151
|
Jalal FY, Yang Y, Thompson J, Lopez AC, Rosenberg GA. Myelin loss associated with neuroinflammation in hypertensive rats. Stroke 2012; 43:1115-22. [PMID: 22363061 DOI: 10.1161/strokeaha.111.643080] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Small vessel disease is the major cause of white matter injury in patients with vascular cognitive impairment. Matrix metalloproteinase (MMP)-mediated inflammation may be involved in the white matter damage with oligodendrocyte (Ol) death. Therefore, we used spontaneously hypertensive stroke-prone rats to study the role of neuroinflammation in white matter damage. METHODS Permanent unilateral carotid artery occlusion was performed at 12 weeks of age in spontaneously hypertensive stroke-prone rats. Following surgery, rats were placed on a Japanese permissive diet and received 1% NaCl in drinking water. MRI, histology, biochemistry, and ELISA characterized white matter lesions, and cognitive impairment was tested by Morris water maze. RESULTS White matter damage was observed 4 to 5 weeks following permanent unilateral carotid artery occlusion/Japanese permissive diet. Immunoblotting showed marked reduction in myelin basic protein and upregulation of immature Ols. Mature Ols underwent caspase-3-mediated apoptosis. Morris water maze showed cognitive impairment. Abnormally appearing vessels were observed and surrounded by inflammatory-like cells. IgG extravasation and hemorrhage, indicating blood-brain barrier (BBB) disruption, was closely associated with MMP-9 expression. Lesions in white matter showed reactive astrocytosis and activated microglia that expressed tumor necrosis factor-α. MMP-3 and MMP-9 were significantly increased, and MMP-2 was reduced in both astrocytes and Ol. CONCLUSIONS We found apoptosis of mature Ols with an increase in immature Ols. Increased MMP-3, MMP-9, and tumor necrosis factor-α were associated with myelin breakdown and BBB disruption. Neuroinflammation is an important factor in white matter damage and Ol death, and studies using this new model can be performed to assess agents to block inflammation.
Collapse
Affiliation(s)
- Fakhreya Y Jalal
- Department of Neurology, MSC10 5620, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
152
|
Bailey EL, Wardlaw JM, Graham D, Dominiczak AF, Sudlow CLM, Smith C. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol Appl Neurobiol 2012; 37:711-26. [PMID: 21392049 DOI: 10.1111/j.1365-2990.2011.01170.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS The spontaneously hypertensive stroke-prone rat (SHRSP) is a potential animal model of human lacunar stroke, but there is little information on SHRSP small vessel pathology, especially in young rats. We investigated the structural changes that occur in cortical and subcortical vessels and adjacent tissue in SHRSP before, during and after the onset of hypertension. METHODS We examined brains from SHRSP and Wistar Kyoto rats (WKY) at 5, 16 and 21 weeks of age. Structural changes in small arterioles and adjacent tissue were studied using antibodies to investigate different components of the neurovascular unit. We quantified staining in three standard regions, at two coronal levels. RESULTS Immunostaining for claudin-5, a marker of endothelial tight junctions, was reduced in SHRSP at all ages compared to age-matched WKY controls. Smooth muscle actin, glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 were increased in SHRSP vs. WKY by 16 weeks. Additionally, 21-week-old WKY and SHRSP rats fed a high-salt diet showed differences in claudin-5, glial fibrillary acidic protein and matrix metalloproteinase 9 staining compared to those fed a normal diet. CONCLUSION Endothelial tight junction alterations of SHRSP rats from the earliest ages point towards increased susceptibility to blood-brain barrier dysfunction and stroke, which is exacerbated by salt loading. Salt loading may also damage the neurovascular unit in WKY controls.
Collapse
Affiliation(s)
- E L Bailey
- Division of Clinical Neurosciences Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, UK
| | | | | | | | | | | |
Collapse
|
153
|
Deplanque D, Lavallee PC, Labreuche J, Gongora-Rivera F, Jaramillo A, Brenner D, Abboud H, Klein IF, Touboul PJ, Vicaut E, Amarenco P. Cerebral and extracerebral vasoreactivity in symptomatic lacunar stroke patients: a case-control study. Int J Stroke 2012; 8:413-21. [PMID: 22336034 DOI: 10.1111/j.1747-4949.2011.00755.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Whether cerebral artery endothelial dysfunction is a key factor of symptomatic lacunar stroke and cerebral small vessel disease remains unclear. METHODS Cerebral and extracerebral vasoreactivity were measured in 81 patients with recent symptomatic lacunar stroke and in 81 control subjects matched for main vascular risk factors. Cerebral vasoreactivity and carotid endothelial-dependent vasodilation were measured after five-minutes of carbon dioxide-induced hypercapnia. Brachial endothelial-dependent vasodilation was assessed after hyperemia induced by deflating a cuff around the forearm previously inflated to 200 mmHg for four-minutes. Carotid and brachial endothelial-independent vasodilation were measured five-minutes after administration of sublingual nitroglycerin 300 μg. Brain magnetic resonance imaging were analyzed in lacunar stroke patients. RESULTS One-month after stroke onset, patients had more severely impaired cerebral vasoreactivitys than matched controls (mean ± standard deviation, 14·4 ± 12·1% vs. 19·4 ± 17·4%; P = 0·049). Severe alterations of both carotid and brachial endothelial-dependent and at a lesser degree of carotid and brachial endothelial-independent vasodilation were observed in both groups. After adjustment for confounders, subjects with a cerebral vasoreactivity value in the two lower tertiles (≤19·6%) were more likely to have had a symptomatic lacunar stroke (adjusted odds ratio, 3·78; 95% confidence interval, 1·42 to 10·08; P = 0·008). Only alteration of brachial endothelial-independent vasodilation correlated with parenchymal abnormalities, namely microbleeds and leukoaraiosis. CONCLUSIONS While abnormalities in extracerebral vasoreactivity seem related to vascular risk factors, the severity of endothelial dysfunction in cerebral arteries may be determinant in the occurrence of symptomatic lacunar stroke in patients with small vessel disease.
