151
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
152
|
Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q, Wang P. Ubiquitination of Nonhistone Proteins in Cancer Development and Treatment. Front Oncol 2021; 10:621294. [PMID: 33643919 PMCID: PMC7905169 DOI: 10.3389/fonc.2020.621294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination, a crucial post-translation modification, regulates the localization and stability of the substrate proteins including nonhistone proteins. The ubiquitin-proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular processes such as DNA repair, transcription, signal transduction, and apoptosis. Its dysregulation induces various diseases including cancer, and the identification of this process may provide potential therapeutic targets for cancer treatment. In this review, we summarize the regulatory roles of key UPS members on major nonhistone substrates in cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in modulating protein target levels with the aid of UPS.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ling Feng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ping Wang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
153
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
154
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
155
|
Expanding the role of proteasome homeostasis in Parkinson's disease: beyond protein breakdown. Cell Death Dis 2021; 12:154. [PMID: 33542205 PMCID: PMC7862491 DOI: 10.1038/s41419-021-03441-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Proteasome is the principal hydrolytic machinery responsible for the great majority of protein degradation. The past three decades have testified prominent advances about proteasome involved in almost every aspect of biological processes. Nonetheless, inappropriate increase or decrease in proteasome function is regarded as a causative factor in several diseases. Proteasome abundance and proper assembly need to be precisely controlled. Indeed, various neurodegenerative diseases including Parkinson's disease (PD) share a common pathological feature, intracellular protein accumulation such as α-synuclein. Proteasome activation may effectively remove aggregates and prevent the neurodegeneration in PD, which provides a potential application for disease-modifying treatment. In this review, we build on the valuable discoveries related to different types of proteolysis by distinct forms of proteasome, and how its regulatory and catalytic particles promote protein elimination. Additionally, we summarize the emerging ideas on the proteasome homeostasis regulation by targeting transcriptional, translational, and post-translational levels. Given the imbalanced proteostasis in PD, the strategies for intensifying proteasomal degradation are advocated as a promising approach for PD clinical intervention.
Collapse
|
156
|
A fine balance between Prpf19 and Exoc7 in achieving degradation of aggregated protein and suppression of cell death in spinocerebellar ataxia type 3. Cell Death Dis 2021; 12:136. [PMID: 33542212 PMCID: PMC7862454 DOI: 10.1038/s41419-021-03444-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Polyglutamine (polyQ) diseases comprise Huntington's disease and several subtypes of spinocerebellar ataxia, including spinocerebellar ataxia type 3 (SCA3). The genomic expansion of coding CAG trinucleotide sequence in disease genes leads to the production and accumulation of misfolded polyQ domain-containing disease proteins, which cause cellular dysfunction and neuronal death. As one of the principal cellular protein clearance pathways, the activity of the ubiquitin-proteasome system (UPS) is tightly regulated to ensure efficient clearance of damaged and toxic proteins. Emerging evidence demonstrates that UPS plays a crucial role in the pathogenesis of polyQ diseases. Ubiquitin (Ub) E3 ligases catalyze the transfer of a Ub tag to label proteins destined for proteasomal clearance. In this study, we identified an E3 ligase, pre-mRNA processing factor 19 (Prpf19/prp19), that modulates expanded ataxin-3 (ATXN3-polyQ), disease protein of SCA3, induced neurodegeneration in both mammalian and Drosophila disease models. We further showed that Prpf19/prp19 promotes poly-ubiquitination and degradation of mutant ATXN3-polyQ protein. Our data further demonstrated the nuclear localization of Prpf19/prp19 is essential for eliciting its modulatory function towards toxic ATXN3-polyQ protein. Intriguingly, we found that exocyst complex component 7 (Exoc7/exo70), a Prpf19/prp19 interacting partner, modulates expanded ATXN3-polyQ protein levels and toxicity in an opposite manner to Prpf19/prp19. Our data suggest that Exoc7/exo70 exerts its ATXN3-polyQ-modifying effect through regulating the E3 ligase function of Prpf19/prp19. In summary, this study allows us to better define the mechanistic role of Exoc7/exo70-regulated Prpf19/prp19-associated protein ubiquitination pathway in SCA3 pathogenesis.
