151
|
QSAR modeling, docking and ADMET studies for exploration of potential anti-malarial compounds against Plasmodium falciparum. In Silico Pharmacol 2017; 5:6. [PMID: 28726171 DOI: 10.1007/s40203-017-0026-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022] Open
Abstract
Development of resistance in the Plasmodium falciparum to Artemisinin, the most effective anti-malarial compound, threatens malaria elimination tactics. To gain more efficacious Artemisinin derivatives, QSAR modeling and docking was performed. In the present study, 2D-QSAR model and molecular docking were used to evaluate the Artemisinin compounds and to reveal their binding modes and structural basis of inhibitory activity. Moreover, ADMET-related descriptors have been calculated to predict the pharmacokinetic properties of the effective compounds. The correlation expressed as coefficient of determination (r2) and prediction accuracy expressed in the form of cross-validated r2 (q2) of QSAR model are found 0.9687 and 0.9586, respectively. Total 239 descriptors have been included in the study as independent variables. The four chemical descriptors, namely radius of gyration, mominertia Z, SssNH count and SK Average have been found to be well correlated with anti-malarial activities. The model was statistically robust and has good predictive power which could be employed for virtual screening of proposed anti-malarial compounds. QSAR and docking results revealed that studied compounds exhibit good anti-malarial activities and binding affinities. The outcomes could be useful for the design and development of the potent inhibitors which after optimization can be potential therapeutics for malaria.
Collapse
|
152
|
Ndung'u L, Langat B, Magiri E, Ng'ang'a J, Irungu B, Nzila A, Kiboi D. Amodiaquine resistance in Plasmodium berghei is associated with PbCRT His95Pro mutation, loss of chloroquine, artemisinin and primaquine sensitivity, and high transcript levels of key transporters. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.11768.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The human malaria parasite Plasmodium falciparum has evolved complex drug evasion mechanisms to all available antimalarials. To date, the combination of amodiaquine-artesunate is among the drug of choice for treatment of uncomplicated malaria. In this combination, a short acting, artesunate is partnered with long acting, amodiaquine for which resistance may emerge rapidly especially in high transmission settings. Here, we used a rodent malaria parasite Plasmodium berghei ANKA as a surrogate of P. falciparum to investigate the mechanisms of amodiaquine resistance. Methods: We used serial technique to select amodiaquine resistance by submitting the parasites to continuous amodiaquine pressure. We then employed the 4-Day Suppressive Test to monitor emergence of resistance and determine the cross-resistance profiles. Finally, we genotyped the resistant parasite by PCR amplification, sequencing and relative quantitation of mRNA transcript of targeted genes. Results: Submission of P. berghei ANKA to amodiaquine pressure yielded resistant parasite within thirty-six passages. The effective dosage that reduced 90% of parasitaemia (ED90) of sensitive line and resistant line were 4.29mg/kg and 19.13mg/kg, respectively. After freezing at -80ºC for one month, the resistant parasite remained stable with an ED90 of 18.22mg/kg. Amodiaquine resistant parasites are also resistant to chloroquine (6fold), artemether (10fold), primaquine (5fold), piperaquine (2fold) and lumefantrine (3fold). Sequence analysis of Plasmodium berghei chloroquine resistant transporter revealed His95Pro mutation. No variation was identified in Plasmodium berghei multidrug resistance gene-1 (Pbmdr1), Plasmodium berghei deubiquitinating enzyme-1 or Plasmodium berghei Kelch13 domain nucleotide sequences. Amodiaquine resistance is also accompanied by high mRNA transcripts of key transporters; Pbmdr1, V-type/H+ pumping pyrophosphatase-2 and sodium hydrogen ion exchanger-1 and Ca2+/H+ antiporter. Conclusions: Selection of amodiaquine resistance yielded stable “multidrug-resistant’’ parasites and thus may be used to study common resistance mechanisms associated with other antimalarial drugs. Genome wide studies may elucidate other functionally important genes controlling AQ resistance in P. berghei.
Collapse
|
153
|
Wang J, Xu C, Lun ZR, Meshnick SR. Unpacking ‘Artemisinin Resistance’. Trends Pharmacol Sci 2017; 38:506-511. [DOI: 10.1016/j.tips.2017.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
|
154
|
Nguetse CN, Adegnika AA, Agbenyega T, Ogutu BR, Krishna S, Kremsner PG, Velavan TP. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria. Malar J 2017; 16:217. [PMID: 28535801 PMCID: PMC5442681 DOI: 10.1186/s12936-017-1868-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca2+-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. Methods Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped for pfmdr1, pfatp6 and pfk13 loci by DNA sequencing and assessing pfmdr1 copy number variation (CNV) by real-time PCR. Results Pfmdr1-N86Y mutation was detected in 48, 10 and 10% in Lambaréné, Kumasi and Kisumu, respectively. At codon 184, the prevalence of the mutation was 73% in Lambaréné, 63% in Kumasi and 49% Kisumu. The S1034C and N1042D variants were absent at all three sites, while the frequency of the D1246Y mutation was 1, 3 and 13% in Lambaréné, Kumasi and Kisumu, respectively. Isolates with two pfmdr1 gene copy number predominantly harboured the N86Y wild-type allele and were mostly found in Kumasi (10%) (P < 0.0001). Among the main pfmdr1 haplotypes (NFD, NYD and YFD), NYD was associated with highest parasitaemia (P = 0.04). At the pfatp6 locus, H243Y and A623E mutations were observed at very low frequency at all three sites. The prevalence of the pfatp6 E431K variant was 6, 18 and 17% in Lambaréné, Kumasi and Kisumu, respectively. The L263E and S769N mutations were absent in all isolates. The pfk13 variants associated with artemisinin resistance in Southeast Asia were not observed. Eleven novel substitutions in the pfk13 locus occurring at low frequency were observed. Conclusions Artemisinins are still highly efficacious in large malaria-endemic regions though declining efficacy has occurred in Southeast Asia. The return of chloroquine-sensitive strains following the removal of drug pressure is observed. However, selection of wild-type alleles in the multidrug-resistance gene and the increased gene copy number is associated with reduced lumefantrine sensitivity. This study indicates a need to constantly monitor drug resistance to artemisinin in field isolates from malaria-endemic countries.