Collapse
Affiliation(s)
- Dominique Deplanque
- INSERM U-698 and Paris-Diderot University, Department of Neurology and Stroke Center, Bichat University Hospital, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Bailey EL, Smith C, Sudlow CLM, Wardlaw JM. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review. Int J Stroke 2012; 6:434-44. [PMID: 21951409 DOI: 10.1111/j.1747-4949.2011.00659.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The spontaneously hypertensive stroke prone rat is best known as an inducible model of large artery stroke. Spontaneous strokes and stroke propensity in the spontaneously hypertensive stroke prone rat are less well characterized; however, could be relevant to human lacunar stroke. We systematically reviewed the literature to assess the brain tissue and small vessel pathology underlying the spontaneous strokes of the spontaneously hypertensive stroke prone rat. We searched systematically three online databases from 1970 to May 2010; excluded duplicates, reviews, and articles describing the consequences of induced middle cerebral artery occlusion or noncerebral pathology; and recorded data describing brain region and the vessels examined, number of animals, age, dietary salt intake, vascular and tissue abnormalities. Among 102 relevant studies, animals sacrificed after developing stroke-like symptoms displayed arteriolar wall thickening, subcortical lesions, enlarged perivascular spaces and cortical infarcts and hemorrhages. Histopathology, proteomics and imaging studies suggested that the changes not due simply to hypertension. There may be susceptibility to endothelial permeability increase that precedes arteriolar wall thickening, degeneration and perivascular tissue changes; systemic inflammation may also precede cerebrovascular changes. There were very few data on venules or tissue changes before hypertension. The spontaneously hypertensive stroke prone rat shows similar features to human lacunar stroke and may be a good spontaneous model of this complex human disorder. Further studies should focus on structural changes at early ages and genetics to identify factors that predispose to vascular and brain damage.
Collapse
Affiliation(s)
- Emma L Bailey
- Division of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
155
|
Schreiber S, Bueche CZ, Garz C, Kropf S, Angenstein F, Goldschmidt J, Neumann J, Heinze HJ, Goertler M, Reymann KG, Braun H. The pathologic cascade of cerebrovascular lesions in SHRSP: is erythrocyte accumulation an early phase? J Cereb Blood Flow Metab 2012; 32:278-90. [PMID: 21878945 PMCID: PMC3272595 DOI: 10.1038/jcbfm.2011.122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cerebral small vessel disease (CSVD) is associated with vessel wall changes, microbleeds, blood-brain barrier (BBB) disturbances, and reduced cerebral blood flow (CBF). As spontaneously hypertensive stroke-prone rats (SHRSP) may be a valid model of some aspects of human CSVD, we aimed to identify whether those changes occur in definite temporal stages and whether there is an initial phenomenon beyond those common vascular alterations. Groups of 51 SHRSP were examined simultaneously by histologic (Hematoxylin-Eosin, IgG-Immunohistochemistry, vessel diameter measurement) and imaging methods (Magnetic Resonance Imaging, 201-Thallium-Diethyldithiocarbamate/99m-Technetium-HMPAO Single Photon Emission Computed Tomography conducted as pilot study) at different stages of age. Vascular pathology in SHRSP proceeds in definite stages, whereas an age-dependent accumulation of erythrocytes in capillaries and arterioles represents the homogeneous initial step of the disease. Erythrocyte accumulations are followed by BBB disturbances and microbleeds, both also increasing with age. Microthromboses, tissue infarctions with CBF reduction, and disturbed potassium uptake represent the final stage of vascular pathology in SHRSP. Erythrocyte accumulations--we parsimoniously interpreted as stases--without cerebral tissue damage represent the first step of vascular pathology in SHRSP. If that initial phenomenon could be identified in patients, these erythrocyte accumulations might be a promising target for implementing prophylactic and therapeutic strategies in human CSVD.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Klinik für Neurologie, Otto-von-Guericke Universität, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Ito M, Kuroda S, Sugiyama T, Maruichi K, Kawabori M, Nakayama N, Houkin K, Iwasaki Y. Transplanted bone marrow stromal cells protect neurovascular units and ameliorate brain damage in stroke-prone spontaneously hypertensive rats. Neuropathology 2012; 32:522-33. [DOI: 10.1111/j.1440-1789.2011.01291.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
157
|
The changes of signal transduction pathways in hippocampal regions and postsynaptic densities after chronic cerebral hypoperfusion in rats. Brain Res 2012; 1429:9-17. [DOI: 10.1016/j.brainres.2011.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 11/15/2022]
|
158
|
Arai K, Pham LDD, Lo EH. Experimental Platforms for Assessing White Matter Pathophysiology in Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
159
|
Kitamura A, Fujita Y, Oishi N, Kalaria RN, Washida K, Maki T, Okamoto Y, Hase Y, Yamada M, Takahashi J, Ito H, Tomimoto H, Fukuyama H, Takahashi R, Ihara M. Selective white matter abnormalities in a novel rat model of vascular dementia. Neurobiol Aging 2011; 33:1012.e25-35. [PMID: 22133276 DOI: 10.1016/j.neurobiolaging.2011.10.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 11/16/2022]
Abstract
Rats subjected to bilateral common carotid artery (CCA) occlusion or 2-vessel occlusion (2VO) have been used as animal models of subcortical ischemic vascular dementia. However, this model possesses an inherent limitation in that cerebral blood flow (CBF) drops too sharply and substantially after ligation of CCAs. To circumvent such hypoxic-ischemic conditions, we tested implantation of the ameroid constrictor device on bilateral CCAs of male Wistar-Kyoto rats and more precisely replicated chronic cerebral hypoperfusion by gradual narrowing of the CCAs (2-vessel gradual occlusion; 2VGO). The acute cerebral blood flow reduction and resultant inflammatory responses observed in the 2VO rats were eliminated in the 2VGO rats. Thus, chronic cerebral hypoperfusion was segregated, and induced selective white matter changes with relatively preserved neurovascular coupling and substantially less metabolic and histological derangements in the gray matter including the hippocampus. This led to significant spatial working memory impairment of a magnitude similar to the 2VO rats at 28 days postoperation. The 2VGO model may more closely mimic cognitive impairment subsequent to selective white matter damage.
