151
|
Ratner HK, Escalera-Maurer A, Le Rhun A, Jaggavarapu S, Wozniak JE, Crispell EK, Charpentier E, Weiss DS. Catalytically Active Cas9 Mediates Transcriptional Interference to Facilitate Bacterial Virulence. Mol Cell 2019; 75:498-510.e5. [PMID: 31256988 DOI: 10.1016/j.molcel.2019.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/14/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
In addition to defense against foreign DNA, the CRISPR-Cas9 system of Francisella novicida represses expression of an endogenous immunostimulatory lipoprotein. We investigated the specificity and molecular mechanism of this regulation, demonstrating that Cas9 controls a highly specific regulon of four genes that must be repressed for bacterial virulence. Regulation occurs through a protospacer adjacent motif (PAM)-dependent interaction of Cas9 with its endogenous DNA targets, dependent on a non-canonical small RNA (scaRNA) and tracrRNA. The limited complementarity between scaRNA and the endogenous DNA targets precludes cleavage, highlighting the evolution of scaRNA to repress transcription without lethally targeting the chromosome. We show that scaRNA can be reprogrammed to repress other genes, and with engineered, extended complementarity to an exogenous target, the repurposed scaRNA:tracrRNA-FnoCas9 machinery can also direct DNA cleavage. Natural Cas9 transcriptional interference likely represents a broad paradigm of regulatory functionality, which is potentially critical to the physiology of numerous Cas9-encoding pathogenic and commensal organisms.
Collapse
Affiliation(s)
- Hannah K Ratner
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA 30329, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Andrés Escalera-Maurer
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany; Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, 38124 Braunschweig, Germany; Institute for Biology, Humboldt University, 10115 Berlin, Germany
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany; Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, 38124 Braunschweig, Germany
| | - Siddharth Jaggavarapu
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Jessie E Wozniak
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA 30329, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Emily K Crispell
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA 30329, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany; Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, 38124 Braunschweig, Germany; Institute for Biology, Humboldt University, 10115 Berlin, Germany
| | - David S Weiss
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA 30329, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA.
| |
Collapse
|
152
|
Pan S, Li Q, Deng L, Jiang S, Jin X, Peng N, Liang Y, She Q, Li Y. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. RNA Biol 2019; 16:1166-1178. [PMID: 31096876 DOI: 10.1080/15476286.2019.1618693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide an adaptive defence against foreign nucleic acids guided by small RNAs (crRNAs) in archaea and bacteria. The Type III CRISPR systems are reported to carry RNase, RNA-activated DNase and cyclic oligoadenylate (cOA) synthetase activity, and are significantly different from other CRISPR systems. However, detailed features of target recognition, which are essential for enhancing target specificity remain unknown in Type III CRISPR systems. Here, we show that the Type III-B Cmr-α system in S. islandicus generates two constant lengths of crRNA independent of the length of the spacer. Either mutation at the 3'-end of crRNA or target truncation greatly influences the target capture and cleavage by the Cmr-α effector complex. Furthermore, we found that cleavage at the tag-proximal site on the target RNA by the Cmr-α RNP complex is delayed relative to the other sites, which probably provides Cas10 more time to function as a guard against invaders. Using a mutagenesis assay in vivo, we discovered that a seed motif located at the tag-distal region of the crRNA is required by Cmr1α for target RNA capture by the Cmr-α system thereby enhancing target specificity and efficiency. These findings further refine the model for immune defence of Type III-B CRISPR-Cas system, commencing on capture, cleavage and regulation.
Collapse
Affiliation(s)
- Saifu Pan
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Qi Li
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Ling Deng
- b Archaea Centre, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Suping Jiang
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Xuexia Jin
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Nan Peng
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Yunxiang Liang
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Qunxin She
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China.,b Archaea Centre, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Yingjun Li
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
153
|
Johnson K, Learn BA, Estrella MA, Bailey S. Target sequence requirements of a type III-B CRISPR-Cas immune system. J Biol Chem 2019; 294:10290-10299. [PMID: 31110048 DOI: 10.1074/jbc.ra119.008728] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are RNA-based immune systems that protect many prokaryotes from invasion by viruses and plasmids. Type III CRISPR systems are unique, as their targeting mechanism requires target transcription. Upon transcript binding, DNA cleavage by type III effector complexes is activated. Type III systems must differentiate between invader and native transcripts to prevent autoimmunity. Transcript origin is dictated by the sequence that flanks the 3' end of the RNA target site (called the PFS). However, how the PFS is recognized may vary among different type III systems. Here, using purified proteins and in vitro assays, we define how the type III-B effector from the hyperthermophilic bacterium Thermotoga maritima discriminates between native and invader transcripts. We show that native transcripts are recognized by base pairing at positions -2 to -5 of the PFS and by a guanine at position -1, which is not recognized by base pairing. We also show that mismatches with the RNA target are highly tolerated in this system, except for those nucleotides adjacent to the PFS. These findings define the target requirement for the type III-B system from T. maritima and provide a framework for understanding the target requirements of type III systems as a whole.
Collapse
Affiliation(s)
- Kaitlin Johnson
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health and
| | - Brian A Learn
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health and
| | - Michael A Estrella
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health and
| | - Scott Bailey
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health and .,Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
154
|
Babu K, Amrani N, Jiang W, Yogesha S, Nguyen R, Qin PZ, Rajan R. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance. Biochemistry 2019; 58:1905-1917. [PMID: 30916546 PMCID: PMC6496953 DOI: 10.1021/acs.biochem.8b01241] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems are RNA-guided nucleases that provide adaptive immune protection for bacteria and archaea against intruding genomic materials. The programmable nature of CRISPR-targeting mechanisms has enabled their adaptation as powerful genome engineering tools. Cas9, a type II CRISPR effector protein, has been widely used for gene-editing applications owing to the fact that a single-guide RNA can direct Cas9 to cleave desired genomic targets. An understanding of the role of different domains of the protein and guide RNA-induced conformational changes of Cas9 in selecting target DNA has been and continues to enable development of Cas9 variants with reduced off-targeting effects. It has been previously established that an arginine-rich bridge helix (BH) present in Cas9 is critical for its activity. In the present study, we show that two proline substitutions within a loop region of the BH of Streptococcus pyogenes Cas9 impair the DNA cleavage activity by accumulating nicked products and reducing target DNA linearization. This in turn imparts a higher selectivity in DNA targeting. We discuss the probable mechanisms by which the BH-loop contributes to target DNA recognition.
