151
|
Zhu Y, Lin Y, He Y, Wang H, Chen S, Li Z, Song N, Sun F. Deletion of lncRNA5512 has no effect on spermatogenesis and reproduction in mice. Reprod Fertil Dev 2021; 32:706-713. [PMID: 32317095 DOI: 10.1071/rd19246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/21/2019] [Indexed: 01/13/2023] Open
Abstract
Long non-coding (lnc) RNAs are a series of RNAs longer than 200 nucleotides that do not code for protein products. Whole-genome expression profiles of lncRNAs suggest that they play important roles in spermatogenesis because they are particularly abundant in testes. However, most of their characteristics and functions remain unclear. The aim of this study was to define the function of lncRNA5512, which is abundant in spermatocytes and round spermatids, in mouse fertility invivo. To investigate this we generated lncRNA5512-knockout mice by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) 9 technology. Knockout mice showed normal spermatogenesis and fertility, and had no detectable abnormalities. This indicates that lncRNA5512 does not affect mouse fertility despite its high expression in the testes. Its specific localisation in spermatocytes and round spermatids suggests that it could be a useful marker for the identification of spermatocytes and round spermatids in mouse testes.
Collapse
Affiliation(s)
- Yu Zhu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Yue He
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Hanshu Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Shitao Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Zhenhua Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Ning Song
- Shanghai Key Laboratory of Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; and Corresponding authors. ;
| | - Fei Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, 910 Hengshan Road, Xuhui District, Shanghai 200030, China; and Corresponding authors. ;
| |
Collapse
|
152
|
Huaying C, Xing J, Luya J, Linhui N, Di S, Xianjun D. A Signature of Five Long Non-Coding RNAs for Predicting the Prognosis of Alzheimer's Disease Based on Competing Endogenous RNA Networks. Front Aging Neurosci 2021; 12:598606. [PMID: 33584243 PMCID: PMC7876075 DOI: 10.3389/fnagi.2020.598606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the pathogenesis of Alzheimer's disease (AD). However, the functions and regulatory mechanisms of lncRNA are largely unclear. Herein, we obtained 3,158 lncRNAs by microarray re-annotation. A global network of competing endogenous RNAs (ceRNAs) was developed for AD and normal samples were based on the gene expressions profiles. A total of 255 AD-deficient messenger RNA (mRNA)-lncRNAs were identified by the expression correlation analysis. Genes in the dysregulated ceRNAs were found to be mainly enriched in transcription factors and micro RNAs (miRNAs). Analysis of the disordered miRNA in the lncRNA-mRNA network revealed that 40 pairs of lncRNA shared more than one disordered miRNA. Among them, nine lncRNAs were closely associated with AD, Parkinson's disease, and other neurodegenerative diseases. Of note, five lncRNAs were found to be potential biomarkers for AD. Real-time quantitative reverse transcription PCR (qRT-PCR) assay revealed that PART1 was downregulated, while SNHG14 was upregulated in AD serum samples when compared to normal samples. This study elucidates the role of lncRNAs in the pathogenesis of AD and presents new lncRNAs that can be exploited to design diagnostic and therapeutic agents for AD.
Collapse
Affiliation(s)
- Cai Huaying
- Department of Neurology, Neuroscience Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jin Xing
- Department of Neurology, Neuroscience Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jin Luya
- Department of Neurology, Neuroscience Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ni Linhui
- Department of Neurology, Neuroscience Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Sun Di
- Department of Neurology, Neuroscience Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ding Xianjun
- Department of Orthopedic Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
153
|
Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021; 14:2516865720988567. [PMID: 33598635 PMCID: PMC7863167 DOI: 10.1177/2516865720988567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs-viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.
Collapse
Affiliation(s)
- Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Ejaz Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| |
Collapse
|
154
|
Ruan J, Wu M, Ye X, Zhao S, Liang J, Ye L, You Z, Zhong B. Comparative mRNA and LncRNA Analysis of the Molecular Mechanisms Associated With Low Silk Production in Bombyx mori. Front Genet 2021; 11:592128. [PMID: 33552120 PMCID: PMC7859555 DOI: 10.3389/fgene.2020.592128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Naked pupa sericin and Naked pupa are two mutant strains of Bombyx mori with extremely low or no fibroin production compared to the Qiufeng and Baiyu strains, both of which exhibit very high silk fibroin production. However, the molecular mechanisms by which long non-coding RNAs regulate fibroin synthesis need further study. In this study, we performed high-throughput RNA-seq to investigate lncRNA and mRNA expression profiles in the posterior silk gland of Qiufeng, Baiyu, Nd-sD, and Nd silkworms at the third day of the 5th instar. Our efforts yielded 26,767 novel lncRNAs and 6,009 novel mRNAs, the expression levels of silk protein genes and silk gland transcription factors were decreased in Qiufeng vs. Nd-sD and Qiufeng vs. Nd, while those of many genes related to autophagy, apoptosis, RNA degradation, ubiquitin-mediated proteolysis and heat shock proteins were increased. Moreover, the expression of a large number of genes responsible for protein synthesis and secretion was significantly decreased in Nd. GO and KEGG analysis results showed that nucleotide excision repair, mRNA surveillance pathways, amino acid degradation, protein digestion and absorption, ER-associated degradation and proteasome pathways were significantly enriched for the Qiufeng vs. Nd-sD and Qiufeng vs. Nd comparisons. In conclusion, our findings contribute to the lncRNA and mRNA database of Bombyx mori, and the identified differentially expressed mRNAs and lncRNAs help to reveal the molecular mechanisms of low silk production in Nd-sD and Nd, providing new insights for improvement of silk yield and elucidation of silk mechanical properties.
Collapse
Affiliation(s)
- Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianshe Liang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lupeng Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhengying You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
155
|
Maternal DNA Methylation During Pregnancy: a Review. Reprod Sci 2021; 28:2758-2769. [PMID: 33469876 DOI: 10.1007/s43032-020-00456-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Multiple environmental, behavioral, and hereditary factors affect pregnancy. Recent studies suggest that epigenetic modifications, such as DNA methylation (DNAm), affect both maternal and fetal health during the period of gestation. Some of the pregnancy-related risk factors can influence maternal DNAm, thus predisposing both the mother and the neonate to clinical adversities with long-lasting consequences. DNAm alterations in the promoter and enhancer regions modulate gene expression changes which play vital physiological role. In this review, we have discussed the recent advances in our understanding of maternal DNA methylation changes during pregnancy and its associated complications such as gestational diabetes and anemia, adverse pregnancy outcomes like preterm birth, and preeclampsia. We have also highlighted some major gaps and limitations in the area which if addressed might improve our understanding of pregnancy and its associated adverse clinical conditions, ultimately leading to healthy pregnancies and reduction of public health burden.
Collapse
|
156
|
Zheng W, Chu Q, Xu T. Long noncoding RNA IRL regulates NF-κB-mediated immune responses through suppression of miR-27c-3p-dependent IRAK4 downregulation in teleost fish. J Biol Chem 2021; 296:100304. [PMID: 33465375 PMCID: PMC7949060 DOI: 10.1016/j.jbc.2021.100304] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Growing pieces of evidence show that the long noncoding RNAs (lncRNAs) as new regulators participate in the regulation of various physiological and pathological processes. The study of lncRNA in lower invertebrates is still unclear compared with that in mammals. Here, we identified a novel lncRNA, termed IRAK4-related lncRNA (IRL), as a key regulator for innate immunity in teleost fish. We find that miR-27c-3p inhibits IRAK4 expression and thus weakens the NF-κB-mediated signaling pathway. Furthermore, the Gram-negative bacterium Vibrio anguillarum and lipopolysaccharide significantly upregulated host lncRNA IRL expression. Results indicate that IRL functions as a competing endogenous RNA for miR-27c-3p to regulate protein abundance of IRAK4; thus, invading microorganisms are eliminated and immune responses are promoted. Our study also demonstrates the regulation mechanism that lncRNA IRL can competitively adsorb miRNA to regulate the miR-27c-3p/IRAK4 axis that is widespread in teleost fish.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
157
|
Li R, Zhang W, Yan Z, Liu W, Fan J, Feng Y, Zeng Z, Cao D, Haydon RC, Luu HH, Deng ZL, He TC, Zou Y. Long non-coding RNA (LncRNA) HOTAIR regulates BMP9-induced osteogenic differentiation by targeting the proliferation of mesenchymal stem cells (MSCs). Aging (Albany NY) 2021; 13:4199-4214. [PMID: 33461171 PMCID: PMC7906180 DOI: 10.18632/aging.202384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Long non-coding RNAs are important regulators of biological processes, but their roles in the osteogenic differentiation of mesenchymal stem cells (MSCs) remain unclear. Here we investigated the role of murine HOX transcript antisense RNA (mHotair) in BMP9-induced osteogenic differentiation of MSCs using immortalized mouse adipose-derived cells (iMADs). Touchdown quantitative polymerase chain reaction analysis found increased mHotair expression in bones in comparison with most other tissues. Moreover, the level of mHotair in femurs peaked at the age of week-4, a period of fast skeleton development. BMP9 could induce earlier peak expression of mHotair during in vitro iMAD osteogenesis. Silencing mHotair diminished BMP9-induced ALP activity, matrix mineralization, and expression of osteogenic, chondrogenic and adipogenic markers. Cell implantation experiments further confirmed that knockdown of mHotair attenuated BMP9-induced ectopic bone formation and mineralization of iMADs, leading to more undifferentiated cells. Crystal violet staining and cell cycle analysis revealed that silencing of mHotair promoted the proliferation of iMAD cells regardless of BMP9 induction. Moreover, ectopic bone masses developed from mHotair-knockdown iMAD cells exhibited higher expression of PCNA than the control group. Taken together, our results demonstrated that murine mHotair is an important regulator of BMP9-induced MSC osteogenesis by targeting cell cycle and proliferation.
