151
|
Alvizi L, Brito LA, Kobayashi GS, Bischain B, da Silva CBF, Ramos SLG, Wang J, Passos-Bueno MR. m ir152 hypomethylation as a mechanism for non-syndromic cleft lip and palate. Epigenetics 2022; 17:2278-2295. [PMID: 36047706 PMCID: PMC9665146 DOI: 10.1080/15592294.2022.2115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP), the most common human craniofacial malformation, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological, and epigenetic findings. Epigenetic variations associated with NSCLP have been identified; however, functional investigation has been limited. Here, we combined a reanalysis of NSCLP methylome data with genetic analysis and used both in vitro and in vivo approaches to dissect the functional effects of epigenetic changes. We found a region in mir152 that is frequently hypomethylated in NSCLP cohorts (21-26%), leading to mir152 overexpression. mir152 overexpression in human neural crest cells led to downregulation of spliceosomal, ribosomal, and adherens junction genes. In vivo analysis using zebrafish embryos revealed that mir152 upregulation leads to craniofacial cartilage impairment. Also, we suggest that zebrafish embryonic hypoxia leads to mir152 upregulation combined with mir152 hypomethylation and also analogous palatal alterations. We therefore propose that mir152 hypomethylation, potentially induced by hypoxia in early development, is a novel and frequent predisposing factor to NSCLP.
Collapse
Affiliation(s)
- Lucas Alvizi
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Luciano Abreu Brito
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | - Bárbara Bischain
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | | | - Jaqueline Wang
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| |
Collapse
|
152
|
Wang C, Yao C, Sun Y, Chen J, Ge Y, Wang Y, Wang F, Wang L, Lin Y, Yao S. Identification and verification of a novel epigenetic-related gene signature for predicting the prognosis of hepatocellular carcinoma. Front Genet 2022; 13:897123. [DOI: 10.3389/fgene.2022.897123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a poor prognosis. Epigenetic dysregulation is now considered to be related to hepatocarcinogenesis. However, it is unclear how epigenetic-related genes (ERGs) contribute to the prognosis of HCC. In this study, we used the TCGA database to identify prognostic ERGs that were differentially expressed in HCC patients. Then, using least absolute shrinkage and selection operator (LASSO) regression analysis, a six-gene signature was constructed, and patients were divided into high- and low-risk groups. Validation was performed on HCC patients from the ICGC database. Patients in the high-risk group had a significantly lower chance of survival than those in the low-risk group (p < 0.001 in both databases). The predictive ability of the signature was determined by the receiver operating characteristic (ROC) curve. The risk score was then shown to be an independent prognostic factor for the overall survival (OS) of HCC patients based on the results of univariate and multivariate analyses. We also created a practical nomogram combining the prognostic model with other clinical features. Moreover, functional enrichment analysis revealed that these genes are linked to tumor immunity. In conclusion, our findings showed that a novel six-gene signature related to epigenetics can accurately predict the occurrence and prognosis of HCC.
Collapse
|
153
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
154
|
Liu Z, Wang M, Cheng A, Ou X, Mao S, Yang Q, Wu Y, Zhao XX, Huang J, Gao Q, Zhang S, Sun D, Tian B, Jia R, Chen S, Liu M, Zhu D. Gene regulation in animal miRNA biogenesis. Epigenomics 2022; 14:1197-1212. [PMID: 36382497 DOI: 10.2217/epi-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
miRNAs are a class of noncoding RNAs of approximately 19-22 nucleotides that are widely found in animals, plants, bacteria and even viruses. Dysregulation of the expression profile of miRNAs is importantly linked to the development of diseases. Epigenetic modifications regulate gene expression and control cellular phenotypes. Although miRNAs are used as an epigenetic regulation tool, the biogenesis of miRNAs is also regulated by epigenetic events. Here the authors review the mechanisms and roles of epigenetic modification (DNA methylation, histone modifications), RNA modification and ncRNAs in the biogenesis of miRNAs, aiming to deepen the understanding of the miRNA biogenesis regulatory network.
Collapse
Affiliation(s)
- Zezheng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| |
Collapse
|
155
|
Verdikt R, Armstrong AA, Allard P. Transgenerational inheritance and its modulation by environmental cues. Curr Top Dev Biol 2022; 152:31-76. [PMID: 36707214 PMCID: PMC9940302 DOI: 10.1016/bs.ctdb.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Division of Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
156
|
Durbagula S, Korlimarla A, Ravikumar G, Valiya Parambath S, Kaku SM, Visweswariah AM. Prenatal epigenetic factors are predisposing for neurodevelopmental disorders—Considering placenta as a model. Birth Defects Res 2022; 114:1324-1342. [DOI: 10.1002/bdr2.2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Srividhya Durbagula
- St. John's Medical College Bangalore India
- St. John's Research Institute Bangalore India
| | - Aruna Korlimarla
- St. John's Research Institute Bangalore India
- Department of Research Sri Shankara Cancer Hospital and Research Center Bangalore India
| | | | - Snijesh Valiya Parambath
- St. John's Medical College Bangalore India
- Department of Molecular Medicine St. John's Research Institute Bangalore India
| | - Sowmyashree Mayur Kaku
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| | - Ashok Mysore Visweswariah
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| |
Collapse
|
157
|
Zhang Z, Lin J, Liu Z, Tian G, Li XM, Jing Y, Li X, Li XD. Photo-Cross-Linking To Delineate Epigenetic Interactome. J Am Chem Soc 2022; 144:20979-20997. [DOI: 10.1021/jacs.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuoyuan Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
158
|
Moylan CA, Mavis AM, Jima D, Maguire R, Bashir M, Hyun J, Cabezas MN, Parish A, Niedzwiecki D, Diehl AM, Murphy SK, Abdelmalek MF, Hoyo C. Alterations in DNA methylation associate with fatty liver and metabolic abnormalities in a multi-ethnic cohort of pre-teenage children. Epigenetics 2022; 17:1446-1461. [PMID: 35188871 PMCID: PMC9586600 DOI: 10.1080/15592294.2022.2039850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022] Open
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. Epigenetic alterations, such as through DNA methylation (DNAm), may link adverse childhood exposures and fatty liver and provide non-invasive methods for identifying children at high risk for NAFLD and associated metabolic dysfunction. We investigated the association between differential DNAm and liver fat content (LFC) and liver injury in pre-adolescent children. Leveraging data from the Newborn Epigenetics Study (NEST), we enrolled 90 mother-child dyads and used linear regression to identify CpG sites and differentially methylated regions (DMRs) in peripheral blood associated with LFC and alanine aminotransferase (ALT) levels in 7-12yo children. DNAm was measured using Infinium HumanMethylationEPIC BeadChips (Illumina). LFC and fibrosis were quantified by magnetic resonance imaging proton density fat fraction and elastography. Median LFC was 1.4% (range, 0.3-13.4%) and MRE was 2.5 kPa (range, 1.5-3.6kPa). Three children had LFC ≥ 5%, while six (7.6%) met our definition of NAFLD (LFC ≥ 3.7%). All children with NAFLD were obese and five were Black. LFC was associated with 88 DMRs and 106 CpGs (FDR<5%). The top two CpGs, cg25474373 and cg07264203, mapped to or near RFTN2 and PRICKLE2 genes. These two CpG sites were also significantly associated with a NAFLD diagnosis. As higher LFC associates with an adverse cardiometabolic profile already in childhood, altered DNAm may identify these children early in disease course for targeted intervention. Larger, longitudinal studies are needed to validate these findings and determine mechanistic relevance.
Collapse
Affiliation(s)
- Cynthia A. Moylan
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alisha M. Mavis
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Dereje Jima
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rachel Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mustafa Bashir
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Jeongeun Hyun
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Melanie N. Cabezas
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alice Parish
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Donna Niedzwiecki
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Susan K. Murphy
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Manal F. Abdelmalek
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
159
|
Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res Rev 2022; 81:101743. [PMID: 36206857 DOI: 10.1016/j.arr.2022.101743] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
As a complicated process, aging is characterized by various changes at the cellular, subcellular and nuclear levels, one of which is epigenetic aging. With increasing awareness of the critical role that epigenetic alternations play in aging, DNA methylation patterns have been employed as a measure of biological age, currently referred to as the epigenetic clock. This review provides a comprehensive overview of the epigenetic clock as a biomarker of aging and a useful tool to manage healthy aging. In this burgeoning scientific field, various kinds of epigenetic clocks continue to emerge, including Horvath's clock, Hannum's clock, DNA PhenoAge, and DNA GrimAge. We hereby present the most classic epigenetic clocks, as well as their differences. Correlations of epigenetic age with morbidity, mortality and other factors suggest the potential of epigenetic clocks for risk prediction and identification in the context of aging. In particular, we summarize studies on promising age-reversing interventions, with epigenetic clocks employed as a practical tool in the efficacy evaluation. We also discuss how the lack of higher-quality information poses a major challenge, and offer some suggestions to address existing obstacles. Hopefully, our review will help provide an appropriate understanding of the epigenetic clocks, thereby enabling novel insights into the aging process and how it can be manipulated to promote healthy aging.