Collapse
|
157
|
Liu G, Liu Q, Yan B, Zhu Z, Xu Y. USP7 Inhibition Alleviates H 2O 2-Induced Injury in Chondrocytes via Inhibiting NOX4/NLRP3 Pathway. Front Pharmacol 2021; 11:617270. [PMID: 33584299 PMCID: PMC7879569 DOI: 10.3389/fphar.2020.617270] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA), the most common form of arthritis, is a very common joint disease that often affects middle-aged to elderly people. However, current treatment options for OA are predominantly palliative. Thus, understanding its pathological process and exploring its potential therapeutic approaches are of great importance. Rat chondrocytes were isolated and exposed to hydrogen peroxide (H2O2) to mimic OA. The effects of H2O2 on ubiquitin-specific protease 7 (USP7) expression, reactive oxygen species (ROS) levels, proliferation, inflammatory cytokine release, and pyroptosis were measured. USP7 was knocked down (KD) or overexpressed to investigate the role of USP7 in OA. Co-immunoprecipitation (Co-IP) was used to study the interaction between USP7 and NAD(P)H oxidases (NOX)4 as well as NOX4 ubiquitination. NOX4 inhibitor was applied to study the involvement of NOX4 in USP7-mediated OA development. USP7 inhibitor was given to OA animals to further investigate the role of USP7 in OA in vivo. Moreover, H2O2 treatment significantly increased USP7 expression, enhanced ROS levels, and inhibited proliferation in rat chondrocytes. The overexpression of USP7 enhanced pyroptosis, ROS production, interleukin (IL)-1β and IL-18 levels, and the expression level of NLRP3, GSDMD-N, active caspase-1, pro-caspase-1, matrix metalloproteinases (MMP) 1, and MMP13, which was abolished by ROS inhibition. The USP7 KD protected rat chondrocytes against H2O2-induced injury. Co-IP results showed that USP7 interacted with NOX4, and USP7 KD enhanced NOX4 ubiquitinylation. The inhibition of NOX4 blocked the pro-OA effect of USP7. Moreover, the USP7 inhibitor given to OA animals suppressed OA in vivo. USP7 inhibited NOX4 ubiquitination for degradation which leads to elevated ROS production. ROS subsequently activates NLPR3 inflammasome, leading to enhanced production of IL-1β and IL-18, GSDMD-N-dependent pyroptosis, and extracellular matrix remodeling. Thus, UPS7 contributes to the progression of OA via NOX4/ROS/NLPR3 axis.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingbai Liu
- Department of Orthopaedics, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, China
| | - Bin Yan
- Department of Orthopaedics, Taixing People's Hospital, Taixing, China
| | - Ziqiang Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
158
|
Fiolek TJ, Magyar CL, Wall TJ, Davies SB, Campbell MV, Savich CJ, Tepe JJ, Mosey RA. Dihydroquinazolines enhance 20S proteasome activity and induce degradation of α-synuclein, an intrinsically disordered protein associated with neurodegeneration. Bioorg Med Chem Lett 2021; 36:127821. [PMID: 33513387 DOI: 10.1016/j.bmcl.2021.127821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
Aggregates or oligomeric forms of many intrinsically disordered proteins (IDPs), including α-synuclein, are hallmarks of neurodegenerative diseases, like Parkinson's and Alzheimer's disease, and key contributors to their pathogenesis. Due to their disordered nature and therefore lack of defined drug-binding pockets, IDPs are difficult targets for traditional small molecule drug design and are often referred to as "undruggable". The 20S proteasome is the main protease that targets IDPs for degradation and therefore small molecule 20S proteasome enhancement presents a novel therapeutic strategy by which these undruggable IDPs could be targeted. The concept of 20S activation is still relatively new, with few potent activators having been identified thus far. Herein, we synthesized and evaluated a library of dihydroquinazoline analogues and discovered several promising new 20S proteasome activators. Further testing of top hits revealed that they can enhance 20S mediated degradation of α-synuclein, the IDP associated with Parkinson's disease.
