151
|
Bosmani C, Leuba F, Hanna N, Bach F, Burdet F, Pagni M, Hagedorn M, Soldati T. Vacuolins and myosin VII are required for phagocytic uptake and phagosomal membrane recycling in Dictyostelium discoideum. J Cell Sci 2020; 133:jcs242974. [PMID: 32482795 DOI: 10.1242/jcs.242974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Flotillins are lipid raft residents involved in membrane trafficking and recycling of plasma membrane proteins. Dictyostelium discoideum uses phagocytosis to kill, digest and feed on bacteria. It possesses three flotillin-like vacuolins that are strongly associated with membranes and that gradually accumulate on maturing phagosomes. Absence of vacuolins reduced adhesion and particle recognition resulting in a drastic reduction in the uptake of various types of particles. This was caused by a block in the recycling of plasma membrane components and the absence of their specific cortex-associated proteins. In addition, absence of vacuolins also impaired phagolysosome biogenesis, without significantly impacting killing and digestion of a range of bacteria. Strikingly, both absence and overexpression of vacuolins induced a strong downregulation of myosin VII (also known as MyoI) expression, as well as its binding partner talin A. Episomal expression of myosin VII fully rescued defects in uptake and adhesion but not in phagosome maturation. These results suggest a dual role for vacuolins: a novel mechanism involving membrane microdomains and myosin VII-talin A in clustering phagosomal receptors and adhesion molecules at the plasma membrane, and a role in phagolysosomal biogenesis.
Collapse
Affiliation(s)
- Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Nabil Hanna
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Frauke Bach
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany
| | - Frédéric Burdet
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Monica Hagedorn
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| |
Collapse
|
152
|
Guo Q, Li D, Zhai Y, Gu Z. CCPRD: A Novel Analytical Framework for the Comprehensive Proteomic Reference Database Construction of NonModel Organisms. ACS OMEGA 2020; 5:15370-15384. [PMID: 32637811 PMCID: PMC7331046 DOI: 10.1021/acsomega.0c01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Protein reference databases are a critical part of producing efficient proteomic analyses. However, the method for constructing clean, efficient, and comprehensive protein reference databases of nonmodel organisms is lacking. Existing methods either do not have contamination control procedures, or these methods rely on a three-frame and/or six-frame translation that sharply increases the search space and the need for computational resources. Herein, we propose a framework for constructing a customized comprehensive proteomic reference database (CCPRD) from draft genomes and deep sequencing transcriptomes. Its effectiveness is demonstrated by incorporating the proteomes of nematocysts from endoparasitic cnidarian: myxozoans. By applying customized contamination removal procedures, contaminations in omic data were successfully identified and removed. This is an effective method that does not result in overdecontamination. This can be shown by comparing the CCPRD MS results with an artificially contaminated database and another database with removed contaminations in genomes and transcriptomes added back. CCPRD outperformed traditional frame-based methods by identifying 35.2-50.7% more peptides and 35.8-43.8% more proteins, with a maximum of 84.6% in size reduction. A BUSCO analysis showed that the CCPRD maintained a relatively high level of completeness compared to traditional methods. These results confirm the superiority of the CCPRD over existing methods in peptide and protein identification numbers, database size, and completeness. By providing a general framework for generating the reference database, the CCPRD, which does not need a high-quality genome, can potentially be applied to nonmodel organisms and significantly contribute to proteomic research.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Dan Li
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Yanhua Zhai
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Zemao Gu
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| |
Collapse
|
153
|
Sasaki H, Kubohara Y, Ishigaki H, Takahashi K, Eguchi H, Sugawara A, Oshima Y, Kikuchi H. Two New Terpenes Isolated from Dictyostelium Cellular Slime Molds. Molecules 2020; 25:molecules25122895. [PMID: 32585998 PMCID: PMC7356884 DOI: 10.3390/molecules25122895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
We report a protoilludane-type sesquiterpene, mucoroidiol, and a geranylated bicyclogermacranol, firmibasiol, isolated from Dictyostelium cellular slime molds. The methanol extracts of the fruiting bodies of cellular slime molds were separated by chromatographic methods to give these compounds. Their structures have been established by several spectral means. Mucoroidiol and firmibasiol are the first examples of more modified and oxidized terpenoids isolated from cellular slime molds. Mucoroidiol showed moderate osteoclast-differentiation inhibitory activity despite demonstrating very weak cell-proliferation inhibitory activity. Therefore, cellular slime molds produce considerably diverse secondary metabolites, and they are promising sources of new natural product chemistry.
Collapse
Affiliation(s)
- Hitomi Sasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
| | - Yuzuru Kubohara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraga-gakuendai, Inzai, Chiba 270-1695, Japan;
| | - Hirotaka Ishigaki
- Department of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki 370-0006, Japan; (H.I.); (K.T.)
| | - Katsunori Takahashi
- Department of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki 370-0006, Japan; (H.I.); (K.T.)
| | - Hiromi Eguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
| | - Akihiro Sugawara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
- Correspondence: ; Tel.: +81-22-795-6824
| |
Collapse
|
154
|
Aoki MM, Emery RJN, Anjard C, Brunetti CR, Huber RJ. Cytokinins in Dictyostelia - A Unique Model for Studying the Functions of Signaling Agents From Species to Kingdoms. Front Cell Dev Biol 2020; 8:511. [PMID: 32714926 PMCID: PMC7316887 DOI: 10.3389/fcell.2020.00511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokinins (CKs) are a diverse group of evolutionarily significant growth-regulating molecules. While the CK biosynthesis and signal transduction pathways are the most well-understood in plant systems, these molecules have been identified in all kingdoms of life. This review follows the recent discovery of an expanded CK profile in the social amoeba, Dictyostelium discoideum. A comprehensive review on the present knowledge of CK biosynthesis, signal transduction, and CK-small molecule interactions within members of Dictyostelia will be summarized. In doing so, the utility of social amoebae will be highlighted as a model system for studying the evolution of these hormone-like signaling agents, which will set the stage for future research in this area.
Collapse
Affiliation(s)
- Megan M Aoki
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Christophe Anjard
- Institut Lumière Matière, CNRS UMR 5306, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Craig R Brunetti
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
155
|
Abstract
A lineage of predatory, non-photosynthetic protists related to red algae has been discovered, changing the way we think about the biology of the first photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Morgan J Colp
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
156
|
Origin and diversification of the cardiolipin biosynthetic pathway in the Eukarya domain. Biochem Soc Trans 2020; 48:1035-1046. [DOI: 10.1042/bst20190967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Cardiolipin (CL) and its precursor phosphatidylglycerol (PG) are important anionic phospholipids widely distributed throughout all domains of life. They have key roles in several cellular processes by shaping membranes and modulating the activity of the proteins inserted into those membranes. They are synthesized by two main pathways, the so-called eukaryotic pathway, exclusively found in mitochondria, and the prokaryotic pathway, present in most bacteria and archaea. In the prokaryotic pathway, the first and the third reactions are catalyzed by phosphatidylglycerol phosphate synthase (Pgps) belonging to the transferase family and cardiolipin synthase (Cls) belonging to the hydrolase family, while in the eukaryotic pathway, those same reactions are catalyzed by unrelated homonymous enzymes: Pgps of the hydrolase family and Cls of the transferase family. Because of the enzymatic arrangement found in both pathways, it seems that the eukaryotic pathway evolved by convergence to the prokaryotic pathway. However, since mitochondria evolved from a bacterial endosymbiont, it would suggest that the eukaryotic pathway arose from the prokaryotic pathway. In this review, it is proposed that the eukaryote pathway evolved directly from a prokaryotic pathway by the neofunctionalization of the bacterial enzymes. Moreover, after the eukaryotic radiation, this pathway was reshaped by horizontal gene transfers or subsequent endosymbiotic processes.