Collapse
Affiliation(s)
- Akihiro Kitamura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
Genetic AD (Alzheimer's disease) accounts for only few AD cases and is almost exclusively associated with increased amyloid production in the brain. Instead, most patients are affected with the sporadic form of AD and typically have altered clearance mechanisms. The identification of factors that influence the onset and progression of sporadic AD is a key step towards understanding its mechanism(s) and developing successful therapies. An increasing number of epidemiological studies describe a strong association between AD and cardiovascular risk factors, particularly hypertension, that exerts detrimental effects on the cerebral circulation, favouring chronic brain hypoperfusion. However, a clear demonstration of a pathophysiological link between cardiovascular risk factors and AD aetiology is still missing. To increase our knowledge of the mechanisms involved in the brain's response to hypertension and their possible role in promoting amyloid deposition in the brain, we have performed and investigated in depth different murine models of hypertension, induced either pharmacologically or mechanically, leading in the long term to plaque formation in the brain parenchyma and around blood vessels. In the present paper, we review the major findings in this particular experimental setting that allow us to study the pathogenetic mechanisms of sporadic AD triggered by vascular risk factors.
Collapse
|
161
|
SC1/hevin and reactive gliosis after transient ischemic stroke in young and aged rats. J Neuropathol Exp Neurol 2011; 70:913-29. [PMID: 21937915 DOI: 10.1097/nen.0b013e318231151e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SC1 is a member of the SPARC family of glycoproteins that regulate cell-matrix interactions in the developing brain. SC1 is expressed in astrocytes, but nothing is known about the expression in the aged or after stroke. We found that after focal striatal ischemic infarction in adult rats, SC1 increased in astrocytes surrounding the infarct and in the glial scar, but in aged rats, SC1 was lower at the lesion edge. Glial fibrillary acidic protein (GFAP) also increased, but it was less prominent in reactive astrocytes further from the lesion in the aged rats. On the basis of their differential expression of several molecules, 2 types of reactive astrocytes with differing spatiotemporal distributions were identified. On Days 3 and 7, SC1 was prevalent in cells expressing markers of classic reactive astrocytes (GFAP, vimentin, nestin, S100β), as well as apoliprotein E (ApoE), interleukin 1β, aggrecanase 1 (ADAMTS4), and heat shock protein 25 (Hsp25). Adjacent to the lesion on Days 1 and 3, astrocytes with low GFAP levels and a "starburst" SC1 pattern expressed S100β, ApoE, and Hsp32 but not vimentin, nestin, interleukin 1β, ADAMTS4, or Hsp25. Neither cell type was immunoreactive for NG2,CC-1, CD11b, or ionized calcium-binding adapter-1. Their differing expression of inflammation-related and putatively protective molecules suggests different roles for starburst and classic reactive astrocytes in the early glial responses to ischemia.
Collapse
|
162
|
Ihara M, Tomimoto H. Lessons from a mouse model characterizing features of vascular cognitive impairment with white matter changes. J Aging Res 2011; 2011:978761. [PMID: 22132331 PMCID: PMC3216359 DOI: 10.4061/2011/978761] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 07/26/2011] [Indexed: 01/13/2023] Open
Abstract
With the demographic shift in age in advanced countries inexorably set to progress in the 21st century, dementia will become one of the most important health problems worldwide. Vascular cognitive impairment is the second most common type of dementia after Alzheimer's disease and is frequently responsible for the cognitive decline of the elderly. It is characterized by cerebrovascular white matter changes; thus, in order to investigate the underlying mechanisms involved in white matter changes, a mouse model of chronic cerebral hypoperfusion has been developed, which involves the narrowing of the bilateral common carotid arteries with newly designed microcoils. The purpose of this paper is to provide a comprehensive summary of the achievements made with the model that shows good reproducibility of the white matter changes characterized by blood-brain barrier disruption, glial activation, oxidative stress, and oligodendrocyte loss following chronic cerebral hypoperfusion. Detailed characterization of this model may help to decipher the substrates associated with impaired memory and move toward a more integrated therapy of vascular cognitive impairment.
Collapse
Affiliation(s)
- Masafumi Ihara
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | | |
Collapse
|
163
|
Schreiber S, Bueche CZ, Garz C, Kropf S, Kuester D, Amann K, Heinze HJ, Goertler M, Reymann KG, Braun H. Kidney pathology precedes and predicts the pathological cascade of cerebrovascular lesions in stroke prone rats. PLoS One 2011; 6:e26287. [PMID: 22031827 PMCID: PMC3198774 DOI: 10.1371/journal.pone.0026287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022] Open
Abstract
Introduction Human cerebral small vessel disease (CSVD) has been hypothesized to be an age-dependent disease accompanied by similar vascular changes in other organs. SHRSP feature numerous vascular risk factors and may be a valid model of some aspects of human CSVD. Here we compare renal histopathological changes with the brain pathology of spontaneously hypertensive stroke-prone rats (SHRSP). Material and Methods We histologically investigated the brains and kidneys of 61 SHRSP at different stages of age (12 to 44 weeks). The brain pathology (aggregated erythrocytes in capillaries and arterioles, microbleeds, microthromboses) and the kidney pathology (aggregated erythrocytes within peritubular capillaries, tubular protein cylinders, glomerulosclerosis) were quantified separately. The prediction of the brain pathology by the kidney pathology was assessed by creating ROC-curves integrating the degree of kidney pathology and age of SHRSP. Results Both, brain and kidney pathology, show an age-dependency and proceed in definite stages whereas an aggregation of erythrocytes in capillaries and arterioles, we parsimoniously interpreted as stases, represent the initial finding in both organs. Thus, early renal tubulointerstitial damage characterized by rather few intravasal erythrocyte aggregations and tubular protein cylinders predicts the initial step of SHRSPs' cerebral vascular pathology marked by accumulated erythrocytes. The combined increase of intravasal erythrocyte aggregations and protein cylinders accompanied by glomerulosclerosis and thrombotic renal microangiopathy in kidneys of older SHRSP predicts the final stages of SHRSPs' cerebrovascular lesions marked by microbleeds and thrombotic infarcts. Conclusion Our results illustrate a close association between structural brain and kidney pathology and support the concept of small vessel disease to be an age-dependent systemic pathology. Further, an improved joined nephrologic and neurologic diagnostic may help to identify patients with CSVD at an early stage.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Laser-induced carotid artery injury model in the rat for therapeutic agent screening. Lasers Med Sci 2011; 27:593-8. [DOI: 10.1007/s10103-011-0960-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/29/2011] [Indexed: 10/17/2022]
|
165
|
Cook DJ, Tymianski M. Translating promising preclinical neuroprotective therapies to human stroke trials. Expert Rev Cardiovasc Ther 2011; 9:433-49. [PMID: 21517728 DOI: 10.1586/erc.11.34] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke is the third leading cause of mortality and carries the greatest socioeconomic burden of disease in North America. Despite several promising therapies discovered in the preclinical setting, there have been no positive results in human stroke clinical trials to date. In this article, we review the potential causes for failure and discuss strategies that have been proposed to overcome the barrier to translation of stroke therapies. To improve the chance of success in future human stroke trials, we propose that therapies be tested in stroke models that closely resemble the human condition with molecular, imaging and functional outcomes that relate to outcomes utilized in clinical trials. These strategies include higher-order, old-world, nonhuman primate models of stroke with clinically relevant outcome measures. Although stroke neuroprotection has been looked upon pessimistically given the many failures in clinical trials to date, we propose that neuroprotection in humans is feasible and will be realized with rigorous translational science.
