pressure liquid chromatography-measurable insulin-dependent elevation in total [(3)H]inositol-PtdIns(3,5)P(2) was minor. Together, our data identify Sac3 as an insulin-sensitive phosphatase whose down-regulation increases insulin responsiveness, thus implicating Sac3 as a novel drug target in insulin resistance.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
186
|
|
187
|
Abstract
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is needed for retrograde membrane trafficking from lysosomal and late endosomal compartments and its synthesis is tightly regulated. But how cells regulate PtdIns(3,5)P2 synthesis--for example, in response to hyperosmotic shock--remains unexplained. A paper from the Weisman group gives the most complete picture so far of a multiprotein complex that controls PtdIns(3,5)P2 synthesis and explains how a VAC14 mutation functionally impairs the scaffold protein at the heart of the complex and causes a neurodegenerative condition in mice.
Collapse
|
188
|
Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna-Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 2009; 84:85-8. [PMID: 19118816 DOI: 10.1016/j.ajhg.2008.12.010] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022] Open
Abstract
Mutations of the lipid phosphatase FIG4 that regulates PI(3,5)P(2) are responsible for the recessive peripheral-nerve disorder CMT4J. We now describe nonsynonymous variants of FIG4 in 2% (9/473) of patients with amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). Heterozygosity for a deleterious allele of FIG4 appears to be a risk factor for ALS and PLS, extending the list of known ALS genes and increasing the clinical spectrum of FIG4-related diseases.
Collapse
|