Collapse
|
157
|
Lamrabet O, Jauslin T, Lima WC, Leippe M, Cosson P. The multifarious lysozyme arsenal of Dictyostelium discoideum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103645. [PMID: 32061941 DOI: 10.1016/j.dci.2020.103645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Dictyostelium discoideum is a free-living soil amoeba which feeds upon bacteria. To bind, ingest, and kill bacteria, D. discoideum uses molecular mechanisms analogous to those found in professional phagocytic cells of multicellular organisms. D. discoideum is equipped with a large arsenal of antimicrobial peptides and proteins including amoebapore-like peptides and lysozymes. This review describes the family of lysozymes in D. discoideum. We identified 22 genes potentially encoding four different types of lysozymes in the D. discoideum genome. Although most of these genes are also present in the genomes of other amoebal species, no other organism is as well-equipped with lysozyme genes as D. discoideum.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland.
| | - Tania Jauslin
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Wanessa Cristina Lima
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| | - Pierre Cosson
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
158
|
Choi IY, Kwon EC, Kim NS. The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes Genomics 2020; 42:699-714. [DOI: 10.1007/s13258-020-00941-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
|
159
|
Hasni I, Decloquement P, Demanèche S, Mameri RM, Abbe O, Colson P, La Scola B. Insight into the Lifestyle of Amoeba Willaertia magna during Bioreactor Growth Using Transcriptomics and Proteomics. Microorganisms 2020; 8:microorganisms8050771. [PMID: 32455615 PMCID: PMC7285305 DOI: 10.3390/microorganisms8050771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Willaertia magna C2c maky is a thermophilic free-living amoeba strain that showed ability to eliminate Legionella pneumophila, a pathogenic bacterium living in the aquatic environment. The amoeba industry has proposed the use of Willaertia magna as a natural biocide to control L. pneumophila proliferation in cooling towers. Here, transcriptomic and proteomic studies were carried out in order to expand knowledge on W. magna produced in a bioreactor. Illumina RNA-seq generated 217 million raw reads. A total of 8790 transcripts were identified, of which 6179 and 5341 were assigned a function through comparisons with National Center of Biotechnology Information (NCBI) reference sequence and the Clusters of Orthologous Groups of proteins (COG) databases, respectively. To corroborate these transcriptomic data, we analyzed the W. magna proteome using LC–MS/MS. A total of 3561 proteins were identified. The results of transcriptome and proteome analyses were highly congruent. Metabolism study showed that W. magna preferentially consumed carbohydrates and fatty acids to grow. Finally, an in-depth analysis has shown that W. magna produces several enzymes that are probably involved in the metabolism of secondary metabolites. Overall, our multi-omic study of W. magna opens the way to a better understanding of the genetics and biology of this amoeba.
Collapse
Affiliation(s)
- Issam Hasni
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Philippe Decloquement
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
| | - Sandrine Demanèche
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Rayane Mouh Mameri
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Olivier Abbe
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Bernard La Scola
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-9132-4375; Fax: +33-4-9138-7772
| |
Collapse
|
160
|
Detection of Protein Aggregation in Live Plasmodium Parasites. Antimicrob Agents Chemother 2020; 64:AAC.02135-19. [PMID: 32284383 DOI: 10.1128/aac.02135-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
The rapid evolution of resistance in the malaria parasite to every single drug developed against it calls for the urgent identification of new molecular targets. Using a stain specific for the detection of intracellular amyloid deposits in live cells, we have detected the presence of abundant protein aggregates in Plasmodium falciparum blood stages and female gametes cultured in vitro, in the blood stages of mice infected by Plasmodium yoelii, and in the mosquito stages of the murine malaria species Plasmodium berghei Aggregated proteins could not be detected in early rings, the parasite form that starts the intraerythrocytic cycle. A proteomics approach was used to pinpoint actual aggregating polypeptides in functional P. falciparum blood stages, which resulted in the identification of 369 proteins, with roles particularly enriched in nuclear import-related processes. Five aggregation-prone short peptides selected from this protein pool exhibited different aggregation propensity according to Thioflavin-T fluorescence measurements, and were observed to form amorphous aggregates and amyloid fibrils in transmission electron microscope images. The results presented suggest that generalized protein aggregation might have a functional role in malaria parasites. Future antimalarial strategies based on the upsetting of the pathogen's proteostasis and therefore affecting multiple gene products could represent the entry to new therapeutic approaches.
Collapse
|
161
|
Karow M, Fischer S, Meßling S, Konertz R, Riehl J, Xiong Q, Rijal R, Wagle P, S. Clemen C, Eichinger L. Functional Characterisation of the Autophagy ATG12~5/16 Complex in Dictyostelium discoideum. Cells 2020; 9:cells9051179. [PMID: 32397394 PMCID: PMC7290328 DOI: 10.3390/cells9051179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy, a highly conserved and complex intracellular degradative pathway, involves more than 20 core autophagy (ATG) proteins, among them the hexameric ATG12~5/16 complex, which is part of the essential ubiquitin-like conjugation systems in autophagy. Dictyostelium discoideumatg5 single, atg5/12 double, and atg5/12/16 triple gene knock-out mutant strains displayed similar defects in the conjugation of ATG8 to phosphatidylethanolamine, development, and cell viability upon nitrogen starvation. This implies that ATG5, 12 and 16 act as a functional unit in canonical autophagy. Macropinocytosis of TRITC dextran and phagocytosis of yeast were significantly decreased in ATG5¯ and ATG5¯/12¯ and even further in ATG5¯/12¯/16¯ cells. In contrast, plaque growth on Klebsiella aerogenes was about twice as fast for ATG5¯ and ATG5¯/12¯/16¯ cells in comparison to AX2, but strongly decreased for ATG5¯/12¯ cells. Along this line, phagocytic uptake of Escherichia coli was significantly reduced in ATG5¯/12¯ cells, while no difference in uptake, but a strong increase in membrane association of E. coli, was seen for ATG5¯ and ATG5¯/12¯/16¯ cells. Proteasomal activity was also disturbed in a complex fashion, consistent with an inhibitory activity of ATG16 in the absence of ATG5 and/or ATG12. Our results confirm the essential function of the ATG12~5/16 complex in canonical autophagy, and furthermore are consistent with autophagy-independent functions of the complex and its individual components. They also strongly support the placement of autophagy upstream of the ubiquitin-proteasome system (UPS), as a fully functional UPS depends on autophagy.
Collapse
Affiliation(s)
- Malte Karow
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Sarah Fischer
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Susanne Meßling
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Roman Konertz
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Jana Riehl
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Qiuhong Xiong
- Institute of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China;
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA;
| | - Prerana Wagle
- Bioinformatics Core Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany;
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany;
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
- Correspondence: ; Tel.: +49-221-478-6928; Fax: +49-221-478-97524
| |
Collapse
|
162
|
Malicki M, Spaller T, Winckler T, Hammann C. DIRS retrotransposons amplify via linear, single-stranded cDNA intermediates. Nucleic Acids Res 2020; 48:4230-4243. [PMID: 32170321 PMCID: PMC7192593 DOI: 10.1093/nar/gkaa160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
The Dictyostelium Intermediate Repeat Sequence 1 (DIRS-1) is the name-giving member of the DIRS order of tyrosine recombinase retrotransposons. In Dictyostelium discoideum, DIRS-1 is highly amplified and enriched in heterochromatic centromers of the D. discoideum genome. We show here that DIRS-1 it tightly controlled by the D. discoideum RNA interference machinery and is only mobilized in mutants lacking either the RNA dependent RNA polymerase RrpC or the Argonaute protein AgnA. DIRS retrotransposons contain an internal complementary region (ICR) that is thought to be required to reconstitute a full-length element from incomplete RNA transcripts. Using different versions of D. discoideum DIRS-1 equipped with retrotransposition marker genes, we show experimentally that the ICR is in fact essential to complete retrotransposition. We further show that DIRS-1 produces a mixture of single-stranded, mostly linear extrachromosomal cDNA intermediates. If this cDNA is isolated and transformed into D. discoideum cells, it can be used by DIRS-1 proteins to complete productive retrotransposition. This work provides the first experimental evidence to propose a general retrotransposition mechanism of the class of DIRS like tyrosine recombinase retrotransposons.