Collapse
Affiliation(s)
- Ruidong Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Obstetrics and Gynecology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Zhengjian Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Daigui Cao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing 400021, China
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhong-Liang Deng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yulong Zou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
158
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
159
|
Tan B, Li F, Chen Z, Li Y. Research Progress and Application Prospects of Long Noncoding RNAs in Gastric Neoplasms. Technol Cancer Res Treat 2021; 20:15330338211004940. [PMID: 33769145 PMCID: PMC8010804 DOI: 10.1177/15330338211004940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/16/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs longer than 200 nt that have almost no function for encoding proteins. As an important regulatory molecule of the human genome, lncRNAs play a regulatory role in the human body. LncRNAs have a variety of functions, such as signaling, guiding, baiting or scaffolding of functional proteins, and are closely related to tumor development. Gastric cancer is one of the most common malignant tumors. It has a high incidence, a low early diagnosis rate, and a poor prognosis, and it seriously threatens human health. Abnormal expression of lncRNAs can affect the occurrence, development, invasion and metastasis of gastric cancer. Therefore, lncRNAs are expected to become important biomarkers and new targets for the diagnosis and treatment of gastric cancer. LncRNAs have a significant potential to guide the diagnosis, treatment and prognosis of gastric cancer. This article reviews lncRNAs and the mechanisms that have been discovered in recent years related to gastrointestinal tumors.
Collapse
Affiliation(s)
- Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zihao Chen
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
160
|
Abstract
Long noncoding RNAs are defined as transcripts longer than 200 nt with no protein coding potential. Most lncRNAs are expressed in a tissue-specific manner and barring a few, their absolute expression is lower compared to most coding transcripts. Differential expression studies have contributed the most to the functional characterisation of the lncRNAs we know. Sensitive and specific quantification of lncRNA expression is crucial for such studies. SYBR Green dye based real time quantitative PCR is a simple and affordable method of quantitative PCR, wherein the specific binding of the dye to double stranded DNA amplicon emits fluorescence proportionate to the amount of PCR products. Here we describe a detailed protocol for successful lncRNA quantitation by reverse transcription followed by SYBR Green chemistry-based real-time PCR.
Collapse
|
161
|
Jalali S, Singh A, Scaria V, Maiti S. Genome-Wide Computational Analysis and Validation of Potential Long Noncoding RNA-Mediated DNA-DNA-RNA Triplexes in the Human Genome. Methods Mol Biol 2021; 2254:61-71. [PMID: 33326070 DOI: 10.1007/978-1-0716-1158-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs are well studied for their regulatory actions through interaction with DNA regulating biological roles of DNA, RNA, or protein. However, direct binding of lncRNA with DNA is rarely demonstrated in experiments. The present protocol explains genome wide computational strategies to choose lncRNAs that can bind directly to the chromatin by forming highly stable DNA-DNA-RNA triplexes. The chapter also focuses on biophysical methods that can be used to validate the computationally derived lncRNA-gene targets in vitro.
Collapse
Affiliation(s)
- Saakshi Jalali
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, India
| | - Amrita Singh
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Delhi, India.
| | - Souvik Maiti
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Delhi, India.
| |
Collapse
|
162
|
Bi J, Wang D, Cui L, Yang Q. RNA sequencing-based long non-coding RNA analysis and immunoassay in ovarian endometriosis. Am J Reprod Immunol 2020; 85:e13359. [PMID: 33063885 DOI: 10.1111/aji.13359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
PROBLEM The mechanism underlying endometriosis is currently unknown. However, studies have indicated that immunity plays an important role in endometriosis occurrence and development. Long non-coding RNAs (lncRNAs) do not encode proteins but participate in a variety of biological processes via different mechanisms. This study investigated differences in immune cells and immune-related lncRNAs via high-throughput RNA sequencing (RNA-seq) analysis of ectopic and eutopic endometria with endometriosis. METHOD OF STUDY RNA-seq was performed in six pairs of ectopic and eutopic endometria samples, and real-time quantitative polymerase chain reaction was used to verify the results of RNA-seq for 30 pairs of samples. Different immune cell types were identified based on the RNA-seq results, using ImmuCellAI. Immune-related lncRNAs were obtained by analyzing immune-related genes from the ImmPort Database and RNA-seq results. RESULTS A total of 952 differentially expressed lncRNAs were identified, of which 446 were immune-related. The ectopic and eutopic endometrium could easily be distinguished in the principal component analysis of immune-related lncRNAs. Analysis of 24 immune cell types revealed the differential abundance of 13 types. Sixty immune-related mRNAs were associated with the top 20 dysregulated immune-related lncRNAs, 11 of which were transcripts of immune cell marker genes. CONCLUSIONS Our data indicated that a variety of dysregulated lncRNAs were associated with immunity, and these may provide a basis for future immune-related endometriosis research.
Collapse
Affiliation(s)
- Jianlei Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangyi Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
163
|
Nie Y, Tian GG, Zhang L, Lee T, Zhang Z, Li J, Sun T. Identifying cortical specific long noncoding RNAs modified by m 6A RNA methylation in mouse brains. Epigenetics 2020; 16:1260-1276. [PMID: 33323036 DOI: 10.1080/15592294.2020.1861170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper development of the mammalian cerebral cortex relies on precise gene expression regulation. Increasing evidence shows that cortical development is regulated by both mRNAs and long noncoding RNAs (lncRNAs), which also are modified by N6-methyladenosine (m6A). Patterns of m6A-methylation in lncRNAs in the developing cortex have not been uncovered. Here we reveal differentially expressed lncRNAs and report stage-specific m6A-methylation patterns in lncRNAs expressed in mouse embryonic (E) and postnatal (P) cortices using RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs show temporal differential expression, and display genic distribution in the genome. Interestingly, we detect temporal-specific m6A-methylation with consensus m6A motif GGACU in the last exon in most lncRNAs. And m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs that have no significantly differential expression in E- and P-stages. Furthermore, the transcript abundance has a positive correlation between the m6A genic lncRNAs and their nearest m6A methylated mRNAs. Our work reveals a fundamental expression reference of lncRNAs and their nearest mRNAs, and highlights an importance of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in the developing cortex.
Collapse
Affiliation(s)
- Yanzhen Nie
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zhen Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| |
Collapse
|
164
|
Simion V, Zhou H, Haemmig S, Pierce JB, Mendes S, Tesmenitsky Y, Pérez-Cremades D, Lee JF, Chen AF, Ronda N, Papotti B, Marto JA, Feinberg MW. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat Commun 2020; 11:6135. [PMID: 33262333 PMCID: PMC7708640 DOI: 10.1038/s41467-020-19664-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging regulators of pathophysiological processes including atherosclerosis. Using RNA-seq profiling of the intima of lesions, here we identify a macrophage-specific lncRNA MAARS (Macrophage-Associated Atherosclerosis lncRNA Sequence). Aortic intima expression of MAARS increases by 270-fold with atherosclerotic progression and decreases with regression by 60%. MAARS knockdown reduces atherosclerotic lesion formation by 52% in LDLR-/- mice, largely independent of effects on lipid profile and inflammation, but rather by decreasing macrophage apoptosis and increasing efferocytosis in the vessel wall. MAARS interacts with HuR/ELAVL1, an RNA-binding protein and important regulator of apoptosis. Overexpression and knockdown studies verified MAARS as a critical regulator of macrophage apoptosis and efferocytosis in vitro, in an HuR-dependent manner. Mechanistically, MAARS knockdown alters HuR cytosolic shuttling, regulating HuR targets such as p53, p27, Caspase-9, and BCL2. These findings establish a mechanism by which a macrophage-specific lncRNA interacting with HuR regulates apoptosis, with implications for a broad range of vascular disease states.
Collapse
Affiliation(s)
- Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haoyang Zhou
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob B Pierce
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shanelle Mendes
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yevgenia Tesmenitsky
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Lee
- The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alex F Chen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Jarrod A Marto
- The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Departments of Cancer Biology and Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
165
|
Alam T, Al-Absi HRH, Schmeier S. Deep Learning in LncRNAome: Contribution, Challenges, and Perspectives. Noncoding RNA 2020; 6:E47. [PMID: 33266128 PMCID: PMC7711891 DOI: 10.3390/ncrna6040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNA), the pervasively transcribed part of the mammalian genome, have played a significant role in changing our protein-centric view of genomes. The abundance of lncRNAs and their diverse roles across cell types have opened numerous avenues for the research community regarding lncRNAome. To discover and understand lncRNAome, many sophisticated computational techniques have been leveraged. Recently, deep learning (DL)-based modeling techniques have been successfully used in genomics due to their capacity to handle large amounts of data and produce relatively better results than traditional machine learning (ML) models. DL-based modeling techniques have now become a choice for many modeling tasks in the field of lncRNAome as well. In this review article, we summarized the contribution of DL-based methods in nine different lncRNAome research areas. We also outlined DL-based techniques leveraged in lncRNAome, highlighting the challenges computational scientists face while developing DL-based models for lncRNAome. To the best of our knowledge, this is the first review article that summarizes the role of DL-based techniques in multiple areas of lncRNAome.