Collapse
Affiliation(s)
- Taylor J Fiolek
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Christina L Magyar
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Tyler J Wall
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Steven B Davies
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Molly V Campbell
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Christopher J Savich
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| | - R Adam Mosey
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States.
| |
Collapse
|
159
|
Deubiquitylating enzymes in neuronal health and disease. Cell Death Dis 2021; 12:120. [PMID: 33483467 PMCID: PMC7822931 DOI: 10.1038/s41419-020-03361-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitylation and deubiquitylation play a pivotal role in protein homeostasis (proteostasis). Proteostasis shapes the proteome landscape in the human brain and its impairment is linked to neurodevelopmental and neurodegenerative disorders. Here we discuss the emerging roles of deubiquitylating enzymes in neuronal function and survival. We provide an updated perspective on the genetics, physiology, structure, and function of deubiquitylases in neuronal health and disease. ![]()
Collapse
|
160
|
Li Y, Yuan J. Role of deubiquitinating enzymes in DNA double-strand break repair. J Zhejiang Univ Sci B 2021; 22:63-72. [PMID: 33448188 DOI: 10.1631/jzus.b2000309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks (DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple mechanisms. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two main repair mechanisms for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair. Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes (DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new insights to combat human diseases and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yunhui Li
- The Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yuan
- The Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China. .,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
161
|
Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Int J Mol Sci 2021; 22:ijms22030986. [PMID: 33498168 PMCID: PMC7863924 DOI: 10.3390/ijms22030986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The large family of deubiquitinating enzymes (DUBs) are involved in the regulation of a plethora of processes carried out inside the cell by protein ubiquitination. Ubiquitination is a basic pathway responsible for the correct protein homeostasis in the cell, which could regulate the fate of proteins through the ubiquitin–proteasome system (UPS). In this review we will focus on recent advances on the molecular mechanisms and specificities found for some types of DUBs enzymes, highlighting illustrative examples in which the regulatory mechanism for DUBs has been understood in depth at the molecular level by structural biology. DUB proteases are responsible for cleavage and regulation of the multiple types of ubiquitin linkages that can be synthesized inside the cell, known as the ubiquitin-code, which are tightly connected to specific substrate functions. We will display some strategies carried out by members of different DUB families to provide specificity on the cleavage of particular ubiquitin linkages. Finally, we will also discuss recent progress made for the development of drug compounds targeting DUB proteases, which are usually correlated to the progress of many pathologies such as cancer and neurodegenerative diseases.