Collapse
Affiliation(s)
- Marek Malicki
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, DE 28759 Bremen, Germany
| | - Thomas Spaller
- Institute of Pharmacy, Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, DE 07743 Jena, Germany
| | - Thomas Winckler
- Institute of Pharmacy, Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, DE 07743 Jena, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, DE 28759 Bremen, Germany
| |
Collapse
|
163
|
Narita TB, Kawabe Y, Kin K, Gibbs RA, Kuspa A, Muzny DM, Richards S, Strassmann JE, Sucgang R, Worley KC, Schaap P. Loss of the Polyketide Synthase StlB Results in Stalk Cell Overproduction in Polysphondylium violaceum. Genome Biol Evol 2020; 12:674-683. [PMID: 32386295 PMCID: PMC7259674 DOI: 10.1093/gbe/evaa079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Major phenotypic innovations in social amoeba evolution occurred at the transition between the Polysphondylia and group 4 Dictyostelia, which comprise the model organism Dictyostelium discoideum, such as the formation of a new structure, the basal disk. Basal disk differentiation and robust stalk formation require the morphogen DIF-1, synthesized by the polyketide synthase StlB, the des-methyl-DIF-1 methyltransferase DmtA, and the chlorinase ChlA, which are conserved throughout Dictyostelia. To understand how the basal disk and other innovations evolved in group 4, we sequenced and annotated the Polysphondylium violaceum (Pvio) genome, performed cell type-specific transcriptomics to identify cell-type marker genes, and developed transformation and gene knock-out procedures for Pvio. We used the novel methods to delete the Pvio stlB gene. The Pvio stlB- mutants formed misshapen curly sorogens with thick and irregular stalks. As fruiting body formation continued, the upper stalks became more regular, but structures contained 40% less spores. The stlB- sorogens overexpressed a stalk gene and underexpressed a (pre)spore gene. Normal fruiting body formation and sporulation were restored in Pvio stlB- by including DIF-1 in the supporting agar. These data indicate that, although conserved, stlB and its product(s) acquired both a novel role in the group 4 Dictyostelia and a role opposite to that in its sister group.
Collapse
Affiliation(s)
- Takaaki B Narita
- School of Life Sciences, University of Dundee, United Kingdom,Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| | | | - Koryu Kin
- School of Life Sciences, University of Dundee, United Kingdom
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Adam Kuspa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas,The Welch Foundation, Houston, TX
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas,Genome Sequencing Center, University of California Davis, Davis, CA
| | | | - Richard Sucgang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, United Kingdom,Corresponding author: E-mail:
| |
Collapse
|
164
|
Lima WC, Hammel P, Cosson P. A recombinant antibody toolbox for Dictyostelium discoideum. BMC Res Notes 2020; 13:206. [PMID: 32276653 PMCID: PMC7149914 DOI: 10.1186/s13104-020-05048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/28/2020] [Indexed: 11/23/2022] Open
Abstract
Objective The amoeba Dictyostelium discoideum has been a valuable model organism to study numerous facets of eukaryotic cell biology, such as cell motility, cell adhesion, macropinocytosis and phagocytosis, host–pathogen interactions and multicellular development. However, the relative small size of the Dictyostelium community hampers the production and distribution of reagents and tools, such as antibodies, by commercial vendors. Results For the past 5 years, our laboratory has worked to promote an increased use of recombinant antibodies (rAbs) by academic laboratories. Here we report our efforts to ensure that Dictyostelium researchers have access to rAbs. Using hybridoma sequencing and phage display techniques, we generated a panel of recombinant antibodies against D. discoideum antigens, providing a useful and reliable set of reagents for labelling and characterization of proteins and subcellular compartments in D. discoideum, accessible to the entire Dictyostelium community.
Collapse
Affiliation(s)
- Wanessa C Lima
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland.
| | - Philippe Hammel
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland
| | - Pierre Cosson
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland
| |
Collapse
|
165
|
O'Day DH, Mathavarajah S, Myre MA, Huber RJ. Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2020; 95:472-490. [PMID: 31774219 PMCID: PMC7079120 DOI: 10.1111/brv.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin-binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin-dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin-dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin-dependent transdifferentiation to re-establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin-dependent germination of spores. Specific calmodulin-binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.
Collapse
Affiliation(s)
- Danton H. O'Day
- Cell and Systems BiologyUniversity of TorontoTorontoOntarioM5S 3G5Canada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioL5L 1C6Canada
| | | | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of SciencesUniversity of Massachusetts LowellLowellMassachusetts01854USA
| | - Robert J. Huber
- Department of BiologyTrent UniversityPeterboroughOntarioK9L 0G2Canada
| |
Collapse
|
166
|
Kondo T, Yumura S. Strategies for enhancing gene expression in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:3825-3834. [PMID: 32125482 DOI: 10.1007/s00253-020-10430-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Regulation of gene expression is fundamental for cellular function. Upon manipulation of the mechanism of gene expression in Escherichia coli, various bioproducts have been developed that are valuable industrially and medically in the last four decades. To efficiently produce bioproducts, numerous molecular tools are used for enhancing expression at the transcriptional and translational levels. Our recent discovery identified a new approach that enhances the gene expression in E. coli using the gene sequence of the eukaryote, Dictyostelium discoideum. In this review, we highlight the current molecular strategies used for high-level gene expression techniques commonly utilized in basic and applied microbiology.
Collapse
Affiliation(s)
- Tomo Kondo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| |
Collapse
|
167
|
Ribeiro GM, Porfírio-Sousa AL, Maurer-Alcalá XX, Katz LA, Lahr DJG. De novo Sequencing, Assembly, and Annotation of the Transcriptome for the Free-Living Testate Amoeba Arcella intermedia. J Eukaryot Microbiol 2020; 67:383-392. [PMID: 31971327 DOI: 10.1111/jeu.12788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 11/29/2022]
Abstract
Arcella, a diverse understudied genus of testate amoebae is a member of Tubulinea in Amoebozoa group. Transcriptomes are a powerful tool for characterization of these organisms as they are an efficient way of characterizing the protein-coding potential of the genome. In this work, we employed both single-cell and clonal populations transcriptomics to create a reference transcriptome for Arcella. We compared our results with annotations of Dictyostelium discoideum, a model Amoebozoan. We assembled a pool of 38 Arcella intermedia transcriptomes, which after filtering are composed of a total of 14,712 translated proteins. There are GO categories enriched in Arcella including mainly intracellular signal transduction pathways; we also used KEGG to annotate 11,546 contigs, which also have similar distribution to Dictyostelium. A large portion of data is still impossible to assign to a gene family, probably due to a combination of lineage-specific genes, incomplete sequences in the transcriptome and rapidly evolved genes. Some absences in pathways could also be related to low expression of these genes. We provide a reference database for Arcella, and we highlight the emergence of the need for further gene discovery in Arcella.
Collapse
Affiliation(s)
- Giulia M Ribeiro
- Department of Zoology, Institute of Biosciences, University of São Paulo, Matao Street, Travessa 14 Cidade Universitaria, São Paulo, 05508-090, São Paulo, Brazil
| | - Alfredo L Porfírio-Sousa
- Department of Zoology, Institute of Biosciences, University of São Paulo, Matao Street, Travessa 14 Cidade Universitaria, São Paulo, 05508-090, São Paulo, Brazil
| | - Xyrus X Maurer-Alcalá
- Department of Biological Sciences, Smith College, 10 Elm Street, Northampton, Massachusetts, 01063.,Program in Organismic and Evolutionary Biology, University of Massachussetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01002-9316
| | - Laura A Katz
- Department of Biological Sciences, Smith College, 10 Elm Street, Northampton, Massachusetts, 01063
| | - Daniel J G Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, Matao Street, Travessa 14 Cidade Universitaria, São Paulo, 05508-090, São Paulo, Brazil
| |
Collapse
|
168
|
Abstract
Shotgun expression of antisense cDNA, where each transformed cell expresses a different antisense cDNA, has been used for mutagenesis and gene identification in Dictyostelium discoideum. However, the method has two limitations. First, there were too few clones in the shotgun antisense cDNA library to have an antisense cDNA for every gene in the genome. Second, the unequal transcription level of genes resulted in many antisense cDNAs in the library for some genes but relatively few antisense cDNAs for other genes. Here we report an improved method for generating a larger antisense cDNA library with a reduced percentage of cDNA clones from highly prevalent mRNAs and demonstrate its utility by screening for signal transduction pathway components in D. discoideum. We present an improved shotgun antisense method for generating gene expression knockdown mutants. This method incorporates a cDNA-normalization step to equalize the transcript number of each gene in the antisense cDNA library.
