151
|
Pando A, Reagan JL, Quesenberry P, Fast LD. Extracellular vesicles in leukemia. Leuk Res 2017; 64:52-60. [PMID: 29190514 DOI: 10.1016/j.leukres.2017.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/12/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EV) are nano-sized membrane enclosed vehicles that are involved in cell-to-cell communication and carry cargo that is representative of the parent cell. Recent studies have highlighted the significant roles leukemia EVs play in tumor progression, and ways in which they can lead to treatment evasion, thus meriting further investigation. Leukemia EVs are involved in crosstalk between the leukemia cell and its surroundings, transforming it into a cancer favorable microenvironment. Due to the diverse biological content found in leukemia EVs, they have an assortment of effects on the cells they interact with and can be harnessed as candidates for diagnostic and therapeutic treatments. This review focuses on EVs in the context of leukemia and the means by which they modulate their microenvironment, hematopoiesis, and the immune system to facilitate malignancy. We will also address current and prospective EV-based therapeutics.
Collapse
Affiliation(s)
- Alejandro Pando
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - John L Reagan
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter Quesenberry
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Loren D Fast
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
152
|
Berridge MV, Herst PM, Rowe MR, Schneider R, McConnell MJ. Mitochondrial transfer between cells: Methodological constraints in cell culture and animal models. Anal Biochem 2017; 552:75-80. [PMID: 29158129 DOI: 10.1016/j.ab.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
Abstract
Interest in the recently discovered phenomenon of mitochondrial transfer between mammalian cells has gained momentum since it was first described in cell culture systems more than a decade ago. Mitochondria-targeting fluorescent dyes have been repurposed and are now widely used in these studies and in acute disease models, sometimes without due consideration of their limitations, while vectors containing mitochondrially-imported fluorescent proteins have complemented the use of mitochondria-targeting dyes. Genetic approaches that use mitochondrial DNA polymorphisms have also been used in some in vitro studies and in tumor models and are particularly useful where mtDNA is damaged or deleted. These approaches can also be used to study the long-term consequences of mitochondrial transfer such as in bone marrow and organ transplantation and in tumour biology where inherent mitochondrial damage is often a key feature. As research on intercellular mitochondrial transfer moves from cell culture into animal models and human diseases it will be important to understand the limitations of the various techniques in order to apply appropriate methodologies to address physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- M V Berridge
- Cancer Cell Biology, Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand.
| | - P M Herst
- Cancer Cell Biology, Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand; Department of Radiation Therapy, University of Otago, PO Box 7343, Wellington 6242, New Zealand
| | - M R Rowe
- Department of Radiation Therapy, University of Otago, PO Box 7343, Wellington 6242, New Zealand; School of Biological Sciences, Victoria University, PO Box 600, Wellington 6140, New Zealand
| | - R Schneider
- Department of Radiation Therapy, University of Otago, PO Box 7343, Wellington 6242, New Zealand; School of Biological Sciences, Victoria University, PO Box 600, Wellington 6140, New Zealand
| | - M J McConnell
- School of Biological Sciences, Victoria University, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
153
|
Grange C, Iampietro C, Bussolati B. Stem cell extracellular vesicles and kidney injury. Stem Cell Investig 2017; 4:90. [PMID: 29270416 DOI: 10.21037/sci.2017.11.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) appear as a new promising cell-free therapy for acute and chronic renal diseases. EVs retain characteristics of the cell of origin and those derived from stem cells may mimic their regenerative properties per se. In fact, EVs contain many active molecules such as proteins and RNA species that act on target cells through different mechanisms, stimulating proliferation and angiogenesis and reducing apoptosis and inflammation. There are several reports that demonstrate a general regenerative potential of EVs derived from mesenchymal stromal cells (MSCs) of different sources in kidney injury models. In addition, a promising new approach is the use of EVs in the graft perfusion solution for kidney conditioning before transplant. Here we summarize the application of EVs released by stem cells in preclinical models of acute and chronic renal damage, comparing animal models, use of EVs of different cell origin and of their sub-fractions, doses, route of administration and efficacy of treatment.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Corinne Iampietro
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
154
|
Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 2017; 264:112-126. [PMID: 28837823 DOI: 10.1016/j.jconrel.2017.08.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are potential therapies for various diseases, but their angiogenic mechanisms of therapeutic efficacy remain unclear. Here, we describe how MSC-EVs, activates VEGF receptors and downstream angiogenesis pathways. Mouse MSC-EVs were isolated from cell culture medium and characterized using transmission electron microscopy, nanoparticle analysis, and western blotting. In vitro migration, proliferation, and tube formation assays using endothelial cells were used to assess the angiogenic potential of MSC-EVs, and revealed higher levels of cellular migration, proliferation, and tube formation after treatment. qRT-PCR and western blotting (WB) revealed higher protein and mRNA expression of the angiogenic genes VEGFR1 and VEGFR2 in mouse SVEC-4 endothelial cells after MSC-EVs treatment. Additionally, other vital pro-angiogenic pathways (SRC, AKT, and ERK) were activated by in vitro MSC-EV treatment. WB and qRT-PCR revealed enriched presence of VEGF protein and miR-210-3p in MSC-EV. The hindlimb ischemia mouse model was established and MSC-EVs with or without Matrigel (EV-MSC+Gel) were injected into the ischemic area and blood reperfusion was monitored using molecular imaging techniques. The in vivo administration of MSC-EVs increased both blood reperfusion and the formation of new blood vessels in the ischemic limb, with the addition of matrigel enhancing this effect further by releasing EVs slowly. MSC-EVs enhance angiogenesis in ischemic limbs, most likely via the overexpression of VEGFR1 and VEGFR2 in endothelial cells. These findings reveal a novel mechanism of activating receptors by MSC-EVs influence the angiogenesis.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea.
| |
Collapse
|
155
|
Mesenchymal Stromal Cell-Derived Extracellular Vesicles Provide Long-Term Survival After Total Body Irradiation Without Additional Hematopoietic Stem Cell Support. Stem Cells 2017; 35:2379-2389. [DOI: 10.1002/stem.2716] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
|
156
|
Hematopoietic Stem Cells: Uncomfortable Considerations. ACTA ACUST UNITED AC 2017; 3:165-171. [PMID: 34194956 DOI: 10.1007/s40610-017-0068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose This report defines new concepts of hematopoietic stem cell biology. Recent findings We have utilized 3 different approaches which show that long-term repopulating hematopoietic stem cells are actively cycling and always changing phenotype. In addition this is reversible. This indicates that the stem cell cannot be purified by current epitope selection approaches. The vast bulk of hematopoietic stem cells are discarded in different populations when stem cells are purified to lineage negative c-kit positive and Sca-1 positive cells. Studies to define the hematopoietic niche have been largely carried out on these irrelevant purified cells and thus are not definitive. Studies have indicated the presence of baseline stem cells which function during the normal lifetime of mice. Baseline hematopoiesis appears to be run by thousands of relatively short lived clones with limited differentiation capacity. Thus there appear to be two basic hematopoietic stem cell modes; emergency and baseline.
Collapse
|
157
|
Quesenberry P, Goldberg L. A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'. Leukemia 2017; 31:1678-1685. [PMID: 28529310 PMCID: PMC5568824 DOI: 10.1038/leu.2017.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023]
Abstract
The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.
Collapse
Affiliation(s)
- P Quesenberry
- Department of Medicine, Brown University/Rhode Island Hospital, Providence, RI, USA
| | - L Goldberg
- Department of Medicine, Brown University/Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
158
|
A New View of Stem Cell Dynamics. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
159
|
Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, Giebel B. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents. Int J Mol Sci 2017; 18:ijms18071450. [PMID: 28684664 PMCID: PMC5535941 DOI: 10.3390/ijms18071450] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, have been identified as mediators of a newly-discovered intercellular communication system. They are essential signaling mediators in various physiological and pathophysiological processes. Depending on their origin, they fulfill different functions. EVs of mesenchymal stem/stromal cells (MSCs) have been found to promote comparable therapeutic activities as MSCs themselves. In a variety of in vivo models, it has been observed that they suppress pro-inflammatory processes and reduce oxidative stress and fibrosis. By switching pro-inflammatory into tolerogenic immune responses, MSC-EVs very likely promote tissue regeneration by creating a pro-regenerative environment allowing endogenous stem and progenitor cells to successfully repair affected tissues. Accordingly, MSC-EVs provide a novel, very promising therapeutic agent, which has already been successfully applied to humans. However, the MSC-EV production process has not been standardized, yet. Indeed, a collection of different protocols has been used for the MSC-EV production, characterization and application. By focusing on kidney, heart, liver and brain injuries, we have reviewed the major outcomes of published MSC-EV in vivo studies.