Collapse
Affiliation(s)
- Christian N Nguetse
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Tsiri Agbenyega
- Department of Physiology, University of Science and Technology, School of Medical Sciences, Kumasi, Ghana.,Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Bernhards R Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sanjeev Krishna
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Institute for Infection and Immunity, St George's University of London, London, UK
| | - Peter G Kremsner
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany. .,Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo. .,Vietnamese-German Center for Medical Research, Hanoi, Vietnam. .,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
155
|
Koukouikila-Koussounda F, Jeyaraj S, Nguetse CN, Nkonganyi CN, Kokou KC, Etoka-Beka MK, Ntoumi F, Velavan TP. Molecular surveillance of Plasmodium falciparum drug resistance in the Republic of Congo: four and nine years after the introduction of artemisinin-based combination therapy. Malar J 2017; 16:155. [PMID: 28420403 PMCID: PMC5395861 DOI: 10.1186/s12936-017-1816-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/09/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Resistance to anti-malarial drugs hinders efforts on malaria elimination and eradication. Following the global spread of chloroquine-resistant parasites, the Republic of Congo adopted artemisinin-based combination therapy (ACT) in 2006 as a first-line treatment for uncomplicated malaria. To assess the impacts after implementation of ACT, a molecular surveillance for anti-malarial drug resistance was conducted in Congo 4 and 9 years after the introduction of ACT. METHODS Blood samples of 431 febrile children aged 1-10 years were utilized from two previous studies conducted in 2010 (N = 311) and 2015 (N = 120). All samples were screened for malaria parasites using nested PCR. Direct sequencing was used to determine the frequency distribution of genetic variants in the anti-malarial drug-resistant Plasmodium falciparum genes (Pfcrt, Pfmdr1, Pfatp6, Pfk13) in malaria-positive isolates. RESULTS One-hundred and nineteen (N = 70 from 2010 and N = 49 from 2015) samples were positive for P. falciparum. A relative decrease in the proportion of chloroquine-resistant haplotype (CVIET) from 100% in 2005, 1 year before the introduction and implementation of ACT in 2006, to 98% in 2010 to 71% in 2015 was observed. Regarding the multidrug transporter gene, a considerable reduction in the frequency of the mutations N86Y (from 73 to 27%) and D1246Y (from 22 to 0%) was observed. However, the prevalence of the Y184F mutation remained stable (49% in 2010 compared to 54% in 2015). Isolates carrying the Pfatp6 H243Y was 25% in 2010 and this frequency was reduced to null in 2015. None of the parasites harboured the Pfk13 mutations associated with prolonged artemisinin clearance in Southeast Asia. Nevertheless, 13 new Pfk13 variants are reported among the investigated isolates. CONCLUSION The implementation of ACT has led to the decline in prevalence of chloroquine-resistant parasites in the Republic of Congo. However, the constant prevalence of the PfMDR1 Y184F mutation, associated with lumefantrine susceptibility, indicate a selective drug pressure still exists. Taken together, this study could serve as the basis for epidemiological studies monitoring the distribution of molecular markers of artemisinin resistance in the Republic of Congo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P Velavan
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo. .,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany. .,Duy Tan University, Da Nang, Vietnam. .,Vietnamese-German Centre for Medical Research, Hanoi, Vietnam.
| |
Collapse
|
156
|
Biodegradable Polymeric Nanocapsules Prevent Cardiotoxicity of Anti-Trypanosomal Lychnopholide. Sci Rep 2017; 7:44998. [PMID: 28349937 PMCID: PMC5368638 DOI: 10.1038/srep44998] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Chagas disease is a neglected parasitic disease caused by the protozoan Trypanosoma cruzi. New antitrypanosomal options are desirable to prevent complications, including a high rate of cardiomyopathy. Recently, a natural substance, lychnopholide, has shown therapeutic potential, especially when encapsulated in biodegradable polymeric nanocapsules. However, little is known regarding possible adverse effects of lychnopholide. Here we show that repeated-dose intravenous administration of free lychnopholide (2.0 mg/kg/day) for 20 days caused cardiopathy and mortality in healthy C57BL/6 mice. Echocardiography revealed concentric left ventricular hypertrophy with preserved ejection fraction, diastolic dysfunction and chamber dilatation at end-stage. Single cardiomyocytes presented altered contractility and Ca2+ handling, with spontaneous Ca2+ waves in diastole. Acute in vitro lychnopholide application on cardiomyocytes from healthy mice also induced Ca2+ handling alterations with abnormal RyR2-mediated diastolic Ca2+ release. Strikingly, the encapsulation of lychnopholide prevented the cardiac alterations induced in vivo by the free form repeated doses. Nanocapsules alone had no adverse cardiac effects. Altogether, our data establish lychnopholide presented in nanocapsule form more firmly as a promising new drug candidate to cure Chagas disease with minimal cardiotoxicity. Our study also highlights the potential of nanotechnology not only to improve the efficacy of a drug but also to protect against its adverse effects.
Collapse
|
157
|
Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, Meyer AJ, Becker K. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med 2017; 104:104-117. [PMID: 28062360 DOI: 10.1016/j.freeradbiomed.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, 101 Bagby Ave., Waco, TX 76706, USA
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jude M Przyborski
- Parasitology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
158
|
Rai P, Sharma D, Soni R, Khatoon N, Sharma B, Bhatt TK. Plasmodium falciparum apicoplast and its transcriptional regulation through calcium signaling. J Microbiol 2017; 55:231-236. [DOI: 10.1007/s12275-017-6525-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
|
159
|
Bagheri AR, Agarwal S, Golenser J, Greiner A. Unlocking Nanocarriers for the Programmed Release of Antimalarial Drugs. GLOBAL CHALLENGES (HOBOKEN, NJ) 2017; 1:1600011. [PMID: 31565264 PMCID: PMC6607132 DOI: 10.1002/gch2.201600011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/04/2016] [Indexed: 06/10/2023]
Abstract
A programmable release system with wide range of release profiles of the antimalarial artemisone (ART) from fibrous nanocarriers (NFN) is presented. This is achieved following a new paradigm of using ART-loaded NFN in infusion system of hydrophobic drug eluting nanocarriers, adapted to clinical applications. Very importantly, under these conditions ART did not degrade as it was observed in solution.
Collapse
Affiliation(s)
- Amir Reza Bagheri
- Macromolecular ChemistryBavarian Polymer InstituteUniversity of BayreuthUniversitätsstraße 3095440BayreuthGermany
| | - Seema Agarwal
- Macromolecular ChemistryBavarian Polymer InstituteUniversity of BayreuthUniversitätsstraße 3095440BayreuthGermany
| | - Jacob Golenser
- Department of Microbiology and Molecular GeneticsThe Kuvin Centre for the Study of Infectious and Tropical DiseasesThe Hebrew University of Jerusalem91120JerusalemIsrael
| | - Andreas Greiner
- Macromolecular ChemistryBavarian Polymer InstituteUniversity of BayreuthUniversitätsstraße 3095440BayreuthGermany
| |
Collapse
|
160
|
Santos P, López-Vallejo F, Soto CY. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem Biol Drug Des 2017; 90:175-187. [PMID: 28111912 DOI: 10.1111/cbdd.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB) is one of the most important public health problems around the world. The emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains has driven the finding of alternative anti-TB targets. In this context, P-type ATPases are interesting therapeutic targets due to their key role in ion homeostasis across the plasma membrane and the mycobacterial survival inside macrophages. In this review, in silico and experimental strategies used for the rational design of new anti-TB drugs are presented; in addition, the chemical space distribution based on the structure and molecular properties of compounds with anti-TB and anti-P-type ATPase activity is discussed. The chemical space distribution compared to public compound libraries demonstrates that natural product libraries are a source of novel chemical scaffolds with potential anti-P-type ATPase activity. Furthermore, compounds that experimentally display anti-P-type ATPase activity belong to a chemical space of molecular properties comparable to that occupied by those approved for oral use, suggesting that these kinds of molecules have a good pharmacokinetic profile (drug-like) for evaluation as potential anti-TB drugs.