Collapse
|
169
|
Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods. Proc Natl Acad Sci U S A 2020; 117:2506-2512. [PMID: 31964823 PMCID: PMC7007555 DOI: 10.1073/pnas.1905730117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells migrating within the body perform vital functions in development and for defense and repair of tissues. In this dense environment, cells encounter mechanical forces and constraints not experienced when moving under buffer, and, accordingly, many change how they move. We find that gentle squashing, which mimics mechanical resistance, causes cells to move using blebs—a form of projection driven by fluid pressure—rather than pseudopods. This behavior depends on the Piezo stretch-operated ion channel in the cell membrane and calcium fluxes into the cell. Piezo is highly conserved and is required for light touch sensation; this work extends its functions into migrating cells. Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a “cell squasher” to apply uniaxial pressure to Dictyostelium cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods.
Collapse
|
170
|
Chia CP, Inoguchi N, Varon KC, Bartholomai BM, Moriyama H. Mitochondrial localization of Dictyostelium discoideum dUTPase mediated by its N-terminus. BMC Res Notes 2020; 13:16. [PMID: 31910901 PMCID: PMC6947831 DOI: 10.1186/s13104-019-4879-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/26/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The nuclear and mitochondrial genomes of Dictyostelium discoideum, a unicellular eukaryote, have relatively high A+T-contents of 77.5% and 72.65%, respectively. To begin to investigate how the pyrimidine biosynthetic pathway fulfills the demand for dTTP, we determined the catalytic properties and structure of the key enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) that hydrolyzes dUTP to dUMP, the precursor of dTTP. RESULTS The annotated genome of D. discoideum identifies a gene encoding a polypeptide containing the five conserved motifs of homotrimeric dUTPases. Recombinant proteins, comprised of either full-length or core polypeptides with all conserved motifs but lacking residues 1-37 of the N-terminus, were active dUTPases. Crystallographic analyses of the core enzyme indicated that the C-termini, normally flexible, were constrained by interactions with the shortened N-termini that arose from the loss of residues 1-37. This allowed greater access of dUTP to active sites, resulting in enhanced catalytic parameters. A tagged protein comprised of the N-terminal forty amino acids of dUTPase fused to green fluorescent protein (GFP) was expressed in D. discoideum cells. Supporting a prediction of mitochondrial targeting information within the N-terminus, localization and subcellular fractionation studies showed GFP to be in mitochondria. N-terminal sequencing of immunoprecipitated GFP revealed the loss of the dUTPase sequence upon import into the organelle.
Collapse
Affiliation(s)
- Catherine P Chia
- School of Biological Sciences, Univ. Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA.
| | - Noriko Inoguchi
- Department of Biological Sciences, Univ. Alabama in Huntsville, Huntsville, AL, 35899, USA
- iXpressGenes Inc, Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Kyle C Varon
- School of Biological Sciences, Univ. Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA
| | - Bradley M Bartholomai
- Geisel School of Medicine, Dept. Molecular and Systems Biology, Dartmouth College, Hanover, NH, 03755, USA
| | - Hideaki Moriyama
- School of Biological Sciences, Univ. Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA
| |
Collapse
|
171
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
172
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
173
|
Kjellin J, Pränting M, Bach F, Vaid R, Edelbroek B, Li Z, Hoeppner MP, Grabherr M, Isberg RR, Hagedorn M, Söderbom F. Investigation of the host transcriptional response to intracellular bacterial infection using Dictyostelium discoideum as a host model. BMC Genomics 2019; 20:961. [PMID: 31823727 PMCID: PMC6902447 DOI: 10.1186/s12864-019-6269-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND During infection by intracellular pathogens, a highly complex interplay occurs between the infected cell trying to degrade the invader and the pathogen which actively manipulates the host cell to enable survival and proliferation. Many intracellular pathogens pose important threats to human health and major efforts have been undertaken to better understand the host-pathogen interactions that eventually determine the outcome of the infection. Over the last decades, the unicellular eukaryote Dictyostelium discoideum has become an established infection model, serving as a surrogate macrophage that can be infected with a wide range of intracellular pathogens. In this study, we use high-throughput RNA-sequencing to analyze the transcriptional response of D. discoideum when infected with Mycobacterium marinum and Legionella pneumophila. The results were compared to available data from human macrophages. RESULTS The majority of the transcriptional regulation triggered by the two pathogens was found to be unique for each bacterial challenge. Hallmark transcriptional signatures were identified for each infection, e.g. induction of endosomal sorting complexes required for transport (ESCRT) and autophagy genes in response to M. marinum and inhibition of genes associated with the translation machinery and energy metabolism in response to L. pneumophila. However, a common response to the pathogenic bacteria was also identified, which was not induced by non-pathogenic food bacteria. Finally, comparison with available data sets of regulation in human monocyte derived macrophages shows that the elicited response in D. discoideum is in many aspects similar to what has been observed in human immune cells in response to Mycobacterium tuberculosis and L. pneumophila. CONCLUSIONS Our study presents high-throughput characterization of D. discoideum transcriptional response to intracellular pathogens using RNA-seq. We demonstrate that the transcriptional response is in essence distinct to each pathogen and that in many cases, the corresponding regulation is recapitulated in human macrophages after infection by mycobacteria and L. pneumophila. This indicates that host-pathogen interactions are evolutionary conserved, derived from the early interactions between free-living phagocytic cells and bacteria. Taken together, our results strengthen the use of D. discoideum as a general infection model.
Collapse
Affiliation(s)
- Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Maria Pränting
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Present Address: ReAct - Action on Antibiotic Resistance, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Frauke Bach
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Present Address: Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roshan Vaid
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Bart Edelbroek
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Zhiru Li
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.,Present Address: New England Biolabs, Ipswich, MA, USA
| | - Marc P Hoeppner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Monica Hagedorn
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Group Ribogenetics, Bremen, Germany
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
174
|
Hasni I, Chelkha N, Baptiste E, Mameri MR, Lachuer J, Plasson F, Colson P, La Scola B. Investigation of potential pathogenicity of Willaertia magna by investigating the transfer of bacteria pathogenicity genes into its genome. Sci Rep 2019; 9:18318. [PMID: 31797948 PMCID: PMC6892926 DOI: 10.1038/s41598-019-54580-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022] Open
Abstract
Willaertia magna c2c maky is a thermophilic amoeba closely related to the genus Naegleria. This free-living amoeba has the ability to eliminate Legionella pneumophila, which is an amoeba-resisting bacterium living in an aquatic environment. To prevent the proliferation of L. pneumophila in cooling towers, the use of W. magna as natural biocide has been proposed. To provide a better understanding of the W. magna genome, whole-genome sequencing was performed through the study of virulence factors and lateral gene transfers. This amoeba harbors a genome of 36.5 megabases with 18,519 predicted genes. BLASTp analyses reported protein homology between 136 W. magna sequences and amoeba-resistant microorganisms. Horizontal gene transfers were observed based on the basis of the phylogenetic reconstruction hypothesis. We detected 15 homologs of N. fowleri genes related to virulence, although these latter were also found in the genome of N. gruberi, which is a non-pathogenic amoeba. Furthermore, the cytotoxicity test performed on human cells supports the hypothesis that the strain c2c maky is a non-pathogenic amoeba. This work explores the genomic repertory for the first draft genome of genus Willaertia and provides genomic data for further comparative studies on virulence of related pathogenic amoeba, N. fowleri.