Collapse
Affiliation(s)
- Kesavan Babu
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Sherman Center, AS5.2007, Worcester MA 01605, USA
| | - Wei Jiang
- Department of Chemistry, University of Southern California, 3430 S. Vermont Ave., Los Angeles, CA, 90089, USA
| | - S.D. Yogesha
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
- Current Address: Krystal Biotech, Inc. 2100 Wharton Street, Suite 701 Pittsburgh, PA, 15203, USA
| | - Richard Nguyen
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
- Current Address: College of Medicine, University of Oklahoma, Stanton L Young Blvd, Oklahoma City, OK 73117
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, 3430 S. Vermont Ave., Los Angeles, CA, 90089, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| |
Collapse
|
155
|
Chou-Zheng L, Hatoum-Aslan A. A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity. eLife 2019; 8:e45393. [PMID: 30942690 PMCID: PMC6447361 DOI: 10.7554/elife.45393] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
CRISPR-Cas systems provide sequence-specific immunity against phages and mobile genetic elements using CRISPR-associated nucleases guided by short CRISPR RNAs (crRNAs). Type III systems exhibit a robust immune response that can lead to the extinction of a phage population, a feat coordinated by a multi-subunit effector complex that destroys invading DNA and RNA. Here, we demonstrate that a model type III system in Staphylococcus epidermidis relies upon the activities of two degradosome-associated nucleases, PNPase and RNase J2, to mount a successful defense. Genetic, molecular, and biochemical analyses reveal that PNPase promotes crRNA maturation, and both nucleases are required for efficient clearance of phage-derived nucleic acids. Furthermore, functional assays show that RNase J2 is essential for immunity against diverse mobile genetic elements originating from plasmid and phage. Altogether, our observations reveal the evolution of a critical collaboration between two nucleic acid degrading machines which ensures cell survival when faced with phage attack.
Collapse
Affiliation(s)
- Lucy Chou-Zheng
- Department of Biological SciencesThe University of AlabamaTuscaloosaUnited States
| | - Asma Hatoum-Aslan
- Department of Biological SciencesThe University of AlabamaTuscaloosaUnited States
| |
Collapse
|
156
|
Engineering Bacteriophages as Versatile Biologics. Trends Microbiol 2019; 27:355-367. [DOI: 10.1016/j.tim.2018.09.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 01/21/2023]
|
157
|
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 2019; 37:708-729. [PMID: 30926472 DOI: 10.1016/j.biotechadv.2019.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
158
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
159
|
Nasko DJ, Ferrell BD, Moore RM, Bhavsar JD, Polson SW, Wommack KE. CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes. mBio 2019; 10:e02651-18. [PMID: 30837341 PMCID: PMC6401485 DOI: 10.1128/mbio.02651-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023] Open
Abstract
Viral infection exerts selection pressure on marine microbes, as virus-induced cell lysis causes 20 to 50% of cell mortality, resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system, which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, no viral genes should be preferentially matched by CRISPR spacers. However, if there are differences in effectiveness, certain viral genes may demonstrate a greater frequency of CRISPR spacer matches. Indeed, homology search analyses of bacterioplankton CRISPR spacer sequences against virioplankton sequences revealed preferential matching of replication proteins, nucleic acid binding proteins, and viral structural proteins. Positive selection pressure for effective viral defense is one parsimonious explanation for these observations. CRISPR spacers from virioplankton metagenomes preferentially matched methyltransferase and phage integrase genes within virioplankton sequences. These virioplankton CRISPR spacers may assist infected host cells in defending against competing phage. Analyses also revealed that half of the spacer-matched viral genes were unknown, some genes matched several spacers, and some spacers matched multiple genes, a many-to-many relationship. Thus, CRISPR spacer matching may be an evolutionary algorithm, agnostically identifying those genes under stringent selection pressure for sustaining viral infection and lysis. Investigating this subset of viral genes could reveal those genetic mechanisms essential to virus-host interactions and provide new technologies for optimizing CRISPR defense in beneficial microbes.IMPORTANCE The CRISPR-Cas system is one means by which bacterial and archaeal populations defend against viral infection which causes 20 to 50% of cell mortality in the ocean. We tested the hypothesis that certain viral genes are preferentially targeted for the initial attack of the CRISPR-Cas system on a viral genome. Using CASC, a pipeline for CRISPR spacer discovery, and metagenome data from oceanic microbes and viruses, we found a clear subset of viral genes with high match frequencies to CRISPR spacers. Moreover, we observed a many-to-many relationship of spacers and viral genes. These high-match viral genes were involved in nucleotide metabolism, DNA methylation, and viral structure. It is possible that CRISPR spacer matching is an evolutionary algorithm pointing to those viral genes most important to sustaining infection and lysis. Studying these genes may advance the understanding of virus-host interactions in nature and provide new technologies for leveraging CRISPR-Cas systems in beneficial microbes.
Collapse
Affiliation(s)
- Daniel J Nasko
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jaysheel D Bhavsar
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
160
|
Abstract
Despite essential roles played by long noncoding RNAs (lncRNAs) in development and disease, methods to determine lncRNA cis-elements are lacking. Here, we developed a screening method named “Tiling CRISPR” to identify lncRNA functional domains. Using this approach, we identified Xist A-Repeats as the silencing domain, an observation in agreement with published work, suggesting Tiling CRISPR feasibility. Mechanistic analysis suggested a novel function for Xist A-repeats in promoting Xist transcription. Overall, our method allows mapping of lncRNA functional domains in an unbiased and potentially high-throughput manner to facilitate the understanding of lncRNA functions.