Collapse
|
160
|
Salmeri N, Carbone IF, Cavoretto PI, Farina A, Morano D. Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview. Mol Diagn Ther 2022; 26:607-626. [PMID: 36028645 DOI: 10.1007/s40291-022-00611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Fetal growth restriction is a pathological condition occurring when the fetus does not reach the genetically determined growth potential. The etiology of fetal growth restriction is expected to be multifactorial and include fetal, maternal, and placental factors, the latter being the most frequent cause of isolated fetal growth restriction. Severe fetal growth restriction has been related to both an increased risk of perinatal morbidity and mortality, and also a greater susceptibility to developing diseases (especially cardio-metabolic and neurological disorders) later in life. In the last decade, emerging evidence has supported the hypothesis of the Developmental Origin of Health and Disease, which states that individual developmental 'programming' takes place via a delicate fine tuning of fetal genetic and epigenetic marks in response to a large variety of 'stressor' exposures during pregnancy. As the placenta is the maternal-fetal interface, it has a crucial role in fetal programming, such that any perturbation altering placental function interferes with both in-utero fetal growth and also with the adult life phenotype. Several epigenetic mechanisms have been highlighted in modulating the dynamic placental epigenome, including alterations in DNA methylation status, post-translational modification of histones, and non-coding RNAs. This review aims to provide a comprehensive and critical overview of the available literature on the epigenetic background of fetal growth restriction. A targeted research strategy was performed using PubMed, MEDLINE, Embase, and The Cochrane Library up to January 2022. A detailed and fully referenced synthesis of available literature following the Scale for the Assessment of Narrative Review Articles guidelines is provided. A variety of epigenetic marks predominantly interfering with placental development, function, and metabolism were found to be potentially associated with fetal growth restriction. Available evidence on the role of environmental exposures in shaping the placental epigenome and the fetal phenotype were also critically discussed. Because of the highly dynamic crosstalk between epigenetic mechanisms and the extra level of complexity in interpreting the final placental transcriptome, a full comprehension of these phenomenon is still lacking and advances in multi-omics approaches are urgently needed. Elucidating the role of epigenetics in the developmental origins of health and disease represents a new challenge for the coming years, with the goal of providing early interventions and prevention strategies and, hopefully, new treatment opportunities.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ilma Floriana Carbone
- Unit of Obstetrics, Department of Woman, Child and Neonate, Mangiagalli Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Ivo Cavoretto
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Antonio Farina
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC), IRCCS Sant'Orsola-Malpighi Hospital, University of Bologna, 40138, Bologna, Italy.
| | - Danila Morano
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria S. Anna, University of Ferrara, Cona, Ferrara, Italy
| |
Collapse
|
161
|
Zheng X, Zhao X. A hypothetical model of skewed DNA methylation balance in the enhancer regions containing differentially methylated cytosines associated with non-malignant complex diseases. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
162
|
Manukonda R, Narayana RV, Kaliki S, Mishra DK, Vemuganti GK. Emerging therapeutic targets for retinoblastoma. Expert Opin Ther Targets 2022; 26:937-947. [PMID: 36524402 DOI: 10.1080/14728222.2022.2158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Retinoblastoma (Rb) is an early childhood intraocular tumor of the retina and is managed by multimodal therapeutic approaches. Recent advanced targeted delivery of chemotherapeutic drugs to the eye has improved the possibility of globe salvage. However, enucleation is inevitable for advanced and recurrent Rb. The cumulative knowledge of identification of newer molecular biology tools, exosomal cargo, role of cancer stem cells (CSCs), and its microenvironment in the progression of the diseases warrants a relook at the traditional treatment protocol and explore the feasibility of targeted therapies. AREAS COVERED This review covers Rb pathobiology, novel molecular-targeted therapeutics, and strategies targeting Rb CSCs and provides an update on potential therapeutic targets such as second messengers and exosomal cargo. EXPERT OPINION The emergence of early diagnosis and multimodality treatment protocols have significantly improved the clinical outcome of children with advanced Rb; however, the problem of tumor recurrence has not yet been overcome. Improved understanding of the molecular pathways, identification, and characterization of CSCs opens up new targeted therapy approaches. The contemporary evidence from other fields shows promising evidence that combining conservative treatment modalities with targeting therapies specific for CSCs in clinical practice is essential for achieving high globe salvage rate in Rb patients.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Revu Vl Narayana
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| |
Collapse
|
163
|
Chen Y, Xu X, Chen Z, Huang B, Wang X, Fan X. DNA methylation alternation in Stanford- A acute aortic dissection. BMC Cardiovasc Disord 2022; 22:455. [PMID: 36309656 PMCID: PMC9618190 DOI: 10.1186/s12872-022-02882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acute aortic dissection (AAD) is a life-threatening cardiovascular disease. Recent studies have shown that DNA methylation may be associated with the pathological mechanism of AAD, but the panorama of DNA methylation needs to be explored. Methods DNA methylation patterns were screened using Infinium Human Methylation 450 K BeadChip in the aortic tissues from 4 patients with Stanford-A AAD and 4 controls. Gene enrichment was analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO). DNA methylation levels of candidate genes were determined by pyrosequencing in the replication cohort including 16 patients with AAD and 7 controls. Protein expression level of candidate gene was assessed by Western blot. Results A total of 589 differentially methylated positions including 315 hypomethylated and 274 hypermethylated positions were found in AAD group. KEGG analysis demonstrated that differentially methylated position-associated genes were enriched in MAPK signaling pathway, TNF signaling pathway and apoptosis pathway, et al. GO analysis demonstrated that differentially methylated position-associated genes were enriched in protein binding, angiogenesis and heart development et al. The differential DNA methylation in five key genes, including Fas, ANGPT2, DUSP6, FARP1 and CARD6, was authenticated in the independent replication cohort. The protein expression level of the Fas was increased by 1.78 times, indicating the possible role of DNA methylation in regulation of gene expression. Conclusion DNA methylation was markedly changed in the aortic tissues of Stanford-A AAD and associated with gene dysregulation, involved in AAD progression. Supplementary Information The online version contains supplementary material available at10.1186/s12872-022-02882-5.
Collapse
|
164
|
Ruffo P, De Amicis F, Giardina E, Conforti FL. Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases. Neural Regen Res 2022; 18:1243-1248. [PMID: 36453400 PMCID: PMC9838156 DOI: 10.4103/1673-5374.358615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The growing and rapid development of high-throughput sequencing technologies have allowed a greater understanding of the mechanisms underlying gene expression regulation. Editing the epigenome and epitranscriptome directs the fate of the transcript influencing the functional outcome of each mRNA. In this context, non-coding RNAs play a decisive role in addressing the expression regulation at the gene and chromosomal levels. Long-noncoding RNAs, consisting of more than 200 nucleotides, have been shown to act as epigenetic regulators in several key molecular processes involving neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Long-noncoding RNAs are abundantly expressed in the central nervous system, suggesting that their deregulation could trigger neuronal degeneration through RNA modifications. The evaluation of their diagnostic significance and therapeutic potential could lead to new treatments for these diseases for which there is no cure.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy,Correspondence to: Francesca Luisa Conforti, .
| |
Collapse
|
165
|
Andrawus M, Sharvit L, Atzmon G. Epigenetics and Pregnancy: Conditional Snapshot or Rolling Event. Int J Mol Sci 2022; 23:12698. [PMID: 36293556 PMCID: PMC9603966 DOI: 10.3390/ijms232012698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetics modification such as DNA methylation can affect maternal health during the gestation period. Furthermore, pregnancy can drive a range of physiological and molecular changes that have the potential to contribute to pathological conditions. Pregnancy-related risk factors include multiple environmental, behavioral, and hereditary factors that can impact maternal DNA methylation with long-lasting consequences. Identification of the epigenetic patterns linked to poor pregnancy outcomes is crucial since changes in DNA methylation patterns can have long-term effects. In this review, we provide an overview of the epigenetic changes that influence pregnancy-related molecular programming such as gestational diabetes, immune response, and pre-eclampsia, in an effort to close the gap in current understanding regarding interactions between the environment, the genetics of the fetus, and the pregnant woman.