Collapse
Affiliation(s)
- Paola Santos
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Fabian López-Vallejo
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos-Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
161
|
Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives. Cancer Chemother Pharmacol 2017; 79:451-466. [DOI: 10.1007/s00280-017-3251-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
|
162
|
Dohutia C, Chetia D, Gogoi K, Sarma K. Design, in silico and in vitro evaluation of curcumin analogues against Plasmodium falciparum. Exp Parasitol 2017; 175:51-58. [PMID: 28188731 DOI: 10.1016/j.exppara.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/27/2016] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
Abstract
The polyphenolic compound curcumin has been reported for its antimalarial properties in various scientific studies. Plasmodium falciparum ATP6, the parasite orthologue of mammalian sarcoplasmic Ca2+ ATPase (SERCA) has been identified as a key molecular target of both artemisinin and curcumin. The work was thereby undertaken to study the anti-malarial properties of two different series of curcumin analogues based on their docking interactions with PfATP6 and correlating the results with their anti-malarial activity. The compounds were designed retaining similar functional groups as that of the parent curcumin nucleus while incorporating changes in the carbon chain length, unsaturated groups and the number of ketone groups. The compounds (1E, 4E)-1,5-bis(4-methylphenyl)penta-1,4-dien-3-one (CD-9), (1E, 4E)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one (CD-8) and (E)-1,3-bis(4-hydroxylphenyl)prop-2-en-1-one (CD-1) showed IC50 values of 1.642 μM, 1.764 μM and 2.59 μM in 3D7 strain and 3.039 μM, 7.40 μM and 11.3 μM in RKL-2 strain respectively. Detailed structure-activity relationship studies of the compounds showed that CD-9 and CD-8 had a common hydrophobic interaction with the residue Leu268 of the PfATP6 protein and has been postulated through our study to be the reason for their antimalarial activity as seen after corroborating the results with the in vitro study. The study provided valuable insight about the ligand-protein interaction of the various functional groups of curcumin and its analogues against the PfATP6 protein and their importance in imparting antimalarial action.
Collapse
Affiliation(s)
- Chandrajit Dohutia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India.
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| | - Kabita Gogoi
- Regional Medical Research Centre NE (Indian Council of Medical Research), Dibrugarh 786001, India
| | - Kishore Sarma
- Regional Medical Research Centre NE (Indian Council of Medical Research), Dibrugarh 786001, India
| |
Collapse
|
163
|
Pegoraro S, Duffey M, Otto TD, Wang Y, Rösemann R, Baumgartner R, Fehler SK, Lucantoni L, Avery VM, Moreno-Sabater A, Mazier D, Vial HJ, Strobl S, Sanchez CP, Lanzer M. SC83288 is a clinical development candidate for the treatment of severe malaria. Nat Commun 2017; 8:14193. [PMID: 28139658 PMCID: PMC5290327 DOI: 10.1038/ncomms14193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/07/2016] [Indexed: 01/11/2023] Open
Abstract
Severe malaria is a life-threatening complication of an infection with the protozoan parasite Plasmodium falciparum, which requires immediate treatment. Safety and efficacy concerns with currently used drugs accentuate the need for new chemotherapeutic options against severe malaria. Here we describe a medicinal chemistry program starting from amicarbalide that led to two compounds with optimized pharmacological and antiparasitic properties. SC81458 and the clinical development candidate, SC83288, are fast-acting compounds that can cure a P. falciparum infection in a humanized NOD/SCID mouse model system. Detailed preclinical pharmacokinetic and toxicological studies reveal no observable drawbacks. Ultra-deep sequencing of resistant parasites identifies the sarco/endoplasmic reticulum Ca2+ transporting PfATP6 as a putative determinant of resistance to SC81458 and SC83288. Features, such as fast parasite killing, good safety margin, a potentially novel mode of action and a distinct chemotype support the clinical development of SC83288, as an intravenous application for the treatment of severe malaria.
Collapse
Affiliation(s)
| | - Maëlle Duffey
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Thomas D Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yulin Wang
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Roman Rösemann
- 4SC Discovery GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany
| | | | - Stefanie K Fehler
- 4SC AG, Am Klopferspitz 19a, 82152 Martinsried, Germany
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Leonardo Lucantoni
- Eskitis Institute for Drug Discovery, Griffith University, Don Young, Nathan Queensland 4111, Australia
| | - Vicky M Avery
- Eskitis Institute for Drug Discovery, Griffith University, Don Young, Nathan Queensland 4111, Australia
| | - Alicia Moreno-Sabater
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l'hôpital, F-75013 Paris, France
- AP-HP, Hôpital St Antoine, Service de Parasitologie-Mycologie, F-75012 Paris, France
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l'hôpital, F-75013 Paris, France
- AP-HP, Groupe hospitalier La Pitié-Salpêtrière, Service de Parasitologie-Mycologie, F-75013 Paris, France
| | - Henri J Vial
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, Université Montpellier II, cc107, Place Eugène Bataillon, 34095 Montpellier, France
| | - Stefan Strobl
- 4SC Discovery GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany
| | - Cecilia P Sanchez
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
164
|
Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, Lin Q, Hua ZC. Target identification with quantitative activity based protein profiling (ABPP). Proteomics 2016; 17. [PMID: 27723264 DOI: 10.1002/pmic.201600212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible. Presently, while some small molecules have seen successful application as drugs, the majority remain undeveloped, requiring further understanding of their MOA and side effects to fully tap into their potential. Given the typical promiscuity of many small molecules and the complexity of the cellular proteome, a high-flux and high-accuracy method is necessary. While affinity chromatography approaches combined with MS have had successes in target identification, limitations associated with nonspecific results remain. To overcome these complications, quantitative chemical proteomics approaches have been developed including metabolic labeling, chemical labeling, and label-free methods. These new approaches are adopted in conjunction with activity-based protein profiling (ABPP), allowing for a rapid process and accurate results. This review will briefly introduce the principles involved in ABPP, then summarize current advances in quantitative chemical proteomics approaches as well as illustrate with examples how ABPP coupled with quantitative chemical proteomics has been used to detect the targets of drugs and other bioactive small molecules including natural products.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jigang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China.,Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P. R., China
| | - Yew-Mun Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| |
Collapse
|
165
|
Li J, Casteels T, Frogne T, Ingvorsen C, Honoré C, Courtney M, Huber KVM, Schmitner N, Kimmel RA, Romanov RA, Sturtzel C, Lardeau CH, Klughammer J, Farlik M, Sdelci S, Vieira A, Avolio F, Briand F, Baburin I, Májek P, Pauler FM, Penz T, Stukalov A, Gridling M, Parapatics K, Barbieux C, Berishvili E, Spittler A, Colinge J, Bennett KL, Hering S, Sulpice T, Bock C, Distel M, Harkany T, Meyer D, Superti-Furga G, Collombat P, Hecksher-Sørensen J, Kubicek S. Artemisinins Target GABA A Receptor Signaling and Impair α Cell Identity. Cell 2016; 168:86-100.e15. [PMID: 27916275 PMCID: PMC5236063 DOI: 10.1016/j.cell.2016.11.010] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/04/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes is characterized by the destruction of pancreatic β cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional β-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic β cell mass from α cells. Artemisinins inhibit ARX function and impair α cell identity Compounds act by stabilizing gephyrin, thus enhancing GABAA receptor signaling Artemisinins increase β cell mass in zebrafish and rodent models Functional and transcriptional data indicate a conserved phenotype in human islets