Collapse
Affiliation(s)
- Issam Hasni
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France.,Amoéba, Chassieu, France
| | - Nisrine Chelkha
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Emeline Baptiste
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | | | - Joel Lachuer
- ProfileXpert/Viroscan3D, UCBL UMS 3453 CNRS - US7 INSERM, Lyon, France.,Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | | | - Philippe Colson
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France.
| |
Collapse
|
175
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
176
|
Forbes G, Chen ZH, Kin K, Lawal HM, Schilde C, Yamada Y, Schaap P. Phylogeny-wide conservation and change in developmental expression, cell-type specificity and functional domains of the transcriptional regulators of social amoebas. BMC Genomics 2019; 20:890. [PMID: 31752673 PMCID: PMC6873476 DOI: 10.1186/s12864-019-6239-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Background Dictyostelid social amoebas self-organize into fruiting bodies, consisting of spores and up to four supporting cell types in the phenotypically most complex taxon group 4. High quality genomes and stage- and cell-type specific transcriptomes are available for representative species of each of the four taxon groups. To understand how evolution of gene regulation in Dictyostelia contributed to evolution of phenotypic complexity, we analysed conservation and change in abundance, functional domain architecture and developmental regulation of their transcription factors (TFs). Results We detected 440 sequence-specific TFs across 33 families, of which 68% were upregulated in multicellular development and about half conserved throughout Dictyostelia. Prespore cells expressed two times more TFs than prestalk cells, but stalk cells expressed more TFs than spores, suggesting that gene expression events that define spores occur earlier than those that define stalk cells. Changes in TF developmental expression, but not in TF abundance or functional domains occurred more frequently between group 4 and groups 1–3, than between the more distant branches formed by groups 1 + 2 and 3 + 4. Conclusions Phenotypic innovation is correlated with changes in TF regulation, rather than functional domain- or TF acquisition. The function of only 34 TFs is known. Of 12 TFs essential for cell differentiation, 9 are expressed in the cell type for which they are required. The information acquired here on conserved cell type specifity of 120 additional TFs can effectively guide further functional analysis, while observed evolutionary change in TF developmental expression may highlight how genotypic change caused phenotypic innovation.
Collapse
Affiliation(s)
- Gillian Forbes
- School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Zhi-Hui Chen
- School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Koryu Kin
- School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Hajara M Lawal
- School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | | | - Yoko Yamada
- School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, DD15EH, Dundee, UK.
| |
Collapse
|
177
|
Saad M, Guédin A, Amor S, Bedrat A, Tourasse NJ, Fayyad-Kazan H, Pratviel G, Lacroix L, Mergny JL. Mapping and characterization of G-quadruplexes in the genome of the social amoeba Dictyostelium discoideum. Nucleic Acids Res 2019; 47:4363-4374. [PMID: 30923812 PMCID: PMC6511855 DOI: 10.1093/nar/gkz196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 01/25/2023] Open
Abstract
G-quadruplexes (G4) are non-canonical DNA and/or RNA secondary structures formed in guanine-rich regions. Given their over-representation in specific regions in the genome such as promoters and telomeres, they are likely to play important roles in key processes such as transcription, replication or RNA maturation. Putative G4-forming sequences (G4FS) have been reported in humans, yeast, bacteria, viruses and many organisms. Here we present the first mapping of G-quadruplex sequences in Dictyostelium discoideum, the social amoeba. ‘Dicty’ is an ameboid protozoan with a small (34 Mb) and extremely AT rich genome (78%). As a consequence, very few G4-prone motifs are expected. An in silico analysis of the Dictyostelium genome with the G4Hunter software detected 249–1055 G4-prone motifs, depending on G4Hunter chosen threshold. Interestingly, despite an even lower GC content (as compared to the whole Dicty genome), the density of G4 motifs in Dictyostelium promoters and introns is significantly higher than in the rest of the genome. Fourteen selected sequences located in important genes were characterized by a combination of biophysical and biochemical techniques. Our data show that these sequences form highly stable G4 structures under physiological conditions. Five Dictyostelium genes containing G4-prone motifs in their promoters were studied for the effect of a new G4-binding porphyrin derivative on their expression. Our results demonstrated that the new ligand significantly decreased their expression. Overall, our results constitute the first step to adopt Dictyostelium discoideum as a ‘G4-poor’ model for studies on G-quadruplexes.
Collapse
Affiliation(s)
- Mona Saad
- ARNA Laboratory, IECB, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Al-Hadath, Lebanon, Lebanon
| | - Aurore Guédin
- ARNA Laboratory, IECB, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France
| | - Souheila Amor
- ARNA Laboratory, IECB, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France
| | - Amina Bedrat
- ARNA Laboratory, IECB, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France
| | - Nicolas J Tourasse
- ARNA Laboratory, IECB, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Al-Hadath, Lebanon, Lebanon
| | | | | | - Jean-Louis Mergny
- ARNA Laboratory, IECB, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France.,Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
178
|
Hughes EAB, Robinson TE, Bassett DB, Cox SC, Grover LM. Critical and diverse roles of phosphates in human bone formation. J Mater Chem B 2019; 7:7460-7470. [PMID: 31729501 DOI: 10.1039/c9tb02011j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humans utilise biomineralisation in the formation of bone and teeth. Human biomineralisation processes are defined by the transformation of an amorphous phosphate-based precursor to highly organised nanocrystals. Interestingly, ionic phosphate species not only provide a fundamental building block of biological mineral, but rather exhibit several diverse roles in mediating mineral formation in the physiological milieu. In this review, we focus on elucidating the complex roles of phosphate ions and molecules within human biomineralisation pathways, primarily referring to the nucleation and crystallisation of bone mineral.
Collapse
Affiliation(s)
- Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK. and NIHR Surgical Rec and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - Thomas E Robinson
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| | - David B Bassett
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK. and Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
179
|
Dyskerin Mutations Present in Dyskeratosis Congenita Patients Increase Oxidative Stress and DNA Damage Signalling in Dictyostelium Discoideum. Cells 2019; 8:cells8111406. [PMID: 31717312 PMCID: PMC6912284 DOI: 10.3390/cells8111406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dyskerin is a protein involved in the formation of small nucleolar and small Cajal body ribonucleoproteins. These complexes participate in RNA pseudouridylation and are also components of the telomerase complex required for telomere elongation. Dyskerin mutations cause a rare disease, X-linked dyskeratosis congenita, with no curative treatment. The social amoeba Dictyostelium discoideum contains a gene coding for a dyskerin homologous protein. In this article D. discoideum mutant strains that have mutations corresponding to mutations found in dyskeratosis congenita patients are described. The phenotype of the mutant strains has been studied and no alterations were observed in pseudouridylation activity and telomere structure. Mutant strains showed increased proliferation on liquid culture but reduced growth feeding on bacteria. The results obtained indicated the existence of increased DNA damage response and reactive oxygen species, as also reported in human Dyskeratosis congenita cells and some other disease models. These data, together with the haploid character of D. discoideum vegetative cells, that resemble the genomic structure of the human dyskerin gene, located in the X chromosome, support the conclusion that D. discoideum can be a good model system for the study of this disease.
Collapse
|
180
|
Aoki MM, Kisiala AB, Li S, Stock NL, Brunetti CR, Huber RJ, Emery RJN. Cytokinin Detection during the Dictyostelium discoideum Life Cycle: Profiles Are Dynamic and Affect Cell Growth and Spore Germination. Biomolecules 2019; 9:E702. [PMID: 31694277 PMCID: PMC6920973 DOI: 10.3390/biom9110702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 01/18/2023] Open
Abstract
Cytokinins (CKs) are a family of evolutionarily conserved growth regulating hormones. While CKs are well-characterized in plant systems, these N6-substituted adenine derivatives are found in a variety of organisms beyond plants, including bacteria, fungi, mammals, and the social amoeba, Dictyostelium discoideum. Within Dictyostelium, CKs have only been studied in the late developmental stages of the life cycle, where they promote spore encapsulation and dormancy. In this study, we used ultra high-performance liquid chromatography-positive electrospray ionization-high resolution tandem mass spectrometry (UHPLC-(ESI+)-HRMS/MS) to profile CKs during the Dictyostelium life cycle: growth, aggregation, mound, slug, fruiting body, and germination. Comprehensive profiling revealed that Dictyostelium produces 6 CK forms (cis-Zeatin (cZ), discadenine (DA), N6-isopentenyladenine (iP), N6-isopentenyladenine-9-riboside (iPR), N6-isopentenyladenine-9-riboside-5' phosphate (iPRP), and 2-methylthio-N6-isopentenyladenine (2MeSiP)) in varying abundance across the sampled life cycle stages, thus laying the foundation for the CK biosynthesis pathway to be defined in this organism. Interestingly, iP-type CKs were the most dominant CK analytes detected during growth and aggregation. Exogenous treatment of AX3 cells with various CK types revealed that iP was the only CK to promote the proliferation of cells in culture. In support of previous studies, metabolomics data revealed that DA is one of the most significantly upregulated small molecules during Dictyostelium development, and our data indicates that total CK levels are highest during germination. While much remains to be explored in Dictyostelium, this research offers new insight into the nature of CK biosynthesis, secretion, and function during Dictyostelium growth, development, and spore germination.