Collapse
Affiliation(s)
- Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar;
| | - Hamada R. H. Al-Absi
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar;
| | - Sebastian Schmeier
- School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand;
| |
Collapse
|
166
|
Li J, Zhang X, Liu C. The computational approaches of lncRNA identification based on coding potential: Status quo and challenges. Comput Struct Biotechnol J 2020; 18:3666-3677. [PMID: 33304463 PMCID: PMC7710504 DOI: 10.1016/j.csbj.2020.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) make up a large proportion of transcriptome in eukaryotes, and have been revealed with many regulatory functions in various biological processes. When studying lncRNAs, the first step is to accurately and specifically distinguish them from the colossal transcriptome data with complicated composition, which contains mRNAs, lncRNAs, small RNAs and their primary transcripts. In the face of such a huge and progressively expanding transcriptome data, the in-silico approaches provide a practicable scheme for effectively and rapidly filtering out lncRNA targets, using machine learning and probability statistics. In this review, we mainly discussed the characteristics of algorithms and features on currently developed approaches. We also outlined the traits of some state-of-the-art tools for ease of operation. Finally, we pointed out the underlying challenges in lncRNA identification with the advent of new experimental data.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
167
|
Shao X, Zhao T, Xi L, Zhang Y, He J, Zeng J, Deng L. LINC00565 promotes the progression of colorectal cancer by upregulating EZH2. Oncol Lett 2020; 21:53. [PMID: 33281964 PMCID: PMC7709565 DOI: 10.3892/ol.2020.12314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to illustrate the role of LINC00565 in aggravating colorectal cancer (CRC) by targeting enhancer of zeste homolog 2 (EZH2). The relative levels of LINC00565 and EZH2 in CRC tissues, based on their Tumor-Node-Metastasis stage and tumor size, were detected by reverse transcription-quantitative polymerase chain reaction. The diagnostic value of LINC00565 in CRC was assessed by depicting receiver operating characteristic curves. Pearson's correlation test was applied to analyze the expression correlation between LINC00565 and EZH2 in CRC tissues. The transfection efficacy of three LINC00565 small interfering RNAs was examined in CRC HCT116 and SW480 cell lines. After knockdown of LINC00565, the proliferative and migratory abilities of CRC cells were detected by Cell Counting Kit-8 and Transwell assays, respectively. The subcellular distribution of LINC00565 was analyzed, and the interaction between LINC00565 and EZH2 was determined by RNA immunoprecipitation. Finally, co-regulation of LINC00565 and EZH2 on CRC cell functions was explored by performing rescue experiments. Results showed that LINC00565 was upregulated in CRC tissues, especially in patients with stage III+IV and in those with large tumor sizes, suggesting its diagnostic value in CRC. EZH2 was also upregulated in CRC tissues, showing a positive correlation with LINC00565. LINC00565 was mainly expressed in the cytoplasm and was found to bind with EZH2. Validation was performed by overexpressing EZH2, which abolished the role of silenced LINC00565 in regulating proliferative and migratory abilities in CRC. Therefore, the upregulation of LINC00565 in CRC tissues was found to stimulate the aggravation of CRC by upregulating EZH2.
Collapse
Affiliation(s)
- Xiaxia Shao
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Tao Zhao
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Lei Xi
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Yuhong Zhang
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Jia He
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Jie Zeng
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Lichun Deng
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| |
Collapse
|
168
|
Tian K, Wang A, Wang J, Li W, Shen W, Li Y, Luo Z, Liu Y, Zhou Y. Transcriptome Analysis Identifies SenZfp536, a Sense LncRNA that Suppresses Self-renewal of Cortical Neural Progenitors. Neurosci Bull 2020; 37:183-200. [PMID: 33196962 DOI: 10.1007/s12264-020-00607-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate transcription to control development and homeostasis in a variety of tissues and organs. However, their roles in the development of the cerebral cortex have not been well elucidated. Here, a bioinformatics pipeline was applied to delineate the dynamic expression and potential cis-regulating effects of mouse lncRNAs using transcriptome data from 8 embryonic time points and sub-regions of the developing cerebral cortex. We further characterized a sense lncRNA, SenZfp536, which is transcribed downstream of and partially overlaps with the protein-coding gene Zfp536. Both SenZfp536 and Zfp536 were predominantly expressed in the proliferative zone of the developing cortex. Zfp536 was cis-regulated by SenZfp536, which facilitates looping between the promoter of Zfp536 and the genomic region that transcribes SenZfp536. Surprisingly, knocking down or activating the expression of SenZfp536 increased or compromised the proliferation of cortical neural progenitor cells (NPCs), respectively. Finally, overexpressing Zfp536 in cortical NPCs reversed the enhanced proliferation of cortical NPCs caused by SenZfp536 knockdown. The study deepens our understanding of how lncRNAs regulate the propagation of cortical NPCs through cis-regulatory mechanisms.
Collapse
Affiliation(s)
- Kuan Tian
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Andi Wang
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Junbao Wang
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Wei Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Wenchen Shen
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yamu Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhiyuan Luo
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Ying Liu
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| | - Yan Zhou
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
169
|
Liao C, Guo Y, Gong Y, Huang X, Liao X, Wang X, Ruan G, Gao F. Clinical implications and nomogram prediction of long noncoding RNA FRGCA as diagnostic and prognostic indicators in colon adenocarcinoma. Medicine (Baltimore) 2020; 99:e22806. [PMID: 33126318 PMCID: PMC7598802 DOI: 10.1097/md.0000000000022806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer, especially colon adenocarcinoma (COAD), is associated with significant morbidity and mortality worldwide. Long noncoding RNA (lncRNA) has been implicated in tumorigenesis. The aim of the present study was to elucidate the potential diagnostic and prognostic values of lncRNA FRGCA in COAD.The data of 438 COAD patients were retrieved for analysis. Diagnostic significance was evaluated using tumor and nontumor tissues. Prognostic significance was evaluated using a Cox proportional regression model. Stratified analysis was performed to identify associations between clinical factors and lncRNA FRGCA expression. A nomogram was constructed using the clinical factors and lncRNA FRGCA for survival prediction. Enrichment analysis identified gene ontologies and metabolic pathways of mRNAs with high Pearson correlation coefficients with lncRNA FRGCA.lncRNA FRGCA was highly expressed in tumor tissues of COAD and demonstrated diagnostic value (area under curve = 0.763, P < .0001). Prognostic significance analysis indicated that lncRNA FRGCA had prognostic value in COAD [adjusted P < .001, hazard ratio (HR) = 0.444, 95% confidence interval (95% CI) = 0.288-0.685] and high expression of lncRNA FRGCA indicated better survival in COAD. A nomogram was evaluated for prediction of survival at 1, 3, and 5 years. Enrichment analysis revealed many mRNAs involved in the structural constituents of the mitochondrial inner membrane and translational termination, protein binding, translation, ribosome, oxidative phosphorylation, and metabolic pathways, especially the nucleoplasm.Differentially expressed in tumor vs nontumor tissues, lncRNA FRGCA had both diagnostic and prognostic implications in COAD, which may be associated with ribosome metabolism, oxidative phosphorylation, and nucleoplasm-related metabolic pathways.
Collapse
Affiliation(s)
- Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yun Guo
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Xue Huang
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guotian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| |
Collapse
|
170
|
Zhou C, Duan S. The Role of Long Non-Coding RNA NNT-AS1 in Neoplastic Disease. Cancers (Basel) 2020; 12:cancers12113086. [PMID: 33113895 PMCID: PMC7690676 DOI: 10.3390/cancers12113086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Nicotinamide nucleotide transhydrogenase-antisense 1 (NNT-AS1), which is a newly-discovered long non-coding RNA (lncRNA), has been found to be dysregulated in a variety of neoplastic diseases. With the accumulation of studies on NNT-AS1 in recent years, the mechanism of NNT-AS1 and its significance for tumor occurrence and progression are constantly being updated and improved. Thus, this paper aims to summarize the abnormal expression of NNT-AS1 and its prognostic values in different neoplastic diseases. In addition, the detailed competing endogenous RNA networks and subsequent biology behaviors, as well as the role of NNT-AS1 in mediating cisplatin resistance are revealed in this paper. This review not only summarizes the past research of NNT-AS1, but also provides some ideas for future research in this field. Abstract Studies have shown that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), play an important regulatory role in the occurrence and development of human cancer. Nicotinamide nucleotide transhydrogenase-antisense 1 (NNT-AS1) is a newly-discovered cytoplasmic lncRNA. Many studies have shown that it has abnormally-high expression levels in malignant tumors, but there are also a few studies that have reported low expression levels of NNT-AS1 in gastric cancer, breast cancer, and ovarian cancer. At present, the regulatory mechanism of NNT-AS1 as a miRNA sponge, which may be an important reason affecting tumor cell proliferation, invasion, metastasis, and apoptosis is being studied in-depth. In addition, NNT-AS1 has been found to be related to cisplatin resistance. In this review, we summarize the abnormal expression of NNT-AS1 in a variety of neoplastic diseases and its diagnostic and prognostic value, and we explain the mechanism by which NNT-AS1 regulates cancer progression by competing with miRNAs. In addition, we also reveal the correlation between NNT-AS1 and cisplatin resistance and the potential clinical applications of NNT-AS1.
