151
|
Puri PL, Mercola M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev 2012; 26:2673-83. [PMID: 23222103 DOI: 10.1101/gad.207415.112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Developmental biologists have defined many of the diffusible and transcription factors that control muscle differentiation, yet we still have only rudimentary knowledge of the mechanisms that dictate whether a myogenic progenitor cell forms muscle versus alternate lineages, including those that can be pathological in a state of disease or degeneration. Clues about the molecular basis for lineage determination in muscle progenitors are only now emerging from studies of chromatin modifications that avail myogenic genes for transcription, together with analysis of the composition and activities of the chromatin-modifying complexes themselves. Here we review recent progress on muscle determination and explore a unifying theme that environmental cues from the stem or progenitor niche control the selection of specific subunit variants of the switch/sucrose nonfermentable (SWI/SNF) chromatin-modifying complex, creating a combinatorial code that dictates whether cells adopt myogenic versus nonmyogenic cell fates. A key component of the code appears to be the mutually exclusive usage of the a, b, and c variants of the 60-kD structural subunit BAF60 (BRG1/BRM-associated factor 60), of which BAF60c is essential to activate both skeletal and cardiac muscle programs. Since chromatin remodeling governs myogenic fate, the combinatorial assembly of the SWI/SNF complex might be targeted to develop drugs aimed at the therapeutic reduction of compensatory fibrosis and fatty deposition in chronic muscular disorders.
Collapse
Affiliation(s)
- Pier Lorenzo Puri
- Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
152
|
Wang Y, Wong RHF, Tang T, Hudak CS, Yang D, Duncan RE, Sul HS. Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin. Mol Cell 2012; 49:283-97. [PMID: 23219531 DOI: 10.1016/j.molcel.2012.10.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/19/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022]
Abstract
Fatty acid and triglyceride synthesis is induced in response to feeding and insulin. This lipogenic induction involves coordinate transcriptional activation of lipogenic enzymes, including fatty acid synthase and glycerol-3-phosphate acyltransferase. We recently reported the importance of USF-1 phosphorylation and subsequent acetylation in insulin-induced lipogenic gene activation. Here, we show that Brg1/Brm-associated factor (BAF) 60c is a specific chromatin remodeling component for lipogenic gene transcription in liver. In response to insulin, BAF60c is phosphorylated at S247 by atypical PKCζ/λ, which causes translocation of BAF60c to the nucleus and allows a direct interaction of BAF60c with USF-1 that is phosphorylated by DNA-PK and acetylated by P/CAF. Thus, BAF60c is recruited to form the lipoBAF complex to remodel chromatin structure and to activate lipogenic genes. Consequently, BAF60c promotes lipogenesis in vivo and increases triglyceride levels, demonstrating its role in metabolic adaption to activate the lipogenic program in response to feeding and insulin.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
154
|
Sohni A, Mulas F, Ferrazzi F, Luttun A, Bellazzi R, Huylebroeck D, Ekker SC, Verfaillie CM. TGFβ1-induced Baf60c regulates both smooth muscle cell commitment and quiescence. PLoS One 2012; 7:e47629. [PMID: 23110084 PMCID: PMC3482188 DOI: 10.1371/journal.pone.0047629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/13/2012] [Indexed: 02/02/2023] Open
Abstract
Smooth muscle cells (SMCs) play critical roles in a number of diseases; however, the molecular mechanism underlying their development is unclear. Although the role of TGFβ1 signaling in SMC development is well established, the downstream molecular signals are not fully understood. We used several rat multipotent adult progenitor cell ((r)MAPC) lines that express levels of Oct4 mRNA similar to hypoblast stem cells (HypoSC), and can differentiate robustly to mesodermal and endodermal cell types. TGFβ1 alone, or with PDGF-BB, induces differentiation of rMAPCs to SMCs, which expressed structural SMC proteins, including α-smooth muscle actin (αSMA), and contribute to the SMC coat of blood vessels in vivo. A genome-wide time-course transcriptome analysis revealed that transcripts of Baf60c, part of the SWI/SNF actin binding chromatin remodeling complex D-3 (SMARCD3/BAF60c), were significantly induced during MAPC-SMC differentiation. We demonstrated that BAF60c is a necessary co-regulator of TGFβ1 mediated induction of SMC genes. Knock-down of Baf60c decreased SMC gene expression in rMAPCs whereas ectopic expression of Baf60c was sufficient to commit rMAPCs to SMCs in the absence of exogenous cytokines. TGFβ1 activates Baf60c via the direct binding of SMAD2/3 complexes to the Baf60c promoter region. Chromatin- and co-immunoprecipitation studies demonstrated that regulation of SMC genes by BAF60c is mediated via interaction with SRF binding CArG box-containing promoter elements in SMC genes. We noted that compared with TGFβ1, Baf60c overexpression in rMAPC yielded SMC with a more immature phenotype. Similarly, Baf60c induced an immature phenotype in rat aortic SMCs marked by increased cell proliferation and decreased contractile marker expression. Thus, Baf60c is important for TGFβ-mediated commitment of primitive stem cells (rMAPCs) to SMCs and is associated with induction of a proliferative state of quiescent SMCs. The MAPC-SMC differentiation system may be useful for identification of additional critical (co-)regulators of SMC development.