Collapse
Affiliation(s)
- Megan M. Aoki
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| | - Anna B. Kisiala
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| | - Shaojun Li
- Noblegen, Peterborough, ON K9L 0G2, Canada;
| | - Naomi L. Stock
- Water Quality Centre, Trent University, Peterborough, ON K9L 0G2, Canada;
| | - Craig R. Brunetti
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| |
Collapse
|
181
|
Iriki H, Kawata T, Muramoto T. Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase. PLoS One 2019; 14:e0224128. [PMID: 31622451 PMCID: PMC6797129 DOI: 10.1371/journal.pone.0224128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system enables targeted genome modifications across a range of eukaryotes. Although we have reported that transient introduction of all-in-one vectors that express both Cas9 and sgRNAs can efficiently induce multiple gene knockouts in Dictyostelium discoideum, concerns remain about off-target effects and false-positive amplification during mutation detection via PCR. To minimise these effects, we modified the system to permit gene deletions of greater than 1 kb via use of paired sgRNAs and Cas9 nickase. An all-in-one vector expressing the Cas9 nickase and sgRNAs was transiently introduced into D. discoideum, and the resulting mutants showed long deletions with a relatively high efficiency of 10-30%. By further improving the vector, a new dual sgRNA expression vector was also constructed to allow simultaneous insertion of two sgRNAs via one-step cloning. By applying this system, precise point mutations and genomic deletions were generated in the target locus via simultaneous introduction of the vector and a single-stranded oligonucleotide template without integrating a drug resistance cassette. These systems enable simple and straightforward genome editing that requires high specificity, and they can serve as an alternative to the conventional homologous recombination-based gene disruption method in D. discoideum.
Collapse
Affiliation(s)
- Hoshie Iriki
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
182
|
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, Barlow LD, Herman EK, Pipaliya SV, Pánek T, Žihala D, Petrželková R, Butenko A, Eme L, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Hampl V. The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion. Mol Biol Evol 2019; 36:2292-2312. [PMID: 31387118 PMCID: PMC6759080 DOI: 10.1093/molbev/msz147] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sebastian C Treitli
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ondřej Brzoň
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lukáš Novák
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Vojtěch Vacek
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Petr Soukal
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Shweta V Pipaliya
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vladimír Hampl
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| |
Collapse
|
183
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
184
|
Rodriguez-Centeno J, Manguán-García C, Perona R, Sastre L. Structure of Dictyostelium discoideum telomeres. Analysis of possible replication mechanisms. PLoS One 2019; 14:e0222909. [PMID: 31550289 PMCID: PMC6759168 DOI: 10.1371/journal.pone.0222909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Telomeres are nucleo-protein structures that protect the ends of eukaryotic chromosomes. They are not completely synthesized during DNA replication and are elongated by specific mechanisms. The structure of the telomeres and the elongation mechanism have not been determined in Dictyostelium discoideum. This organism presents extrachromosomal palindromic elements containing two copies of the rDNA, also present at the end of the chromosomes. In this article the structure of the terminal region of the rDNA is shown to consist of repetitions of the A(G)n sequence where the number of Gs is variable. These repeats extend as a 3’ single stranded region. The G-rich region is preceded by four tandem repetitions of two different DNA motifs. D. discoideum telomere reverse transcriptase homologous protein (TERTHP) presented RNase-sensitive enzymatic activity and was required to maintain telomere structure since terthp-mutant strains presented reorganizations of the DNA terminal regions. These modifications were different in several terthp-mutants and changed with their prolonged culture and subcloning. However, the terthp gene is not essential for D. discoideum proliferation. Telomeres could be maintained in terthp-mutant strains by homologous recombination mechanisms such as ALT (Alternative Lengthening of Telomeres) or HAATI (heterochromatin amplification-mediated and telomerase-independent). In agreement with this hypothesis, the expression of mRNAs coding for several proteins involved in homologous recombination was induced in terthp-mutant strains. Extrachromosomal rDNA could serve as substrate in these DNA homologous recombination reactions.
Collapse
Affiliation(s)
- Javier Rodriguez-Centeno
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
| | - Cristina Manguán-García
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail:
| |
Collapse
|
185
|
Jiang T, Saito T, Nanbu S. Theoretical Molecular Dynamics Simulation of the DIF-1 Receptor Activation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tianlong Jiang
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan
| | - Tamao Saito
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan
| | - Shinkoh Nanbu
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
186
|
Ferrando S, Agas D, Mirata S, Signore A, De Angelis N, Ravera S, Utyuzh AS, Parker S, Sabbieti MG, Benedicenti S, Amaroli A. The 808 nm and 980 nm infrared laser irradiation affects spore germination and stored calcium homeostasis: A comparative study using delivery hand-pieces with standard (Gaussian) or flat-top profile. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111627. [PMID: 31536925 DOI: 10.1016/j.jphotobiol.2019.111627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
Abstract
Photobiomodulation relies on the transfer of energy from incident photons to a cell photoacceptor. For many years the concept of photobiomodulation and its outcome has been based upon a belief that the sole receptor within the cell was the mitochondrion. Recently, it has become apparent that there are other photoacceptors operating in different regions of the electromagnetic spectrum. Alternative photoacceptors would appear to be water and mechanisms regulating calcium homeostasis, despite a direct effect of laser photonic energy on intracellular calcium concentration outwith mitochondrial activity or influence, have not been clearly demonstrated. Therefore, to increase the knowledge of intracellular‑calcium and laser photon interaction, as well as to demonstrate differences in irradiation profiles with modern hand-pieces, we tested and compared the photobiomodulatory effect of 808 nm and 980 nm diode laser light by low- and higher-energy (60s, 100 mW/cm2, 100 mW/cm2, 500 mW/cm2, 1000 mW/cm2, 1500 mW/cm2, 2000 mW/cm2) irradiated with a "standard" (Gaussian fluence distribution) hand-piece or with a "flat-top" (uniform fluence) hand-piece. For this purpose, we used the eukaryote unicellular-model Dictyostelium discoideum. The 808 nm and 980 nm infrared laser light, at the energy tested directly affect the stored Ca2+ homeostasis, independent of the mitochondrial respiratory chain activities. From an organism perspective, the effect on Ca2+-dependent signal transduction as the regulator of spore germination in Dictyostelium, demonstrates how a cell can respond quickly to the correct laser photonic stimulus through a different cellular pathway than the known light-chromophore(mitochondria) interaction. Additionally, both hand-piece designs tested were able to photobiomodulate the D. discoideum cell; however, the hand-piece with a flat-top profile, through uniform fluence levels allows more effective and reproducible effects.