Collapse
|
161
|
Rostøl JT, Marraffini LA. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nat Microbiol 2019; 4:656-662. [PMID: 30692669 PMCID: PMC6430669 DOI: 10.1038/s41564-018-0353-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Type III-A CRISPR-Cas systems employ the Cas10-Csm complex to destroy bacteriophages and plasmids, using a guide RNA to locate complementary RNA molecules from the invader and trigger an immune response that eliminates the infecting DNA. In addition, these systems possess the non-specific RNase Csm6 which provides further protection for the host. While the role of Csm6 in immunity during phage infection was previously determined, how this RNase is used against plasmids is unclear. Here we show that S. epidermidis Csm6 is required for immunity when transcription across the plasmid target is infrequent, leading to impaired target recognition and inefficient DNA degradation by the Cas10-Csm complex. In these conditions Csm6 causes a growth arrest in the host and prevents further plasmid replication through the indiscriminate degradation of host and plasmid transcripts. In contrast, when plasmid target sequences are efficiently transcribed, Csm6 is dispensable and DNA degradation by Cas10 is sufficient for anti-plasmid immunity. Csm6 therefore provides robustness to the type III-A CRISPR-Cas immune response against difficult targets for the Cas10-Csm complex.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
162
|
Koonin EV. CRISPR: a new principle of genome engineering linked to conceptual shifts in evolutionary biology. BIOLOGY & PHILOSOPHY 2019; 34:9. [PMID: 30930513 PMCID: PMC6404382 DOI: 10.1007/s10539-018-9658-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The CRISPR-Cas systems of bacterial and archaeal adaptive immunity have become a household name among biologists and even the general public thanks to the unprecedented success of the new generation of genome editing tools utilizing Cas proteins. However, the fundamental biological features of CRISPR-Cas are of no lesser interest and have major impacts on our understanding of the evolution of antivirus defense, host-parasite coevolution, self versus non-self discrimination and mechanisms of adaptation. CRISPR-Cas systems present the best known case in point for Lamarckian evolution, i.e. generation of heritable, adaptive genomic changes in response to encounters with external factors, in this case, foreign nucleic acids. CRISPR-Cas systems employ multiple mechanisms of self versus non-self discrimination but, as is the case with immune systems in general, are nevertheless costly because autoimmunity cannot be eliminated completely. In addition to the autoimmunity, the fitness cost of CRISPR-Cas systems appears to be determined by their inhibitory effect on horizontal gene transfer, curtailing evolutionary innovation. Hence the dynamic evolution of CRISPR-Cas loci that are frequently lost and (re)acquired by archaea and bacteria. Another fundamental biological feature of CRISPR-Cas is its intimate connection with programmed cell death and dormancy induction in microbes. In this and, possibly, other immune systems, active immune response appears to be coupled to a different form of defense, namely, "altruistic" shutdown of cellular functions resulting in protection of neighboring cells. Finally, analysis of the evolutionary connections of Cas proteins reveals multiple contributions of mobile genetic elements (MGE) to the origin of various components of CRISPR-Cas systems, furthermore, different biological systems that function by genome manipulation appear to have evolved convergently from unrelated MGE. The shared features of adaptive defense systems and MGE, namely the ability to recognize and cleave unique sites in genomes, make them ideal candidates for genome editing and engineering tools.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 USA
| |
Collapse
|
163
|
Turkowyd B, Müller-Esparza H, Climenti V, Steube N, Endesfelder U, Randau L. Live-cell single-particle tracking photoactivated localization microscopy of Cascade-mediated DNA surveillance. Methods Enzymol 2019; 616:133-171. [PMID: 30691641 DOI: 10.1016/bs.mie.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Type I CRISPR-Cas systems utilize small CRISPR RNA (crRNA) molecules to scan DNA strands for target regions. Different crRNAs are bound by several CRISPR-associated (Cas) protein subunits that form the stable ribonucleoprotein complex Cascade. The Cascade-mediated DNA surveillance process requires a sufficient degree of base-complementarity between crRNA and target sequences and relies on the recognition of small DNA motifs, termed protospacer adjacent motifs. Recently, super-resolution microscopy and single-particle tracking methods have been developed to follow individual protein complexes in live cells. Here, we described how this technology can be adapted to visualize the DNA scanning process of Cascade assemblies in Escherichia coli cells. The activity of recombinant Type I-Fv Cascade complexes of Shewanella putrefaciens CN-32 serves as a model system that facilitates comparative studies for many of the diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Hanna Müller-Esparza
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vanessa Climenti
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Niklas Steube
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| | - Lennart Randau
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany; Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
164
|
You L, Ma J, Wang J, Artamonova D, Wang M, Liu L, Xiang H, Severinov K, Zhang X, Wang Y. Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interference. Cell 2019; 176:239-253.e16. [PMID: 30503210 PMCID: PMC6935017 DOI: 10.1016/j.cell.2018.10.052] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
Csm, a type III-A CRISPR-Cas interference complex, is a CRISPR RNA (crRNA)-guided RNase that also possesses target RNA-dependent DNase and cyclic oligoadenylate (cOA) synthetase activities. However, the structural features allowing target RNA-binding-dependent activation of DNA cleavage and cOA generation remain unknown. Here, we report the structure of Csm in complex with crRNA together with structures of cognate or non-cognate target RNA bound Csm complexes. We show that depending on complementarity with the 5' tag of crRNA, the 3' anti-tag region of target RNA binds at two distinct sites of the Csm complex. Importantly, the interaction between the non-complementary anti-tag region of cognate target RNA and Csm1 induces a conformational change at the Csm1 subunit that allosterically activates DNA cleavage and cOA generation. Together, our structural studies provide crucial insights into the mechanistic processes required for crRNA-meditated sequence-specific RNA cleavage, RNA target-dependent non-specific DNA cleavage, and cOA generation.
Collapse
Affiliation(s)
- Lilan You
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jiuyu Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Daria Artamonova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Min Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liang Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Konstantin Severinov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia; Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Xinzheng Zhang
- University of Chinese Academy of Sciences, 100049 Beijing, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China.
| |
Collapse
|
165
|
O'Connell MR. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems. J Mol Biol 2019; 431:66-87. [PMID: 29940185 DOI: 10.1016/j.jmb.2018.06.029] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
Prokaryotic adaptive immune systems use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR-Cas systems, contain a single protein, Cas13 (formerly C2c2) that when assembled with a CRISPR RNA (crRNA) forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR-Cas systems can be divided into four subtypes (A-D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, is required for degradation of target-RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A-D) CRISPR-Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications.
Collapse
Affiliation(s)
- Mitchell R O'Connell
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
166
|
Abstract
This review summarizes the current state of the art of CRISPR/Cas-based genome editing technologies for natural product producers.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
| |
Collapse
|
167
|
Tong Y, Weber T, Lee SY. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 2019; 36:1262-1280. [DOI: 10.1039/c8np00089a] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the current state of the art of CRISPR/Cas-based genome editing technologies for natural product producers.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
| |
Collapse
|
168
|
Nayeemul Bari SM, Hatoum-Aslan A. CRISPR-Cas10 assisted editing of virulent staphylococcal phages. Methods Enzymol 2018; 616:385-409. [PMID: 30691652 DOI: 10.1016/bs.mie.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phages are the most abundant entities in the biosphere and profoundly impact the bacterial populations within and around us. They attach to a specific host, inject their DNA, hijack the host's cellular processes, and replicate exponentially while destroying the host. Historically, phages have been exploited as powerful antimicrobials, and phage-derived proteins have constituted the basis for numerous biotechnological applications. Only in recent years have metagenomic studies revealed that phage genomes harbor a rich reservoir of genetic diversity, which might afford further therapeutic and/or biotechnological value. Nevertheless, functions for the majority of phage genes remain unknown, and due to their swift and destructive replication cycle, many phages are intractable by current genetic engineering techniques. Whether to advance the basic understanding of phage biology or to tap into their potential applications, efficient methods for phage genetic engineering are needed. Recent reports have shown that CRISPR-Cas systems, a class of prokaryotic immune systems that protect against phage infection, can be harnessed to engineer diverse phages. In this chapter, we describe methods to genetically manipulate virulent phages using CRISPR-Cas10, a Type III-A CRISPR-Cas system native to Staphylococcus epidermidis. A method for engineering phages that infect a CRISPR-less Staphylococcus aureus host is also described. Both approaches have proved successful in isolating desired phage mutants with 100% efficiency, demonstrating that CRISPR-Cas10 constitutes a powerful tool for phage genetic engineering. The relatively widespread presence of Type III CRISPR-Cas systems in bacteria and archaea imply that similar strategies may be used to manipulate the genomes of diverse prokaryotic viruses.