Collapse
Affiliation(s)
- Jin Li
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Tamara Casteels
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Thomas Frogne
- Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | | | | | - Monica Courtney
- Université Côte d'Azur, INSERM, CNRS, iBV, 06108 Nice, France
| | - Kilian V M Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Nicole Schmitner
- Institute of Molecular Biology, Leopold-Franzens-University Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology, Leopold-Franzens-University Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Caterina Sturtzel
- Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria; Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Sara Sdelci
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Andhira Vieira
- Université Côte d'Azur, INSERM, CNRS, iBV, 06108 Nice, France
| | - Fabio Avolio
- Université Côte d'Azur, INSERM, CNRS, iBV, 06108 Nice, France
| | - François Briand
- Physiogenex S.A.S., Prologue Biotech, 516, rue Pierre et Marie Curie, 31670 Labege, France
| | - Igor Baburin
- Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Manuela Gridling
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Charlotte Barbieux
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; Institute of Medical Research, Ilia State University, Tbilisi 0162, Georgia
| | - Andreas Spittler
- Core Facility Flow Cytometry and Department of Surgery, Research Laboratories, Medical University of Vienna, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Steffen Hering
- Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thierry Sulpice
- Physiogenex S.A.S., Prologue Biotech, 516, rue Pierre et Marie Curie, 31670 Labege, France
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Martin Distel
- Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dirk Meyer
- Institute of Molecular Biology, Leopold-Franzens-University Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria; Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|
166
|
Pharmacokinetics of the Antischistosomal Lead Ozonide OZ418 in Uninfected Mice Determined by Liquid Chromatography-Tandem Mass Spectrometry. Antimicrob Agents Chemother 2016; 60:7364-7371. [PMID: 27697760 DOI: 10.1128/aac.02394-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 09/27/2016] [Indexed: 11/20/2022] Open
Abstract
One of the major neglected tropical diseases, schistosomiasis, is currently treated and controlled with a single drug, praziquantel. The quest for an alternative drug is fueled by the lack of activity of praziquantel against juvenile Schistosoma worms and the fear of emerging resistance. The synthetic ozonide OZ418 has shown high activity against Schistosoma mansoni, S. haematobium, and S. japonicum in vivo, but its drug disposition remains unknown. To bridge this gap, our study determined the basic pharmacokinetic (PK) parameters of a single oral dose (400 mg/kg of body weight) of OZ418 in uninfected mice. First, a simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify OZ418 concentrations in mouse plasma was successfully developed and validated according to U.S. FDA guidelines. This method proved to be selective, accurate (93 to 103%), precise (5 to 16%), and devoid of significant matrix effects (90 to 102%) and provided excellent recovery (101 to 102%). A median peak concentration of 190 (range, 185 to 231) μg/ml was reached at 2 h (2 to 3 h) posttreatment. A naive pooled noncompartmental PK analysis estimated a mean area under the plasma concentration-versus-time curve (AUC) of 9,303 μg h/ml (7,039.2 to 11,908.5 μg h/ml) and a half-life of 38.7 h (20 to 64.6 h). Thus, the OZ418 level in plasma remained well above its in vitro 50% inhibitory concentrations (IC50s) of 27.4 μg/ml (adult S. mansoni worms at 72 h) for at least 75 h. Consistently, OZ418 degraded little in plasma at 37°C (<20% in 121 h) and weakly inhibited cytochrome P450 (CYP450) metabolism (IC50 of 37 to 144 μM). Our results provide a first insight into the disposition of OZ418, paving the way for further studies of its biological fate and effect.
Collapse
|
167
|
Li W, Zhou Y, Tang G, Xiao Y. Characterization of the Artemisinin Binding Site for Translationally Controlled Tumor Protein (TCTP) by Bioorthogonal Click Chemistry. Bioconjug Chem 2016; 27:2828-2833. [DOI: 10.1021/acs.bioconjchem.6b00556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weichao Li
- CAS
Key Laboratory of Synthetic Biology, CAS Center for Excellence in
Molecular Plant Sciences, Institute of Plant Physiology and Ecology,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yiqing Zhou
- CAS
Key Laboratory of Synthetic Biology, CAS Center for Excellence in
Molecular Plant Sciences, Institute of Plant Physiology and Ecology,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guanghui Tang
- School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Youli Xiao
- CAS
Key Laboratory of Synthetic Biology, CAS Center for Excellence in
Molecular Plant Sciences, Institute of Plant Physiology and Ecology,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
168
|
Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 2016; 117:192-217. [PMID: 27867026 DOI: 10.1016/j.phrs.2016.11.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/09/2023]
Abstract
Parasitic protozoan diseases continue to rank among the world's greatest global health problems, which are also common among poor populations. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. Artemisinin (ART) and its derivatives are some of the most important classes of antimalarial agents originally derived from Artemisia annua L. However, besides the outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess activities against other parasitic protozoa. In this paper we review the activities of ART and its derivatives against protozoan parasites in vitro and in vivo, including Leishmania spp., Trypanosoma spp., Toxoplasma gondii, Neospora caninum, Eimeria tenella, Acanthamoeba castellanii, Naegleria fowleri, Cryptosporidium parvum, Giardia lamblia, and Babesia spp. We conclude that ART and its derivatives may be good alternatives for treating other non-malarial protozoan infections in developing countries, although more studies are necessary before they can be applied clinically.
Collapse
|
169
|
Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, Chen A, Huang H. The Fascinating Effects of Baicalein on Cancer: A Review. Int J Mol Sci 2016; 17:ijms17101681. [PMID: 27735841 PMCID: PMC5085714 DOI: 10.3390/ijms17101681] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide and a major global health problem. In recent decades, the rates of both mortality and morbidity of cancer have rapidly increased for a variety of reasons. Despite treatment options, there are serious side effects associated with chemotherapy drugs and multiple forms of drug resistance that significantly reduce their effects. There is an accumulating amount of evidence on the pharmacological activities of baicalein (e.g., anti-inflammatory, antioxidant, antiviral, and antitumor effects). Furthermore, there has been great progress in elucidating the target mechanisms and signaling pathways of baicalein's anti-cancer potential. The anti-tumor functions of baicalein are mainly due to its capacities to inhibit complexes of cyclins to regulate the cell cycle, to scavenge oxidative radicals, to attenuate mitogen activated protein kinase (MAPK), protein kinase B (Akt) or mammalian target of rapamycin (mTOR) activities, to induce apoptosis by activating caspase-9/-3 and to inhibit tumorinvasion and metastasis by reducing the expression of matrix metalloproteinase-2/-9 (MMP-2/-9). In this review, we focused on the relevant biological mechanisms of baicalein involved in inhibiting various cancers, such as bladder cancer, breast cancer, and ovarian cancer. Moreover, we also summarized the specific mechanisms by which baicalein inhibited the growth of various tumors in vivo. Taken together, baicalein may be developed as a potential, novel anticancer drug to treat tumors.