Collapse
Affiliation(s)
- Sara Ferrando
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genova, Genova, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino,Macerata, Italy
| | - Serena Mirata
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genova, Genova, Italy
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; Faculty of Therapeutic Stomatology, Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nicola De Angelis
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; University of Technology MARA, Department of Dentistry, Sungai Buloh, Malaysia
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Anatoliy S Utyuzh
- Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991 Moscow, Russian Federation
| | - Steven Parker
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino,Macerata, Italy
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991 Moscow, Russian Federation.
| |
Collapse
|
187
|
Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 2019; 16:731-744. [PMID: 30194403 DOI: 10.1038/s41579-018-0075-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fungi contain a remarkable diversity of both primary and secondary metabolic pathways involved in ecologically specialized or accessory functions. Genes in these pathways are frequently physically linked on fungal chromosomes, forming metabolic gene clusters (MGCs). In this Review, we describe the diversity in the structure and content of fungal MGCs, their population-level and species-level variation, the evolutionary mechanisms that underlie their formation, maintenance and decay, and their ecological and evolutionary impact on fungal populations. We also discuss MGCs from other eukaryotes and the reasons for their preponderance in fungi. Improved knowledge of the evolutionary life cycle of MGCs will advance our understanding of the ecology of specialized metabolism and of the interplay between the lifestyle of an organism and genome architecture.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA. .,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.,Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
188
|
Guédin A, Lin LY, Armane S, Lacroix L, Mergny JL, Thore S, Yatsunyk LA. Quadruplexes in 'Dicty': crystal structure of a four-quartet G-quadruplex formed by G-rich motif found in the Dictyostelium discoideum genome. Nucleic Acids Res 2019; 46:5297-5307. [PMID: 29718337 PMCID: PMC6007418 DOI: 10.1093/nar/gky290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249–1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson–Crick base pair and a A–T–A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.
Collapse
Affiliation(s)
- Aurore Guédin
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France
| | | | - Samir Armane
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France
| | | | - Jean-Louis Mergny
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France.,Institute of Biophysics of the CAS, v.v.i., Kraálovopolskaá 135, 612 65 Brno, Czech Republic
| | - Stéphane Thore
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France
| | | |
Collapse
|
189
|
Conditional expression explains molecular evolution of social genes in a microbe. Nat Commun 2019; 10:3284. [PMID: 31337766 PMCID: PMC6650454 DOI: 10.1038/s41467-019-11237-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/25/2019] [Indexed: 12/30/2022] Open
Abstract
Conflict is thought to play a critical role in the evolution of social interactions by promoting diversity or driving accelerated evolution. However, despite our sophisticated understanding of how conflict shapes social traits, we have limited knowledge of how it impacts molecular evolution across the underlying social genes. Here we address this problem by analyzing the genome-wide impact of social interactions using genome sequences from 67 Dictyostelium discoideum strains. We find that social genes tend to exhibit enhanced polymorphism and accelerated evolution. However, these patterns are not consistent with conflict driven processes, but instead reflect relaxed purifying selection. This pattern is most likely explained by the conditional nature of social interactions, whereby selection on genes expressed only in social interactions is diluted by generations of inactivity. This dilution of selection by inactivity enhances the role of drift, leading to increased polymorphism and accelerated evolution, which we call the Red King process.
Collapse
|
190
|
Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Appl Environ Microbiol 2019; 85:AEM.00988-19. [PMID: 31126947 DOI: 10.1128/aem.00988-19] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
Survival and growth of the anaerobic gut fungi (AGF; Neocallimastigomycota) in the herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages. We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution of AGF into a phylogenetically distinct gut-dwelling fungal lineage. The patterns of HGT were evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified 277 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. The majority of HGT events were AGF specific (91.7%) and wide (70.8%), indicating their occurrence at early stages of AGF evolution. The acquired genes allowed AGF to expand their substrate utilization range, provided new venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their adaptation to anaerobiosis. The majority of donors were anaerobic fermentative bacteria prevalent in the herbivorous gut. This study strongly indicates that HGT indispensably forged the evolution of AGF as a distinct fungal phylum and provides a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.IMPORTANCE The anaerobic gut fungi (AGF) represent a distinct basal phylum lineage (Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and prokaryote-dominated habitats necessitates the acquisition of several traits absent in other fungal lineages. We assess here the role of horizontal gene transfer as a relatively fast mechanism for trait acquisition by the Neocallimastigomycota postsequestration in the herbivorous gut. Analysis of 27 transcriptomes that represent the broad diversity of Neocallimastigomycota identified 277 distinct HGT events, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. These HGT events have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization range, augmenting their biosynthetic pathway, providing new routes for electron disposal by expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to the bacteria. This study represents a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.
Collapse
|
191
|
Gomer RH. The Use of Diffusion Calculations and Monte Carlo Simulations to Understand the Behavior of Cells in Dictyostelium Communities. Comput Struct Biotechnol J 2019; 17:684-688. [PMID: 31303972 PMCID: PMC6603294 DOI: 10.1016/j.csbj.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 11/01/2022] Open
Abstract
Microbial communities are the simplest possible model of multicellular tissues, allowing studies of cell-cell interactions to be done with as few extraneous factors as possible. For instance, the eukaryotic microbe Dictyostelium discoideum proliferates as single cells, and when starved, the cells aggregate together and form structures of ~20,000 cells. The cells use a variety of signals to direct their movement, inform each other of their local cell density and whether they are starving, and organize themselves into groups of ~20,000 cells. Mathematical models and computational approaches have been a key check on, and guide of, the experimental work. In this minireview, I will discuss diffusion calculations and Monte Carlo simulations that were used for Dictyostelium studies that offer general paradigms for several aspects of cell-cell communication. For instance, computational work showed that diffusible secreted cell-density sensing (quorum) factors can diffuse away so quickly from a single cell that the local concentration will not build up to incorrectly cause the cell to sense that it is in the presence of a high density of other cells secreting that signal. In another example, computation correctly predicted a mechanism that allows a group of cells to break up into subgroups. These are thus some examples of the power and necessity of computational work in biology.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
192
|
Soldati T, Cardenal-Muñoz E. A brief historical and evolutionary perspective on the origin of cellular microbiology research. Cell Microbiol 2019; 21:e13083. [PMID: 31290267 DOI: 10.1111/cmi.13083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/01/2022]
Abstract
Integrated with both a historical perspective and an evolutionary angle, this opinion article presents a brief and personal view of the emergence of cellular microbiology research. From the very first observations of phagocytosis by Goeze in 1777 to the exhaustive analysis of the cellular defence mechanisms performed in modern laboratories, the studies by cell biologists and microbiologists have converged into an integrative research field distinct from, but fully coupled to immunity: cellular microbiology. In addition, this brief article is thought as a humble patchwork of the motivations that have guided the research in my group over a quarter century.
Collapse
Affiliation(s)
- Thierry Soldati
- Faculty of Science, Sciences II, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Science, Sciences II, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
193
|
A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium. PLoS Genet 2019; 15:e1008188. [PMID: 31237867 PMCID: PMC6592521 DOI: 10.1371/journal.pgen.1008188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Telomerase, particularly its main subunit, the reverse transcriptase, TERT, prevents DNA erosion during eukaryotic chromosomal replication, but also has poorly understood non-canonical functions. Here, in the model social amoeba Dictyostelium discoideum, we show that the protein encoded by tert has telomerase-like motifs, and regulates, non-canonically, important developmental processes. Expression levels of wild-type (WT) tert were biphasic, peaking at 8 and 12 h post-starvation, aligning with developmental events, such as the initiation of streaming (~7 h) and mound formation (~10 h). In tert KO mutants, however, aggregation was delayed until 16 h. Large, irregular streams formed, then broke up, forming small mounds. The mound-size defect was not induced when a KO mutant of countin (a master size-regulating gene) was treated with TERT inhibitors, but anti-countin antibodies did rescue size in the tert KO. Although, conditioned medium (CM) from countin mutants failed to rescue size in the tert KO, tert KO CM rescued the countin KO phenotype. These and additional observations indicate that TERT acts upstream of smlA/countin: (i) the observed expression levels of smlA and countin, being respectively lower and higher (than WT) in the tert KO; (ii) the levels of known size-regulation intermediates, glucose (low) and adenosine (high), in the tert mutant, and the size defect's rescue by supplemented glucose or the adenosine-antagonist, caffeine; (iii) the induction of the size defect in the WT by tert KO CM and TERT inhibitors. The tert KO's other defects (delayed aggregation, irregular streaming) were associated with changes to cAMP-regulated processes (e.g. chemotaxis, cAMP pulsing) and their regulatory factors (e.g. cAMP; acaA, carA expression). Overexpression of WT tert in the tert KO rescued these defects (and size), and restored a single cAMP signaling centre. Our results indicate that TERT acts in novel, non-canonical and upstream ways, regulating key developmental events in Dictyostelium.