Collapse
Affiliation(s)
| | | | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
166
|
Abstract
BACKGROUND Autoimmune hepatitis has an unknown cause and genetic associations that are not disease-specific or always present. Clarification of its missing causality and heritability could improve prevention and management strategies. AIMS Describe the key epigenetic and genetic mechanisms that could account for missing causality and heritability in autoimmune hepatitis; indicate the prospects of these mechanisms as pivotal factors; and encourage investigations of their pathogenic role and therapeutic potential. METHODS English abstracts were identified in PubMed using multiple key search phases. Several hundred abstracts and 210 full-length articles were reviewed. RESULTS Environmental induction of epigenetic changes is the prime candidate for explaining the missing causality of autoimmune hepatitis. Environmental factors (diet, toxic exposures) can alter chromatin structure and the production of micro-ribonucleic acids that affect gene expression. Epistatic interaction between unsuspected genes is the prime candidate for explaining the missing heritability. The non-additive, interactive effects of multiple genes could enhance their impact on the propensity and phenotype of autoimmune hepatitis. Transgenerational inheritance of acquired epigenetic marks constitutes another mechanism of transmitting parental adaptations that could affect susceptibility. Management strategies could range from lifestyle adjustments and nutritional supplements to precision editing of the epigenetic landscape. CONCLUSIONS Autoimmune hepatitis has a missing causality that might be explained by epigenetic changes induced by environmental factors and a missing heritability that might reflect epistatic gene interactions or transgenerational transmission of acquired epigenetic marks. These unassessed or under-evaluated areas warrant investigation.
Collapse
|
167
|
Hydroxymethylation profile of cell-free DNA is a biomarker for early colorectal cancer. Sci Rep 2022; 12:16566. [PMID: 36195648 PMCID: PMC9532421 DOI: 10.1038/s41598-022-20975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Early detection of cancer will improve survival rates. The blood biomarker 5-hydroxymethylcytosine has been shown to discriminate cancer. In a large covariate-controlled study of over two thousand individual blood samples, we created, tested and explored the properties of a 5-hydroxymethylcytosine-based classifier to detect colorectal cancer (CRC). In an independent validation sample set, the classifier discriminated CRC samples from controls with an area under the receiver operating characteristic curve (AUC) of 90% (95% CI [87, 93]). Sensitivity was 55% at 95% specificity. Performance was similar for early stage 1 (AUC 89%; 95% CI [83, 94]) and late stage 4 CRC (AUC 94%; 95% CI [89, 98]). The classifier could detect CRC even when the proportion of tumor DNA in blood was undetectable by other methods. Expanding the classifier to include information about cell-free DNA fragment size and abundance across the genome led to gains in sensitivity (63% at 95% specificity), with similar overall performance (AUC 91%; 95% CI [89, 94]). We confirm that 5-hydroxymethylcytosine can be used to detect CRC, even in early-stage disease. Therefore, the inclusion of 5-hydroxymethylcytosine in multianalyte testing could improve sensitivity for the detection of early-stage cancer.
Collapse
|
168
|
de la Calle-Fabregat C, Rodríguez-Ubreva J, Cañete JD, Ballestar E. Designing Studies for Epigenetic Biomarker Development in Autoimmune Rheumatic Diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:103-110. [PMID: 36788968 PMCID: PMC9895872 DOI: 10.2478/rir-2022-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 02/16/2023]
Abstract
In just a few years, the number of epigenetic studies in autoimmune rheumatic and inflammatory diseases has greatly increased. This is in part due to the need of identifying additional determinants to genetics to explain the pathogenesis and development of these disorders. In this regard, epigenetics provides potential mechanisms that determine gene function, are linked to environmental factors, and could explain a wide range of phenotypic variability among patients with these diseases. Despite the high interest and number of studies describing epigenetic alterations under these conditions and exploring their relationship to various clinical aspects, few of the proposed biomarkers have yet reached clinical practice. The potential of epigenetic markers is high, as these alterations link measurable features with a number of biological traits. In the present article, we present published studies in the field, discuss some frequent limitations in the existing research, and propose a number of considerations that should be taken into account by those starting new projects in the field, with an aim to generate biomarkers that could make it into the clinics.
Collapse
Affiliation(s)
- Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
| | - Juan D. Cañete
- Rheumatology Department, Arthritis Unit, Hospital Clinic and IDIBAPS, 08036Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai200241, China
| |
Collapse
|
169
|
Barbu MC, Harris M, Shen X, Aleks S, Green C, Amador C, Walker R, Morris S, Adams M, Sandu A, McNeil C, Waiter G, Evans K, Campbell A, Wardlaw J, Steele D, Murray A, Porteous D, McIntosh A, Whalley H. Epigenome-wide association study of global cortical volumes in generation Scotland: Scottish family health study. Epigenetics 2022; 17:1143-1158. [PMID: 34738878 PMCID: PMC9542280 DOI: 10.1080/15592294.2021.1997404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/22/2023] Open
Abstract
A complex interplay of genetic and environmental risk factors influence global brain structural alterations associated with brain health and disease. Epigenome-wide association studies (EWAS) of global brain imaging phenotypes have the potential to reveal the mechanisms of brain health and disease and can lead to better predictive analytics through the development of risk scores.We perform an EWAS of global brain volumes in Generation Scotland using peripherally measured whole blood DNA methylation (DNAm) from two assessments, (i) at baseline recruitment, ~6 years prior to MRI assessment (N = 672) and (ii) concurrent with MRI assessment (N=565). Four CpGs at baseline were associated with global cerebral white matter, total grey matter, and whole-brain volume (Bonferroni p≤7.41×10-8, βrange = -1.46x10-6 to 9.59 × 10-7). These CpGs were annotated to genes implicated in brain-related traits, including psychiatric disorders, development, and ageing. We did not find significant associations in the meta-analysis of the EWAS of the two sets concurrent with imaging at the corrected level.These findings reveal global brain structural changes associated with DNAm measured ~6 years previously, indicating a potential role of early DNAm modifications in brain structure. Although concurrent DNAm was not associated with global brain structure, the nominally significant findings identified here present a rationale for future investigation of associations between DNA methylation and structural brain phenotypes in larger population-based samples.
Collapse
Affiliation(s)
- Miruna Carmen Barbu
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Mat Harris
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Stolicyn Aleks
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Claire Green
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Carmen Amador
- Mrc Human Genetics Unit, Institute of Genetics and Cancer, the University of Edinburgh, UK
| | - Rosie Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, the University of Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK
| | - Stewart Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, the University of Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK
| | - Mark Adams
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Anca Sandu
- Aberdeen Biomedical Imaging Centre, The Institute of Medical Sciences, University of Aberdeen, UK
| | - Christopher McNeil
- Aberdeen Biomedical Imaging Centre, The Institute of Medical Sciences, University of Aberdeen, UK
| | - Gordon Waiter
- Aberdeen Biomedical Imaging Centre, The Institute of Medical Sciences, University of Aberdeen, UK
| | - Kathryn Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, the University of Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK
| | - Archie Campbell
- Mrc Human Genetics Unit, Institute of Genetics and Cancer, the University of Edinburgh, UK
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK
| | - Douglas Steele
- Imaging Science and Technology, School of Medicine, University of Dundee, DundeeUK
| | - Alison Murray
- Aberdeen Biomedical Imaging Centre, The Institute of Medical Sciences, University of Aberdeen, UK
| | - David Porteous
- Mrc Human Genetics Unit, Institute of Genetics and Cancer, the University of Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, UK
| | - Andrew McIntosh
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, UK
| | - Heather Whalley
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| |
Collapse
|
170
|
Zima L, West R, Smolen P, Kobori N, Hergenroeder G, Choi HA, Moore AN, Redell JB, Dash PK. Epigenetic Modifications and Their Potential Contribution to Traumatic Brain Injury Pathobiology and Outcome. J Neurotrauma 2022; 39:1279-1288. [PMID: 35481812 PMCID: PMC9529317 DOI: 10.1089/neu.2022.0128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigenetic information is not permanently encoded in the DNA sequence, but rather consists of reversible, heritable modifications that regulate the gene expression profile of a cell. Epigenetic modifications can result in cellular changes that can be long lasting and include DNA methylation, histone methylation, histone acetylation, and RNA methylation. As epigenetic modifications are reversible, the enzymes that add (epigenetic writers), the proteins that decode (epigenetic readers), and the enzymes that remove (epigenetic erasers) these modifications can be targeted to alter cellular function and disease biology. While epigenetic modifications and their contributions are intense topics of current research in the context of a number of diseases, including cancer, inflammatory diseases, and Alzheimer disease, the study of epigenetics in the context of traumatic brain injury (TBI) is in its infancy. In this review, we will summarize the experimental and clinical findings demonstrating that TBI triggers epigenetic modifications, with a focus on changes in DNA methylation, histone methylation, and the translational utility of the universal methyl donor S-adenosylmethionine (SAM). Finally, we will review the evidence for using methyl donors as possible treatments for TBI-associated pathology and outcome.