Collapse
Affiliation(s)
- Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Rita Ferrer-Tur
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Lena Gockeln
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Oumaima Stambouli
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Amina Becic
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| |
Collapse
|
160
|
Chen F, Shen M, Zeng D, Wang C, Wang S, Chen S, Tang Y, Hu M, Chen M, Su Y, Ran X, Xu Y, Wang J. Effect of radiation-induced endothelial cell injury on platelet regeneration by megakaryocytes. JOURNAL OF RADIATION RESEARCH 2017; 58:456-463. [PMID: 28402443 PMCID: PMC5570070 DOI: 10.1093/jrr/rrx015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Thrombocytopenia is an important cause of hemorrhage and death after radiation injury, but the pathogenesis of radiation-induced thrombocytopenia has not been fully characterized. Here, we investigated the influence of radiation-induced endothelial cell injury on platelet regeneration. We found that human umbilical vein endothelial cells (HUVECs) underwent a high rate of apoptosis, accompanied by a significant reduction in the expression of vascular endothelial growth factor (VEGF) at 96 h after radiation. Subsequent investigations revealed that radiation injury lowered the ability of HUVECs to attract migrating megakaryocytes (MKs). Moreover, the adhesion of MKs to HUVECs was markedly reduced when HUVECs were exposed to radiation, accompanied by a decreased production of platelets by MKs. In vivo study showed that VEGF treatment significantly promoted the migration of MKs into the vascular niche and accelerated platelet recovery in irradiated mice. Our studies demonstrate that endothelial cell injury contributes to the slow recovery of platelets after radiation, which provides a deeper insight into the pathogenesis of thrombocytopenia induced by radiation.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Dongfeng Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yong Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xinze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
161
|
Aqmasheh S, Shamsasanjan K, Akbarzadehlaleh P, Pashoutan Sarvar D, Timari H. Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells. Adv Pharm Bull 2017; 7:165-177. [PMID: 28761818 PMCID: PMC5527230 DOI: 10.15171/apb.2017.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of patients with hematologic disorders for more effective Bone Marrow (BM) transplantation in the near future. However, considerable challenges remain on realization of how paracrine mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen with various paracrine factors in order to achieve optimal results for tissue conservation and regeneration. The aim of this review is to characterize and consider the related aspects of the ability of MSCs secretome in protection of hematopoiesis.
Collapse
Affiliation(s)
- Sara Aqmasheh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamze Timari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
162
|
Stik G, Crequit S, Petit L, Durant J, Charbord P, Jaffredo T, Durand C. Extracellular vesicles of stromal origin target and support hematopoietic stem and progenitor cells. J Cell Biol 2017. [PMID: 28630143 PMCID: PMC5496607 DOI: 10.1083/jcb.201601109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as crucial mediators in cell-to-cell communication. Stik et al. provide evidence that EVs released by supportive stromal cells target hematopoietic stem and progenitor cells in vivo and in vitro and influence their gene expression and potential. Extracellular vesicles (EVs) have been recently reported as crucial mediators in cell-to-cell communication in development and disease. In this study, we investigate whether mesenchymal stromal cells that constitute a supportive microenvironment for hematopoietic stem and progenitor cells (HSPCs) released EVs that could affect the gene expression and function of HSPCs. By taking advantage of two fetal liver–derived stromal lines with widely differing abilities to maintain HSPCs ex vivo, we demonstrate that stromal EVs play a critical role in the regulation of HSPCs. Both supportive and nonsupportive stromal lines secreted EVs, but only those delivered by the supportive line were taken up by HSPCs ex vivo and in vivo. These EVs harbored a specific molecular signature, modulated the gene expression in HSPCs after uptake, and maintained the survival and clonogenic potential of HSPCs, presumably by preventing apoptosis. In conclusion, our study reveals that EVs are an important component of the HSPC niche, which may have major applications in regenerative medicine.