Collapse
|
194
|
Saga Y, Iwade Y, Araki T, Ishikawa M, Kawata T. Analysis of DrkA kinase's role in STATa activation. Genes Cells 2019; 24:422-435. [PMID: 31002205 DOI: 10.1111/gtc.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/28/2022]
Abstract
Dictyostelium STATa is a homologue of metazoan signal transducers and activators of transcription (STATs) and is important for morphogenesis. STATa is activated by phosphorylation on Tyr702 when cells are exposed to extracellular cAMP. Although two tyrosine kinase-like (TKL) proteins, Pyk2 and Pyk3, have been definitively identified as STATc kinases, no kinase is known for STATa activation. Based on homology to the previously identified tyrosine-selective TKLs, we identified DrkA, a member of the TKL family and the Dictyostelium receptor-like kinase (DRK) subfamily, as a candidate STATa kinase. The drkA gene is almost exclusively expressed in prestalk A (pstA) cells, where STATa is activated. Transient over-expression of DrkA increased STATa phosphorylation, although over-expression of the protein causes a severe growth defect and cell death. Furthermore, recombinant DrkA protein is auto-phosphorylated on tyrosine and threonine residues, and an in vitro kinase assay shows that DrkA can phosphorylate STATa on Tyr702 in a STATa-SH2 (phosphotyrosine binding) domain-dependent manner. These observations strongly suggest that DrkA is one of the key regulators of STATa tyrosine phosphorylation and is consistent with it being the kinase that directly activates STATa.
Collapse
Affiliation(s)
- Yukika Saga
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Yumi Iwade
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Tsuyoshi Araki
- Division of Cell and Developmental Biology, JBC/WTB/MSI Complex, School of Life Sciences, University of Dundee, Dundee, UK.,Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Megumi Ishikawa
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| |
Collapse
|
195
|
Kerekes K, Bányai L, Trexler M, Patthy L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019; 37:29-52. [PMID: 31210071 DOI: 10.1080/08977194.2019.1626380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways. In this article, we review the structure, evolution, molecular interactions and functions of WIF1 with major emphasis on its role in carcinogenesis.
Collapse
Affiliation(s)
- Krisztina Kerekes
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Bányai
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Mária Trexler
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Patthy
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
196
|
Translation enhancement by a Dictyostelium gene sequence in Escherichia coli. Appl Microbiol Biotechnol 2019; 103:3501-3510. [PMID: 30903214 DOI: 10.1007/s00253-019-09746-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Methods for heterologous protein production in Escherichia coli have revolutionized biotechnology and the bioindustry. It is ultimately important to increase the amount of protein product from bacteria. To this end, a variety of tools, such as effective promoters, have been developed. Here, we present a versatile molecular tool based on a phenomenon termed "translation enhancement by a Dictyostelium gene sequence" ("TED") in E. coli. We found that protein expression was increased when a gene sequence of Dictyostelium discoideum was placed upstream of the Shine-Dalgarno sequence located between the promoter and the initiation codon of a target gene. The most effective sequence among the genes examined was mlcR, which encodes the myosin regulatory light chain, a subunit of myosin II. Serial deletion analysis revealed that at least 10 bases of the 3' end of the mlcR gene enhanced the production of green fluorescent protein in cells. We applied this tool to a T7 expression system and found that the expression level of the proteins tested was increased when compared with the conventional method. Thus, current protein production systems can be improved by combination with TED.
Collapse
|
197
|
Tatischeff I. Dictyostelium: A Model for Studying the Extracellular Vesicle Messengers Involved in Human Health and Disease. Cells 2019; 8:E225. [PMID: 30857191 PMCID: PMC6468606 DOI: 10.3390/cells8030225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-derived extracellular vesicles (EVs) are newly uncovered messengers for intercellular communication. They are released by almost all cell types in the three kingdoms, Archeabacteria, Bacteria and Eukaryotes. They are known to mediate important biological functions and to be increasingly involved in cell physiology and in many human diseases, especially in oncology. The aim of this review is to recapitulate the current knowledge about EVs and to summarize our pioneering work about Dictyostelium discoideum EVs. However, many challenges remain unsolved in the EV research field, before any EV application for theranostics (diagnosis, prognosis, and therapy) of human cancers, can be efficiently implemented in the clinics. Dictyostelium might be an outstanding eukaryotic cell model for deciphering the utmost challenging problem of EV heterogeneity, and for unraveling the still mostly unknown mechanisms of their specific functions as mediators of intercellular communication.
Collapse
Affiliation(s)
- Irène Tatischeff
- Honorary CNRS (Centre de la Recherche Scientifique, Paris, France) and UPMC (Université Pierre et Marie Curie, Paris, France) Research Director, Founder of RevInterCell, a Scientific Consulting Service, 91400 Orsay, France.
| |
Collapse
|
198
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
199
|
Nagashima A, Higaki T, Koeduka T, Ishigami K, Hosokawa S, Watanabe H, Matsui K, Hasezawa S, Touhara K. Transcriptional regulators involved in responses to volatile organic compounds in plants. J Biol Chem 2019; 294:2256-2266. [PMID: 30593507 PMCID: PMC6378981 DOI: 10.1074/jbc.ra118.005843] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Field studies have shown that plants growing next to herbivore-infested plants acquire higher resistance to herbivore damage. This increased resistance is partly due to regulation of plant gene expression by volatile organic compounds (VOCs) released by plants that sense environmental challenges such as herbivores. The molecular basis for VOC sensing in plants, however, is poorly understood. Here, we report the identification of TOPLESS-like proteins (TPLs) that have VOC-binding activity and are involved in VOC sensing in tobacco. While screening for volatiles that induce stress-responsive gene expression in tobacco BY-2 cells and tobacco plants, we found that some sesquiterpenes induce the expression of stress-responsive genes. These results provided evidence that plants sense these VOCs and motivated us to analyze the mechanisms underlying volatile sensing using tobacco as a model system. Using a pulldown assay with caryophyllene derivative-linked beads, we identified TPLs as transcriptional co-repressors that bind volatile caryophyllene analogs. Overexpression of TPLs in cultured BY-2 cells or tobacco leaves reduced caryophyllene-induced gene expression, indicating that TPLs are involved in the responses to caryophyllene analogs in tobacco. We propose that unlike animals, which use membrane receptors for sensing odorants, a transcriptional co-repressor plays a role in sensing and mediating VOC signals in plant cells.
Collapse
Affiliation(s)
- Ayumi Nagashima
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
- the ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency (JST), and
| | - Takumi Higaki
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 277-8562, Japan
| | - Takao Koeduka
- the Department of Biological Chemistry, Faculty of Agriculture and Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan, and
| | - Ken Ishigami
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Satoko Hosokawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Hidenori Watanabe
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Kenji Matsui
- the Department of Biological Chemistry, Faculty of Agriculture and Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan, and
| | - Seiichiro Hasezawa
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 277-8562, Japan
| | - Kazushige Touhara
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
- the ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency (JST), and
- the International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
| |
Collapse
|
200
|
Abstract
In macropinocytosis, cells take up micrometre-sized droplets of medium into internal vesicles. These vesicles are acidified and fused to lysosomes, their contents digested and useful compounds extracted. Indigestible contents can be exocytosed. Macropinocytosis has been known for approaching 100 years and is described in both metazoa and amoebae, but not in plants or fungi. Its evolutionary origin goes back to at least the common ancestor of the amoebozoa and opisthokonts, with apparent secondary loss from fungi. The primary function of macropinocytosis in amoebae and some cancer cells is feeding, but the conserved processing pathway for macropinosomes, which involves shrinkage and the retrieval of membrane to the cell surface, has been adapted in immune cells for antigen presentation. Macropinocytic cups are large actin-driven processes, closely related to phagocytic cups and pseudopods and appear to be organized around a conserved signalling patch of PIP3, active Ras and active Rac that directs actin polymerization to its periphery. Patches can form spontaneously and must be sustained by excitable kinetics with strong cooperation from the actin cytoskeleton. Growth-factor signalling shares core components with macropinocytosis, based around phosphatidylinositol 3-kinase (PI3-kinase), and we suggest that it evolved to take control of ancient feeding structures through a coupled growth factor receptor. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Jason S. King
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|