Collapse
Affiliation(s)
- Laura Zima
- Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Rebecca West
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Georgene Hergenroeder
- Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - HuiMahn A. Choi
- Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Anthony N. Moore
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - John B. Redell
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
171
|
Zhang H, Liu X, Chen Y, Xu R, He S. KDOAM-25 Overcomes Resistance to MEK Inhibitors by Targeting KDM5B in Uveal Melanoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1556485. [PMID: 36212716 PMCID: PMC9534647 DOI: 10.1155/2022/1556485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Background Uveal Melanoma (UM) is a potentially lethal cancer, and epigenetics may participate in the regulation of MEK resistance. This study is aimed at targeting the epigenetic kinase to overcome the resistance to MEK inhibitor. Method We developed the 92.1 and OMM1 MEK-inhibitor resistant cell lines by culturing them in the trametinib (Tra) mixed medium. We utilized CCK8 analysis for detecting the viability of the cell. Western blot was used to determine the ERK1/2 and Akt phosphorylation. Small compound library screening assays were carried out by CCK8 analysis. To test the apoptosis, we employed flow cytometric analysis with Annexin-V/PI. Western blot and CCK8 were used to explore the epigenetic regulation of KDM5B in MEK-resistance cell lines. To knock out the expression level of KDM5B, we used the CRISPR/Cas9 by lentivirus delivering well-validated shRNAs in pLKO.1 vector. The directly binding affinity of KDOAM-25 to KDM5B was determined by drug affinity responsive target stability (DARTS) and microscale thermophoresis (MST). Results The phosphorylation of ERK1/2 and Akt (T308) was inhibited in OMM1 cell lines. However, inhibition of Tra was abolished in OMM1-R cell lines. From a compound screening assay, we identified that KDOAM-25 robustly inhibited the viability and colony formation of MEK-resistance cell lines. Furthermore, KDOAM-25 significantly promoted cell death in OMM1-R cells. H3K4me3 (tri-methylation of lysine 4 on histone H3) and H3K27ac (acetyl of lysine 27 on histone H3) were both upregulated in OMM1-R cells. Tra significantly inhibited the expression of KDM5B in OMM1-P cells. However, the effect on KDM5B was abolished in OMM1-R cells. Knockdown of KDM5B robustly suppressed the cell viability in OMM1-R cells. KDOAM-25 directly interacted with KDM5B. Conclusion KDOAM-25 inhibited the viability and colony formation and promoted cell death of MEK-resistance cell lines through H3K4me3 and H3K27ac, indicating that KDOAM-25 may be a potential therapeutic agent for MEK resistance in UM patients.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Ophthalmology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiangnan Liu
- Department of Ophthalmology, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Yong'an Chen
- Department of Oncology, Naval Medical Center of Chinese People's Liberation Army, Naval Military Medical University, Shanghai, China
| | - Rui Xu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengli He
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, 106 Ruili Road, Minhang District, Shanghai, China
| |
Collapse
|
172
|
Liu Y, Sun X, Zhong W, Li B. B-scaling: A novel nonparametric data fusion method. Ann Appl Stat 2022. [DOI: 10.1214/21-aoas1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yiwen Liu
- Department of Epidemiology and Biostatistics, University of Arizona
| | - Xiaoxiao Sun
- Department of Epidemiology and Biostatistics, University of Arizona
| | | | - Bing Li
- Department of Statistics, Pennsylvania State University
| |
Collapse
|
173
|
Tebani A, Bekri S. [The promise of omics in the precision medicine era]. Rev Med Interne 2022; 43:649-660. [PMID: 36041909 DOI: 10.1016/j.revmed.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The rise of omics technologies that simultaneously measure thousands of molecules in a complex biological sample represents the core of systems biology. These technologies have profoundly impacted biomarkers and therapeutic targets discovery in the precision medicine era. Systems biology aims to perform a systematic probing of complex interactions in biological systems. Powered by high-throughput omics technologies and high-performance computing, systems biology provides relevant, resolving, and multi-scale overviews from cells to populations. Precision medicine takes advantage of these conceptual and technological developments and is based on two main pillars: the generation of multimodal data and their subsequent modeling. High-throughput omics technologies enable the comprehensive and holistic extraction of biological information, while computational capabilities enable multidimensional modeling and, as a result, offer an intuitive and intelligible visualization. Despite their promise, translating these technologies into clinically actionable tools has been slow. In this contribution, we present the most recent multi-omics data generation and analysis strategies and their clinical deployment in the post-genomic era. Furthermore, medical application challenges of omics-based biomarkers are discussed.
Collapse
Affiliation(s)
- A Tebani
- UNIROUEN, Inserm U1245, Department of Metabolic Biochemistry, Normandie University, CHU Rouen, 76000 Rouen, France.
| | - S Bekri
- UNIROUEN, Inserm U1245, Department of Metabolic Biochemistry, Normandie University, CHU Rouen, 76000 Rouen, France
| |
Collapse
|
174
|
Wang W, Li W, Zhang H. An Overview of DNA Methylation Indicators for the Course of Oral Precancer. Appl Bionics Biomech 2022; 2022:6468773. [PMID: 36060560 PMCID: PMC9439927 DOI: 10.1155/2022/6468773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is a physiologically epigenetic alteration that happens when a methyl group is introduced to a CpG dinucleotide in the gene-regulating sequence of DNA. However, the majority of oral cancers have a well-defined precancerous stage; there are few clinical and morphological parameters for detecting and signalling the progression of precancerous to malignant tumours. DNA methylation forms are dynamic and reversible, allowing them to adjust to environmental or therapeutic changes. We did an extensive investigation to compile the data supporting aberrant DNA methylation forms as a possible biomarker for prediction. According to two longitudinal studies, p16 hypermethylation was considerably higher in precancerous lesions that progressed to cancer than in lesions that shrank. Most of the studies examined for this study were tiny cross-sectional research with scant validation and inadequately specified control groups. Existing evidence suggests that DNA methylation sequences can be relevant as a diagnostic biomarker for OPS development; however, sample size and research design restrictions make it difficult to draw definitive conclusions. Strong studies, including extensive epigenome-wide methylation scans of OPS with longitudinal monitoring, are necessary in this study in order to corroborate the recently discovered signals and discover new risk loci and disease progression molecular pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Wei Li
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Hongyi Zhang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| |
Collapse
|
175
|
Schaffner SL, Kobor MS. DNA methylation as a mediator of genetic and environmental influences on Parkinson's disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome. Front Genet 2022; 13:971298. [PMID: 36061205 PMCID: PMC9437223 DOI: 10.3389/fgene.2022.971298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex etiology and increasing prevalence worldwide. As PD is influenced by a combination of genetic and environment/lifestyle factors in approximately 90% of cases, there is increasing interest in identification of the interindividual mechanisms underlying the development of PD as well as actionable lifestyle factors that can influence risk. This narrative review presents an outline of the genetic and environmental factors contributing to PD risk and explores the possible roles of cytosine methylation and hydroxymethylation in the etiology and/or as early-stage biomarkers of PD, with an emphasis on epigenome-wide association studies (EWAS) of PD conducted over the past decade. Specifically, we focused on variants in the SNCA gene, exposure to pesticides, and physical activity as key contributors to PD risk. Current research indicates that these factors individually impact the epigenome, particularly at the level of CpG methylation. There is also emerging evidence for interaction effects between genetic and environmental contributions to PD risk, possibly acting across multiple omics layers. We speculated that this may be one reason for the poor replicability of the results of EWAS for PD reported to date. Our goal is to provide direction for future epigenetics studies of PD to build upon existing foundations and leverage large datasets, new technologies, and relevant statistical approaches to further elucidate the etiology of this disease.