Collapse
|
162
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
163
|
Schmidt MF, Gan ZY, Komander D, Dewson G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ 2021; 28:570-590. [PMID: 33414510 PMCID: PMC7862249 DOI: 10.1038/s41418-020-00706-7] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterised by progressive damage to the nervous system including the selective loss of vulnerable populations of neurons leading to motor symptoms and cognitive decline. Despite millions of people being affected worldwide, there are still no drugs that block the neurodegenerative process to stop or slow disease progression. Neuronal death in these diseases is often linked to the misfolded proteins that aggregate within the brain (proteinopathies) as a result of disease-related gene mutations or abnormal protein homoeostasis. There are two major degradation pathways to rid a cell of unwanted or misfolded proteins to prevent their accumulation and to maintain the health of a cell: the ubiquitin–proteasome system and the autophagy–lysosomal pathway. Both of these degradative pathways depend on the modification of targets with ubiquitin. Aging is the primary risk factor of most neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. With aging there is a general reduction in proteasomal degradation and autophagy, and a consequent increase of potentially neurotoxic protein aggregates of β-amyloid, tau, α-synuclein, SOD1 and TDP-43. An often over-looked yet major component of these aggregates is ubiquitin, implicating these protein aggregates as either an adaptive response to toxic misfolded proteins or as evidence of dysregulated ubiquitin-mediated degradation driving toxic aggregation. In addition, non-degradative ubiquitin signalling is critical for homoeostatic mechanisms fundamental for neuronal function and survival, including mitochondrial homoeostasis, receptor trafficking and DNA damage responses, whilst also playing a role in inflammatory processes. This review will discuss the current understanding of the role of ubiquitin-dependent processes in the progressive loss of neurons and the emergence of ubiquitin signalling as a target for the development of much needed new drugs to treat neurodegenerative disease. ![]()
Collapse
Affiliation(s)
- Marlene F Schmidt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Zhong Yan Gan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - David Komander
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
164
|
Onyango IG, Bennett JP, Stokin GB. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen Res 2021; 16:1467-1482. [PMID: 33433460 PMCID: PMC8323696 DOI: 10.4103/1673-5374.303007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a heterogeneous group of debilitating disorders with multifactorial etiologies and pathogeneses that manifest distinct molecular mechanisms and clinical manifestations with abnormal protein dynamics and impaired bioenergetics. Mitochondrial dysfunction is emerging as an important feature in the etiopathogenesis of these age-related neurodegenerative diseases. The prevalence and incidence of these diseases is on the rise with the increasing global population and average lifespan. Although many therapeutic approaches have been tested, there are currently no effective treatment routes for the prevention or cure of these diseases. We present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in these diseases and highlight recent advances in novel therapeutic strategies targeting neuronal bioenergetics as potential approach for treating these diseases.
Collapse
Affiliation(s)
- Isaac G Onyango
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - James P Bennett
- Neurodegeneration Therapeutics, 3050A Berkmar Drive, Charlottesville, VA, USA
| | - Gorazd B Stokin
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
165
|
Dash R, Ali MC, Jahan I, Munni YA, Mitra S, Hannan MA, Timalsina B, Oktaviani DF, Choi HJ, Moon IS. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev 2021; 65:101209. [PMID: 33181336 DOI: 10.1016/j.arr.2020.101209] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders. Cannabidiol (CBD), a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of CBD in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of CBD in these disorders. Because of its putative role in the proteostasis network in particular, CBD could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of CBD as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders. We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for aging proteinopathies.
Collapse
|
166
|
Zong Z, Zhang Z, Wu L, Zhang L, Zhou F. The Functional Deubiquitinating Enzymes in Control of Innate Antiviral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002484. [PMID: 33511009 PMCID: PMC7816709 DOI: 10.1002/advs.202002484] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Indexed: 05/11/2023]
Abstract
Innate antiviral immunity is the first line of host defense against invading viral pathogens. Immunity activation primarily relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Viral proteins or nucleic acids mainly engage three classes of PRRs: Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors initiate a series of signaling cascades that lead to the production of proinflammatory cytokines and type I interferon (IFN-I) in response to viral infection. This system requires precise regulation to avoid aberrant activation. Emerging evidence has unveiled the crucial roles that the ubiquitin system, especially deubiquitinating enzymes (DUBs), play in controlling immune responses. In this review, an overview of the most current findings on the function of DUBs in the innate antiviral immune pathways is provided. Insights into the role of viral DUBs in counteracting host immune responses are also provided. Furthermore, the prospects and challenges of utilizing DUBs as therapeutic targets for infectious diseases are discussed.