Collapse
Affiliation(s)
- Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yutong Gao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhipeng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
170
|
Zhang CJ, Wang J, Zhang J, Lee YM, Feng G, Lim TK, Shen HM, Lin Q, Liu B. Mechanism-Guided Design and Synthesis of a Mitochondria-Targeting Artemisinin Analogue with Enhanced Anticancer Activity. Angew Chem Int Ed Engl 2016; 55:13770-13774. [DOI: 10.1002/anie.201607303] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jigang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210023 China
- Department of Biological Science; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Jianbin Zhang
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; 2 Medical Drive Singapore 117597 Singapore
| | - Yew Mun Lee
- Department of Biological Science; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Teck Kwang Lim
- Department of Biological Science; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Han-Ming Shen
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; 2 Medical Drive Singapore 117597 Singapore
| | - Qingsong Lin
- Department of Biological Science; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
- Institute of Materials Research and Engineering; 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
171
|
Zhang CJ, Wang J, Zhang J, Lee YM, Feng G, Lim TK, Shen HM, Lin Q, Liu B. Mechanism-Guided Design and Synthesis of a Mitochondria-Targeting Artemisinin Analogue with Enhanced Anticancer Activity. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jigang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210023 China
- Department of Biological Science; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Jianbin Zhang
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; 2 Medical Drive Singapore 117597 Singapore
| | - Yew Mun Lee
- Department of Biological Science; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Teck Kwang Lim
- Department of Biological Science; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Han-Ming Shen
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; 2 Medical Drive Singapore 117597 Singapore
| | - Qingsong Lin
- Department of Biological Science; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
- Institute of Materials Research and Engineering; 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
172
|
Sun J, Li C, Wang S. Organism-like formation of Schistosoma hemozoin and its function suggest a mechanism for anti-malarial action of artemisinin. Sci Rep 2016; 6:34463. [PMID: 27694940 PMCID: PMC5046088 DOI: 10.1038/srep34463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023] Open
Abstract
The current theories of antimalarial mechanism of artemisinin are inadequate to fully explain the observed effects. In our study, “organism-like” formation of Schistosoma hemozoin granules by attaching to and utilizing erythrocytes to form new ones was observed. This indicates that heme iron is transferred from erythrocytes to hemozoin granules during their formation. However, as a disposal product of heme detoxification, these granules are not completely expelled from the Schistosoma gut, but decomposed again between microvilli in the posterior portion of the gut to transfer iron to eggs. Based on the function of iron transport supported by our observation of the unique process of Schistosoma hemozoin formation, here we propose a new viewpoint of antimalarial mechanism of artemisinin, which emphasizes the final outcome, i.e., interference of iron utilization in parasites by artemisinin, instead of focusing on the mode of interaction between artemisinin and heme or hemozoin. This suggests that artemisinin and its endoperoxides derivatives likely hit the Achilles’ heel of hemozoin-producing and iron-dependent organisms.
Collapse
Affiliation(s)
- Jun Sun
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Chen Li
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Suwen Wang
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P.R. China
| |
Collapse
|
173
|
Gomes C, Boareto AC, Dalsenter PR. Clinical and non-clinical safety of artemisinin derivatives in pregnancy. Reprod Toxicol 2016; 65:194-203. [PMID: 27506918 DOI: 10.1016/j.reprotox.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Malaria in pregnancy is a clinically wasting infectious disease, where drug therapy has to be promptly initiated. Currently, the treatment of this infection depends on the use of artemisinin derivatives. The World Health Organization does not recommend the use of these drugs in the first trimester of pregnancy due to non-clinical findings that have shown embryolethality and teratogenic effects. Nevertheless, until now, this toxicity has not been proved in humans. Artemisinin derivatives mechanisms of embryotoxicity are related to depletion of circulating embryonic primitive erythroblasts. Species differences in this sensitive period for toxicity and the presence of malaria infection, which could reduce drug distribution to the fetus, are significant to the risk assessment of artemisinin derivatives treatment to pregnant women. In this review we aimed to assess the results of non-clinical and clinical studies with artemisinin derivatives, their mechanisms of embryotoxicity and discuss the safety of their use during pregnancy.
Collapse
Affiliation(s)
- Caroline Gomes
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Ana Cláudia Boareto
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | | |
Collapse
|
174
|
Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol Res 2016; 110:216-226. [DOI: 10.1016/j.phrs.2016.02.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/07/2016] [Accepted: 02/16/2016] [Indexed: 11/20/2022]
|
175
|
Huang Y, Qi A, Han BH. Extraction of Rutin and Rhoifolin by Inorganic Borate Functionalized Magnetic Particles. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
176
|
Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach. Sci Rep 2016; 6:30106. [PMID: 27471101 PMCID: PMC4965867 DOI: 10.1038/srep30106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/27/2016] [Indexed: 11/08/2022] Open
Abstract
Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.
Collapse
|
177
|
Hou L, Huang H. Immune suppressive properties of artemisinin family drugs. Pharmacol Ther 2016; 166:123-7. [PMID: 27411673 DOI: 10.1016/j.pharmthera.2016.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/28/2016] [Indexed: 01/17/2023]
Abstract
Artemisinin and its derivatives are the first-line antimalarial drugs, and have saved millions of lives across the globe, especially in developing world. The discovery of artemisinin by Youyou Tu was awarded the 2015 Nobel Prize in Physiology or Medicine. In addition to treating malaria, accumulating evidences suggest that artemisinin and its derivatives also possess potent anti-inflammatory and immunoregulatory properties. We recently showed that artesunate, an artemisinin analog, dramatically ameliorated autoimmune arthritis by selectively diminishing germinal center B cells. Herein, we review the immunosuppressive properties of artemisinin family drugs and the potential underlying mechanisms.
Collapse
Affiliation(s)
- Lifei Hou
- Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Haochu Huang
- Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
178
|
Muangphrom P, Seki H, Fukushima EO, Muranaka T. Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. J Nat Med 2016; 70:318-34. [PMID: 27250562 PMCID: PMC4935751 DOI: 10.1007/s11418-016-1008-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinatorial therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed.
Collapse
Affiliation(s)
- Paskorn Muangphrom
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Continuing Professional Development Center, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
179
|
Starkl Renar K, Iskra J, Križaj I. Understanding malarial toxins. Toxicon 2016; 119:319-29. [PMID: 27353131 DOI: 10.1016/j.toxicon.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Recognized since antiquity, malaria is one of the most infamous and widespread infectious diseases in humans and, although the death rate during the last century has been diminishing, it still accounts for more than a half million deaths annually. It is caused by the Plasmodium parasite and typical symptoms include fever, shivering, headache, diaphoresis and nausea, all resulting from an excessive inflammatory response induced by malarial toxins released into the victim's bloodstream. These toxins are hemozoin and glycosylphosphatidylinositols. The former is the final product of the parasite's detoxification of haeme, a by-product of haemoglobin catabolism, while the latter anchor proteins to the Plasmodium cell surface or occur as free molecules. Currently, only two groups of antimalarial toxin drugs exist on the market, quinolines and artemisinins. As we describe, they both target biosynthesis of hemozoin. Other substances, currently in various phases of clinical trials, are directed towards biosynthesis of glycosylphosphatidylinositol, formation of hemozoin, or attenuation of the inflammatory response of the patient. Among the innovative approaches to alleviating the effects of malarial toxins, is the development of antimalarial toxin vaccines. In this review the most important lessons learned from the use of treatments directed against the action of malarial toxins in antimalarial therapy are emphasized and the most relevant and promising directions for future research in obtaining novel antimalarial agents acting on malarial toxins are discussed.
Collapse
Affiliation(s)
- Katarina Starkl Renar
- Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Jernej Iskra
- Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
180
|
Abstract
Some hours after invading the erythrocytes of its human host, the malaria parasite Plasmodium falciparum induces an increase in the permeability of the erythrocyte membrane to monovalent ions. The resulting net influx of Na(+) and net efflux of K(+), down their respective concentration gradients, converts the erythrocyte cytosol from an initially high-K(+), low-Na(+) solution to a high-Na(+), low-K(+) solution. The intraerythrocytic parasite itself exerts tight control over its internal Na(+), K(+), Cl(-), and Ca(2+) concentrations and its intracellular pH through the combined actions of a range of membrane transport proteins. The molecular mechanisms underpinning ion regulation in the parasite are receiving increasing attention, not least because PfATP4, a P-type ATPase postulated to be involved in Na(+) regulation, has emerged as a potential antimalarial drug target, susceptible to inhibition by a wide range of chemically unrelated compounds.