Collapse
Affiliation(s)
- Douglas James Cook
- University of Toronto, Department of Surgery, Division of Neurosurgery, Toronto Western Research Institute Neuroprotection Laboratory, 11-414 MCl 399 Bathurst St, Toronto, ON, M5T 2S8, Canada
| | | |
Collapse
|
166
|
|
167
|
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother 2011; 1:94-9. [PMID: 21350617 PMCID: PMC3043335 DOI: 10.4103/0976-500x.72351] [Citation(s) in RCA: 634] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Carol Kilkenny
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
168
|
Turner RJ, Jickling GC, Sharp FR. Are Underlying Assumptions of Current Animal Models of Human Stroke Correct: from STAIRs to High Hurdles? Transl Stroke Res 2011; 2:138-43. [PMID: 21654913 PMCID: PMC3085747 DOI: 10.1007/s12975-011-0067-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 10/29/2022]
Abstract
Animal models of acute ischemic stroke have been criticized for failing to translate to human stroke. Nevertheless, animal models are necessary to improve our understanding of stroke pathophysiology and to guide the development of new stroke therapies. The rabbit embolic clot model is one animal model that has led to an effective therapy in human acute ischemic stroke, namely tissue plasminogen activator (tPA). We propose that potential compounds that demonstrate efficacy in non-rabbit animal models of acute ischemic stroke should also be tested in the rabbit embolic blood clot model and, where appropriate, compared to tPA prior to investigation in humans. Furthermore, the use of anesthesia needs to be considered as a major confounder in animal models of acute ischemic stroke, and death should be included as an outcome measure in animal stroke studies. These steps, along with the current STAIRs recommendations, may improve the successful translation of experimental therapies to clinical stroke treatments.
Collapse
Affiliation(s)
- Renée J. Turner
- Department of Neurology, University of California at Davis, Sacramento, CA 95817 USA
- M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817 USA
- Discipline of Pathology, The University of Adelaide, North Terrace, Adelaide, 5005 SA Australia
| | - Glen C. Jickling
- Department of Neurology, University of California at Davis, Sacramento, CA 95817 USA
- M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817 USA
| | - Frank R. Sharp
- Department of Neurology, University of California at Davis, Sacramento, CA 95817 USA
- M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817 USA
| |
Collapse
|
169
|
Wardlaw JM. Differing risk factors and outcomes in ischemic stroke subtypes: focus on lacunar stroke. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lacunar stroke has been a recognized stroke subtype for many years but its pathophysiology remains unknown, so prevention and treatment are suboptimal. Most lacunar strokes result from an intrinsic cerebral small vessel disease, probably part of a systemic disorder. Hypertension, diabetes and other vascular risk factors (but not atrial fibrillation and ipsilateral carotid stenosis) are equally common in lacunar as in large artery atherothromboembolic stroke, which, together with other factors, suggests that the patient’s response to vascular risk factors, not the vascular risk factors per se, determines whether they develop small vessel or large artery stroke. Inflammation and endothelial failure are probably involved in the pathogenesis of lacunar stroke, but their role needs to be clarified. The cerebral venules as well as arterioles are abnormal in this condition. The disorder may not be primarily ischemic; instead, arteriolar thrombosis may be a late-stage phenomenon secondary to chronic arteriolar wall damage resulting from leakage of plasma components across the BBB. Accurate diagnosis of lacunar stroke, avoiding risk factor-based classifications, is required to underpin future research.
Collapse
Affiliation(s)
- Joanna M Wardlaw
- Brain Research Imaging Centre, Edinburgh, SINAPSE Collaboration, c/o Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
170
|
Choi DH, Lee J. Animal Models of Dementia. BRAIN & NEUROREHABILITATION 2011. [DOI: 10.12786/bn.2011.4.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Dong-Hee Choi
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Korea
| |
Collapse
|
171
|
Hai J, Lin Q, Su SH, Zhang L, Wan JF, Lu Y. Chronic cerebral hypoperfusion in rats causes proteasome dysfunction and aggregation of ubiquitinated proteins. Brain Res 2010; 1374:73-81. [PMID: 21167821 DOI: 10.1016/j.brainres.2010.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022]
Abstract
The deposition of abnormal protein aggregates is a feature of several neurodegenerative diseases. We have employed a rat model to investigate whether chronic cerebral hypoperfusion (CCH) induces proteasome dysfunction and the accumulation of ubiquitinated proteins and aggregates in the CNS. Protein aggregation was analyzed by ethanolic phosphotungstic acid (EPTA) electron microscopy (EM), immunogold EM, laser-scanning confocal microscopy, and Western blotting. Proteasome peptidase activity was studied by peptidase activity assays. EPTA EM and immunogold EM revealed that CCH led to the accumulation of protein aggregates in rat hippocampal CA1 neurons. High-resolution confocal microscopy demonstrated the presence of ubiquitin-positive protein aggregates surrounding nuclei and along dendrites. Western blotting revealed that levels of free ubiquitin were significantly reduced and that levels of ubiquitinated proteins were markedly increased in the hippocampus of CCH rats. Direct activity measurements revealed that proteasome peptidase activity in the hippocampal region of rats was decreased after CCH induction. These data suggest that reduced proteasome activity following CCH could impair the removal of abnormally folded proteins via the ubiquitin-proteasome pathway, leading to the accumulation of potentially toxic protein aggregates that could contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University, Shanghai 200065, China.