Collapse
Affiliation(s)
- Zhi Zong
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Zhengkui Zhang
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
| | - Long Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
167
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
168
|
The Potential of Proteolytic Chimeras as Pharmacological Tools and Therapeutic Agents. Molecules 2020; 25:molecules25245956. [PMID: 33339292 PMCID: PMC7766482 DOI: 10.3390/molecules25245956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The induction of protein degradation in a highly selective and efficient way by means of druggable molecules is known as targeted protein degradation (TPD). TPD emerged in the literature as a revolutionary idea: a heterobifunctional chimera with the capacity of creating an interaction between a protein of interest (POI) and a E3 ubiquitin ligase will induce a process of events in the POI, including ubiquitination, targeting to the proteasome, proteolysis and functional silencing, acting as a sort of degradative knockdown. With this programmed protein degradation, toxic and disease-causing proteins could be depleted from cells with potentially effective low drug doses. The proof-of-principle validation of this hypothesis in many studies has made the TPD strategy become a new attractive paradigm for the development of therapies for the treatment of multiple unmet diseases. Indeed, since the initial protacs (Proteolysis targeting chimeras) were posited in the 2000s, the TPD field has expanded extraordinarily, developing innovative chemistry and exploiting multiple degradation approaches. In this article, we review the breakthroughs and recent novel concepts in this highly active discipline.
Collapse
|
169
|
Wirth M, Schick M, Keller U, Krönke J. Ubiquitination and Ubiquitin-Like Modifications in Multiple Myeloma: Biology and Therapy. Cancers (Basel) 2020; 12:cancers12123764. [PMID: 33327527 PMCID: PMC7764993 DOI: 10.3390/cancers12123764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Multiple myeloma is a cancer of plasma cells causing bone fractures, anemia, renal insufficiency and hypercalcemia. Despite the introduction of new drugs in the past years, it still remains incurable and most patients die from the disease. Multiple myeloma cells are characterized by the production of high amounts of monoclonal antibodies. Therefore, maintaining protein homeostasis from synthesis through folding to degradation is crucial for multiple myeloma cells. While protein ubiquitination and organized degradation are typically considered critical for cellular health, an emerging strategy is to block these processes to induce cell death in disease-state cells characterized by protein over-production. Recent development of compounds that alter the ubiquitin proteasome pathway and drugs that affect ubiquitin-like modifications appear promising in both preclinically and in clinical trials. This review summarizes the impact of protein modifications such as ubiquitination and ubiquitin-like modifications in the biology of multiple myeloma and how it can be exploited to develop new effective therapies for multiple myeloma. Abstract Multiple myeloma is a genetically heterogeneous plasma cell malignancy characterized by organ damage and a massive production of (in-)complete monoclonal antibodies. Coping with protein homeostasis and post-translational regulation is therefore essential for multiple myeloma cells to survive. Furthermore, post-translational modifications such as ubiquitination and SUMOylation play key roles in essential pathways in multiple myeloma, including NFκB signaling, epigenetic regulation, as well as DNA damage repair. Drugs modulating the ubiquitin–proteasome system, such as proteasome inhibitors and thalidomide analogs, are approved and highly effective drugs in multiple myeloma. In this review, we focus on ubiquitin and ubiquitin-like modifications in the biology and current developments of new treatments for multiple myeloma.