Collapse
|
171
|
Jiao L, Liu S, Liu L, Hao P, Gong Z, Yan Z, Xiang Y. Long non‑coding RNA fer‑1‑like family member 4 serves as a tumor suppressor in laryngeal squamous cell carcinoma cells via regulating the AKT/ERK signaling pathway. Mol Med Rep 2020; 22:5304-5312. [PMID: 33174027 PMCID: PMC7647000 DOI: 10.3892/mmr.2020.11598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common type of malignant tumor of the head and neck. An increasing number of studies have illustrated that long non-coding RNAs (lncRNAs) serve an important role in the occurrence and development of LSCC. Therefore, the present study aimed to investigate the expression changes and mechanism of lncRNA fer-1-like family member 4 (FER1L4) in the progression of LSCC. The expression levels of FER1L4 in LSCC cell lines (AMC-HN-8, Tu 686, M4E and M2E) and a normal cell line (HBE135-E6E7) were analyzed using reverse transcription-quantitative PCR. The FER1L4 overexpression plasmid (plasmid-FER1L4) was subsequently transfected into Tu 686 cells to upregulate the expression levels of FER1L4. Cell viability was detected using a Cell Counting Kit-8 assay, cell proliferation was analyzed using a colony formation assay, apoptosis was examined by flow cytometry, and cell migration and invasion were determined using wound healing and Transwell assays, respectively. In addition, the plasmid-FER1L4 cells were also treated with insulin-like growth factor 1 (IGF-1) to determine the effect of FER1L4 on the AKT/ERK signaling pathway, and the effect of the plasmid-FER1L4 on the expression levels of AKT/ERK signaling pathway-related proteins were analyzed using western blotting. The results of the present study revealed that FER1L4 expression levels were downregulated in AMC-HN-8 and Tu 686 cells. Notably, FER1L overexpression significantly reduced the cell viability, proliferation, migration and invasion of LSCC cells, while promoting apoptosis. Meanwhile, the plasmid-FER1L4 also significantly suppressed the phosphorylation levels of AKT and ERK. Further studies indicated that the aforementioned changes could be reversed by IGF-1, indicating FER1L4 may regulate the progression of LSCC cells by inhibiting the AKT/ERK signaling pathway. In conclusion, the present study provided a potential novel direction for the treatment of LSCC in the future and suggested that FER1L4 may be a new target in this field.
Collapse
Affiliation(s)
- Lulu Jiao
- Department of Otorhinolaryngology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Siming Liu
- Department of Otorhinolaryngology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Lili Liu
- Department of Otorhinolaryngology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Pengpeng Hao
- Department of Otorhinolaryngology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Zheng Gong
- Department of Otorhinolaryngology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Zhanfeng Yan
- Department of Otorhinolaryngology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yinzhou Xiang
- Department of Otorhinolaryngology, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| |
Collapse
|
172
|
Wang Y, Wang B, Shao X, Liu M, Jiang K, Wang M, Wang L. Identification and Profiling of MicroRNAs During Embryogenesis in the Red Claw Crayfish Cherax quadricarinatus. Front Physiol 2020; 11:878. [PMID: 33041835 PMCID: PMC7521159 DOI: 10.3389/fphys.2020.00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/29/2020] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that constitute a broad layer of gene regulation at both transcriptional and post-transcriptional levels from prokaryotes to eukaryotes. In embryonic development, they regulate the complex gene expression associated with the complexity of embryogenesis. There is little information about miRNAs in the red claw crayfish (Cherax quadricarinatus), an important commercial species and a potential biological model. In the present study, miRNAs and their target genes were identified during three embryonic developmental stages of C. quadricarinatus. Nineteen known miRNAs and 331 novel ones belonging to 50 miRNA families were obtained. A total of 113 differentially expressed miRNAs were identified, and 2,575 target genes were predicted, of which 1,257 were annotated. Additionally, 63 target genes of 9 miRNAs in C. quadricarinatus were found to be related to embryonic development. For example, miR-10 and its target genes may regulate the nervous system development and body segmentation and miR-2788 may regulate cell proliferation to impact embryonic development. Moreover, miR-28 (target gene tutl), miR-50 (target gene fbx5), and miR-1260b (target gene sif) may co-regulate eye development of embryonic C. quadricarinatus. These miRNAs together with their target genes constitute a network for regulating the development of tissues and organs in the embryo of C. quadricarinatus. Our results lay a foundation for further study on the fundamental molecular and developmental mechanism of crustacean embryogenesis.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuqing Shao
- Shandong Cigna Detection Technology Co., Ltd., Qingdao, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,National Laboratory for Marine Science and Technology, Center for Marine Molecular Biotechnology, Qingdao, China
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
173
|
Senmatsu S, Hirota K. Roles of lncRNA transcription as a novel regulator of chromosomal function. Genes Genet Syst 2020; 95:213-223. [PMID: 33028747 DOI: 10.1266/ggs.20-00024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In recent years, many transcriptome analyses have revealed that numerous noncoding RNAs are transcribed in eukaryotic cells. Long noncoding RNAs (lncRNAs), which consist of over 200 nucleotides, are considered to be key players in a variety of biological processes and structures including gene expression, differentiation and nuclear architecture. Many studies on individual lncRNAs have identified their molecular functions as decoys, recruiters and scaffolds, which arise through interactions with proteins and the construction of ribonucleoproteins. In addition to the roles played by transcribed lncRNA molecules, several studies have indicated the important functions of nascent lncRNA transcription processes. In this review, we discuss recent findings on the important roles of lncRNA transcription processes in the regulation of chromosome function.
Collapse
Affiliation(s)
- Satoshi Senmatsu
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| |
Collapse
|
174
|
Ou R, Lv M, Liu X, Lv J, Zhao J, Zhao Y, Li X, Li W, Zhao L, Li J, Ren Y, Xu Y. HPV16 E6 oncoprotein-induced upregulation of lncRNA GABPB1-AS1 facilitates cervical cancer progression by regulating miR-519e-5p/Notch2 axis. FASEB J 2020; 34:13211-13223. [PMID: 32844486 DOI: 10.1096/fj.202000762r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Human papillomaviruses 16 (HPV16) is the primary causative agent of cervical cancer (CC). E6 oncoprotein plays a crucial role in cervical carcinogenesis and commonly cause the dysregulation of the long noncoding RNAs (lncRNAs) expression. However, the biological function of lncRNAs in HPV16-related CC remains largely unexplored. In the present study HPV16 E6-induced differential expression of lncRNAs, miRNA, and mRNA were identified using microarray-based analysis and verified in tumor r cell lines and tumor tissues, and the function of lncRNA in CC was investigated in vitro and in vivo. We found that an lncRNA, named GABPB1-AS1, was significantly upregulated in HPV16-positive CC tissues and cell lines. GABPB1-AS1 expression in HPV16-positive CC tissues was positively associated with tumor size, lymph node metastasis, and FIGO stage. High expression of GABPB1-AS1 was correlated with a poor prognosis for HPV16-positive CC patients. Functionally, E6-induced GABPB1-AS1 overexpression facilitated CC cells proliferation and invasion in vitro and in vivo. Mechanistically, GABPB1-AS1 acted as a competing endogenous RNA (ceRNA) by sponging miR-519e-5p, resulting in the de-repression of its target gene Notch2 which is well known as an oncogene. Therefore, GABPB1-AS1 functioned as a tumor activator in CC pathogenesis by binding to miR-519e-5p and destroying its tumor suppressive function. Collectively, current results demonstrate that GABPB1-AS1 is associated with CC progression, and may be a promising biomarker or target for the clinical management of CC.