| | | | | | | | | | | |
Collapse
|
172
|
Carnevale D, Mascio G, Ajmone-Cat MA, D'Andrea I, Cifelli G, Madonna M, Cocozza G, Frati A, Carullo P, Carnevale L, Alleva E, Branchi I, Lembo G, Minghetti L. Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiol Aging 2010; 33:205.e19-29. [PMID: 20961666 DOI: 10.1016/j.neurobiolaging.2010.08.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 08/18/2010] [Accepted: 08/24/2010] [Indexed: 01/04/2023]
Abstract
Hypertension and sporadic Alzheimer's disease (AD) have been associated but clear pathophysiological links have not yet been demonstrated. Hypertension and AD share inflammation as a pathophysiological trait. Thus, we explored if modulating neuroinflammation could influence hypertension-induced β-amyloid (Aβ) deposition. Possible interactions among hypertension, inflammation and Aβ-deposition were studied in hypertensive mice with transverse aortic coarctation (TAC). Given that brain Aβ deposits are detectable as early as 4 weeks after TAC, brain pathology was analyzed in 3-week TAC mice, before Aβ deposition, and at a later time (8-week TAC mice). Microglial activation and interleukin (IL)-1β upregulation were already found in 3-week TAC mice. At a later time, along with evident Aβ deposition, microglia was still activated. Finally, immune system stimulation (LPS) or inhibition (ibuprofen), strategies described to positively or negatively modulate neuroinflammation, differently affected Aβ deposition. We demonstrate that hypertension per se triggers neuroinflammation before Aβ deposition. The finding that only immune system activation, but not its inhibition, strongly reduced amyloid burden suggests that stimulating inflammation in the appropriate time window may represent a promising strategy to limit vascular-triggered AD-pathology.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86,077 Pozzilli (IS), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Uh J, Yezhuvath U, Cheng Y, Lu H. In vivo vascular hallmarks of diffuse leukoaraiosis. J Magn Reson Imaging 2010; 32:184-90. [PMID: 20578025 DOI: 10.1002/jmri.22209] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To characterize multiple patterns of vascular changes in leukoaraiosis using in vivo magnetic resonance imaging (MRI) techniques. MATERIALS AND METHODS We measured cerebral blood flow (CBF), cerebrovascular reactivity (CVR), and blood-brain-barrier (BBB) leakage in a group of 33 elderly subjects (age: 72.3 +/- 6.8 years, 17 males, 16 females). Leukoaraiosis brain regions were identified in each subject using fluid-attenuated inversion-recovery (FLAIR) MRI. Vascular parameters in the leukoaraiosis regions were compared to those in the normal-appearing white matter (NAWM) regions. Vascular changes in leukoaraiosis were also compared to structural damage as assessed by diffusion tensor imaging. RESULTS CBF and CVR in leukoaraiosis regions were found to be 39.7 +/- 5.2% (P < 0.001) and 52.5 +/- 11.6% (P = 0.005), respectively, of those in NAWM. In subjects who did not have significant leukoaraiosis, CBF and CVR in regions with high risk for leukoaraiosis showed a slight reduction compared to the other white matter regions. Significant BBB leakage was also detected (P = 0.003) in leukoaraiosis and the extent of BBB leakage was positively correlated with mean diffusivity. In addition, CVR in NAWM was lower than that in white matter of subjects without significant leukoaraiosis. CONCLUSION Leukoaraiosis was characterized by reduced CBF, CVR, and a leakage in the BBB.
Collapse
Affiliation(s)
- Jinsoo Uh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
174
|
Zeevi N, Pachter J, McCullough LD, Wolfson L, Kuchel GA. The blood-brain barrier: geriatric relevance of a critical brain-body interface. J Am Geriatr Soc 2010; 58:1749-57. [PMID: 20863334 DOI: 10.1111/j.1532-5415.2010.03011.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier (BBB) represents the interface between the brain and other body tissues. Its ability to protect the brain from harmful compounds has attracted the attention of clinicians and investigators, but far from being a simple physical barrier, the BBB is a complex, heterogeneous, and dynamic tissue. The integrated function of the cerebral microvasculature, tight junction proteins, brain microvascular endothelial cells (BMECs), cellular transport pathways, and enzymatic machinery jointly contribute to normal BBB integrity. Aging, systemic diseases, and ischemic injury can disrupt these processes, resulting in a decline in overall BBB function and integrity. Based on the published literature, this study proposes that age- and disease-related BBB alterations play a key role in diminishing the ability of older patients to recover from acute ischemic stroke. Evidence linking deficits in the cerebral microvasculature and BBB integrity to dementia, medication-related cognitive decline, white matter disease (WMD or leukoaraiosis), and related geriatric syndromes including delirium, gait disorders, and urinary incontinence is also reviewed. Priority areas for a future research agenda include strategies to improve clinicians' ability to diagnose, prevent, and manage BBB abnormalities. In future years, in vivo measures such as functional and contrast-enhanced neuroimaging will be used to evaluate BBB integrity in older adults while also assessing the effectiveness of interventions, some targeting inflammatory pathways known to disrupt the BBB, for their ability to prevent or slow the progression of these complex multifactorial geriatric syndromes.