Collapse
Affiliation(s)
- S M Nayeemul Bari
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Asma Hatoum-Aslan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States.
| |
Collapse
|
169
|
Ahmed W, Hafeez MA, Ahmad R, Mahmood S. CRISPR-Cas system in regulation of immunity and virulence of bacterial pathogens. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
170
|
Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin Perinatol 2018; 42:487-500. [PMID: 30482590 DOI: 10.1053/j.semperi.2018.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy carries the potential to treat more than 10,000 human monogenic diseases and benefit an even greater number of complex polygenic conditions. The repurposing of CRISPR/Cas9, an ancient bacterial immune defense system, into a gene-editing technology has armed researchers with a revolutionary tool for gene therapy. However, as the breadth of research and clinical applications of this technology continues to expand, outstanding technical challenges and ethical considerations will need to be addressed before clinical applications become commonplace. Here, we review CRISPR/Cas9 technology and discuss its benefits and limitations in research and the clinical context, as well as ethical considerations surrounding the use of CRISPR gene editing.
Collapse
Affiliation(s)
- Fani Memi
- Department of Cell and Developmental Biology, University College London, 21 University Street, WC1E 6DE London, UK.
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| |
Collapse
|
171
|
Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu S. Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity. Mol Cell 2018; 73:278-290.e4. [PMID: 30503774 DOI: 10.1016/j.molcel.2018.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Charlie Y Mo
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
172
|
Jia N, Mo CY, Wang C, Eng ET, Marraffini LA, Patel DJ. Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. Mol Cell 2018; 73:264-277.e5. [PMID: 30503773 DOI: 10.1016/j.molcel.2018.11.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/10/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Type ΙΙΙ CRISPR-Cas systems provide robust immunity against foreign RNA and DNA by sequence-specific RNase and target RNA-activated sequence-nonspecific DNase and RNase activities. We report on cryo-EM structures of Thermococcus onnurineus CsmcrRNA binary, CsmcrRNA-target RNA and CsmcrRNA-target RNAanti-tag ternary complexes in the 3.1 Å range. The topological features of the crRNA 5'-repeat tag explains the 5'-ruler mechanism for defining target cleavage sites, with accessibility of positions -2 to -5 within the 5'-repeat serving as sensors for avoidance of autoimmunity. The Csm3 thumb elements introduce periodic kinks in the crRNA-target RNA duplex, facilitating cleavage of the target RNA with 6-nt periodicity. Key Glu residues within a Csm1 loop segment of CsmcrRNA adopt a proposed autoinhibitory conformation suggestive of DNase activity regulation. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into CsmcrRNA complex assembly, mechanisms underlying RNA targeting and site-specific periodic cleavage, regulation of DNase cleavage activity, and autoimmunity suppression.
Collapse
Affiliation(s)
- Ning Jia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Charlie Y Mo
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | | | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
173
|
Terns MP. CRISPR-Based Technologies: Impact of RNA-Targeting Systems. Mol Cell 2018; 72:404-412. [PMID: 30388409 PMCID: PMC6239212 DOI: 10.1016/j.molcel.2018.09.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022]
Abstract
DNA-targeting CRISPR-Cas systems, such as those employing the RNA-guided Cas9 or Cas12 endonucleases, have revolutionized our ability to predictably edit genomes and control gene expression. Here, I summarize information on RNA-targeting CRISPR-Cas systems and describe recent advances in converting them into powerful and programmable RNA-binding and cleavage tools with a wide range of novel and important biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
174
|
Molecular mechanisms of III-B CRISPR–Cas systems in archaea. Emerg Top Life Sci 2018; 2:483-491. [DOI: 10.1042/etls20180023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems provide the adaptive antiviral immunity against invasive genetic elements in archaea and bacteria. These immune systems are divided into at least six different types, among which Type III CRISPR–Cas systems show several distinct antiviral activities as demonstrated from the investigation of bacterial III-A and archaeal III-B systems in the past decade. First, although initial experiments suggested that III-A systems provided DNA interference activity, whereas III-B system was active only in RNA interference, these immune systems were subsequently found to mediate the transcription-dependent DNA interference and the dual DNA/RNA interference. Second, their ribonucleoprotein (RNP) complexes show target RNA (tgRNA) cleavage by a ruler mechanism and RNA-activated indiscriminate single-stranded DNA cleavage, the latter of which is subjected to spatiotemporal regulation such that the DNase activity occurs only at the right place in the right time. Third, RNPs of Type III systems catalyse the synthesis of cyclic oligoadenylates (cOAs) that function as second messengers to activate Csm6 and Csx1, both of which are potent Cas accessory RNases after activation. To date, Type III CRISPR systems are the only known antiviral immunity that utilizes multiple interference mechanisms for antiviral defence.
Collapse
|
175
|
Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randau L. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol 2018; 16:504-517. [PMID: 30109815 PMCID: PMC6546366 DOI: 10.1080/15476286.2018.1504546] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adaptive immunity of prokaryotes is mediated by CRISPR-Cas systems that employ a large variety of Cas protein effectors to identify and destroy foreign genetic material. The different targeting mechanisms of Cas proteins rely on the proper protection of the host genome sequence while allowing for efficient detection of target sequences, termed protospacers. A short DNA sequence, the protospacer-adjacent motif (PAM), is frequently used to mark proper target sites. Cas proteins have evolved a multitude of PAM-interacting domains, which enables them to cope with viral anti-CRISPR measures that alter the sequence or accessibility of PAM elements. In this review, we summarize known PAM recognition strategies for all CRISPR-Cas types. Available structures of target bound Cas protein effector complexes highlight the diversity of mechanisms and domain architectures that are employed to guarantee target specificity.