Collapse
Affiliation(s)
- Rongying Ou
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingfen Lv
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuan Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangmin Lv
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinduo Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyun Li
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenfeng Li
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Yunsheng Xu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
175
|
高 亚, 罗 小, 孟 婷, 朱 敏, 田 渼, 陆 晓. [DNMT1 protein promotes retinoblastoma proliferation by silencing MEG3 gene]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1239-1245. [PMID: 32990237 PMCID: PMC7544569 DOI: 10.12122/j.issn.1673-4254.2020.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigate whether DNMT1 protein induces retinoblastoma proliferation by silencing MEG3 gene. METHODS Two retinoblastoma cell lines (HXO-RB44 and SO-RB50) and a normal human retinal pigment epithelial (RPE) cell line were transfected with the plasmid pcDNA-DNMT1 or si-DNMT1 for up-regulating or interference of DNMT1 expression, and with pcDNA-MEG3 or si-MEG3 for up-regulating or interference of MEG3 expression. Western blotting was used to detect the changes in the expression of DNMT1 protein in the transfected cells, and CCK-8 and EdU assays were used to detect the changes in cell proliferation. Real-time quantitative PCR (qRT-PCR) was performed to detect MEG3 expression in SO-RB50 and HXO-RB44 cells after transfection, and the methylation level of MEG3 gene promoter after interference of DNMT1 expression was detected using methylation-specific PCR. RESULTS SO-RB50 and HXO-RB44 cells showed significantly increased expression of DNMT1 protein as compared with normal RPE cells (P < 0.05). In HXO-RB44 cells, transfection with pcDNADNMT1 resulted in significantly increased expression of DNMT1 protein, enhanced cell proliferation ability, and significantly reduced expression of MEG3 (P < 0.05). In SO-RB50 cells, transfection with si-DNMT1 significantly reduced the expression of DNMT1 protein, suppressed the cell proliferation, and increased MEG3 expression (P < 0.05). Interference of DNMT1 significantly reduced the methylation level of MEG3 gene promoter. After reversing the regulatory effect of DNMT1 on MEG3 gene, DNMT1 protein showed significantly weakened ability to regulate retinoblastoma cell proliferation (P < 0.05). CONCLUSIONS In retinoblastoma cells, the up-regulation of DNMT1 protein induces promoter methylation and inactivation of MEG3 gene and eventually leads to abnormal cell proliferation.
Collapse
Affiliation(s)
- 亚莉 高
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 小玲 罗
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 婷 孟
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 敏娟 朱
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 渼雯 田
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 晓和 陆
- 南方医科大学珠江医院眼科,广东 广州 510280Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
176
|
Long non-coding RNA TCONS_00000200 as a non-invasive biomarker in patients with intracranial aneurysm. Biosci Rep 2020; 39:221064. [PMID: 31710082 PMCID: PMC6879357 DOI: 10.1042/bsr20182224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
We performed long non-coding RNA (lncRNA) microarray assay to identify lncRNAs with differential expression between patients with intracranial aneurysm (IA) and healthy control individuals to evaluate their potential use as biomarkers of IA. Arraystar Human lncRNA Microarray v3.0 was performed to identify differentially expressed lncRNAs and mRNAs in plasma samples (4 ml). lncRNAs with the most pronounced differential expression were used to select gene markers, and results were validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Plasma levels of TCONS_00000200 (fold change: 2.28) and ENST00000511927 (fold change: 2.50) were significantly higher in IA patients than in healthy individuals (P<0.001), and plasma levels of ENST00000421997 (fold change: 0.45) and ENST00000538202 (fold change: 0.43) were significantly lower in IA patients than in healthy individuals (P<0.001). qRT-PCR confirmed the same trends of up- and down-regulation of these four lncRNAs. A receiver operating characteristic (ROC) curve for TCONS_00000200 showed that the area under the curve (AUC) was 0.963 (95% confidence interval, 0.919–1.000), optimal cut-off point was 0.0081, sensitivity was 90.0%, and specificity was 96.7%. These results indicate that the lncRNA TCONS_00000200 is differentially expressed in the plasma of IA patients and could serve as a biomarker of IA.
Collapse
|
177
|
Hezroni H, Ben-Tov Perry R, Gil N, Degani N, Ulitsky I. Regulation of neuronal commitment in mouse embryonic stem cells by the Reno1/Bahcc1 locus. EMBO Rep 2020; 21:e51264. [PMID: 32969152 DOI: 10.15252/embr.202051264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/09/2022] Open
Abstract
Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs), yet the biological functions of most of them remain unknown. A particularly rich repertoire of lncRNAs found in mammalian brain and in the early embryo. We used RNA-seq and computational analysis to prioritize lncRNAs that may regulate commitment of pluripotent cells to a neuronal fate and perturbed their expression prior to neuronal differentiation. Knockdown by RNAi of two highly conserved and well-expressed lncRNAs, Reno1 (2810410L24Rik) and lnc-Nr2f1, decreased the expression of neuronal markers and led to massive changes in gene expression in the differentiated cells. We further show that the Reno1 locus forms increasing spatial contacts during neurogenesis with its adjacent protein-coding gene Bahcc1. Loss of either Reno1 or Bahcc1 leads to an early arrest in neuronal commitment, failure to induce a neuronal gene expression program, and to global reduction in chromatin accessibility at regions that are marked by the H3K4me3 chromatin mark at the onset of differentiation. Reno1 and Bahcc1 thus form a previously uncharacterized circuit required for the early steps of neuronal commitment.
Collapse
Affiliation(s)
| | | | - Noa Gil
- Weizmann Institute of Science, Rehovot, Israel
| | - Neta Degani
- Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
178
|
Azazi D, Mudge JM, Odom DT, Flicek P. Functional signatures of evolutionarily young CTCF binding sites. BMC Biol 2020; 18:132. [PMID: 32988407 PMCID: PMC7520972 DOI: 10.1186/s12915-020-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
Background The introduction of novel CTCF binding sites in gene regulatory regions in the rodent lineage is partly the effect of transposable element expansion, particularly in the murine lineage. The exact mechanism and functional impact of evolutionarily novel CTCF binding sites are not yet fully understood. We investigated the impact of novel subspecies-specific CTCF binding sites in two Mus genus subspecies, Mus musculus domesticus and Mus musculus castaneus, that diverged 0.5 million years ago. Results CTCF binding site evolution is influenced by the action of the B2-B4 family of transposable elements independently in both lineages, leading to the proliferation of novel CTCF binding sites. A subset of evolutionarily young sites may harbour transcriptional functionality as evidenced by the stability of their binding across multiple tissues in M. musculus domesticus (BL6), while overall the distance of subspecies-specific CTCF binding to the nearest transcription start sites and/or topologically associated domains (TADs) is largely similar to musculus-common CTCF sites. Remarkably, we discovered a recurrent regulatory architecture consisting of a CTCF binding site and an interferon gene that appears to have been tandemly duplicated to create a 15-gene cluster on chromosome 4, thus forming a novel BL6 specific immune locus in which CTCF may play a regulatory role. Conclusions Our results demonstrate that thousands of CTCF binding sites show multiple functional signatures rapidly after incorporation into the genome.
Collapse
Affiliation(s)
- Dhoyazan Azazi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.,German Cancer Research Center (DKFZ), Division Regulatory Genomics and Cancer Evolution, 69120, Heidelberg, Germany
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. .,University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK. .,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
179
|
Lai S, Du K, Shi Y, Li C, Wang G, Hu S, Jia X, Wang J, Chen S. Long Non-Coding RNAs in Brown Adipose Tissue. Diabetes Metab Syndr Obes 2020; 13:3193-3204. [PMID: 32982350 PMCID: PMC7507876 DOI: 10.2147/dmso.s264830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Obesity has become a widespread disease that is harmful to human health. Fat homeostasis is essentially maintained by fat accumulation and energy expenditure. Studies on brown adipose tissue (BAT) represent a promising opportunity to identify a pharmaceutical intervention against obesity through increased energy expenditure. Long non-coding RNAs (lncRNAs) were thought to be critical regulators in a variety of biological processes. Recent studies have revealed that lncRNAs, including ones that are BAT-specific, conserved, and located at key protein-coding genes, function in brown adipogenesis, white adipose browning (ie, beige adipogenesis), and brown thermogenesis. In this review, we describe lncRNA properties and highlight functional lncRNAs in these biological processes, with the goal of establishing links between lncRNAs and BAT. Based on the advances of lncRNAs in the regulation of BAT, we discussed the advantages of potential lncRNA-based obesity drugs. Further BAT lncRNA-based drug development may provide new exciting approaches to defend obesity by regulation of fat homeostasis.
Collapse
Affiliation(s)
- Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Cao Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Guoze Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang550025, People’s Republic of China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu611130, People’s Republic of China
| |
Collapse
|
180
|
Moradi M, Mozafari F, Hosseini S, Rafiee R, Ghasemi F. A concise review on impacts of microRNAs in biology and medicine of hepatitis C virus. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
181
|
Flower CT, Chen L, Jung HJ, Raghuram V, Knepper MA, Yang CR. An integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla. Physiol Genomics 2020; 52:485-491. [PMID: 32866085 DOI: 10.1152/physiolgenomics.00048.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are intracellular transcripts longer than 200 nucleotides and lack protein-coding information. A subclass of lncRNA known as long intergenic noncoding RNAs (lincRNAs) are transcribed from genomic regions that share no overlap with annotated protein-coding genes. Increasing evidence has shown that some annotated lincRNA transcripts do in fact contain open reading frames (ORFs) encoding functional short peptides in the cell. Few robust methods for lincRNA-encoded peptide identification have been reported, and the tissue-specific expression of these peptides has been largely unexplored. Here we propose an integrative workflow for lincRNA-encoded peptide discovery and test it on the mouse kidney inner medulla (IM). In brief, low molecular weight protein fractions were enriched from homogenate of IMs and trypsinized into shorter peptides, which were sequenced by high resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). To curate a hypothetical lincRNA-encoded peptide database for peptide-spectrum matching following LC-MS/MS, we performed RNA-Seq on IMs, computationally removed reads overlapping with annotated protein-coding genes, and remapped the remaining reads to a database of mouse noncoding transcripts to infer lincRNA expression. Expressed lincRNAs were searched for ORFs by an existing rule-based algorithm, and translated ORFs were used for peptide-spectrum matching. Peptides identified by LC-MS/MS were further evaluated by using several quality control criteria and bioinformatics methods. We discovered three novel lincRNA-encoded peptides, which are conserved in mouse, rat, and human. The workflow can be adapted for discovery of small protein-coding genes in any species or tissue where noncoding transcriptome information is available.