Collapse
Affiliation(s)
- Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-30-450-513-538
| |
Collapse
|
170
|
Deol KK, Crowe SO, Du J, Bisbee HA, Guenette RG, Strieter ER. Proteasome-Bound UCH37/UCHL5 Debranches Ubiquitin Chains to Promote Degradation. Mol Cell 2020; 80:796-809.e9. [PMID: 33156996 PMCID: PMC7718437 DOI: 10.1016/j.molcel.2020.10.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/13/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023]
Abstract
The linkage, length, and architecture of ubiquitin (Ub) chains are all important variables in providing tight control over many biological paradigms. There are clear roles for branched architectures in regulating proteasome-mediated degradation, but the proteins that selectively recognize and process these atypical chains are unknown. Here, using synthetic and enzyme-derived ubiquitin chains along with intact mass spectrometry, we report that UCH37/UCHL5, a proteasome-associated deubiquitinase, cleaves K48 branched chains. The activity and selectivity toward branched chains is markedly enhanced by the proteasomal Ub receptor RPN13/ADRM1. Using reconstituted proteasome complexes, we find that chain debranching promotes degradation of substrates modified with branched chains under multi-turnover conditions. These results are further supported by proteome-wide pulse-chase experiments, which show that the loss of UCH37 activity impairs global protein turnover. Our work therefore defines UCH37 as a debranching deubiquitinase important for promoting proteasomal degradation.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sean O Crowe
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Heather A Bisbee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Robert G Guenette
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
171
|
Silva MC, Haggarty SJ. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int J Mol Sci 2020; 21:ijms21238948. [PMID: 33255694 PMCID: PMC7728099 DOI: 10.3390/ijms21238948] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.
Collapse
|
172
|
Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ 2020; 28:439-454. [PMID: 33208890 DOI: 10.1038/s41418-020-00667-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin signaling is a sequence of events driving the fate of a protein based on the type of ubiquitin modifications attached. In the case of neurodegenerative diseases, ubiquitin signaling is mainly associated with degradation signals to process aberrant proteins, which form aggregates often fatal for the brain cells. This signaling is often perturbed by the aggregates themselves and leads to the accumulation of toxic aggregates and inclusion bodies that are deleterious due to a toxic gain of function. Decrease in quality control pathways is often seen with age and is a critical onset for the development of neurodegeneration. Many aggregates are now thought to propagate in a prion-like manner, where mutated proteins acting like seeds are transitioning from cell to cell, converting normal proteins to toxic aggregates. Modulation of ubiquitin signaling, by stimulating ubiquitin ligase activation, is a potential therapeutic strategy to treat patients with neurodegeneration diseases.
Collapse
Affiliation(s)
- François Le Guerroué
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
173
|
Adelakun N, Obaseki I, Adeniyi A, Fapohunda O, Obaseki E, Omotuyi O. Discovery of new promising USP14 inhibitors: computational evaluation of the thumb-palm pocket. J Biomol Struct Dyn 2020; 40:3060-3070. [PMID: 33170088 DOI: 10.1080/07391102.2020.1844803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin-specific protease 14 (USP14) is a member of the deubiquitinating enzymes (DUBs) involved in disrupting the ubiquitin-proteasome regulation system, responsible for the degradation of impaired and misfolded proteins, which is an essential mechanism in eukaryotic cells. The involvement of USP14 in cancer progression and neurodegenerative disorders has been reported. Thereof USP14 is a prime therapeutic target; hence, designing efficacious inhibitors against USP14 is central in curbing these conditions. Herein, we relied on structural bioinformatics methods incorporating molecular docking, molecular mechanics generalized born surface area (MM-GBSA), molecular dynamics simulation (MD simulation), and ADME to identify potential allosteric USP14 inhibitors. A library of over 733 compounds from the PubChem repository with >90% match to the IU1 chemical structure was screened in a multi-step framework to attain prospective drug-like inhibitors. Two potential lead compounds (CID 43013232 and CID 112370349) were shown to record better binding affinity compared to IU1, but with subtle difference to IU1-47, a 10-fold potent compound when compared to IU1. The stability of the lead molecules complexed with USP14 was studied via MD simulation. The molecules were found to be stable within the binding site throughout the 50 ns simulation time. Moreover, the protein-ligand interactions across the simulation run time suggest Phe331, Tyr476, and Gln197 as crucial residues for USP14 inhibition. Furthermore, in-silico pharmacological evaluation revealed the lead compounds as pharmacological sound molecules. Overall, the methods deployed in this study revealed two novel candidates that may show selective inhibitory activity against USP14, which could be exploited to produce potent and harmless USP14 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niyi Adelakun
- Chemogenomics Unit, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Ikponwmosa Obaseki