Collapse
Affiliation(s)
- Daniel Gleditzsch
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| | - Patrick Pausch
- b Philipps-University-Marburg , LOEWE Center for synthetic Microbiology (Synmikro) & Faculty of Chemistry , Marburg , Germany
| | - Hanna Müller-Esparza
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| | - Ahsen Özcan
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| | - Xiaohan Guo
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| | - Gert Bange
- b Philipps-University-Marburg , LOEWE Center for synthetic Microbiology (Synmikro) & Faculty of Chemistry , Marburg , Germany
| | - Lennart Randau
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| |
Collapse
|
176
|
Meeske AJ, Marraffini LA. RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems. Mol Cell 2018; 71:791-801.e3. [PMID: 30122537 PMCID: PMC7955661 DOI: 10.1016/j.molcel.2018.07.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022]
Abstract
All immune systems use precise target recognition to interrogate foreign invaders. During CRISPR-Cas immunity, prokaryotes capture short spacer sequences from infecting viruses and insert them into the CRISPR array. Transcription and processing of the CRISPR locus generate small RNAs containing the spacer and repeat sequences that guide Cas nucleases to cleave a complementary protospacer in the invading nucleic acids. In most CRISPR systems, sequences flanking the protospacer drastically affect cleavage. Here, we investigated the target requirements of the recently discovered RNA-targeting type VI-A CRISPR-Cas system in its natural host, Listeria seeligeri. We discovered that target RNAs with extended complementarity between the protospacer flanking sequence and the repeat sequence of the guide RNA are not cleaved by the type VI-A nuclease Cas13, neither in vivo nor in vitro. These findings establish fundamental rules for the design of Cas13-based technologies and provide a mechanism for preventing self-targeting in type VI-A systems.
Collapse
Affiliation(s)
- Alexander J Meeske
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
177
|
Stout EA, Sanozky-Dawes R, Goh YJ, Crawley AB, Klaenhammer TR, Barrangou R. Deletion-based escape of CRISPR-Cas9 targeting in Lactobacillus gasseri. Microbiology (Reading) 2018; 164:1098-1111. [DOI: 10.1099/mic.0.000689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emily A. Stout
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rosemary Sanozky-Dawes
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yong Jun Goh
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexandra B. Crawley
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
| | - Todd R. Klaenhammer
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
178
|
Abstract
The diversity, modularity, and efficacy of CRISPR-Cas systems are driving a biotechnological revolution. RNA-guided Cas enzymes have been adopted as tools to manipulate the genomes of cultured cells, animals, and plants, accelerating the pace of fundamental research and enabling clinical and agricultural breakthroughs. We describe the basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies. We discuss the rapidly evolving landscape of CRISPR-Cas applications, from gene editing to transcriptional regulation, imaging, and diagnostics. Continuing functional dissection and an expanding landscape of applications position CRISPR-Cas tools at the cutting edge of nucleic acid manipulation that is rewriting biology.
Collapse
Affiliation(s)
- Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
179
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
180
|
Crawley AB, Henriksen ED, Stout E, Brandt K, Barrangou R. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Sci Rep 2018; 8:11544. [PMID: 30068963 PMCID: PMC6070500 DOI: 10.1038/s41598-018-29746-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas systems provide immunity against phages and plasmids in bacteria and archaea. Despite the popularity of CRISPR-Cas9 based genome editing, few endogenous systems have been characterized to date. Here, we sampled 1,262 publically available lactobacilli genomes found them to be enriched with CRISPR-Cas adaptive immunity. While CRISPR-Cas is ubiquitous in some Lactobacillus species, CRISPR-Cas content varies at the strain level in most Lactobacillus species. We identified that Type II is the most abundant type across the genus, with II-A being the most dominant sub-type. We found that many Type II-A systems are actively transcribed, and encode spacers that efficiently provide resistance against plasmid uptake. Analysis of various CRISPR transcripts revealed that guide sequences are highly diverse in terms of crRNA and tracrRNA length and structure. Interference assays revealed highly diverse target PAM sequences. Lastly, we show that these systems can be readily repurposed for self-targeting by expressing an engineered single guide RNA. Our results reveal that Type II-A systems in lactobacilli are naturally active in their native host in terms of expression and efficiently targeting invasive and genomic DNA. Together, these systems increase the possible Cas9 targeting space and provide multiplexing potential in native hosts and heterologous genome editing purpose.
Collapse
Affiliation(s)
- Alexandra B Crawley
- North Carolina State University Functional Genomics, Raleigh, NC, 27695, USA
| | - Emily D Henriksen
- North Carolina State University Department of Food, Bioprocessing and Nutrition Sciences, Raleigh, NC, 27695, USA
| | - Emily Stout
- North Carolina State University Department of Food, Bioprocessing and Nutrition Sciences, Raleigh, NC, 27695, USA
| | - Katelyn Brandt
- North Carolina State University Functional Genomics, Raleigh, NC, 27695, USA
| | - Rodolphe Barrangou
- North Carolina State University Functional Genomics, Raleigh, NC, 27695, USA.
- North Carolina State University Department of Food, Bioprocessing and Nutrition Sciences, Raleigh, NC, 27695, USA.
| |
Collapse
|
181
|
Foster K, Kalter J, Woodside W, Terns RM, Terns MP. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. RNA Biol 2018; 16:449-460. [PMID: 29995577 DOI: 10.1080/15476286.2018.1493334] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with RNA-based adaptive immunity against viruses and plasmids. A unique feature of Type III CRISPR-Cas systems is that they selectively target transcriptionally-active invader DNA, and can cleave both the expressed RNA transcripts and source DNA. The Type III-A effector crRNP (CRISPR RNA-Cas protein complex), which contains Cas proteins Csm1-5, recognizes and degrades invader RNA and DNA in a crRNA-guided, manner. Interestingly, Type III-A systems also employ Csm6, an HEPN family ribonuclease that does not stably associate with the Type III-A effector crRNP, but nevertheless contributes to defense via mechanistic details that are still being determined. Here, we investigated the mechanism of action of Csm6 in Type III-A CRISPR-Cas systems from Lactococcus lactis, Staphylococcus epidermidis, and Streptococcus thermophilus expressed in Escherichia coli. We found that L. lactis and S. epidermidis Csm6 cleave RNA specifically after purines in vitro, similar to the activity reported for S. thermophilus Csm6. Moreover, L. lactis Csm6 functions as a divalent metal-independent, single strand-specific endoribonuclease that depends on the conserved HEPN domain. In vivo, we show that deletion of csm6 or expression of an RNase-defective form of Csm6 disrupts crRNA-dependent loss of plasmid DNA in all three systems expressed in E. coli. Mutations in the Csm1 palm domain, which are known to deactivate Csm6 ribonuclease activity, also prevent plasmid loss in the three systems. The results indicate that Csm6 ribonuclease activity rather than Csm1-mediated DNase activity effects anti-plasmid immunity by the three Type III-A systems investigated.