Collapse
Affiliation(s)
- Samantha L. Schaffner
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
176
|
Guo Y, Chen Y, Zhang J, Li J, Fan K, Chen R, Liu Y, Zheng J, Fu J, Gu R, Wang G, Cui Y, Du X, Wang J. Epigenetic Mutation in a Tubulin-Folding Cofactor B (ZmTFCB) Gene Arrests Kernel Development in Maize. PLANT & CELL PHYSIOLOGY 2022; 63:1156-1167. [PMID: 35771678 DOI: 10.1093/pcp/pcac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Epialleles, the heritable epigenetic variants that are not caused by changes in DNA sequences, can broaden genetic and phenotypic diversity and benefit to crop breeding, but very few epialleles related to agricultural traits have been identified in maize. Here, we cloned a small kernel mutant, smk-wl10, from maize, which encoded a tubulin-folding cofactor B (ZmTFCB) protein. Expression of the ZmTFCB gene decreased in the smk-wl10 mutant, which arrested embryo, endosperm and basal endosperm transfer layer developments. Overexpression of ZmTFCB could complement the defective phenotype of smk-wl10. No nucleotide sequence variation in ZmTFCB could be found between smk-wl10 and wild type (WT). Instead, we detected hypermethylation of nucleotide CHG (where H is A, C or T nucleotide) sequence contexts and increased level of histone H3K9me2 methylation in the upstream sequence of ZmTFCB in smk-wl10 compared with WT, which might respond to the attenuating transcription of ZmTFCB. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays identified a strong interaction between ZmTFCB and its homolog ZmTFCE. Thus, our work identifies a novel epiallele of the maize ZmTFCB gene, which might represent a common phenomenon in the epigenetic regulation of important traits such as kernel development in maize.
Collapse
Affiliation(s)
- Yingmei Guo
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiankun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaijian Fan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongrong Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
177
|
Saffron, Its Active Components, and Their Association with DNA and Histone Modification: A Narrative Review of Current Knowledge. Nutrients 2022; 14:nu14163317. [PMID: 36014823 PMCID: PMC9414768 DOI: 10.3390/nu14163317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Intensive screening for better and safer medications to treat diseases such as cancer and inflammatory diseases continue, and some phytochemicals have been discovered to have anti-cancer and many therapeutical activities. Among the traditionally used spices, Crocus sativus (saffron) and its principal bioactive constituents have anti-inflammatory, antioxidant, and chemopreventive properties against multiple malignancies. Early reports have shown that the epigenetic profiles of healthy and tumor cells vary significantly in the context of different epigenetic factors. Multiple components, such as carotenoids as bioactive dietary phytochemicals, can directly or indirectly regulate epigenetic factors and alter gene expression profiles. Previous reports have shown the interaction between active saffron compounds with linker histone H1. Other reports have shown that high concentrations of saffron bind to the minor groove of calf thymus DNA, resulting in specific structural changes from B- to C-form of DNA. Moreover, the interaction of crocin G-quadruplex was reported. A recent in silico study has shown that residues of SIRT1 interact with saffron bio-active compounds and might enhance SIRT1 activation. Other reports have shown that the treatment of Saffron bio-active compounds increases γH2AX, decreases HDAC1 and phosphorylated histone H3 (p-H3). However, the question that still remains to be addressed how saffron triggers various epigenetic changes? Therefore, this review discusses the literature published till 2022 regarding saffron as dietary components and its impact on epigenetic mechanisms. Novel bioactive compounds such as saffron components that lead to epigenetic alterations might be a valuable strategy as an adjuvant therapeutic drug.
Collapse
|
178
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
179
|
Sandoval JE, Ramabadran R, Stillson N, Sarah L, Fujimori DG, Goodell MA, Reich N. First-in-Class Allosteric Inhibitors of DNMT3A Disrupt Protein-Protein Interactions and Induce Acute Myeloid Leukemia Cell Differentiation. J Med Chem 2022; 65:10554-10566. [PMID: 35866897 DOI: 10.1021/acs.jmedchem.2c00725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously identified two structurally related pyrazolone (compound 1) and pyridazine (compound 2) allosteric inhibitors of DNMT3A through screening of a small chemical library. Here, we show that these compounds bind and disrupt protein-protein interactions (PPIs) at the DNMT3A tetramer interface. This disruption is observed with distinct partner proteins and occurs even when the complexes are acting on DNA, which better reflects the cellular context. Compound 2 induces differentiation of distinct myeloid leukemia cell lines including cells with mutated DNMT3A R882. To date, small molecules targeting DNMT3A are limited to competitive inhibitors of AdoMet or DNA and display extreme toxicity. Our work is the first to identify small molecules with a mechanism of inhibition involving the disruption of PPIs with DNMT3A. Ongoing optimization of compounds 1 and 2 provides a promising basis to induce myeloid differentiation and treatment of diseases that display aberrant PPIs with DNMT3A, such as acute myeloid leukemia.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510, United States
| | - Raghav Ramabadran
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Nathaniel Stillson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Letitia Sarah
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Norbert Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
180
|
Wang Z, Zuo X, Liu L, Chen X, Li R, Zhu H, Huang D, Tong H, Zhao X, Yan W, Shen S, Wang Y, Li X, Zhao A, Chen D, Ding R, Li S, Liu H. Corneal endothelial cell density and its correlation with birth weight, anthropometric parameters, and ocular biometric parameters in Chinese school children. BMC Ophthalmol 2022; 22:334. [PMID: 35933331 PMCID: PMC9356483 DOI: 10.1186/s12886-022-02561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background To describe the distribution of corneal endothelial cell density (ECD), and to explore its correlation with birth weight (BW), anthropometric parameters, and ocular biometric parameters in Chinese school children. Methods In the population-based cross-sectional Nanjing Eye Study, children were measured for anthropometric information, for ECD by the noncontact specular microscope and for ocular biometric parameters by the optic low-coherent reflectometer. Data from right eyes were analyzed to illustrate the distribution of ECD and for determining correlated factors with ECD using univariate and multiple linear regression analysis. Comparisons among three different BW groups were performed using a one-way ANOVA analysis followed by the Bonferroni correction for pairwise comparisons. Results Of 1171 children, the mean (± standard deviation) ECD was 2875.34 ± 195.00 cells/mm2. In the Multiple Linear Regression analysis, BW, gender and central corneal thickness were significantly associated with ECD. The ECD increased by 36.16 cells/mm2 with BW increasing by 1 kg (P = 0.001) and increased by 0.44 cells/mm2 for every additional 1 mm in central corneal thickness (P = 0.01). The ECD of girls was 54.41 cells/mm2 higher than boys (P < 0.001). Children born with low BW presented significantly lower ECD than those born with normal BW (P < 0.05) and high BW (P < 0.05). Age and axial length were not significantly associated with ECD (P = 0.06 and P = 0.21, respectively). Conclusions In Chinese school children aged 82 to 94 months, the ECD is positively correlated with BW and central corneal thickness, in which BW is a newly identified associated factor. It is like that gender plays an important role in ECD distribution while girls have relatively greater ECD than boys.