Collapse
Affiliation(s)
- Cameron T Flower
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
182
|
Wang K, Ye X, Yang C, Chen G, Yao N, Kang Z, Shi W. Comprehensive Analysis of Novel lncRNA-TF Regulatory Cross Talks and Identification of Core lncRNA-TF Feedback Loops in Sarcoma. DNA Cell Biol 2020; 39:1558-1572. [PMID: 32845706 DOI: 10.1089/dna.2020.5385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are a broad family of cancers that arise from cells of mesenchymal origin in virtually every tissue of the body. Some transcription factors (TFs) have been reported to be involved in the pathogenesis and metastasis of sarcomas. The expression of certain long noncoding RNAs (lncRNAs) has been correlated with the degree of cancer prognosis. There is an urgent need to effectively integrate TFs and lncRNA/microRNA/mRNA regulatory axis and further identify more key regulators that play crucial roles in sarcomas. We performed a network-based computational analysis to investigate the lncRNA-TF cross talks via integrating lncRNA-TF ceRNA interactions and TF-TF protein-protein interactions. Multiple topology analyses were performed to the sarcomas-related global lncRNA-TF network. Several lncRNAs or TFs with central topology structures were identified as key regulators and used to locate a hub-associated lncRNA-TF subnetwork. Three functional modules were identified from the sarcomas-related global lncRNA-TF network, which have shown significant pathway enrichment and prognosis capability. The lncRNAs and TFs of these modules were shown to participate in sarcoma-related biological phenomena through involving in mitogen-activated protein kinases (MAPK), Jak-STAT, and transforming growth factor (TGF-beta) signaling pathways. More importantly, a subset of core lncRNA-TF cross talks that might form positive feedback loops to control biological processes of sarcomas was identified. These core lncRNA-TF positive feedback loops showed more TF binding affinity than other lncRNAs. All the results can help us uncover the molecular mechanism of sarcomas and provide a novel way for diagnosis biomarker and therapeutic target identification.
Collapse
Affiliation(s)
- Ke Wang
- Department of Orthopedics, Daqing No. 4 Hospital, Daqing, China
| | - Xiangling Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Chengshan Yang
- Department of PT2, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Guocai Chen
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Nan Yao
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Zhengyang Kang
- Department of Orthopedics, The Second People's Hospital of Panyu, Guangzhou, China
| | - Weihong Shi
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Oncology, Huizhou Hospital of Guangzhou University of Traditional Chinese Medicine, Huizhou, China
| |
Collapse
|
183
|
Patty BJ, Hainer SJ. Non-Coding RNAs and Nucleosome Remodeling Complexes: An Intricate Regulatory Relationship. BIOLOGY 2020; 9:E213. [PMID: 32784701 PMCID: PMC7465399 DOI: 10.3390/biology9080213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an important role in transcriptional regulation. Recent findings show that ncRNAs regulate nucleosome remodeler activities at many levels and that ncRNAs are regulatory targets of nucleosome remodelers. Further, a series of recent screens indicate this network of regulatory interactions is more expansive than previously appreciated. Here, we discuss currently described regulatory interactions between ncRNAs and nucleosome remodelers and contextualize their biological functions.
Collapse
Affiliation(s)
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
184
|
Abstract
Genomic imprinting is a parent-of-origin dependent phenomenon that restricts transcription to predominantly one parental allele. Since the discovery of the first long noncoding RNA (lncRNA), which notably was an imprinted lncRNA, a body of knowledge has demonstrated pivotal roles for imprinted lncRNAs in regulating parental-specific expression of neighboring imprinted genes. In this Review, we will discuss the multiple functionalities attributed to lncRNAs and how they regulate imprinted gene expression. We also raise unresolved questions about imprinted lncRNA function, which may lead to new avenues of investigation. This Review is dedicated to the memory of Denise Barlow, a giant in the field of genomic imprinting and functional lncRNAs. With her passion for understanding the inner workings of science, her indominable spirit and her consummate curiosity, Denise blazed a path of scientific investigation that made many seminal contributions to genomic imprinting and the wider field of epigenetic regulation, in addition to inspiring future generations of scientists.
Collapse
Affiliation(s)
- William A. MacDonald
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mellissa R. W. Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
185
|
Song Y, Guo NH, Zheng JF. LncRNA-MALAT1 regulates proliferation and apoptosis of acute lymphoblastic leukemia cells via miR-205-PTK7 pathway. Pathol Int 2020; 70:724-732. [PMID: 32754978 DOI: 10.1111/pin.12993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022]
Abstract
Long non-coding RNA (lncRNA) MALAT1 has been confirmed to function as an oncogene in various solid tumors. MALAT1 level has been shown to be upregulated in relapsed acute lymphoblastic leukemia (ALL) patients, but the mechanism is unclear. This study aims to investigate the functional roles and underlying mechanisms of MALAT1 in ALL. MALAT1 and miR-205 expression were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). MTT assay and flow cytometry were performed to evaluate cell proliferation and apoptosis, respectively. Protein level of protein tyrosine kinase-7 (PTK7) was detected by Western blot assay. Dual luciferase reporter assay was conducted to confirm the binding of MALAT1 and miR-205, as well as miR-205 and PTK7. The levels of MALAT1 and PTK7 were upregulated in ALL samples. In contrast, miR-205 level was downregulated in ALL in ALL samples. Moreover, MALAT1 silencing or miR-205 overexpression restrained proliferation and promoted apoptosis of ALL cells. Mechanistically, MALAT1 sponged miR-205 to regulate PTK7 expression. In summary, MALAT1 affected ALL cell proliferation and apoptosis via regulating miR-205-PTK7 axis. Our results suggest that MALAT1-miR-205-PTK7 axis participates in the proliferation and apoptosis of ALL, which may provide a potential treatment target for ALL.
Collapse
Affiliation(s)
- Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ning-Hong Guo
- Institutional Office, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ji-Fu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
186
|
Ubiquinol-cytochrome c reductase core protein 1 overexpression protects H9c2 cardiac cells against mimic ischemia/reperfusion injury through PI3K/Akt/GSK-3β pathway. Biochem Biophys Res Commun 2020; 529:904-909. [PMID: 32819597 DOI: 10.1016/j.bbrc.2020.06.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/20/2022]
Abstract
Ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) plays a key role in influencing mitochondrial function. Increasing evidence supports that UQCRC1 overexpression takes part in cardioprotection. However, it remains unclear about the signaling pathway mediating the protective role of UQCRC1 overexpression. Thus, the current study aimed to investigate the signaling pathway. Inhibition of PI3K completely abolished the protective effects of UQCRC1 overexpression on cell viability and mitochondrial membrane potential after OGD or hydrogen peroxide injury in H9c2 cardiac cells, while inhibition of ERK only partially abolished these effects. Moreover, UQCRC1 overexpression dramatically increased the phosphorylation of PI3K downstream signal molecules including Akt and GSK-3β. Finally, UQCRC1 overexpression upregulated the expression of antiapoptotic protein Bcl-2, downregulated the expression of proapoptotic protein Bax, decreased active caspase 3 expression and cell apoptosis, which were completely abolished by inhibition of PI3K. In conclusion, UQCRC1 overexpression protects H9c2 cardiac cells against mimic ischemia/reperfusion injury through mediating PI3K/Akt/GSK-3β pathway to regulate apoptosis-related proteins.
Collapse
|
187
|
Lozano-Vidal N, Bink DI, Boon RA. Long noncoding RNA in cardiac aging and disease. J Mol Cell Biol 2020; 11:860-867. [PMID: 31152659 PMCID: PMC6884711 DOI: 10.1093/jmcb/mjz046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the main cause of morbidity and mortality in Western society and present an important age-related risk. With the constant rise in life expectancy, prevalence of CVD in the population will likely increase further. New therapies, especially in the elderly, are needed to combat CVD. This review is focused on the role of long noncoding RNA (lncRNA) in CVD. RNA sequencing experiments in the past decade showed that most RNA does not code for protein, but many RNAs function as ncRNA. Here, we summarize the recent findings of lncRNA regulation in the diseased heart. The potential use of these RNAs as biomarkers of cardiac disease prediction is also discussed.
Collapse
Affiliation(s)
- Noelia Lozano-Vidal
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Diewertje I Bink
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands.,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Berlin, Germany
| |
Collapse
|
188
|
Chen Q, Meng X, Liao Q, Chen M. Versatile interactions and bioinformatics analysis of noncoding RNAs. Brief Bioinform 2020; 20:1781-1794. [PMID: 29939215 DOI: 10.1093/bib/bby050] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Advances in RNA sequencing technologies and computational methodologies have provided a huge impetus to noncoding RNA (ncRNA) study. Once regarded as inconsequential results of transcriptional promiscuity, ncRNAs were later found to exert great roles in various aspects of biological functions. They are emerging as key players in gene regulatory networks by interacting with other biomolecules (DNA, RNA or protein). Here, we provide an overview of ncRNA repertoire and highlight recent discoveries of their versatile interactions. To better investigate the ncRNA-mediated regulation, it is necessary to make full use of innovative sequencing techniques and computational tools. We further describe a comprehensive workflow for in silico ncRNA analysis, providing up-to-date platforms, databases and tools dedicated to ncRNA identification and functional annotation.