Collapse
Affiliation(s)
- Gregoire Stik
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Simon Crequit
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Laurence Petit
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Jennifer Durant
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Pierre Charbord
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Thierry Jaffredo
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Charles Durand
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| |
Collapse
|
163
|
Bruno S, Tapparo M, Collino F, Chiabotto G, Deregibus MC, Soares Lindoso R, Neri F, Kholia S, Giunti S, Wen S, Quesenberry P, Camussi G. Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Eng Part A 2017; 23:1262-1273. [PMID: 28471327 PMCID: PMC5689130 DOI: 10.1089/ten.tea.2017.0069] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) derived from human bone marrow mesenchymal stromal cells (MSCs) promote the regeneration of kidneys in different animal models of acute kidney injury (AKI) in a manner comparable with the cells of origin. However, due to the heterogeneity observed in the EVs isolated from MSCs, it is unclear which population is responsible for the proregenerative effects. We therefore evaluated the effect of various EV populations separated by differential ultracentrifugation (10K population enriched with microvesicles and 100K population enriched with exosomes) on AKI recovery. Only the exosomal-enriched population induced an improvement of renal function and morphology comparable with that of the total EV population. Interestingly, the 100K EVs exerted a proproliferative effect on murine tubular epithelial cells, both in vitro and in vivo. Analysis of the molecular content from the different EV populations revealed a distinct profile. The 100K population, for instance, was enriched in specific mRNAs (CCNB1, CDK8, CDC6) reported to influence cell cycle entry and progression; miRNAs involved in regulating proliferative/antiapoptotic pathways and growth factors (hepatocyte growth factor and insulin-like growth factor-1) that could explain the effect of renal tubular cell proliferation. On the other hand, the EV population enriched in microvesicles (10K) was unable to induce renal regeneration and had a molecular profile with lower expression of proproliferative molecules. In conclusion, the different molecular composition of exosome- and microvesicle-enriched populations may explain the regenerative effect of EVs observed in AKI.
Collapse
Affiliation(s)
- Stefania Bruno
- 1 Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Marta Tapparo
- 2 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Federica Collino
- 2 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy .,3 Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Giulia Chiabotto
- 2 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Maria Chiara Deregibus
- 2 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Rafael Soares Lindoso
- 2 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy .,3 Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Francesco Neri
- 4 Leibniz Institute on Aging-Fritz Lipmann Institute (FLI) Beutenbergstrasse , Jena, Germany .,5 Human Genetics Foundation, University of Torino , Torino, Italy
| | - Sharad Kholia
- 2 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Sara Giunti
- 2 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Sicheng Wen
- 6 Division of Hematology/Oncology, Brown University , Rhode Island Hospital, Providence, Rhode Island
| | - Peter Quesenberry
- 6 Division of Hematology/Oncology, Brown University , Rhode Island Hospital, Providence, Rhode Island
| | - Giovanni Camussi
- 2 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| |
Collapse
|
164
|
Collino F, Pomatto M, Bruno S, Lindoso RS, Tapparo M, Sicheng W, Quesenberry P, Camussi G. Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells. Stem Cell Rev Rep 2017; 13:226-243. [PMID: 28070858 PMCID: PMC5380712 DOI: 10.1007/s12015-016-9713-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several studies have suggested that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) may mediate MSC paracrine action on kidney regeneration. This activity has been, at least in part, ascribed to the transfer of proteins/transcription factors and different RNA species. Information on the RNA/protein content of different MSC EV subpopulations and the correlation with their biological activity is currently incomplete. The aim of this study was to evaluate the molecular composition and the functional properties on renal target cells of MSC EV sub-populations separated by gradient floatation. The results demonstrated heterogeneity in quantity and composition of MSC EVs. Two peaks of diameter were observed (90-110 and 170-190 nm). The distribution of exosomal markers and miRNAs evaluated in the twelve gradient fractions showed an enrichment in fractions with a flotation density of 1.08-1.14 g/mL. Based on this observation, we evaluated the biological activity on renal cell proliferation and apoptosis resistance of low (CF1), medium (CF2) and high (CF3) floatation density fractions. EVs derived from all fractions, were internalized by renal cells, CF1 and CF2 but not CF3 fraction stimulated significant cell proliferation. CF2 also inhibited apoptosis on renal tubular cells submitted to ischemia-reperfusion injury. Comparative miRNomic and proteomic profiles reveal a cluster of miRNAs and proteins common to all three fractions and an enrichment of selected molecules related to renal regeneration in CF2 fraction. In conclusion, the CF2 fraction enriched in exosomal markers was the most active on renal tubular cell proliferation and protection from apoptosis.