Collapse
Affiliation(s)
- Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
181
|
Tilley L, Straimer J, Gnädig NF, Ralph SA, Fidock DA. Artemisinin Action and Resistance in Plasmodium falciparum. Trends Parasitol 2016; 32:682-696. [PMID: 27289273 DOI: 10.1016/j.pt.2016.05.010] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
The worldwide use of artemisinin-based combination therapies (ACTs) has contributed in recent years to a substantial reduction in deaths resulting from Plasmodium falciparum malaria. Resistance to artemisinins, however, has emerged in Southeast Asia. Clinically, resistance is defined as a slower rate of parasite clearance in patients treated with an artemisinin derivative or an ACT. These slow clearance rates associate with enhanced survival rates of ring-stage parasites briefly exposed in vitro to dihydroartemisinin. We describe recent progress made in defining the molecular basis of artemisinin resistance, which has identified a primary role for the P. falciparum K13 protein. Using K13 mutations as molecular markers, epidemiological studies are now tracking the emergence and spread of artemisinin resistance. Mechanistic studies suggest potential ways to overcome resistance.
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia.
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
182
|
Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Pharmacol Ther 2016; 162:10-22. [DOI: 10.1016/j.pharmthera.2016.01.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
183
|
Reappraising the effects of artemisinin on the ATPase activity of PfATP6 and SERCA1a E255L expressed in Xenopus laevis oocytes. Nat Struct Mol Biol 2016; 23:1-2. [PMID: 26733217 DOI: 10.1038/nsmb.3156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
184
|
|
185
|
Zhou L, Liu Q, Yang M, Wang T, Yao J, Cheng J, Yuan J, Lin X, Zhao J, Tickner J, Xu J. Dihydroartemisinin, an Anti-Malaria Drug, Suppresses Estrogen Deficiency-Induced Osteoporosis, Osteoclast Formation, and RANKL-Induced Signaling Pathways. J Bone Miner Res 2016; 31:964-74. [PMID: 26684711 DOI: 10.1002/jbmr.2771] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/01/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Osteoporosis is an osteolytic disease that features enhanced osteoclast formation and bone resorption. Identification of agents that can inhibit osteoclast formation and function is important for the treatment of osteoporosis. Dihydroartemisinin is a natural compound used to treat malaria but its role in osteoporosis is not known. Here, we found that dihydroartemisinin can suppress RANKL-induced osteoclastogenesis and bone resorption in a dose-dependent manner. Dihydroartemisinin inhibited the expression of osteoclast marker genes such as cathepsin K, calcitonin receptor, and tartrate-resistant acid phosphatase (TRAcP). Furthermore, dihydroartemisinin inhibited RANKL-induced NF-κB and NFAT activity. In addition, using an in vivo ovariectomized mouse model, we show that dihydroartemisinin is able to reverse the bone loss caused by ovariectomy. Together, this study shows that dihydroartemisinin attenuates bone loss in ovariectomized mice through inhibiting RANKL-induced osteoclast formation and function. This indicates that dihydroartemisinin, the first physiology or medicine nobel prize discovery of China, is a potential treatment option against osteolytic bone disease. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Mingli Yang
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Tao Wang
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jun Yao
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jianwen Cheng
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jinbo Yuan
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Xixi Lin
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| |
Collapse
|
186
|
Pretzel J, Mohring F, Rahlfs S, Becker K. Antiparasitic peptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 135:157-92. [PMID: 23615879 DOI: 10.1007/10_2013_191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
: The most important parasitic diseases, malaria, leishmaniasis, trypanosomiasis, and schistosomiasis, are a great burden to mankind, threatening the life of millions of people worldwide and mostly affecting the poorest. Because drug resistance is increasing and vaccines are rarely available, novel chemotherapeutic compounds are necessary in order to treat these devastating diseases. Insects serve as vectors of many human parasitic diseases and have been shown to express a huge variety of antimicrobial peptides (AMPs). Therefore, research activity on insect-derived AMPs has been increasing in the last 40 years. This chapter summarizes the current state of research on the possible role of AMPs as potential chemotherapeutic compounds against human parasitic diseases. As a representative antimicrobial peptide with antiparasitic activity, the structure of insect defensin A is shown [PDB accession code: 1ICA]. The molecule is surrounded by schematic representations of the human pathogenic parasites Plasmodium, Leishmania and Trypanosoma.
Collapse
Affiliation(s)
- Jette Pretzel
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | | | | | | |
Collapse
|
187
|
Lo E, Nguyen J, Oo W, Hemming-Schroeder E, Zhou G, Yang Z, Cui L, Yan G. Examining Plasmodium falciparum and P. vivax clearance subsequent to antimalarial drug treatment in the Myanmar-China border area based on quantitative real-time polymerase chain reaction. BMC Infect Dis 2016; 16:154. [PMID: 27084511 PMCID: PMC4833920 DOI: 10.1186/s12879-016-1482-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent emergence of artemisinin-resistant P. falciparum has posed a serious hindrance to the elimination of malaria in the Greater Mekong Subregion. Parasite clearance time, a measure of change in peripheral parasitaemia in a sequence of samples taken after treatment, can be used to reflect the susceptibility of parasites or the efficiency of antimalarials. The association of genetic polymorphisms and artemisinin resistance has been documented. This study aims to examine clearance time of P. falciparum and P. vivax parasitemia as well as putative gene mutations associated with residual or recurred parasitemia in Myanmar. METHODS A total of 63 P. falciparum and 130 P. vivax samples collected from two internally-displaced populations and one surrounding village were examined for parasitemia changes. At least four samples were taken from each patient, at the first day of diagnosis up to 3 months following the initial treatment. The amount of parasite gene copy number was estimated using quantitative real-time PCR based on a species-specific region of the 18S rRNA gene. For samples that showed residual or recurred parasitemia after treatment, microsatellites were used to identify the 'post-treatment' parasite genotype and compared such with the 'pre-treatment' genotype. Mutations in genes pfcrt, pfmdr1, pfatp6, pfmrp1 and pfK13 that are potentially associated with ACT resistance were examined to identify if mutation is a factor for residual or persistent parasitemia. RESULTS Over 30% of the P. falciprium infections showed delayed clearance of parasitemia after 2-3 days of treatment and 9.5% showed recurred parasitemia. Mutations in codon 876 of the pfmrp1 corroborated significance association with slow clearance time. However, no association was observed in the variation in pfmdr1 gene copy number as well as mutations of various codonsinpfatp6, pfcrt, and pfK13 with clearance time. For P. vivax, over 95% of the infections indicated cleared parasitemia at days 2-3 of treatment. Four samples were found to be re-infected with new parasite strains based on microsatellite genotypes after initial treatment. CONCLUSION The appearance of P.falciparum infected samples showing delayed clearance or recurred parasitemia after treatment raises concerns on current treatment and ACT drug resistance.