Collapse
Affiliation(s)
- Zijin Wang
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaoxia Zuo
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lei Liu
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xuejuan Chen
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Rui Li
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hui Zhu
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Dan Huang
- Department of Child Healthcare, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Haohai Tong
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Zhao
- Department of Ophthalmology, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wen Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Shiya Shen
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yun Wang
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaoxiao Li
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, China
| | - Andi Zhao
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Danni Chen
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ranran Ding
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Shiding Li
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
181
|
Methylation and expression quantitative trait locus rs6296 in the HTR1B gene is associated with susceptibility to opioid use disorder. Psychopharmacology (Berl) 2022; 239:2515-2523. [PMID: 35438303 DOI: 10.1007/s00213-022-06141-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Serotonin (5-HT) is implicated in the reward processes underlying substance use disorder. Epigenetic and transcriptional mechanisms contribute to the development of addictive states. To examine the potential mechanisms of 5-HT receptor genes in opioid use disorder, we first determined the associations between several single-nucleotide polymorphism (SNPs) in three representative 5-HT receptor genes (HTR1B, HTR2A, and HTR3B) and susceptibility to heroin use disorder in 1731 participants. Gene-gene interactions among these genes were analyzed. After identifying the susceptibility genes and SNPs for heroin use disorder, DNA methylation in the promoter region of these susceptibility genes was compared between 111 healthy controls and 120 patients with heroin use disorder. In addition, associations between the susceptibility SNPs and methylation of the CpG sites and gene promoters with differential methylation between groups were examined. Finally, the function of the susceptibility SNPs in the expression of the corresponding genes was screened. Our results demonstrated that rs6296 in the HTR1B gene was correlated with susceptibility to heroin use disorder. Gene-gene interactions between the HTR1B and HTR2A genes were identified. The CpG sites HTR1B_07 and HTR1B_26 and the promoter region of the HTR1B gene were hypermethylated in patients with heroin use disorder compared with healthy controls. Notably, rs6296 correlated in an allele-specific manner with methylation in the HTR1B gene promoter in the blood and gene expression of the HTR1B gene in the frontal cortex and hypothalamus. SNP rs6296 was associated with opioid use disorder by involving mechanisms of DNA methylation and expression of the HTR1B gene.
Collapse
|
182
|
Fioretti G, Neumann M. Hierarchy and diffusion of organizational forms. Front Psychol 2022; 13:932273. [PMID: 35967676 PMCID: PMC9372621 DOI: 10.3389/fpsyg.2022.932273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper we first of all summarize and rationalize current typologies of organizational forms, arranging available classifications in a hierarchy of increasing generality. The ensuing structure parallels the classification of living beings into classes of increasing generality such as species, genus, family, order, and so on. Subsequently, we analyze the structure of communications that favored the diffusion of each organizational form. We isolate a few stylized communication structures, pointing to the presence of several sources endowed with global connections as the most efficient diffusion mode. The empirical research that is being carried out on single organizations is close to observing their T-patterns, whereas nothing comparable is in sight for organizational forms as yet. However, at least in some cases, we dare to formulate tentative hypotheses on certain features that the ensuing T-patterns-of-patterns might exhibit.
Collapse
Affiliation(s)
- Guido Fioretti
- Department of Management, University of Bologna, Bologna, Italy
| | - Martin Neumann
- Institute of Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Martin Neumann,
| |
Collapse
|
183
|
Abstract
Modern epigenetics emerged about 40 years ago. Since then, the field has rapidly grown. Unfortunately, this development has been accompanied by certain misconceptions and methodological shortcomings. A profound misconception is that chromatin modifications are a distinct layer of gene regulation that is directly responsive to the environment and potentially heritable between generations. This view ignores the fact that environmental factors affect gene expression mainly through signaling cascades and the activation or repression of transcription factors, which recruit chromatin regulators. The epigenome is mainly shaped by the DNA sequence and by transcription. Methodological shortcomings include the insufficient consideration of genetic variation and cell mixture distribution. Mis- and overinterpretation of epigenetic data foster genetic denialism ("We can control our genes") and epigenetic determinism ("You are what your parents ate"). These erroneous beliefs can be overcome by using precise definitions, by raising the awareness about methodological pitfalls and by returning to the basic facts in molecular and cellular biology.
Collapse
|
184
|
Miwa H, Dimatteo R, de Rutte J, Ghosh R, Di Carlo D. Single-cell sorting based on secreted products for functionally defined cell therapies. MICROSYSTEMS & NANOENGINEERING 2022; 8:84. [PMID: 35874174 PMCID: PMC9303846 DOI: 10.1038/s41378-022-00422-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 05/13/2023]
Abstract
Cell therapies have emerged as a promising new class of "living" therapeutics over the last decade and have been particularly successful for treating hematological malignancies. Increasingly, cellular therapeutics are being developed with the aim of treating almost any disease, from solid tumors and autoimmune disorders to fibrosis, neurodegenerative disorders and even aging itself. However, their therapeutic potential has remained limited due to the fundamental differences in how molecular and cellular therapies function. While the structure of a molecular therapeutic is directly linked to biological function, cells with the same genetic blueprint can have vastly different functional properties (e.g., secretion, proliferation, cell killing, migration). Although there exists a vast array of analytical and preparative separation approaches for molecules, the functional differences among cells are exacerbated by a lack of functional potency-based sorting approaches. In this context, we describe the need for next-generation single-cell profiling microtechnologies that allow the direct evaluation and sorting of single cells based on functional properties, with a focus on secreted molecules, which are critical for the in vivo efficacy of current cell therapies. We first define three critical processes for single-cell secretion-based profiling technology: (1) partitioning individual cells into uniform compartments; (2) accumulating secretions and labeling via reporter molecules; and (3) measuring the signal associated with the reporter and, if sorting, triggering a sorting event based on these reporter signals. We summarize recent academic and commercial technologies for functional single-cell analysis in addition to sorting and industrial applications of these technologies. These approaches fall into three categories: microchamber, microfluidic droplet, and lab-on-a-particle technologies. Finally, we outline a number of unmet needs in terms of the discovery, design and manufacturing of cellular therapeutics and how the next generation of single-cell functional screening technologies could allow the realization of robust cellular therapeutics for all patients.
Collapse
Affiliation(s)
- Hiromi Miwa
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Partillion Bioscience, Los Angeles, CA 90095 USA
| | - Rajesh Ghosh
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
185
|
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea. Front Genet 2022; 13:900253. [PMID: 35937986 PMCID: PMC9355295 DOI: 10.3389/fgene.2022.900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.
Collapse
Affiliation(s)
- B. S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | | | - Rebecca Ford
- Center for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Niloofar Vaghefi
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
186
|
Proćków M, Kuźnik-Kowalska E, Żeromska A, Mackiewicz P. Temporal variation in climatic factors influences phenotypic diversity of Trochulus land snails. Sci Rep 2022; 12:12357. [PMID: 35853920 PMCID: PMC9296580 DOI: 10.1038/s41598-022-16638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
Organisms with limited dispersal capabilities should show phenotypic plasticity in situ to keep pace with environmental changes. Therefore, to study the influence of environmental variation on the phenotypic diversity, we chose land snails, Trochulus hispidus and T. sericeus, characterized by high population variability. We performed long-term field studies as well as laboratory and common garden experiments, which revealed that temporal environmental changes generate visible variation in shell size and shape of these snails. Many shell measurements of T. hispidus varied significantly with temperature and humidity in individual years. According to this, the first generation of T. hispidus, bred in controlled laboratory conditions, became significantly different in higher spire and narrower umbilicus from its wild parents. Interestingly, offspring produced by this generation and transplanted to wild conditions returned to the ‘wild’ flat and wide-umbilicated shell shape. Moreover, initially different species T. hispidus and T. sericeus transferred into common environment conditions revealed rapid and convergent shell modifications within one generation. Such morphological flexibility and high genetic variation can be evolutionarily favored, when the environment is heterogeneous in time. The impact of climate change on the shell morphometry can lead to incorrect taxonomic classification or delimitation of artificial taxa in land snails. These findings have also important implications in the context of changing climate and environment.
Collapse
Affiliation(s)
- Małgorzata Proćków
- Museum of Natural History, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland. .,Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Elżbieta Kuźnik-Kowalska
- Department of Invertebrate Systematics and Ecology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland
| | - Aleksandra Żeromska
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
187
|
Studying Epigenetics of Cardiovascular Diseases on Chip Guide. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is defined as the study of inheritable changes in the gene expressions and phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation, histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics. There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure, and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dyslipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review focuses on different epigenetic factors that are involved in causing cardiovascular diseases.