Collapse
Affiliation(s)
- Kawanda Foster
- a Department of Microbiology , University of Georgia , Athens , GA , USA
| | - Joshua Kalter
- b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA
| | - Walter Woodside
- a Department of Microbiology , University of Georgia , Athens , GA , USA
| | - Rebecca M Terns
- b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA
| | - Michael P Terns
- a Department of Microbiology , University of Georgia , Athens , GA , USA.,b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA.,c Department of Genetics , University of Georgia , Athens , GA , USA
| |
Collapse
|
182
|
Shu M, Fu R, Wang W. A bacteriophage model based on CRISPR/Cas immune system in a chemostat. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2018; 14:1361-1377. [PMID: 29161865 DOI: 10.3934/mbe.2017070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Clustered regularly interspaced short palindromic repeats(CRISPRs) along with Cas proteins are a widespread immune system across bacteria and archaea. In this paper, a mathematical model in a chemostat is proposed to investigate the effect of CRISPR/Cas on the bacteriophage dynamics. It is shown that the introduction of CRISPR/Cas can induce a backward bifurcation and transcritical bifurcation. Numerical simulations reveal the coexistence of a stable infection-free equilibrium with an infection equilibrium, or a stable infection-free equilibrium with a stable periodic solution.
Collapse
Affiliation(s)
- Mengshi Shu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Rui Fu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Wendi Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China
| |
Collapse
|
183
|
Hatoum-Aslan A. Phage Genetic Engineering Using CRISPR⁻Cas Systems. Viruses 2018; 10:E335. [PMID: 29921752 PMCID: PMC6024849 DOI: 10.3390/v10060335] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/17/2018] [Accepted: 06/17/2018] [Indexed: 12/26/2022] Open
Abstract
Since their discovery over a decade ago, the class of prokaryotic immune systems known as CRISPR⁻Cas have afforded a suite of genetic tools that have revolutionized research in model organisms spanning all domains of life. CRISPR-mediated tools have also emerged for the natural targets of CRISPR⁻Cas immunity, the viruses that specifically infect bacteria, or phages. Despite their status as the most abundant biological entities on the planet, the majority of phage genes have unassigned functions. This reality underscores the need for robust genetic tools to study them. Recent reports have demonstrated that CRISPR⁻Cas systems, specifically the three major types (I, II, and III), can be harnessed to genetically engineer phages that infect diverse hosts. Here, the mechanisms of each of these systems, specific strategies used, and phage editing efficacies will be reviewed. Due to the relatively wide distribution of CRISPR⁻Cas systems across bacteria and archaea, it is anticipated that these immune systems will provide generally applicable tools that will advance the mechanistic understanding of prokaryotic viruses and accelerate the development of novel technologies based on these ubiquitous organisms.
Collapse
Affiliation(s)
- Asma Hatoum-Aslan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
184
|
Bronchud MH. Are aggressive epithelial cancers 'a disease' of Eutherian mammals? Ecancermedicalscience 2018; 12:840. [PMID: 30034517 PMCID: PMC6027979 DOI: 10.3332/ecancer.2018.840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Placental immune editing switches (PIES) have not evolved to prevent or to cause cancer but to make feto-maternal immune tolerance possible, which is at the very core of our placental mammalian ('Eutherian') nature. Aggressive epithelial cancers might be an unfortunate 'side effect' of this highly sophisticated biological nature. Microenvironmental properties in the placenta and decidua are thought to be a key to feto-maternal immune tolerance. Recently, in 2016-2018, we published the first human genomic and epigenomic evidence of similar gene expression profiles in immune regulatory genes in cancer (primary lobular infiltrating breast cancer and ipsilateral axillary metastatic lymph nodes) and both placenta and decidua of the same young patient with breast carcinoma during pregnancy. These findings led us to speculate that ectopic expression, or repression, of 'PIES' might be used by cancer cells during carcinogenesis or cancer progression to elude immune vigilance in spite of tumour-associated antigens or evolving neo antigenic landscapes. Cancers are well known to frequently express embryonic antigens, such as carcinoembryonic antigen, used as cancer markers and detectable in the blood circulation, or to express ectopic hormones. Why should cancer cells invent de novo complex new immune suppression mechanisms, if they could simply use innate ones developed during the long-term evolution of placental mammals in order to hide fetal paternal antigens from the mother's own immune system? Monotremata (Prototheria-like Echidnas or Platypus Ornithoryncus) are nonplacental egg-laying mammals and, in spite of rudimentary breast epithelial ducts and lobules, they are seldom reported to suffer from aggressive breast cancers.
Collapse
Affiliation(s)
- Miguel H Bronchud
- GenesisCare Corachan Clinic, Calle Buigas 19, 08017 Barcelona, Spain
| |
Collapse
|
185
|
Chen Y, Spitzer S, Agathou S, Karadottir RT, Smith A. Gene Editing in Rat Embryonic Stem Cells to Produce In Vitro Models and In Vivo Reporters. Stem Cell Reports 2018; 9:1262-1274. [PMID: 29020614 PMCID: PMC5639479 DOI: 10.1016/j.stemcr.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Rat embryonic stem cells (ESCs) offer the potential for sophisticated genome engineering in this valuable biomedical model species. However, germline transmission has been rare following conventional homologous recombination and clonal selection. Here, we used the CRISPR/Cas9 system to target genomic mutations and insertions. We first evaluated utility for directed mutagenesis and recovered clones with biallelic deletions in Lef1. Mutant cells exhibited reduced sensitivity to glycogen synthase kinase 3 inhibition during self-renewal. We then generated a non-disruptive knockin of dsRed at the Sox10 locus. Two clones produced germline chimeras. Comparative expression of dsRed and SOX10 validated the fidelity of the reporter. To illustrate utility, live imaging of dsRed in neonatal brain slices was employed to visualize oligodendrocyte lineage cells for patch-clamp recording. Overall, these results show that CRISPR/Cas9 gene editing technology in germline-competent rat ESCs is enabling for in vitro studies and for generating genetically modified rats. Gene mutation and homologous recombination in rat ESCs using CRISPR/Cas9 Lef1 mutants exhibit predicted loss of hypersensitivity to GSK3 inhibition Sox10 knockin rat provides a vital reporter of neural crest and oligodendroglia Sox10::dsRed facilitates patch-clamp recording from oligodendroglial lineage cells
Collapse
Affiliation(s)
- Yaoyao Chen
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sonia Spitzer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sylvia Agathou
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ragnhildur Thora Karadottir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
186
|
Abstract
Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.