Collapse
Affiliation(s)
- Abhishek Sohni
- Stem Cell Institute, Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Francesca Mulas
- Center for Tissue Engineering, University of Pavia, Pavia, Italy
| | - Fulvia Ferrazzi
- Dipartimento di Informatica e Sistemistica, University of Pavia, Pavia, Italy
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, K.U.Leuven, Leuven, Belgium
| | - Riccardo Bellazzi
- Center for Tissue Engineering, University of Pavia, Pavia, Italy
- Dipartimento di Informatica e Sistemistica, University of Pavia, Pavia, Italy
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
| | - Stephen C. Ekker
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Catherine M. Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
155
|
Soza-Ried J, Fisher AG. Reprogramming somatic cells towards pluripotency by cellular fusion. Curr Opin Genet Dev 2012; 22:459-65. [DOI: 10.1016/j.gde.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/01/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022]
|
156
|
Turning on myogenin in muscle: a paradigm for understanding mechanisms of tissue-specific gene expression. Comp Funct Genomics 2012; 2012:836374. [PMID: 22811619 PMCID: PMC3395204 DOI: 10.1155/2012/836374] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/23/2012] [Indexed: 11/21/2022] Open
Abstract
Expression of the myogenin (Myog) gene is restricted to skeletal muscle cells where the transcriptional activator turns on a gene expression program that permits the transition from proliferating myoblasts to differentiating myotubes. The strict temporal and spatial regulation on Myog expression in the embryo makes it an ideal gene to study the developmental regulation of tissue-specific expression. Over the last 20 years, our knowledge of the regulation of Myog expression has evolved from the identification of the minimal promoter elements necessary for the gene to be transcribed in muscle, to a mechanistic understanding of how the proteins that bind these DNA elements work together to establish transcriptional competence. Here we present our current understanding of the developmental regulation of gene expression gained from studies of the Myog gene.
Collapse
|
157
|
Gallagher JM, Komati H, Roy E, Nemer M, Latinkić BV. Dissociation of cardiogenic and postnatal myocardial activities of GATA4. Mol Cell Biol 2012; 32:2214-23. [PMID: 22473995 PMCID: PMC3372269 DOI: 10.1128/mcb.00218-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Transcription factor GATA4 is a critical regulator of the embryonic and postnatal heart, but the mechanisms and cofactors required for its diverse functions are not fully understood. Here, we show that whereas the N-terminal domain of GATA4 is required for inducing cardiogenesis and for promoting postnatal cardiomyocyte survival, distinct residues and domains therein are necessary to mediate these effects. Cardiogenic activity of GATA4 requires a 24-amino-acid (aa) region (aa 129 to 152) which is needed for transcriptional synergy and physical interaction with BAF60c. The same region is not essential for induction of endoderm or blood cell markers by GATA4, suggesting that it acts as a cell-type-specific transcriptional activation domain. On the other hand, a serine residue at position 105, which is a known target for mitogen-activated protein kinase (MAPK) phosphorylation, is necessary for GATA4-dependent cardiac myocyte survival and hypertrophy but is entirely dispensable for GATA4-induced cardiogenesis. We find that S105 is differentially required for transcriptional synergy between GATA4 and serum response factor (SRF) but not other cardiac cofactors such as TBX5 and NKX2.5. The findings provide new insight into GATA4 mechanisms of action and suggest that distinct regulatory pathways regulate activities of GATA4 in embryonic development and postnatal hearts.
Collapse
Affiliation(s)
- Joseph M. Gallagher
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| | - Hiba Komati
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emmanuel Roy
- Graduate Program in Biomedical Sciences, University of Montréal, Montréal, Québec, Canada
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Graduate Program in Biomedical Sciences, University of Montréal, Montréal, Québec, Canada
| | - Branko V. Latinkić
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| |
Collapse
|
158
|
|