- Department of Biochemistry, Bells University of Technology, Ota, Nigeria
| | - Ayobami Adeniyi
- Chemogenomics Unit, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Oluwaseun Fapohunda
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Eseiwi Obaseki
- Department of Plant Science and Biotechnology, University of Benin, Benin City, Nigeria
| | - Olaposi Omotuyi
- Chemogenomics Unit, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
174
|
Wang D, Ma H, Zhao Y, Zhao J. Ubiquitin-specific protease 14 is a new therapeutic target for the treatment of diseases. J Cell Physiol 2020; 236:3396-3405. [PMID: 33135160 DOI: 10.1002/jcp.30124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Ubiquitin-specific protease 14 (USP14) is a ubiquitin-specific protease that is associated with the proteasome and plays important roles in cellular functions, viral infection, inflammatory responses, neurodegenerative diseases, and tumorigenesis. USP14 appears to have a dual function in regulating intracellular proteolytic degradation. USP14 impedes degradation of ubiquitinated proteins by removing ubiquitin chains from its substrates, while it could promote protein degradation via increasing proteasome activation. Increasing evidence has shown that USP14 is also involved in the regulation of autophagy. Thus, USP14 might act as a key regulator in two major intracellular proteolytic pathways: the ubiquitin-proteasome system (UPS) and autophagy. The important roles of USP14 in multiple diseases have encouraged the development of clinically viable USP14 antagonists. This review summarizes the current state of knowledge about the regulation of USP14 expression, activity, and its functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Haichun Ma
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
175
|
Suresh HG, Pascoe N, Andrews B. The structure and function of deubiquitinases: lessons from budding yeast. Open Biol 2020; 10:200279. [PMID: 33081638 PMCID: PMC7653365 DOI: 10.1098/rsob.200279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination is a key post-translational modification that regulates diverse cellular processes in eukaryotic cells. The specificity of ubiquitin (Ub) signalling for different bioprocesses and pathways is dictated by the large variety of mono-ubiquitination and polyubiquitination events, including many possible chain architectures. Deubiquitinases (DUBs) reverse or edit Ub signals with high sophistication and specificity, forming an integral arm of the Ub signalling machinery, thus impinging on fundamental cellular processes including DNA damage repair, gene expression, protein quality control and organellar integrity. In this review, we discuss the many layers of DUB function and regulation, with a focus on insights gained from budding yeast. Our review provides a framework to understand key aspects of DUB biology.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Natasha Pascoe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Brenda Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
176
|
Cao Y, Zhu H, He R, Kong L, Shao J, Zhuang R, Xi J, Zhang J. Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4327-4342. [PMID: 33116419 PMCID: PMC7585272 DOI: 10.2147/dddt.s265793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Proteasome is vital for intracellular protein homeostasis as it eliminates misfolded and damaged protein. Inhibition of proteasome has been validated as a powerful strategy for anti-cancer therapy, and several drugs have been approved for treatment of multiple myeloma. Recent studies indicate that proteasome has potent therapeutic effects on a variety of diseases besides cancer, including parasite infectious diseases, bacterial/fungal infections diseases, neurodegenerative diseases and autoimmune diseases. In this review, recent developments of proteasome inhibitors for various diseases and related structure activity relationships are going to be summarized.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| |
Collapse
|
177
|
Wang L, Bharti, Kumar R, Pavlov PF, Winblad B. Small molecule therapeutics for tauopathy in Alzheimer's disease: Walking on the path of most resistance. Eur J Med Chem 2020; 209:112915. [PMID: 33139110 DOI: 10.1016/j.ejmech.2020.112915] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by presence of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of tau protein. Currently there are close to 50 million people living with dementia and this figure is expected to increase to 75 million by 2030 putting a huge burden on the economy due to the health care cost. Considering the effects on quality of life of patients and the increasing burden on the economy, there is an enormous need of new disease modifying therapies to tackle this disease. The current therapies are dominated by only symptomatic treatments including cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers but no disease modifying treatments exist so far. After several failed attempts to develop drugs against amyloidopathy, tau targeting approaches have been in the main focus of drug development against AD. After an overview of the tauopathy in AD, this review summarizes recent findings on the development of small molecules as therapeutics targeting tau modification, aggregation, and degradation, and tau-oriented multi-target directed ligands. Overall, this work aims to provide a comprehensive and critical overview of small molecules which are being explored as a lead candidate for discovering drugs against tauopathy in AD.