Collapse
Affiliation(s)
- Eugenia Lo
- />Program in Public Health, University of California at Irvine, Irvine, CA 92697-4050 USA
| | - Jennifer Nguyen
- />Program in Public Health, University of California at Irvine, Irvine, CA 92697-4050 USA
| | - Winny Oo
- />Program in Public Health, University of California at Irvine, Irvine, CA 92697-4050 USA
| | | | - Guofa Zhou
- />Program in Public Health, University of California at Irvine, Irvine, CA 92697-4050 USA
| | - Zhaoqing Yang
- />Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Liwang Cui
- />Department of Entomology, Pennsylvania State University, University Park, PA USA
| | - Guiyun Yan
- />Program in Public Health, University of California at Irvine, Irvine, CA 92697-4050 USA
| |
Collapse
|
188
|
Zhou Y, Li W, Xiao Y. Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome. ACS Chem Biol 2016; 11:882-8. [PMID: 26854499 DOI: 10.1021/acschembio.5b01043] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antimalarial drug artemisinin is found to have diverse biological activities ranging from anti-inflammatory to anticancer properties; however, as of today, the cellular targets and mechanism of action of this important compound have remained elusive. Here, we report the global protein target profiling of artemisinin in the HeLa cancer cell proteome using a chemical proteomics approach. In the presence of hemin, multiple proteins were targeted by artemisinin probe through covalent modification. Further studies revealed that reducing of hemin to heme by protein thiols was essential for endoperoxide activation and subsequent protein alkylation. Artemisinin may exert its synergistic therapeutic anticancer effects via modulation of a variety of cellular pathways through acting on multiple targets.
Collapse
Affiliation(s)
- Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
189
|
Sun C, Zhou B. The molecular and cellular action properties of artemisinins: what has yeast told us? MICROBIAL CELL 2016; 3:196-205. [PMID: 28357355 PMCID: PMC5349147 DOI: 10.15698/mic2016.05.498] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Artemisinin (ART) or Qinghaosu is a natural compound possessing superior anti-malarial activity. Although intensive studies have been done in the medicinal chemistry field to understand the structure-effect relationship, the biological actions of artemisinin are poorly understood and controversial. Due to the current lack of a genetic amiable model to address this question, and an accidental finding made more than a decade ago during our initial exploratory efforts that yeast Saccharomyces cerevisiae can be inhibited by artemisinin, we have since been using the baker's yeast as a model to probe the molecular and cellular properties of artemisinin and its derivatives (ARTs) in living cells. ARTs were found to possess potent and specific anti-mitochondrial properties and, to a lesser extent, the ability to generate a relatively general oxidative damage. The anti-mitochondrial effects of artemisinin were later confirmed with purified mitochondria from malaria parasites. Inside some cells heme appears to be a primary reducing agent and reduction of ARTs by heme can induce a relatively nonspecific cellular damage. The molecular basis of the anti-mitochondrial properties of ARTs remains not well elucidated yet. We propose that the anti-mitochondrial and heme-mediated ROS-generating properties constitute two cellcidal actions of ARTs. This review summarizes what we have learned from yeast about the basic biological properties of ARTs, as well as some key unanswered questions. We believe yeast could serve as a window through which to peek at some of the biological action secrets of ARTs that might be difficult for us to learn otherwise.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
190
|
Pandey K, Ferreira PE, Ishikawa T, Nagai T, Kaneko O, Yahata K. Ca(2+) monitoring in Plasmodium falciparum using the yellow cameleon-Nano biosensor. Sci Rep 2016; 6:23454. [PMID: 27006284 PMCID: PMC4804237 DOI: 10.1038/srep23454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/07/2016] [Indexed: 11/09/2022] Open
Abstract
Calcium (Ca(2+))-mediated signaling is a conserved mechanism in eukaryotes, including the human malaria parasite, Plasmodium falciparum. Due to its small size (<10 μm) measurement of intracellular Ca(2+) in Plasmodium is technically challenging, and thus Ca(2+) regulation in this human pathogen is not well understood. Here we analyze Ca(2+) homeostasis via a new approach using transgenic P. falciparum expressing the Ca(2+) sensor yellow cameleon (YC)-Nano. We found that cytosolic Ca(2+) concentration is maintained at low levels only during the intraerythrocytic trophozoite stage (30 nM), and is increased in the other blood stages (>300 nM). We determined that the mammalian SERCA inhibitor thapsigargin and antimalarial dihydroartemisinin did not perturb SERCA activity. The change of the cytosolic Ca(2+) level in P. falciparum was additionally detectable by flow cytometry. Thus, we propose that the developed YC-Nano-based system is useful to study Ca(2+) signaling in P. falciparum and is applicable for drug screening.
Collapse
Affiliation(s)
- Kishor Pandey
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Nepal Academy of Science and Technology (NAST), GPO Box: 3323, Khumaltar, Lalitpur, Nepal
| | - Pedro E. Ferreira
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- School of Biological Science, Nanyang Technological University, Singapore
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
191
|
Li LH, Tian XR, Jiang Z, Zeng LW, He WF, Hu ZP. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation. Neurosignals 2016; 21:272-84. [PMID: 23796968 DOI: 10.1159/000350471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
The Golgi apparatus (GA), an intermediate organelle of the cell inner membrane system, plays a key role in protein glycosylation and secretion. In recent years, this organelle has been found to act as a vital intracellular Ca(2+) store because different Ca (2+) regulators, such as the inositol-1,4,5-triphosphate receptor, sarco/endoplasmic reticulum Ca(2+) -ATPase and secretory pathway Ca 2+ -ATPase, were demonstrated to localize on their membrane. The mechanisms involved in Ca(2+) release and uptake in the GA have now been established.Here, based on careful backward looking on compartments and patterns in GA Ca (2+) regulation, we review neurological diseases related to GA calcium remodeling and propose a modified cytosolic Ca(2+) adjustment model, in which GA acts as part of the panel point.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Neurology, Second Xiangya Hospital, Central-South University, Changsha; School of Medicine, Jishou University, Jishou , PR China
| | | | | | | | | | | |
Collapse
|
192
|
Li Y, Chen F, Li Z, Li C, Zhang Y. Identification and Functional Characterization of Sesquiterpene Synthases from Xanthium strumarium. PLANT & CELL PHYSIOLOGY 2016; 57:630-41. [PMID: 26858282 DOI: 10.1093/pcp/pcw019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/18/2016] [Indexed: 05/16/2023]
Abstract
Xanthium strumarium synthesizes various pharmacologically active sesquiterpenes. The molecular characterization of sesquiterpene biosynthesis in X. strumarium has not been reported so far. In this study, the cDNAs coding for three sesquiterpene synthases (designated as XsTPS1, XsTPS2 and XsTPS3) were isolated using the X. strumarium transcriptome that we recently constructed. XsTPS1, XsTPS2 and XsTPS3 were revealed to have primary activities forming germacrene D, guaia-4,6-diene and germacrene A, respectively, by either ectopic expression in yeast cells or purified recombinant protein-based in vitro assays. Quantitative real-time PCRs and metabolite analysis for the different plant parts showed that the transcript abundance of XsTPS1-XsTPS3 is consistent with the accumulation pattern of their enzymatic products, supporting their biochemical functions in vivo. In particular, we discovered that none of the XsTPS2 product, guaia-4,6-diene, can be detected in one of the X. strumarium cultivars used in this study (it was named the Hubei-cultivar), in which a natural deletion of two A bases in the XsTPS2 cDNA disrupts its activity, which further confirmed the proposed biochemical role of XsTPS2 in X. strumarium in vivo.