Collapse
Affiliation(s)
- Viktorija Globyte
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
| | - Sung Hyun Kim
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
| |
Collapse
|
187
|
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) constitute a multi-functional, constantly evolving immune system in bacteria and archaea cells. A heritable, molecular memory is generated of phage, plasmids, or other mobile genetic elements that attempt to attack the cell. This memory is used to recognize and interfere with subsequent invasions from the same genetic elements. This versatile prokaryotic tool has also been used to advance applications in biotechnology. Here we review a large body of CRISPR-Cas research to explore themes of evolution and selection, population dynamics, horizontal gene transfer, specific and cross-reactive interactions, cost and regulation, non-immunological CRISPR functions that boost host cell robustness, as well as applicable mechanisms for efficient and specific genetic engineering. We offer future directions that can be addressed by the physics community. Physical understanding of the CRISPR-Cas system will advance uses in biotechnology, such as developing cell lines and animal models, cell labeling and information storage, combatting antibiotic resistance, and human therapeutics.
Collapse
Affiliation(s)
- Melia E Bonomo
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America. Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
| | | |
Collapse
|
188
|
Gao R, Feyissa BA, Croft M, Hannoufa A. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. PLANTA 2018; 247:1043-1050. [PMID: 29492697 DOI: 10.1007/s00425-018-2866-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/21/2018] [Indexed: 05/18/2023]
Abstract
The CRISPR/Cas9 technique was successfully used to edit the genome of the obligatory outcrossing plant species Medicago sativa L. (alfalfa). RNA-guided genome engineering using Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)/Cas9 technology enables a variety of applications in plants. Successful application and validation of the CRISPR technique in a multiplex genome, such as that of M. sativa (alfalfa) will ultimately lead to major advances in the improvement of this crop. We used CRISPR/Cas9 technique to mutate squamosa promoter binding protein like 9 (SPL9) gene in alfalfa. Because of the complex features of the alfalfa genome, we first used droplet digital PCR (ddPCR) for high-throughput screening of large populations of CRISPR-modified plants. Based on the results of genome editing rates obtained from the ddPCR screening, plants with relatively high rates were subjected to further analysis by restriction enzyme digestion/PCR amplification analyses. PCR products encompassing the respective small guided RNA target locus were then sub-cloned and sequenced to verify genome editing. In summary, we successfully applied the CRISPR/Cas9 technique to edit the SPL9 gene in a multiplex genome, providing some insights into opportunities to apply this technology in future alfalfa breeding. The overall efficiency in the polyploid alfalfa genome was lower compared to other less-complex plant genomes. Further refinement of the CRISPR technology system will thus be required for more efficient genome editing in this plant.
Collapse
Affiliation(s)
- Ruimin Gao
- Agriculture and Agri-Food Canada, London, ON, Canada
| | - Biruk A Feyissa
- Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Mana Croft
- Agriculture and Agri-Food Canada, London, ON, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
189
|
Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018; 1:141-158. [PMID: 31021200 PMCID: PMC6636882 DOI: 10.1089/crispr.2018.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The famed physicist-turned-biologist, Max Delbrück, once remarked that, for physicists, "the field of bacterial viruses is a fine playground for serious children who ask ambitious questions." Early discoveries in that playground helped establish molecular genetics, and half a century later, biologists delving into the same field have ushered in the era of precision genome engineering. The focus has of course shifted-from bacterial viruses and their mechanisms of infection to the bacterial hosts and their mechanisms of immunity-but it is the very same evolutionary arms race that continues to awe and inspire researchers worldwide. In this review, we explore the remarkable diversity of CRISPR-Cas adaptive immune systems, describe the molecular components that mediate nucleic acid targeting, and outline the use of these RNA-guided machines for biotechnology applications. CRISPR-Cas research has yielded far more than just Cas9-based genome-editing tools, and the wide-reaching, innovative impacts of this fascinating biological playground are sure to be felt for years to come.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| |
Collapse
|
190
|
Villarreal LP, Witzany G. Editorial: Genome Invading RNA Networks. Front Microbiol 2018; 9:581. [PMID: 29651278 PMCID: PMC5885774 DOI: 10.3389/fmicb.2018.00581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
191
|
Wu J, Deng A, Sun Q, Bai H, Sun Z, Shang X, Zhang Y, Liu Q, Liang Y, Liu S, Che Y, Wen T. Bacterial Genome Editing via a Designed Toxin-Antitoxin Cassette. ACS Synth Biol 2018; 7:822-831. [PMID: 28094982 DOI: 10.1021/acssynbio.6b00287] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Manipulating the bacterial genomes in an efficient manner is essential to biological and biotechnological research. Here, we reprogrammed the bacterial TA systems as the toxin counter-selectable cassette regulated by an antitoxin switch (TCCRAS) for genetic modifications in the extensively studied and utilized Gram-positive bacteria, B. subtilis and Corynebacterium glutamicum. In the five characterized type II TA systems, the RelBE complex can specifically and efficiently regulate cell growth and death by the conditionally controlled antitoxin RelB switch, thereby serving as a novel counter-selectable cassette to establish the TCCRAS system. Using a single vector, such a system has been employed to perform in-frame deletion, functional knock-in, gene replacement, precise point mutation, large-scale insertion, and especially, deletion of the fragments up to 194.9 kb in B. subtilis. In addition, the biosynthesis of lycopene was first achieved in B. subtilis using TCCRAS to integrate a 5.4-kb fusion cluster ( P spac- crtI- crtE- crtB). The system was further adapted for gene knockdown and replacement, and large-scale deletion of the fragments up to 179.8 kb in C. glutamicum, with the mutation efficiencies increased by 0.8-1.0-fold compared to the conventional SacB method. TCCRAS thus holds promise as an effective and versatile genome-scale engineering technology for metabolic engineering and synthetic genomics research in a broad range of the Gram-positive bacteria.
Collapse
Affiliation(s)
- Jie Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinyun Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaopeng Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Shang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Liang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Che
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid medical school, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
192
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
193
|
Abstract
CRISPR-Cas genome editing technologies have revolutionized modern molecular biology by making targeted DNA edits simple and scalable. These technologies are developed by domesticating naturally occurring microbial adaptive immune systems that display wide diversity of functionality for targeted nucleic acid cleavage. Several CRISPR-Cas single effector enzymes have been characterized and engineered for use in mammalian cells. The unique properties of the single effector enzymes can make a critical difference in experimental use or targeting specificity. This review describes known single effector enzymes and discusses their use in genome engineering applications.