Collapse
Affiliation(s)
- Neer Zeevi
- University of Connecticut Center on Aging, University of Connecticut Health Center, Farmington, Connecticut, USA.
| | | | | | | | | |
Collapse
|
175
|
Jiwa NS, Garrard P, Hainsworth AH. Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem 2010; 115:814-28. [PMID: 20731763 DOI: 10.1111/j.1471-4159.2010.06958.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vascular cognitive impairment (VCI) encompasses vascular dementia and is the second most common cause of dementing illness after Alzheimer's disease. The main causes of VCI are: cerebral small vessel disease; multi-infarct dementia; strategic infarct (i.e. located in a functionally-critical brain area); haemorrhage/microbleed; angiopathy (including cerebral amyloid angiopathy); severe hypoperfusion (e.g. cardiac arrhythmia); and hereditary vasculopathy (e.g. cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, CADASIL). In this systematic analysis, we aimed to relate cognitive and neuropathological features of experimental models to clinical VCI. We extracted data from 107 studies covering 16 models. These included: brief global ischaemic insults (in rats, mice or gerbils); chronic global hypoperfusion (rats, mice, gerbils); chronic hypertension (in primates or stroke-prone, spontaneously-hypertensive rats); multiple ischaemic lesions because of intra-vascular emboli (in rodents, rabbits or primates); strategic ischaemic lesions (in rats or mini-pigs); generalised vasculopathies, because of mutant Notch3, hyperhomocysteinaemia, experimental diabetes mellitus or lack of cerebral vasodilator M(5) receptors (rats or mice). Most cognitive testing showed deficits in working and reference memory. The lesions observed were microinfarcts, diffuse white matter lesions, hippocampal neuronal death, focal ischaemic lesions and micro-haemorrhages. The most-used model was bilateral carotid artery occlusion in rats, leading to chronic hypoperfusion and white matter injury.
Collapse
Affiliation(s)
- Nadim S Jiwa
- Clinical Neuroscience, Division of Clinical Sciences, St George's University of London, London, UK
| | | | | |
Collapse
|
176
|
Blood-brain barrier and cerebral small vessel disease. J Neurol Sci 2010; 299:66-71. [PMID: 20850797 DOI: 10.1016/j.jns.2010.08.042] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 07/04/2010] [Accepted: 08/24/2010] [Indexed: 01/08/2023]
Abstract
Increasing evidence from neuro and retinal imaging, neuropathology, epidemiology and experimental models suggests that the primary underlying initiating cause of cerebral small vessel disease is the derangement of the blood-brain barrier. This may start some years before the first symptoms, leads to the small vessel structural changes (vessel wall thickening, disorganisation and eventual breakdown) and perivascular changes (oedema, enlarged perivascular spaces, tissue damage interpreted as "infarcts") and is fundamentally different to traditional "ischaemic" mechanisms, although small vessel occlusion due to thrombus formation on damaged vessel walls may be a late secondary phenomenon. Space limits a detailed discussion of the epidemiology and experimental evidence, so this brief review will focus on neuroimaging evidence and summarise the appearances, risk factors and associations of different components of cerebral small vessel disease as identified on imaging, discuss potential causes and, in particular, the evidence that disordered blood-brain barrier precipitates or worsens progression of cerebral small vessel disease. This mechanism may also play a role in other common disorders of ageing such as Alzheimer's disease.
Collapse
|
177
|
Ferrer I. Cognitive impairment of vascular origin: neuropathology of cognitive impairment of vascular origin. J Neurol Sci 2010; 299:139-49. [PMID: 20846674 DOI: 10.1016/j.jns.2010.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 08/15/2010] [Accepted: 08/24/2010] [Indexed: 12/31/2022]
Abstract
The term cognitive impairment of vascular origin is used to designate global cognitive deficits as well as focal neurological deficits such as aphasia, apraxia and agnosia of vascular/circulatory origin. It has been useful for identifying early clinical and neuroradiological alterations that might permit therapeutic strategies geared to curbing the progression of cerebrovascular disease. Multi-infarct encephalopathy, infarcts in strategic areas, lacunae and lacunar status, Binswanger's encephalopathy, hippocampal sclerosis, cortical granular atrophy and watershed infarcts are common lesions. Hypertension and vascular diseases such as arteriosclerosis, small blood vessel disease, inflammatory diseases of the blood vessels, Sneddon syndrome, cerebral amyloid angiopathies, cerebral autosomic dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and Maeda's syndrome are causative of cognitive impairment of vascular origin. Other less common causes are hereditary endotheliopathy with retinopathy, neuropathy and strokes (HERNS), cerebro-retinian vasculopathy (CRV), hereditary vascular retinopathy (HVR) (all three linked to 3p21.1-p21.3), hereditary infantile hemiparesis with arteriolar retinopathy and leukoencephalopathy (HIHRATL) (not linked to 3p21), fibromuscular dysplasia, and moya-moya disease. Lack of uniformity of clinical manifestations, the variety of vascular diseases and circulatory factors, the diverse, but often convergent, neuropathological substrates, and the common association with unrelated neurodegenerative diseases in the elderly, make it hard to assume a single clinical approach in the diagnosis and treatment of cognitive impairment of vascular origin. Rather, environmental and genetic risk factors, underlying vascular diseases, associated systemic, metabolic and neurodegenerative diseases and identification of extent and distribution of lesions with morphological and functional neuroimaging methods should be applied in every individual patient.
Collapse
Affiliation(s)
- Isidre Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, 08907 Hospitalet de LLobregat, Spain.
| |
Collapse
|
178
|
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9:689-701. [PMID: 20610345 DOI: 10.1016/s1474-4422(10)70104-6] [Citation(s) in RCA: 2268] [Impact Index Per Article: 151.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Leonardo Pantoni
- Department of Neurological and Psychiatric Sciences, University of Florence, Italy.
| |
Collapse
|
179
|
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8:e1000412. [PMID: 20613859 PMCID: PMC2893951 DOI: 10.1371/journal.pbio.1000412] [Citation(s) in RCA: 5375] [Impact Index Per Article: 358.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Carol Kilkenny
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, United Kingdom.