Collapse
|
188
|
Wright JL, Davis WS, Joseph MM, Ellison AM, Heard-Garris NJ, Johnson TL. Eliminating Race-Based Medicine. Pediatrics 2022; 150:186963. [PMID: 35491483 DOI: 10.1542/peds.2022-057998] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Joseph L Wright
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Health Policy and Management, University of Maryland School of Public Health, College Park, Maryland
| | - Wendy S Davis
- Department of Pediatrics, Robert Larner, MD, College of Medicine, University of Vermont, Burlington, Vermont
| | - Madeline M Joseph
- Departments of Emergency Medicine and Pediatrics, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida
| | - Angela M Ellison
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nia J Heard-Garris
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tiffani L Johnson
- Department of Emergency Medicine, University of California, Davis, Sacramento, California
| | | |
Collapse
|
189
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
190
|
Miao Z, Wang G, Shen H, Wang X, Gabriel DW, Liang W. BcMettl4-Mediated DNA Adenine N6-Methylation Is Critical for Virulence of Botrytis cinerea. Front Microbiol 2022; 13:925868. [PMID: 35847085 PMCID: PMC9279130 DOI: 10.3389/fmicb.2022.925868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
DNA adenine N6-methylation (6mA) plays a critical role in various biological functions, but its occurrence and functions in filamentous plant pathogens are largely unexplored. Botrytis cinerea is an important pathogenic fungus worldwide. A systematic analysis of 6mA in B. cinerea was performed in this study, revealing that 6mA is widely distributed in the genome of this fungus. The 2 kb regions flanking many genes, particularly the upstream promoter regions, were susceptible to methylation. The role of BcMettl4, a 6mA methyltransferase, in the virulence of B. cinerea was investigated. BcMETTL4 disruption and point mutations of its catalytic motif “DPPW” both resulted in significant 6mA reduction in the genomic DNA and in reduced virulence of B. cinerea. RNA-Seq analysis revealed a total of 13 downregulated genes in the disruption mutant ΔBcMettl4 in which methylation occurred at the promoter sites. These were involved in oxidoreduction, secretory pathways, autophagy and carbohydrate metabolism. Two of these genes, BcFDH and BcMFS2, were independently disrupted. Knockout of BcFDH led to reduced sclerotium formation, while disruption of BcMFS2 resulted in dramatically decreased conidium formation and pathogenicity. These observations indicated that 6mA provides potential epigenetic markers in B. cinerea and that BcMettl4 regulates virulence in this important plant pathogen.
Collapse
Affiliation(s)
- Zhengang Miao
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Heng Shen
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Xue Wang
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Dean W. Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Wenxing Liang,
| |
Collapse
|
191
|
Zhu W, Qi Y, Wang X, Shi X, Chang L, Liu J, Zhu L, Jiang J. Multi-Omics Approaches Revealed the Associations of Host Metabolism and Gut Microbiome With Phylogeny and Environmental Adaptation in Mountain Dragons. Front Microbiol 2022; 13:913700. [PMID: 35836421 PMCID: PMC9273973 DOI: 10.3389/fmicb.2022.913700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular basis enabling the adaptation of animals to spatially heterogeneous environments is a critical clue for understanding the variation, formation, and maintenance of biodiversity in the context of global climate change. Mountain dragons (Agamidae: Diploderma) thrive in the Hengduan Mountain Region, a biodiversity hotspot and a typical spatially heterogeneous environment. Here, we compare the liver and muscle metabolome and gut microbiome of 11 geographical populations from three Diploderma species (D. iadinum, D. yulongsense, and D. vela) after 7 days acclimation in the same laboratory conditions. Amino acid metabolism, particularly the products of the glutathione cycle, accounted for major interspecies variations, implying its significance in genetic differentiation among mountain dragons. Notably, the cold-dwelling D. vela and D. yulongense populations tended to have higher glycerophosphate, glycerol-3-phosphocholine, and kinetin levels in their liver, higher carnosine levels in their muscle, and higher Lachnospiraceae levels in their gut. Phylogeny, net primary productivity (NPP), and the temperature had the highest explanation rate to the variations in muscle metabolome, liver metabolome, and gut microbiome, respectively, suggesting heterogeneity of biological systems in response to climatic variations. Therefore, we suggested that the organ heterogeneity in environmental responsiveness might be substantial for mountain dragons to thrive in complicated environments.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Chengdu, China
| | - Xiaoyi Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiudong Shi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- *Correspondence: Lifeng Zhu,
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Chengdu, China
- Jiangping Jiang,
| |
Collapse
|
192
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
193
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
194
|
Sun R, Gong J, Liu Y, Chen Z, Zhang F, Gao J, Cao J, Chen X, Zhang S, Zhao C, Gao S. Comprehensive molecular evaluation of the histone methyltransferase gene family and their important roles in two-line hybrid wheat. BMC PLANT BIOLOGY 2022; 22:290. [PMID: 35698040 PMCID: PMC9190116 DOI: 10.1186/s12870-022-03639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Histone methylation usually plays important roles in plant development through post-translational regulation and may provide a new visual field for heterosis. The histone methyltransferase gene family has been identified in various plants, but its members and functions in hybrid wheat related in heterosis is poorly studied. RESULTS In this study, 175 histone methyltransferase (HMT) genes were identified in wheat, including 152 histone lysine methyltransferase (HKMT) genes and 23 protein arginine methyltransferase (PRMT) genes. Gene structure analysis, physicochemical properties and subcellular localization predictions of the proteins, exhibited the adequate complexity of this gene family. As an allohexaploid species, the number of the genes (seven HKMTs orthologous groups and four PRMTs orthologous groups) in wheat were about three times than those in diploids and showed certain degrees of conservation, while only a small number of subfamilies such as ASH-like and Su-(var) subfamilies have expanded their members. Transcriptome analysis showed that HMT genes were mainly expressed in the reproductive organs. Expression analysis showed that some TaHMT genes with different trends in various hybrid combinations may be regulated by lncRNAs with similar expression trends. Pearson correlation analysis of the expression of TaHMT genes and two yield traits indicated that four DEGs may participate in the yield heterosis of two-line hybrid wheat. ChIP-qPCR results showed that the histone modifications (H3K4me3, H3K36me3 and H3K9ac) enriched in promoter regions of three TaCCA1 genes which are homologous to Arabidopsis heterosis-related CCA1/LHY genes. The higher expression levels of TaCCA1 in F1 than its parents are positive with these histone modifications. These results showed that histone modifications may play important roles in wheat heterosis. CONCLUSIONS Our study identified characteristics of the histone methyltransferase gene family and enhances the understanding of the evolution and function of these members in allohexaploid wheat. The causes of heterosis of two-line hybrid wheat were partially explained from the perspective of histone modifications.
Collapse
Affiliation(s)
- Renwei Sun
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Jie Gong
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Yongjie Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Zhaobo Chen
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Fengting Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Jiangang Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Junmei Cao
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xianchao Chen
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Shengquan Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| | - Shiqing Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| |
Collapse
|
195
|
Sharma I, Yadav KS, Mugale MN. Redoxisome and diabetic retinopathy: Pathophysiology and therapeutic interventions. Pharmacol Res 2022; 182:106292. [PMID: 35691540 DOI: 10.1016/j.phrs.2022.106292] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Diabetic retinopathy (DR) is a chronic microvascular complication of diabetes mellitus (DM). It is a worldwide growing epidemic disease considered to be the leading cause of vision-loss and blindness in people with DM. Redox reactions occurring at the extra- and intracellular levels are essential for the maintenance of cellular homeostasis. Dysregulation of redox homeostasis are implicated in the onset and development of DR. Thioredoxin1 (TRX1) and Thioredoxin2 (TRX2) are cytoplasmic and mitochondrially localized antioxidant proteins ubiquitously expressed in various cells and control cellular reactive oxygen species (ROS) by reducing the disulfides into thiol groups. Thioredoxin-interacting protein (TXNIP) binds to TRX system and inhibits the active reduced form of TRX through disulfide exchange reaction. Recent studies indicate the association of TRX/TXNIP with redox signal transduction pathways including activation of Nod-like receptor pyrin domain containing protein-3 (NLRP3) inflammasome, apoptosis, autophagy/mitophagy, epigenetic modifications in a redox-dependent manner. Thus, it is important to gain a more in-depth understanding about the cellular and molecular mechanisms that links redoxisome and ER/Mitochondrial dysfunction to drive the progression of DR. The purpose of this review is to provide a mechanistic understanding of the complex molecular mechanisms and pathophysiological roles associated with redoxisome, the TRX/TXNIP redox signaling complex under oxidative stress in the development of DR. Also, the molecular targets of FDA approved drugs and clinical trials in addition to effective antioxidant strategies for the treatment of diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Isha Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Karan Singh Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
196
|
Gu X, Peng XY, Zhang H, Han B, Jiao MR, Chen QS, Zhang QW. Discovery of Indole-Containing Benzamide Derivatives as HDAC1 Inhibitors with In Vitro and In Vivo Antitumor Activities. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1749373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Targeting histone deacetylases (HDACs) has become an important focus in cancer inhibition. The pharmacophore of HDAC inhibitors (HDACis) reported so far is composed of three parts: a zinc-binding group (ZBG), a hydrophobic cavity-binding linker, and a surface-recognition cap interacting with HDAC surface located at the rim of active site cavity. This study aims to discover novel HDAC1 inhibitors with potent antitumor activities through modifying the cap and ZBG based on the structures of two marketed oral HDACis: chidamide and entinostat (MS-275). In this work, a series of benzamide derivatives were designed, synthesized, and evaluated for their antitumor activity. The structures of novel compounds were confirmed by 1H NMR (nuclear magnetic resonance) and ESI-MS (electrospray ionization mass spectrometry), and all target compounds were tested in both HDAC1 enzymatic inhibitory activity and cellular antiproliferative activity. Our data showed that the potent compound 3j exhibited good HDAC1 enzyme inhibitory activity and high antitumor cell proliferation activity against a selected set of cancer cells (PC-3, HCT-116, HUT-78, Jurkat E6–1, A549, Colo205, and MCF-7 cells) with no observed effects on human normal cells. In particular, compound 3j inhibited HDAC1 over the other tested HDAC isoforms (HDAC2, HDAC6, and HDAC8). Encouraged by this, the safety characteristics, molecular docking, preliminary pharmacokinetic characteristics, and antitumor effect in vivo of compound 3j were further investigated. Our data showed that compound 3j demonstrated acceptable safety profiles and favorable oral pharmacokinetic properties. Moreover, compound 3j could bind well with HDAC1 and showed significant antitumor activity in a PC-3 tumor xenograft model in vivo, though not as potent as positive control entinostat (MS-275). In summary, 3j might have therapeutic potential for the treatment of human cancers.