Collapse
Affiliation(s)
- Qi Chen
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Xianwen Meng
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qi Liao
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Ming Chen
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
189
|
High Expression of the Long Noncoding RNA SNHG15 in Cancer Tissue Samples Predicts an Unfavorable Prognosis of Cancer Patients: A Meta-Analysis. JOURNAL OF ONCOLOGY 2020; 2020:3417036. [PMID: 32733556 PMCID: PMC7378602 DOI: 10.1155/2020/3417036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/23/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Background Although the prognostic value of lncRNA small nucleolar RNA host gene 15 (SNHG15) expression in cancers has been evaluated in many studies, the results remain controversial. This meta-analysis aimed to clarify the role of SNHG15 in the prognosis of different cancer patients. Materials and Methods Eligible studies were selected from PubMed, PMC, EMBASE, Web of Science, and Cochrane Library according to the inclusion and exclusion criteria (up to December 20, 2019). The primary outcome was overall survival (OS) and recurrence-free survival (RFS). The secondary outcome was other clinicopathological parameters (including advanced TNM stage, lymph node metastasis, distant metastases, and gender). The Cancer Genome Atlas (TCGA) dataset was used to verify the analysis results. Results Eleven eligible studies were eventually included, involving 9 different types of cancer and 1,079 patients. The high expression of SNHG15 was indicative of a significantly poor OS of cancer patients (HR = 1.96, 95% CI = 1.55–2.47, P < 0.00001). Subgroup analysis showed that the high expression of SNHG15 was associated with a significantly poor OS of patients with digestive cancer (HR = 1.91, 95% CI = 1.38–2.66, P=0.0001), but not lung cancer (HR = 1.83, 95% CI = 0.89–3.76, P=0.010). The RFS of patients with high expression of SNHG15 was shorter than that of patients with low expression of SNHG15 (HR = 2.03, 95% CI = 1.46–2.83, P < 0.00001). In addition, high SNHG15 expression level was significantly correlated with later TNM stage (OR = 3.05, 95% CI = 2.31–4.02, P < 0.00001), lymphatic metastasis (OR = 3.20, 95% CI = 2.30–4.45, P < 0.00001), and distant metastasis (OR = 5.05, 95% CI = 2.15–11.85, P=0.0002). The TCGA verification results were consistent with those observed in our meta-analysis. Conclusion High expression of the long noncoding RNA SNHG15 in cancer tissue samples predicts an unfavorable prognosis for cancer patients. LncRNA SNHG15 can be used as an adverse prognostic biomarker for cancer patients.
Collapse
|
190
|
Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs are involved in the response to oxidative stress. Biomed Pharmacother 2020; 127:110228. [DOI: 10.1016/j.biopha.2020.110228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/17/2023] Open
|
191
|
Rao CB, Luo D, Lin ZT, Xie MY, Hu Y, Peng Q, Jiang H, Zhang ZH, Lu XM. [Expression of long non-coding RNA linc00467 in childhood acute myeloid leukemia and its role in drug resistance]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:734-738. [PMID: 32669170 PMCID: PMC7389624 DOI: 10.7499/j.issn.1008-8830.2002007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the expression and function of long non-coding RNA linc00467 in childhood acute myeloid leukemia (AML). METHODS Bone marrow samples were collected from 5 children with AML who were diagnosed from May 2016 to June 2018. Normal bone marrow samples based on bone marrow examination were collected from 3 children as controls. Quantitative real-time PCR was used to measure the expression of linc00467 in the two groups. A lentivirus system was used to achieve overexpression of linc00467 in AML cells (HL-60) (linc00467 overexpression group), and empty vector expressing green fluorescent protein (GFP) was transfected into AML cells to establish a GFP control group. A lentivirus system was used to insert an interfering sequence into AML cells (sh-linc00467 interfering group), and a random sequence was inserted to establish an sh-NC control group. Cell proliferation and resistance to doxorubicin were observed for all groups. RESULTS Compared with the normal control group, the children with AML had a significant increase in linc00467 (P=0.018). Overexpression and interference with linc00467 expression had no significant effect on cell proliferation. Compared with the GFP control group, the linc00467 overexpression group had a significant increase in the viability of HL-60 cells at the adriamycin concentrations of 0.1, 0.2, 0.3, 0.4, and 0.5 μg/mL (P<0.05). Compared with the sh-NC control group, the sh-linc00467 interfering group had a significant reduction in the viability of HL-60 cells at the adriamycin concentrations of 0.1, 0.2, 0.3, 0.4, and 0.5 μg/mL (P<0.05). Compared with the untreated group, the adriamycin treatment group had a significant increase in the expression of linc00467 in HL-60 cells (P<0.05). CONCLUSIONS This study reveals the biological function of linc00467 to promote the resistance to adriamycin in AML, which provides a basis for developing new therapeutic drugs for AML.
Collapse
Affiliation(s)
- Chun-Bao Rao
- Key Laboratory of Genetics and Infectious Diseases, Dongguan Institute of Pediatrics, Dongguan, Guangdong 523327, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Gao L, Nie X, Zhang W, Gou R, Hu Y, Qi Y, Li X, Liu Q, Liu J, Lin B. Identification of long noncoding RNA RP11-89K21.1 and RP11-357H14.17 as prognostic signature of endometrial carcinoma via integrated bioinformatics analysis. Cancer Cell Int 2020; 20:268. [PMID: 32587476 PMCID: PMC7313119 DOI: 10.1186/s12935-020-01359-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Endometrial carcinoma (EC) is one of the most common malignant tumors in gynecology. The potential functions and mechanisms of long noncoding RNAs (lncRNAs) in the occurrence and progression of EC remains unclear. It’s meaningful to explore lncRNAs signature for providing prognostic value of EC. Methods The differentially expressed lncRNAs and their prognostic values in EC were investigated based on The Cancer Genome Atlas (TCGA) database; the transcriptional factors (TFs), the competing endogenous RNA (ceRNA) mechanism, functional regulatory network and immune infiltration of RP11-89K21.1 and RP11-357H14.17 were further explored by various bioinformatics tools and databases. Results We firstly identified high expression of RP11-89K21.1 and RP11-357H14.17 were closely associated with shorten overall survival (OS) and poor prognosis in patients with EC. We also elucidated the networks of transcription factor and co-expression genes associated with RP11-89K21.1 and RP11-357H14.17. Furthermore, the ceRNA network mechanism was successfully constructed through 2 lncRNAs (RP11-89K21.1 and RP11-357H14.17), 11 miRNAs and 183 mRNAs. Functional enrichment analysis revealed that the targeting genes of RP11-89K21.1 and RP11-357H14.17 were strongly associated with microRNAs in cancer, vessel development, growth regulation, growth factor and cell differentiation, and involved in pathways including pathways in cancer, microRNAs in cancer and apoptotic signaling pathway. Conclusions We demonstrated for the first time that RP11-89K21.1 and RP11-357H14.17 may play crucial roles in the occurrence, development and malignant biological behavior of EC, and can be regarded as potential prognostic biomarkers for EC.
Collapse
Affiliation(s)
- Lingling Gao
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xin Nie
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Wenchao Zhang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yue Qi
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Qing Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
193
|
Zhao R, Li J, Liu N, Li H, Liu L, Yang F, Li L, Wang Y, He J. Transcriptomic Analysis Reveals the Involvement of lncRNA-miRNA-mRNA Networks in Hair Follicle Induction in Aohan Fine Wool Sheep Skin. Front Genet 2020; 11:590. [PMID: 33117415 PMCID: PMC7528302 DOI: 10.3389/fgene.2020.00590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNA) and microRNAs (miRNA) are new found classes of non-coding RNAs (ncRNAs) that are not translated into proteins but regulate various cellular and biological processes. In this study, we conducted a transcriptomic analysis of ncRNA and mRNA expression in Aohan fine wool sheep (AFWS) at different growth stages (embryonic day 90, embryonic day 120, and the day of birth), and explored their relationship with wool follicle growth. In total, 461 lncRNAs, 106 miRNAs, and 1,009 mRNAs were found to be differentially expressed during the three stages of wool follicle development. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to clarify the roles of the differentially expressed lncRNA, miRNA, and mRNA in the different stages of wool follicle development. Quantitative real-time PCR (qRT-PCR) was used to validate the results of RNA-seq analysis. lncRNA (MSTRG.223165) was found to act as a competing endogenous RNA (ceRNA) and may participate in wool follicle development by acting as an miR-21 sponge. Network prediction implicated the MSTRG.223165-miR-21-SOX6 axis in the wool follicle development. The targeting relationships of miR-21 with SOX6 and MSTRG.223165 were validated in dual-luciferase assays. This is the first report indicating the association of the lncRNA-miRNA-mRNA network with wool follicle development in AFWS. This study provides new insights into the regulation of the wool follicle growth and represents a solid foundation for wool sheep breeding programs.