| | | | | | | | | |
Collapse
|
180
|
Bacigaluppi M, Comi G, Hermann DM. Animal models of ischemic stroke. Part one: modeling risk factors. Open Neurol J 2010; 4:26-33. [PMID: 20802809 PMCID: PMC2928914 DOI: 10.2174/1874205x01004020026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 12/16/2009] [Accepted: 12/22/2009] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is one of the leading causes of long-term disability and death in developed and developing countries. As emerging disease, stroke related mortality and morbidity is going to step up in the next decades. This is both due to the poor identification of risk factors and persistence of unhealthy habits, as well as to the aging of the population. To counteract the estimated increase in stroke incidence, it is of primary importance to identify risk factors, study their effects, to promote primary and secondary prevention, and to extend the therapeutic repertoire that is currently limited to the very first hours after stroke. While epidemiologic studies in the human population are essential to identify emerging risk factors, adequate animal models represent a fundamental tool to dissect stroke risk factors to their molecular mechanism and to find efficacious therapeutic strategies for this complex multi- factorial disorder. The present review is organized into two parts: the first part deals with the animal models that have been developed to study stroke and its related risk factors and the second part analyzes the specific stroke models. These models represent an indispensable tool to investigate the mechanisms of cerebral injury and to develop novel therapies.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Department of Neurology, University Hospital Zurich (USZ), Zurich, Switzerland
| | | | | |
Collapse
|
181
|
Nishio K, Ihara M, Yamasaki N, Kalaria RN, Maki T, Fujita Y, Ito H, Oishi N, Fukuyama H, Miyakawa T, Takahashi R, Tomimoto H. A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke 2010; 41:1278-84. [PMID: 20448204 DOI: 10.1161/strokeaha.110.581686] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE We have previously described effects of chronic cerebral hypoperfusion in mice with bilateral common carotid artery stenosis (BCAS) using microcoils for 30 days. These mice specifically exhibit working memory deficits attributable to frontal-subcortical circuit damage without apparent gray matter changes, indicating similarities with subcortical ischemic vascular dementia. However, as subcortical ischemic vascular dementia progresses over time, the longer-term effects that characterize the mouse model are not known. METHODS Comprehensive behavioral test batteries and histological examinations were performed in mice subjected to BCAS for up to 8 months. Laser speckle flowmetry and (18)F-fluorodeoxyglucose positron emission tomography were performed to assess cerebral blood flow and metabolism at several time points. RESULTS At 2 hours after BCAS, cerebral blood flow in the cerebral cortex temporarily decreased to as much as 60% to 70% of the control value but gradually recovered to >80% at 1 to 3 months. At 5 to 6 months after BCAS, reference and working memory were impaired as demonstrated by the Barnes and radial arm maze tests, respectively. Furthermore, (18)F-fluorodeoxyglucose positron emission tomography demonstrated that hippocampal glucose utilization was impaired at 6 months after BCAS. Consistent with these behavioral and metabolic abnormalities, histological analyses demonstrated hippocampal atrophy with pyknotic and apoptotic cells at 8 months after BCAS. CONCLUSIONS These results suggest that the longer-term BCAS model replicates advanced stages of subcortical ischemic vascular dementia when hippocampal neuronal loss becomes significant.
Collapse
Affiliation(s)
- Keiko Nishio
- Department of Neurology, Faculty of Medicine, Kyoto University, Sakyo-Ku, Kyoto 606-8507 Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Lin Q, Hai J, Yao LY, Lu Y. Neuroprotective effects of NSTyr on cognitive function and neuronal plasticity in rats of chronic cerebral hypoperfusion. Brain Res 2010; 1325:183-90. [DOI: 10.1016/j.brainres.2010.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/07/2010] [Accepted: 02/08/2010] [Indexed: 02/01/2023]
|
183
|
Abstract
Stroke is one of the leading causes of death and disability in developed countries. Since protecting neurons alone is not sufficient for stroke therapy, research has shifted to the rescue of multiple cell types in the brain. In particular, attention has focused on the study of how cerebral blood vessels and brain cells communicate with each other. Recent findings suggest that cerebral endothelial cells may secrete trophic factors that nourish neighboring cells. Although data are strongest in terms of supporting endothelial-neuronal interactions, it is likely that similar interactions occur in white matter as well. In this mini-review, we summarize recent advances in the dissection of cell-cell interactions in white matter. We examine two key concepts. First, trophic interactions between vessels and oligodendrocytes (OLGs) and oligodendrocyte precursor cells (OPCs) play critical roles in white matter homeostasis. Second, cell-cell trophic coupling is disturbed under diseased conditions that incur oxidative stress. White matter pathophysiology is very important in stroke. A deeper understanding of the mechanisms of oligovascular signaling in normal and pathologic conditions may lead us to new therapeutic targets for stroke and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
184
|
Joutel A, Monet-Leprêtre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P, Hubner N. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 2010; 120:433-45. [PMID: 20071773 DOI: 10.1172/jci39733] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 11/18/2009] [Indexed: 01/09/2023] Open
Abstract
Cerebral ischemic small vessel disease (SVD) is the leading cause of vascular dementia and a major contributor to stroke in humans. Dominant mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic archetype of cerebral ischemic SVD. Progress toward understanding the pathogenesis of this disease and developing effective therapies has been hampered by the lack of a good animal model. Here, we report the development of a mouse model for CADASIL via the introduction of a CADASIL-causing Notch3 point mutation into a large P1-derived artificial chromosome (PAC). In vivo expression of the mutated PAC transgene in the mouse reproduced the endogenous Notch3 expression pattern and main pathological features of CADASIL, including Notch3 extracellular domain aggregates and granular osmiophilic material (GOM) deposits in brain vessels, progressive white matter damage, and reduced cerebral blood flow. Mutant mice displayed attenuated myogenic responses and reduced caliber of brain arteries as well as impaired cerebrovascular autoregulation and functional hyperemia. Further, we identified a substantial reduction of white matter capillary density. These neuropathological changes occurred in the absence of either histologically detectable alterations in cerebral artery structure or blood-brain barrier breakdown. These studies provide in vivo evidence for cerebrovascular dysfunction and microcirculatory failure as key contributors to hypoperfusion and white matter damage in this genetic model of ischemic SVD.