Collapse
Affiliation(s)
- Federica Collino
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Medical Sciences and 2i3T, University of Torino, Torino, Italy
| | - Margherita Pomatto
- Department of Medical Sciences and 2i3T, University of Torino, Torino, Italy
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Rafael Soares Lindoso
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marta Tapparo
- Department of Medical Sciences and 2i3T, University of Torino, Torino, Italy
| | - Wen Sicheng
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Peter Quesenberry
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Giovanni Camussi
- Department of Medical Sciences and 2i3T, University of Torino, Torino, Italy.
| |
Collapse
|
165
|
Szatmári T, Kis D, Bogdándi EN, Benedek A, Bright S, Bowler D, Persa E, Kis E, Balogh A, Naszályi LN, Kadhim M, Sáfrány G, Lumniczky K. Extracellular Vesicles Mediate Radiation-Induced Systemic Bystander Signals in the Bone Marrow and Spleen. Front Immunol 2017; 8:347. [PMID: 28396668 PMCID: PMC5366932 DOI: 10.3389/fimmu.2017.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 12/02/2022] Open
Abstract
Radiation-induced bystander effects refer to the induction of biological changes in cells not directly hit by radiation implying that the number of cells affected by radiation is larger than the actual number of irradiated cells. Recent in vitro studies suggest the role of extracellular vesicles (EVs) in mediating radiation-induced bystander signals, but in vivo investigations are still lacking. Here, we report an in vivo study investigating the role of EVs in mediating radiation effects. C57BL/6 mice were total-body irradiated with X-rays (0.1, 0.25, 2 Gy), and 24 h later, EVs were isolated from the bone marrow (BM) and were intravenously injected into unirradiated (so-called bystander) animals. EV-induced systemic effects were compared to radiation effects in the directly irradiated animals. Similar to direct radiation, EVs from irradiated mice induced complex DNA damage in EV-recipient animals, manifested in an increased level of chromosomal aberrations and the activation of the DNA damage response. However, while DNA damage after direct irradiation increased with the dose, EV-induced effects peaked at lower doses. A significantly reduced hematopoietic stem cell pool in the BM as well as CD4+ and CD8+ lymphocyte pool in the spleen was detected in mice injected with EVs isolated from animals irradiated with 2 Gy. These EV-induced alterations were comparable to changes present in the directly irradiated mice. The pool of TLR4-expressing dendritic cells was different in the directly irradiated mice, where it increased after 2 Gy and in the EV-recipient animals, where it strongly decreased in a dose-independent manner. A panel of eight differentially expressed microRNAs (miRNA) was identified in the EVs originating from both low- and high-dose-irradiated mice, with a predicted involvement in pathways related to DNA damage repair, hematopoietic, and immune system regulation, suggesting a direct involvement of these pathways in mediating radiation-induced systemic effects. In conclusion, we proved the role of EVs in transmitting certain radiation effects, identified miRNAs carried by EVs potentially responsible for these effects, and showed that the pattern of changes was often different in the directly irradiated and EV-recipient bystander mice, suggesting different mechanisms.