Collapse
Affiliation(s)
- Neena K. Pyzocha
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sidi Chen
- Department of Genetics, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- System Biology Institute, 850 West Campus Drive, ISTC 361, West Haven, Connecticut 06516, United States
- MCGD Program, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Immunobiology Program, Yale University, 300 Cedar Street, New Haven, Connecticut 06520, United States
- Comprehensive Cancer Center, Yale University, New Haven, Connecticut 06510, United States
- Stem Cell Center, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
194
|
Niewoehner O, Jinek M. Specialized Weaponry: How a Type III-A CRISPR-Cas System Excels at Combating Phages. Cell Host Microbe 2018; 22:258-259. [PMID: 28910631 DOI: 10.1016/j.chom.2017.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas-mediated defense against phage invaders usually requires recognition of short sequences, termed protospacer-adjacent motifs (PAMs), in phage DNA. In this issue of Cell Host & Microbe, Pyenson et al. (2017) show that the lack of a PAM requirement in some CRISPR-Cas systems prevents interference evasion and facilitates phage extinction.
Collapse
Affiliation(s)
- Ole Niewoehner
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
195
|
Abstract
ABSTRACT
Conjugative plasmids are the main carriers of transmissible antibiotic resistance (AbR) genes. For that reason, strategies to control plasmid transmission have been proposed as potential solutions to prevent AbR dissemination. Natural mechanisms that bacteria employ as defense barriers against invading genomes, such as restriction-modification or CRISPR-Cas systems, could be exploited to control conjugation. Besides, conjugative plasmids themselves display mechanisms to minimize their associated burden or to compete with related or unrelated plasmids. Thus, FinOP systems, composed of FinO repressor protein and FinP antisense RNA, aid plasmids to regulate their own transfer; exclusion systems avoid conjugative transfer of related plasmids to the same recipient bacteria; and fertility inhibition systems block transmission of unrelated plasmids from the same donor cell. Artificial strategies have also been designed to control bacterial conjugation. For instance, intrabodies against R388 relaxase expressed in recipient cells inhibit plasmid R388 conjugative transfer; pIII protein of bacteriophage M13 inhibits plasmid F transmission by obstructing conjugative pili; and unsaturated fatty acids prevent transfer of clinically relevant plasmids in different hosts, promoting plasmid extinction in bacterial populations. Overall, a number of exogenous and endogenous factors have an effect on the sophisticated process of bacterial conjugation. This review puts them together in an effort to offer a wide picture and inform research to control plasmid transmission, focusing on Gram-negative bacteria.
Collapse
|
196
|
Bari SMN, Walker FC, Cater K, Aslan B, Hatoum-Aslan A. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10. ACS Synth Biol 2017; 6:2316-2325. [PMID: 28885820 DOI: 10.1021/acssynbio.7b00240] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Staphylococci are prevalent skin-dwelling bacteria that are also leading causes of antibiotic-resistant infections. Viruses that infect and lyse these organisms (virulent staphylococcal phages) can be used as alternatives to conventional antibiotics and represent promising tools to eliminate or manipulate specific species in the microbiome. However, since over half their genes have unknown functions, virulent staphylococcal phages carry inherent risk to cause unknown downstream side effects. Further, their swift and destructive reproductive cycle make them intractable by current genetic engineering techniques. CRISPR-Cas10 is an elaborate prokaryotic immune system that employs small RNAs and a multisubunit protein complex to detect and destroy phages and other foreign nucleic acids. Some staphylococci naturally possess CRISPR-Cas10 systems, thus providing an attractive tool already installed in the host chromosome to harness for phage genome engineering. However, the efficiency of CRISPR-Cas10 immunity against virulent staphylococcal phages and corresponding utility as a tool to facilitate their genome editing has not been explored. Here, we show that the CRISPR-Cas10 system native to Staphylococcus epidermidis exhibits robust immunity against diverse virulent staphylococcal phages. On the basis of this activity, a general two-step approach was developed to edit these phages that relies upon homologous recombination machinery encoded in the host. Variations of this approach to edit toxic phage genes and access phages that infect CRISPR-less staphylococci are also presented. This versatile set of genetic tools enables the systematic study of phage genes of unknown functions and the design of genetically defined phage-based antimicrobials that can eliminate or manipulate specific Staphylococcus species.
Collapse
Affiliation(s)
- S. M. Nayeemul Bari
- Department of Biological
Sciences, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Forrest C. Walker
- Department of Biological
Sciences, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Katie Cater
- Department of Biological
Sciences, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Barbaros Aslan
- Department of Biological
Sciences, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Asma Hatoum-Aslan
- Department of Biological
Sciences, University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
197
|
Techniques and strategies employing engineered transcription factors. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
198
|
Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0496. [PMID: 27672148 PMCID: PMC5052741 DOI: 10.1098/rstb.2015.0496] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Frank Hille
- Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin 10117, Germany The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| |
Collapse
|
199
|
Leon LM, Mendoza SD, Bondy-Denomy J. How bacteria control the CRISPR-Cas arsenal. Curr Opin Microbiol 2017; 42:87-95. [PMID: 29169146 DOI: 10.1016/j.mib.2017.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
CRISPR-Cas systems are adaptive immune systems that protect their hosts from predation by bacteriophages (phages) and parasitism by other mobile genetic elements (MGEs). Given the potent nuclease activity of CRISPR effectors, these enzymes must be carefully regulated to minimize toxicity and maximize anti-phage immunity. While attention has been given to the transcriptional regulation of these systems (reviewed in [1]), less consideration has been given to the crucial post-translational processes that govern enzyme activation and inactivation. Here, we review recent findings that describe how Cas nucleases are controlled in diverse systems to provide a robust anti-viral response while limiting auto-immunity. We also draw comparisons to a distinct bacterial immune system, restriction-modification.
Collapse
Affiliation(s)
- Lina M Leon
- Department of Microbiology & Immunology, University of California, San Francisco, United States
| | - Senén D Mendoza
- Department of Microbiology & Immunology, University of California, San Francisco, United States
| | - Joseph Bondy-Denomy
- Department of Microbiology & Immunology, University of California, San Francisco, United States; Quantitative Biosciences Institute, University of California, San Francisco, United States.
| |
Collapse
|
200
|
Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus. mSphere 2017; 2:mSphere00403-17. [PMID: 29152580 PMCID: PMC5687920 DOI: 10.1128/msphere.00403-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCCmec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive trinucleotide pairings between a selected target and the 5′ tag of crRNA can block targeting. These findings add to our understanding of the molecular mechanisms of the type III-A CRISPR-Cas system and provide a novel strategy for the exploitation of engineered CRISPR immunity against integrated MGEs in bacteria for clinical and industrial applications. CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCCmec). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5′ tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCEStaphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCCmec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive trinucleotide pairings between a selected target and the 5′ tag of crRNA can block targeting. These findings add to our understanding of the molecular mechanisms of the type III-A CRISPR-Cas system and provide a novel strategy for the exploitation of engineered CRISPR immunity against integrated MGEs in bacteria for clinical and industrial applications.
Collapse
|