Collapse
|
185
|
Kilkenny C, Parsons N, Kadyszewski E, Festing MFW, Cuthill IC, Fry D, Hutton J, Altman DG. Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS One 2009; 4:e7824. [PMID: 19956596 PMCID: PMC2779358 DOI: 10.1371/journal.pone.0007824] [Citation(s) in RCA: 543] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/15/2009] [Indexed: 01/18/2023] Open
Abstract
For scientific, ethical and economic reasons, experiments involving animals should be appropriately designed, correctly analysed and transparently reported. This increases the scientific validity of the results, and maximises the knowledge gained from each experiment. A minimum amount of relevant information must be included in scientific publications to ensure that the methods and results of a study can be reviewed, analysed and repeated. Omitting essential information can raise scientific and ethical concerns. We report the findings of a systematic survey of reporting, experimental design and statistical analysis in published biomedical research using laboratory animals. Medline and EMBASE were searched for studies reporting research on live rats, mice and non-human primates carried out in UK and US publicly funded research establishments. Detailed information was collected from 271 publications, about the objective or hypothesis of the study, the number, sex, age and/or weight of animals used, and experimental and statistical methods. Only 59% of the studies stated the hypothesis or objective of the study and the number and characteristics of the animals used. Appropriate and efficient experimental design is a critical component of high-quality science. Most of the papers surveyed did not use randomisation (87%) or blinding (86%), to reduce bias in animal selection and outcome assessment. Only 70% of the publications that used statistical methods described their methods and presented the results with a measure of error or variability. This survey has identified a number of issues that need to be addressed in order to improve experimental design and reporting in publications describing research using animals. Scientific publication is a powerful and important source of information; the authors of scientific publications therefore have a responsibility to describe their methods and results comprehensively, accurately and transparently, and peer reviewers and journal editors share the responsibility to ensure that published studies fulfil these criteria.
Collapse
Affiliation(s)
- Carol Kilkenny
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 2009; 10:861-72. [PMID: 19888284 DOI: 10.1038/nrn2735] [Citation(s) in RCA: 1274] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reductions in blood flow to the brain of sufficient duration and extent lead to stroke, which results in damage to neuronal networks and the impairment of sensation, movement or cognition. Evidence from animal models suggests that a time-limited window of neuroplasticity opens following a stroke, during which the greatest gains in recovery occur. Plasticity mechanisms include activity-dependent rewiring and synapse strengthening. The challenge for improving stroke recovery is to understand how to optimally engage and modify surviving neuronal networks, to provide new response strategies that compensate for tissue lost to injury.
Collapse
Affiliation(s)
- Timothy H Murphy
- Kinsmen Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
187
|
Cognitive dysfunction induced by chronic cerebral hypoperfusion in a rat model associated with arteriovenous malformations. Brain Res 2009; 1301:80-8. [PMID: 19761762 DOI: 10.1016/j.brainres.2009.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/27/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
Abstract
The relationship between chronic cerebral hypoperfusion and cognitive function has not been completely delineated. In the present studies, we developed an experimental model associated with arteriovenous malformation to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neuropathological changes. The rat model was established by creating a fistula through an end-to-side anastomosis between the right distal external jugular vein and the ipsilateral common carotid artery, followed by ligation of the left vein draining the transverse sinus and bilateral external carotid arteries. Age-matched rats comprised a control group. Three months after surgery, cognitive functions were evaluated by the Morris water maze and hippocampal long-term potentiation (LTP). Neuropathological changes were examined using light and electron microscopic techniques. We found that both learning capacity and spatial memory were significantly impaired in rats with chronic cerebral hypoperfusion concomitant with LTP inhibition and neurodegeneration in the hippocampal CA1 region of model rats compared with control rats. In addition, model rats showed a decrease at the protein level of cyclic AMP response element binding (CREB) phosphorylation in hippocampal tissues. Therefore, cognitive impairment caused by chronic cerebral hypoperfusion associated with arteriovenous malformations may be partially explained by the neurodegeneration and reduction of CREB phosphorylation in rat hippocampus.
Collapse
|
188
|
Itoh T, Satou T, Takemori K, Hashimoto S, Ito H. Neural stem cells and new neurons in the cerebral cortex of stroke-prone spontaneously hypertensive rats after stroke. J Mol Neurosci 2009; 41:55-65. [PMID: 19669942 DOI: 10.1007/s12031-009-9279-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/27/2009] [Indexed: 01/27/2023]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP) are the only animal model that suffers from spontaneous cerebral stroke. In this study, we investigated the appearance of neural stem cells (NSCs) and new neurons in the penumbra and the subventricular zone (SVZ) after cerebral stroke in SHRSP. SHRSP before cerebral stroke were intraperitoneally injected with 5-bromo-2'-deoxyuridine (BrdU). SHRSP were divided into acute and chronic phase groups after cerebral stroke. Brain sections from both groups were studied with cell-specific markers such as BrdU, a cell division and proliferation marker, sex-determining region Y-box 2, a marker of NSCs, nestin, an NSC and immature astrocyte marker, doublecortin, an immature new neuron marker, and neuron-specific nuclear protein, a marker of mature neurons. NSCs and new neurons appeared in the penumbra in the early stages after cerebral stroke, and these cells differentiated into mature neurons in the chronic phase. Furthermore, soon after being affected by a cerebral stroke, there were many new neurons and immature cells, which appear to be NSCs, in the ipsilateral SVZ. Immature cells and new neurons from the ipsilateral SVZ might migrate into the penumbra after cerebral stroke, and this is the first report of their observation after a spontaneous cerebral stroke.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Kinki University School of Medicine, 377-2 Ohno-higashi, Osakasayama, Osaka, 589-8511, Japan.
| | | | | | | | | |
Collapse
|
189
|
Sato Y, Chin Y, Kato T, Tanaka Y, Tozuka Y, Mase M, Ageyama N, Ono F, Terao K, Yoshikawa Y, Hisatsune T. White matter activated glial cells produce BDNF in a stroke model of monkeys. Neurosci Res 2009; 65:71-8. [PMID: 19501123 DOI: 10.1016/j.neures.2009.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 05/02/2009] [Accepted: 05/20/2009] [Indexed: 12/26/2022]
Abstract
Lacunar-type stroke accounts for approximately a quarter of all ischemic strokes, and is the most common cause of vascular dementia. Despite its importance, there are few specific treatments for lacunar stroke, probably due largely to a lack of animal models. In this study, we developed a stroke model in a higher primate, the Macaque monkey. This was achieved by occluding the deep subcortical penetrating arteries with agarose spheres of mean diameters around 50 microm, and the appropriateness of this model as a lacunar-type stroke was verified by MRI. We observed widespread gliosis in the ipsilateral white matter (WM) of the stroke monkey. We also analyzed the expression of neurotrophins in the activated glial cells, and found that their expression of BDNF was stimulated in the affected WM following ischemic injury. Our results support the idea that WM glial cells play an active role in protecting and promoting the regeneration of nerve fibers in the affected WM of the ischemic brain, by producing BDNF. These findings may be useful for the development of new therapeutic strategies aimed at preventing or treating stroke.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|