Collapse
Affiliation(s)
- Tünde Szatmári
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Dávid Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Noémi Bogdándi
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Anett Benedek
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Scott Bright
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Deborah Bowler
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Eszter Persa
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Andrea Balogh
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Lívia N Naszályi
- Research Group for Molecular Biophysics, Hungarian Academy of Sciences, Semmelweis University , Budapest , Hungary
| | - Munira Kadhim
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Géza Sáfrány
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Katalin Lumniczky
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| |
Collapse
|
166
|
Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cells Dev 2017; 26:617-631. [PMID: 28186467 DOI: 10.1089/scd.2016.0349] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cues from the extracellular environment, including physical stimuli, are well known to affect mesenchymal stem cell (MSC) properties in terms of proliferation and differentiation. Many therapeutic strategies are now targeting this knowledge to increase the efficacy of cell therapies, typically employed to repair tissue functions in the event of injury, either by direct engraftment into the target tissue or differentiation into mature tissues. However, it is now envisioned that harnessing the repertoire of factors secreted by MSCs (termed the secretome) may provide an alternate to these cell therapies. Of current interest are both direct protein secretions and two major subpopulations of bioactive extracellular vesicles (EVs), namely exosomes and microvesicles. EVs released by MSCs are reflective of their cells of origin, able to impact upon the activities of other cells in the local microenvironment, making the rational design of MSC paracrine activities an encouraging strategy to reproducibly modulate cell therapies. The precise mechanisms by which the secretome is modulated by the microenvironment, however, remain elusive. Controlling MSC growth conditions with oxygen tension, growth factor composition, and mechanical properties may serve to directly influence paracrine activity. Our growing understanding implicates components of the mechanotransduction machinery in translating both mechanical and chemical cues from the environment into alterations in gene regulation and varied paracrine activity. As technologies are developed to manufacture MSCs, advances in bioengineering and novel insight of how the extracellular environment affects MSC paracrine activity will play a pivotal role in the generation of widespread, successful, clinical MSC therapies.
Collapse
Affiliation(s)
- Gina D Kusuma
- 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
| | - James Carthew
- 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
| | - Rebecca Lim
- 2 Department of Obstetrics and Gynecology, Monash University , Clayton, Victoria, Australia .,3 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Victoria, Australia
| | - Jessica E Frith
- 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
| |
Collapse
|
167
|
Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017; 35:851-858. [PMID: 28294454 DOI: 10.1002/stem.2575] [Citation(s) in RCA: 1204] [Impact Index Per Article: 150.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell transplantation is undergoing extensive evaluation as a cellular therapy in human clinical trials. Because MSCs are easily isolated and amenable to culture expansion in vitro there is a natural desire to test MSCs in many diverse clinical indications. This is exemplified by the rapidly expanding literature base that includes many in vivo animal models. More recently, MSC-derived extracellular vesicles (EVs), which include exosomes and microvesicles (MV), are being examined for their role in MSC-based cellular therapy. These vesicles are involved in cell-to-cell communication, cell signaling, and altering cell or tissue metabolism at short or long distances in the body. The exosomes and MVs can influence tissue responses to injury, infection, and disease. MSC-derived exosomes have a content that includes cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs. To the extent that MSC exosomes can be used for cell-free regenerative medicine, much will depend on the quality, reproducibility, and potency of their production, in the same manner that these parameters dictate the development of cell-based MSC therapies. However, the MSC exosome's contents are not static, but rather a product of the MSC tissue origin, its activities and the immediate intercellular neighbors of the MSCs. As such, the exosome content produced by MSCs appears to be altered when MSCs are cultured with tumor cells or in the in vivo tumor microenvironment. Therefore, careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell-free MSC-based therapies with decreased risk. Stem Cells 2017;35:851-858.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
168
|
Bouchlaka MN, Moffitt AB, Kim J, Kink JA, Bloom DD, Love C, Dave S, Hematti P, Capitini CM. Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models. Biol Blood Marrow Transplant 2017; 23:897-905. [PMID: 28257800 DOI: 10.1016/j.bbmt.2017.02.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have immunosuppressive and tissue repair properties, but clinical trials using MSCs to prevent or treat graft-versus-host disease (GVHD) have shown mixed results. Macrophages (MØs) are important regulators of immunity and can promote tissue regeneration and remodeling. We have previously shown that MSCs can educate MØs toward a unique anti-inflammatory immunophenotype (MSC-educated MØs [MEMs]); however, their implications for in vivo models of inflammation have not been studied yet. We now show that in comparison with MØs, MEMs have increased expression of the inhibitory molecules PD-L1, PD-L2, in addition to markers of alternatively activated MØs: CD206 and CD163. RNA-Seq analysis of MEMs, as compared with MØs, show a distinct gene expression profile that positively correlates with multiple pathways important in tissue repair. MEMs also show increased expression of IL-6, transforming growth factor-β, arginase-1, CD73, and decreased expression of IL-12 and tumor necrosis factor-α. We show that IL-6 secretion is controlled in part by the cyclo-oxygenase-2, arginase, and JAK1/STAT1 pathway. When tested in vivo, we show that human MEMs significantly enhance survival from lethal GVHD and improve survival of mice from radiation injury. We show these effects could be mediated in part through suppression of human T cell proliferation and may have attenuated host tissue injury in part by enhancing murine fibroblast proliferation. MEMs are a unique MØ subset with therapeutic potential for the management of GVHD and/or protection from radiation-induced injury.