Collapse
Affiliation(s)
- Ranran Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Qufu Animal Husbandry and Veterinary Technical Service Center, Qufu, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hegang Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lanlan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
194
|
Wang X, Zhang J, Liu X, Wei B, Zhan L. Long noncoding RNAs in endometriosis: Biological functions, expressions, and mechanisms. J Cell Physiol 2020; 236:6-14. [PMID: 32506425 DOI: 10.1002/jcp.29847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Endometriosis refers to a benign chronic gynecological disorder, and is defined as the ectopic growth of endometrium in pelvic cavity. Endometriosis affects about 10% of reproductive-aged women. Unfortunately, the pathogenesis of endometriosis remains obscure, and the disease witnesses a lack of effective therapy approaches. Therefore, more research needs to be performed to throw light on endometriosis, its pathogenesis, and therapy. Long noncoding RNAs (lncRNAs), which are defined as functional cellular RNA longer than 200 nucleotides, have been implicated in many chronic disorders. It has been suggested that lncRNAs are closely related to the endometriosis process. Nevertheless, the molecular mechanisms by which lncRNAs associate with endometriosis should be elucidated more detailed. In our brief review, we first exhibit the aberrant lncRNAs expression in endometriosis. Then, we talk about the molecular mechanisms underlying lncRNAs in endometriosis. Finally, we also present the potential of lncRNAs as biomarkers for endometriosis.
Collapse
Affiliation(s)
- Xu Wang
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital, Hefei, China
| | - Jing Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojing Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
195
|
Chiabotto G, Camussi G, Bruno S. Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s41544-020-00050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractExtracellular vesicles (EVs) are small membrane vesicles carrying bioactive lipids, proteins and nucleic acids of the cell of origin. In particular, EVs carry non-coding RNAs (ncRNAs) and the vesicle membrane may protect them from degradation. Once released within the extracellular space, EVs can transfer their cargo, including ncRNAs, to neighboring or distant cells, thus inducing phenotypical and functional changes that may be relevant in several physio-pathological conditions. This review provides an overview of the role of EV-carried ncRNAs in the modulation of liver fibrosis. In particular, we focused on EV-associated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) involved into the development of liver fibrosis and on the potential use of EV-associated ncRNAs as diagnostic and prognostic biomarkers of liver fibrosis.
Collapse
|
196
|
Li Q, Wang S, Wu Z, Liu Y. DDX11-AS1exacerbates bladder cancer progression by enhancing CDK6 expression via suppressing miR-499b-5p. Biomed Pharmacother 2020; 127:110164. [PMID: 32422563 DOI: 10.1016/j.biopha.2020.110164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE We investigated DDX11-AS1 effects on bladder cancer (BLCA) progression to identify a new potential therapeutic target for BLCA. METHODS BLCA cases (n = 108) were enrolled. SW780 and J82 cells were transfected. Cell counting kit-8 (CCK-8) assay, wound healing assay and transwell migration assay was conducted. Cell cycle and apoptosis was detected by flow cytometry. Luciferase reporter assay was performed. DDX11-AS1, miR-499b-5p and CDK6 mRNA expression in tissues/cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR). In vivo experiment was performed using nude mice. CDK6 and Ki67 proteins expression in cells and xenograft tumors were researched by Western blot and immunohistochemistry. RESULTS Overexpressed DDX11-AS1 in BLCA was associated with poor outcome of patients. Compared with siCtrl group, SW780 and J82 cells of siDDX11-AS1 group had lower OD450 value (P < 0.01), less cells in S phase, more apoptosis cells (P < 0.05), higher relative wound width (P < 0.05) and less invasive cell number (P < 0.01). DDX11-AS1 promoted CDK6 expression via inhibiting miR-499b-5p. Compared with oe-DDX11-AS1 group, SW780 cells of oe-DDX11-AS1 + miR-499b-5p mimic group and oe-DDX11-AS1 + siCDK6 group had lower OD450 value (P < 0.01), less cells in S phrase, more apoptosis cells (P < 0.01), higher relative wound width (P < 0.05) and less invasive cell numbers (P < 0.01). DDX11-AS1 knockdown inhibited SW780 cells growth in vivo and suppressed CDK6 and Ki67 expression in xenograft tumors. CONCLUSION DDX11-AS1 exacerbates BLCA progression by enhancing CDK6 expression via suppressing miR-499b-5p.
Collapse
Affiliation(s)
- Qiang Li
- Department of Urology, Huai'an Hospital Affiliated to Xuzhou Medical University and Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Sugui Wang
- Department of Urology, Huai'an Hospital Affiliated to Xuzhou Medical University and Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Ziyu Wu
- Department of Urology, Huai'an Hospital Affiliated to Xuzhou Medical University and Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Yuzhong Liu
- Department of Urology, Traditional Chinese Medical Hospital of Siyang County, 15 Jiefangbei Road, Siyang, 223700, China.
| |
Collapse
|
197
|
Kong S, Tao M, Shen X, Ju S. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett 2020; 483:59-65. [PMID: 32360179 DOI: 10.1016/j.canlet.2020.04.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022]
Abstract
Long non-coding RNA (lncRNAs) are functional RNA segments longer than 200 nucleotides, which are considered a redundant transcriptional product. Recently, lncRNAs have been shown to harbor open reading frame (ORF) sequences and encode proteins/peptides. Circular RNAs (circRNAs) have long been considered as another type of non-coding RNA (ncRNA) due to the absence of the 5' cap structure. However, recent studies have shown that they also have ORFs in their sequences. CircRNAs can be translated into proteins via internal ribosome entry site (IRES)-driven or N6-methyladenosine (m6A)-mediated initiation. To date, several translatable circRNAs and lncRNAs have been identified in Drosophila, mice, and human myoblasts, as well as in different cancers, such as glioma, hepatocellular carcinoma, and colon cancer. In this article, we review the mechanisms that drive translation of circRNAs and lncRNAs. Moreover, we discuss the research methods and tools available to identify their translation products and validate the function of these bioactive proteins/peptides in physiology and cancer.
Collapse
Affiliation(s)
- Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China; Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China; Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
198
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
199
|
Jin KT, Yao JY, Fang XL, Di H, Ma YY. Roles of lncRNAs in cancer: Focusing on angiogenesis. Life Sci 2020; 252:117647. [PMID: 32275935 DOI: 10.1016/j.lfs.2020.117647] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
Approximately 98% of the human genome consists of non-coding sequences that are classified into two classes by size: small non-coding RNAs (≤200 nucleotides) and long non-coding RNAs (≥200 nucleotides). Long non-coding RNAs (lncRNAs) are involved in various cellular events and act as guides, signals, decoys, and dynamic scaffolds. Due to their oncogenic and tumor suppressive roles, lncRNAs are important in cancer development and growth. LncRNAs play their roles by modulating cancer hallmarks, including DNA damage, metastasis, immune escape, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis. Angiogenesis is vital for solid tumors which guarantees their growth beyond 2 mm3. Tumor angiogenesis is a complex process and is regulated through interaction between pro-angiogenic and anti-angiogenic factors within the tumor microenvironment. There are accumulating evidence that different lncRNAs regulate tumor angiogenesis. In this paper, we described the functions and mechanisms of lncRNAs in tumor angiogenesis.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, Zhejiang Province, PR China
| | - Jia-Yu Yao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Xing-Liang Fang
- Acupuncture and Tuina Clinic, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Hua Di
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing 312000, Zhejiang Province, PR China.
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|
200
|
In Search for Genes Related to Atherosclerosis and Dyslipidemia Using Animal Models. Int J Mol Sci 2020; 21:ijms21062097. [PMID: 32197550 PMCID: PMC7139774 DOI: 10.3390/ijms21062097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic disease that affects large arteries and may lead to fatal consequences. According to current understanding, inflammation and lipid accumulation are the two key mechanisms of atherosclerosis development. Animal models based on genetically modified mice have been developed to investigate these aspects. One such model is low-density lipoprotein (LDL) receptor knockout (KO) mice (ldlr-/-), which are characterized by a moderate increase of plasma LDL cholesterol levels. Another widely used genetically modified mouse strain is apolipoprotein-E KO mice (apoE-/-) that lacks the primary lipoprotein required for the uptake of lipoproteins through the hepatic receptors, leading to even greater plasma cholesterol increase than in ldlr-/- mice. These and other animal models allowed for conducting genetic studies, such as genome-wide association studies, microarrays, and genotyping methods, which helped identifying more than 100 mutations that contribute to atherosclerosis development. However, translation of the results obtained in animal models for human situations was slow and challenging. At the same time, genetic studies conducted in humans were limited by low sample sizes and high heterogeneity in predictive subclinical phenotypes. In this review, we summarize the current knowledge on the use of KO mice for identification of genes implicated in atherosclerosis and provide a list of genes involved in atherosclerosis-associated inflammatory pathways and their brief characteristics. Moreover, we discuss the approaches for candidate gene search in animals and humans and discuss the progress made in the field of epigenetic studies that appear to be promising for identification of novel biomarkers and therapeutic targets.
Collapse
|