Collapse
Affiliation(s)
- Yuanjun Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan 430074, China
| | - Zhenqiu Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan 430074, China
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan 430074, China
| |
Collapse
|
193
|
Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc Natl Acad Sci U S A 2016; 113:2080-5. [PMID: 26858419 DOI: 10.1073/pnas.1600459113] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography-MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs.
Collapse
|
194
|
Mallo N, Lamas J, DeFelipe AP, Sueiro RA, Fontenla F, Leiro JM. Enzymes Involved in Pyrophosphate and Calcium Metabolism as Targets for Anti-scuticociliate Chemotherapy. J Eukaryot Microbiol 2016; 63:505-15. [DOI: 10.1111/jeu.12294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Natalia Mallo
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Jesús Lamas
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Ana-Paula DeFelipe
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Rosa-Ana Sueiro
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Francisco Fontenla
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - José-Manuel Leiro
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
195
|
Oguri H. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. CHEM REC 2016; 16:652-66. [DOI: 10.1002/tcr.201500213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Hiroki Oguri
- Division of Applied Chemistry Graduate School of Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Nakacho Koganei Tokyo 184-8588 Japan
- JST PRESTO; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
196
|
Palakkod Govindan V, Panduranga AN, Krishna Murthy P. Assessment of in vivo antimalarial activity of arteether and garlic oil combination therapy. Biochem Biophys Rep 2016; 5:359-364. [PMID: 28955843 PMCID: PMC5600459 DOI: 10.1016/j.bbrep.2016.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/18/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022] Open
Abstract
The study evaluates in vivo antimalarial activity of arteether and garlic pearl oil combination in Plasmodium berghei-infected mouse model of malaria. 72 h (Day 3) post infection, at 2–4% parasitemia, mice were treated with single dose intramuscular injection of α-β arteether, at 750 μg, in combination with three 100 μL oral doses of garlic pearl oil on Day 3, Day 4 and Day 5. Following the treatment, 100% protection and survival of mice were observed. Inhibition of parasitemia in combination treated animals and protection during recrudescence interval of α-β arteether monotherapy was observed in Giemsa-stained blood smears. In addition, a striking increase in anti-parasite antibody IgG contributing protective immunity during the recrudescence phase was observed. These results correlate with western blot analysis, where sera from the recrudescence stage and later period of arteether and garlic oil combination treated animals found to interact with several parasite specific proteins as compared to controls. The present approach shows that arteether and garlic pearl oil combination provides complete protection in P. berghei-infected mice. Thus, for the first time, garlic pearl oil appears to be an ideal antimalarial candidate in artemisinin combination therapy. Garlic pearl oil enhanced antimalarial activity of α-β arteether. Garlic pearl oil and α-β arteether combination effectively evaded recrudescence. Garlic pearl oil and α-β arteether combination may elicit immunomodulatory effect. This combination therapy resulted in a striking increase in anti-parasite antibody.
Collapse
Affiliation(s)
- Vathsala Palakkod Govindan
- Undergraduate Programme, Indian Institute of Science, Bangalore, Karnataka, India
- Correspondence to: Undergraduate Programme, Indian Institute of Science, Bangalore - 560 012, India.
| | - Aditya Nayak Panduranga
- Marie Sklodowska-Curie Fellow, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - P. Krishna Murthy
- Undergraduate Programme, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
197
|
Kong Q, Tong Q, Lou D, Ding J, Zheng B, Chen R, Zhu X, Chen X, Dong K, Lu S. Quantitative proteomic analyses of Schistosoma japonicum in response to artesunate. MOLECULAR BIOSYSTEMS 2016; 11:1400-9. [PMID: 25820832 DOI: 10.1039/c5mb00074b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artesunate (ART) has high prophylactic efficacy against Schistosoma japonicum infections and has been used to treat and prevent schistosomiasis in China since 1995. However, the molecular mechanism of ART's effects on S. japonicum remains unclear. Herein, we applied isobaric tagging reagents for relative and absolute quantification analyses coupled with two-dimensional liquid chromatography and tandem mass spectrometry to investigate the effect of ART on the proteome of S. japonicum in susceptible mice. 4529 proteins were quantified on the basis of 21,825 unique peptides. Comparative proteomic analyses revealed that 145, 228 and 185 proteins were significantly differentially expressed after ART treatment in schistosomula, juvenile and adult worms, respectively. Ninety proteins were differentially expressed between each two treatment groups in response to ART treatment: 67 proteins were associated with S. japonicum development/aging and 23 were specifically associated with ART treatment. Quantitative real-time PCR of selected genes verified the proteomic data. Gene ontology annotation and Kyoto encyclopedia of genes and genomes pathway mapping analysis showed that the majority of differentially expressed proteins were involved in stress/defense/detoxification, signal transduction, carbohydrate metabolism, amino acid metabolism, transcription/translation, and protein synthesis/assembly/degradation. Thirty-four of the proteins differentially expressed under ART treatment encoded hypothetical, uncharacterized proteins with unknown functions. This study obtained the first comprehensive protein expression profile of S. japonicum in response to ART, and provides a basis for a better understanding of the molecular mechanisms of ART effects on S. japonicum.
Collapse
Affiliation(s)
- QingMing Kong
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Pandey N, Pandey-Rai S. Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production. PROTOPLASMA 2016; 253:15-30. [PMID: 25813833 DOI: 10.1007/s00709-015-0805-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Application of traditional Chinese drug, artemisinin, originally derived from Artemisia annua L., in malaria therapy has now been globally accepted. Artemisinin and its derivatives, with their established safety records, form the first line of malaria treatment via artemisinin combination therapies (ACTs). In addition to its antimalarial effects, artemisinin has recently been evaluated in terms of its antitumour, antibacterial, antiviral, antileishmanial, antischistosomiatic, herbicidal and other properties. However, low levels of artemisinin in plants have emerged various conventional, transgenic and nontransgenic approaches for enhanced production of the drug. According to WHO (2014), approximately 3.2 billion people are at risk of this disease. However, unfortunately, artemisinin availability is still facing its short supply. To fulfil artemisinin's global demand, no single method alone is reliable, and there is a need to collectively use conventional and advanced approaches for its higher production. Further, it is the unique structure of artemisinin that makes it a potential drug not only against malaria but to other diseases as well. Execution of its action through multiple mechanisms is probably the reason behind its wide spectrum of action. Unfortunately, due to clues for developing artemisinin resistance in malaria parasites, it has become desirable to explore all possible modes of action of artemisinin so that new generation antimalarial drugs can be developed in future. The present review provides a comprehensive updates on artemisinin modes of action and strategies for enhanced artemisinin production at global level.
Collapse
Affiliation(s)
- Neha Pandey
- Laboratory of Morphogenesis, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
199
|
Oguri H. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. CHEM REC 2016. [DOI: 10.1002/tcr.201201600213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroki Oguri
- Division of Applied Chemistry Graduate School of Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Nakacho Koganei Tokyo 184-8588 Japan
- JST PRESTO; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
200
|
Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 2015; 6:10111. [PMID: 26694030 PMCID: PMC4703832 DOI: 10.1038/ncomms10111] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/04/2015] [Indexed: 12/17/2022] Open
Abstract
The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. The mechanism of action of artemisinin, an antimalarial drug, is not well understood. Here, the authors use a labelled artemisinin analogue to show that the drug is mainly activated by haem and then binds covalently to over 120 proteins in the malaria parasite, affecting many of its cellular processes.
Collapse
|