Collapse
Affiliation(s)
- Myriam N Bouchlaka
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Andrea B Moffitt
- Department of Medicine, Duke University, Durham, North Carolina; Duke Center of Genomic and Computational Biology, Durham, North Carolina
| | - Jaehyup Kim
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - John A Kink
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Debra D Bloom
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Cassandra Love
- Department of Medicine, Duke University, Durham, North Carolina; Duke Center of Genomic and Computational Biology, Durham, North Carolina
| | - Sandeep Dave
- Department of Medicine, Duke University, Durham, North Carolina; Duke Center of Genomic and Computational Biology, Durham, North Carolina
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
169
|
Hydrogen-Rich Water Ameliorates Total Body Irradiation-Induced Hematopoietic Stem Cell Injury by Reducing Hydroxyl Radical. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8241678. [PMID: 28243358 PMCID: PMC5294227 DOI: 10.1155/2017/8241678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/08/2016] [Accepted: 12/26/2016] [Indexed: 12/24/2022]
Abstract
We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical (∙OH) levels in the c-kit+ cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit+ cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ-H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit+ cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit+ cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit+ cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury.
Collapse
|
170
|
Sison EAR, Kurre P, Kim YM. Understanding the bone marrow microenvironment in hematologic malignancies: A focus on chemokine, integrin, and extracellular vesicle signaling. Pediatr Hematol Oncol 2017; 34:365-378. [PMID: 29211600 PMCID: PMC6516746 DOI: 10.1080/08880018.2017.1395938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling between leukemia cells and nonhematopoietic cells in the bone marrow microenvironment contributes to leukemia cell growth and survival. This complicated extrinsic mechanism of chemotherapy resistance relies on a number of pathways and factors, some of which have yet to be determined. Research on cell-cell crosstalk the bone marrow microenvironment in acute leukemia was presented at the 2016 annual Therapeutic Advances in Childhood Leukemia (TACL) investigator meeting. This review summarizes the mini-symposium proceedings and focuses on chemokine signaling via the cell surface receptor CXCR4, adhesion molecule signaling via integrin α4, and crosstalk between leukemia cells and the bone marrow microenvironment that is mediated through extracellular vesicles.
Collapse
Affiliation(s)
| | - Peter Kurre
- Doernbecher Children’s Hospital, Oregon Health and Science University, Portland, Oregon
| | - Yong-Mi Kim
- Children’s Hospital of Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
171
|
Bell E, Taylor MA. Functional Roles for Exosomal MicroRNAs in the Tumour Microenvironment. Comput Struct Biotechnol J 2016; 15:8-13. [PMID: 27872688 PMCID: PMC5109280 DOI: 10.1016/j.csbj.2016.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Extracellular microRNAs are released from cells both passively and actively. The presence of these microRNAs in the tumour microenvironment (TME) can significantly impact on the plasticity of cancer cells leading to the promotion of metastatic and angiogenic processes. These extracellular microRNAs can act not only on other cancer cells, but also cells present in the TME, such as immune cells, endothelial cells, fibroblasts, and others acting to subvert the host immune system and drive tumour progression. In this review we highlight the current understanding of both the mechanisms by which microRNAs are released from tumour cells and the downstream functional effects that extracellular microRNAs have on recipient cells.
Collapse
Affiliation(s)
- Emma Bell
- AstraZeneca, Personalised Healthcare and Biomarkers, iMed, Cambridge Science Park, Cambridge CB4 0FZ, United Kingdom
| | - Molly A. Taylor
- AstraZeneca, Oncology iMed Bioscience, Cambridge CB2 0RE, United Kingdom
- Corresponding author at: AstraZeneca, Oncology iMed Bioscience, Lab 140, CRUK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom.AstraZenecaOncology iMed BioscienceCRUK Cambridge InstituteLab 140Robinson WayCambridgeCB2 0REUnited Kingdom
| |
Collapse
|