Collapse
Affiliation(s)
- Xiu Gu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Xin-Yan Peng
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Hao Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Bo Han
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Min-Ru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Qiu-Shi Chen
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
| | - Qing-Wei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
197
|
The Progression of N6-methyladenosine Study and Its Role in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23115922. [PMID: 35682599 PMCID: PMC9180340 DOI: 10.3390/ijms23115922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Epitranscriptomic modifications can affect every aspect of RNA biology, including stability, transport, splicing, and translation, participate in global intracellular mRNA metabolism, and regulate gene expression and a variety of biological processes. N6-methyladenosine (m6A) as the most prevalent modification contributes to normal embryonic brain development and memory formation. However, changes in the level of m6A modification and the expression of its related proteins cause abnormal nervous system functions, including brain tissue development retardation, axon regeneration disorders, memory changes, and neural stem cell renewal and differentiation disorders. Recent studies have revealed that m6A modification and its related proteins play key roles in the development of various neuropsychiatric disorders, such as depression, Alzheimer’s disease, and Parkinson’s disease. In this review, we summarize the research progresses of the m6A modification regulation mechanism in the central nervous system and discuss the effects of gene expression regulation mediated by m6A modification on the biological functions of the neuropsychiatric disorders, thereby providing some insight into new research targets and treatment directions for human diseases.
Collapse
|
198
|
Tain YL, Hsu CN. Developmental and Early Life Origins of Hypertension: Preventive Aspects of Melatonin. Antioxidants (Basel) 2022; 11:924. [PMID: 35624788 PMCID: PMC9138087 DOI: 10.3390/antiox11050924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertension represents a major disease burden worldwide. Abundant evidence suggests that hypertension can originate in early life. Adverse programming processes can be prevented by early life intervention-namely, reprogramming-to avoid developing chronic diseases later in life. Melatonin is an endogenously produced hormone with a multifaceted biological function. Although melatonin supplementation has shown benefits for human health, less attention has been paid to exploring its reprogramming effects on the early life origins of hypertension. In this review, first, we discuss the physiological roles of melatonin in pregnancy, fetal development, and the regulation of blood pressure. Then, we summarize the epidemiological and experimental evidence for the early life origins of hypertension. This is followed by a description of the animal models used to examine early melatonin therapy as a reprogramming strategy to protect against the early life origins of hypertension. A deeper understanding of the developmental programming of hypertension and recent advances in early melatonin intervention might provide a path forward in reducing the global burden of hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
199
|
Liu B, Zhai J, Wang W, Liu T, Liu C, Zhu X, Wang Q, Tian W, Zhang F. Identification of Tumor Microenvironment and DNA Methylation-Related Prognostic Signature for Predicting Clinical Outcomes and Therapeutic Responses in Cervical Cancer. Front Mol Biosci 2022; 9:872932. [PMID: 35517856 PMCID: PMC9061945 DOI: 10.3389/fmolb.2022.872932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Tumor microenvironment (TME) has been reported to have a strong association with tumor progression and therapeutic outcome, and epigenetic modifications such as DNA methylation can affect TMB and play an indispensable role in tumorigenesis. However, the potential mechanisms of TME and DNA methylation remain unclear in cervical cancer (CC). Methods: The immune and stromal scores of TME were generated by the ESTIMATE algorithm for CC patients in The Cancer Genome Atlas (TCGA) database. The TME and DNA methylation-related genes were identified by the integrative analysis of DNA promoter methylation and gene expression. The least absolute shrinkage and selection operator (LASSO) Cox regression was performed 1,000 times to further identify a nine-gene TME and DNA methylation-related prognostic signature. The signature was further validated in Gene Expression Omnibus (GEO) dataset. Then, the identified signature was integrated with the Federation International of Gynecology and Obstetrics (FIGO) stage to establish a composite prognostic nomogram. Results: CC patients with high immunity levels have better survival than those with low immunity levels. Both in the training and validation datasets, the risk score of the signature was an independent prognosis factor. The composite nomogram showed higher accuracy of prognosis and greater net benefits than the FIGO stage and the signature. The high-risk group had a significantly higher fraction of genome altered than the low-risk group. Eleven genes were significantly different in mutation frequencies between the high- and low-risk groups. Interestingly, patients with mutant TTN had better overall survival (OS) than those with wild type. Patients in the low-risk group had significantly higher tumor mutational burden (TMB) than those in the high-risk group. Taken together, the results of TMB, immunophenoscore (IPS), and tumor immune dysfunction and exclusion (TIDE) score suggested that patients in the low-risk group may have greater immunotherapy benefits. Finally, four drugs (panobinostat, lenvatinib, everolimus, and temsirolimus) were found to have potential therapeutic implications for patients with a high-risk score. Conclusions: Our findings highlight that the TME and DNA methylation-related prognostic signature can accurately predict the prognosis of CC and may be important for stratified management of patients and precision targeted therapy.
Collapse
Affiliation(s)
- Bangquan Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Jiabao Zhai
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Wanyu Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Tianyu Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Chang Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Xiaojie Zhu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Fubin Zhang
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
200
|
The Interaction Effect of Parental Rejection and Oxytocin Receptor Gene Polymorphism on Depression: A Cross-Cultural Study in Non-Clinical Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095566. [PMID: 35564961 PMCID: PMC9105151 DOI: 10.3390/ijerph19095566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022]
Abstract
Parental rejection has been consistently empirically implicated in a wide array of developmental, behavioural and psychological problems worldwide. However, the interaction effect between parental rejection in childhood and the oxytocin receptor genotype on psychological adjustment has yet to be investigated. The present study aimed to investigate gene–environment interaction effects between parental rejection (maternal and paternal) and oxytocin receptor (OXTR) gene polymorphisms (rs53576 and rs2254298) on depressive symptoms in adults in different cultural contexts. Adults from Italy and Japan (N = 133, age = 18–27 years, females = 68) were preliminarily genotyped and then completed the Parental Acceptance-Rejection Questionnaire for mothers and fathers and the Beck Depression Inventory. Hierarchical multiple regression analysis showed that paternal rejection was related to self-reported depression and that the effect of parental rejection was moderated by OXTR gene polymorphisms and nationality. Among Italians, OXTR rs2254298 A-carriers showed resilience to negative early parental care, whereas among Japanese, OXTR rs53576 non-A-carriers showed resistance to negative early paternal care. These findings align with expected relations between perceived acceptance–rejection and an individual’s psychological adjustment, as proposed by interpersonal acceptance–rejection theory, and indicate the need for future studies adopting a multicultural and multilevel approach to better understand how the effects of parental rejection extend into adulthood.
Collapse
|