Collapse
Affiliation(s)
- Lisha Wang
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rajnish Kumar
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Pavel F Pavlov
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Memory Clinic, Theme Aging, Karolinska University Hospital, 14186, Huddinge, Sweden
| | - Bengt Winblad
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Memory Clinic, Theme Aging, Karolinska University Hospital, 14186, Huddinge, Sweden.
| |
Collapse
|
178
|
Park JE, Trần TXT, Park N, Yeom J, Kim K, Kang MJ. The Function of Drosophila USP14 in Endoplasmic Reticulum Stress and Retinal Degeneration in a Model for Autosomal Dominant Retinitis Pigmentosa. BIOLOGY 2020; 9:biology9100332. [PMID: 33053617 PMCID: PMC7650538 DOI: 10.3390/biology9100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022]
Abstract
Simple Summary The present study shows the role of Drosophila USP14 under ER stress and ER stress related disease, autosomal dominant retinitis pigmentosa. Drosophila USP14 protects cell from ER stress triggered by ER stress-causing chemicals Drosophila S2 cells and suppresses the retinal degeneration in disease model for retinitis pigmentosa by regulating the stability of Rhodopsin-1. This study also indicates the dynamic reorganization of proteasome complex under ER stress. The modulation of USP14 could be a potential therapeutic strategy for treating the diseases associated with protein folding. Abstract Endoplasmic reticulum (ER) stress and its adaptive cellular response, the unfolded protein response (UPR), are involved in various diseases including neurodegenerative diseases, metabolic diseases, and even cancers. Here, we analyzed the novel function of ubiquitin-specific peptidase 14 (USP14) in ER stress. The overexpression of Drosophila USP14 protected the cells from ER stress without affecting the proteasomal activity. Null Hong Kong (NHK) and alpha-1-antitrypsin Z (ATZ) are ER-associated degradation substrates. The degradation of NHK, but not of ATZ, was delayed by USP14. USP14 restored the levels of rhodopsin-1 protein in a Drosophila model for autosomal dominant retinitis pigmentosa and suppressed the retinal degeneration in this model. In addition, we observed that proteasome complex is dynamically reorganized in response to ER stress in human 293T cells. These findings suggest that USP14 may be a therapeutic strategy in diseases associated with ER stress.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-E.P.); (T.X.T.T.); (N.P.)
| | - Thị Xuân Thùy Trần
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-E.P.); (T.X.T.T.); (N.P.)
| | - Nayoung Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-E.P.); (T.X.T.T.); (N.P.)
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Korea; (J.Y.); (K.K.)
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Korea; (J.Y.); (K.K.)
| | - Min-Ji Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-E.P.); (T.X.T.T.); (N.P.)
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Korea; (J.Y.); (K.K.)
- Correspondence:
| |
Collapse
|
179
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|
180
|
Huang L, Zhang Y, Zheng J, Ni N, Qin Q, Huang X, Huang Y. Grouper ubiquitin-specific protease 14 promotes iridovirus replication through negatively regulating interferon response. FISH & SHELLFISH IMMUNOLOGY 2020; 105:253-262. [PMID: 32697961 DOI: 10.1016/j.fsi.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitin-specific protease 14 (USP14), one of the USP family members which belong to deubiquitinating enzymes (DUBs), plays a key role in maintaining cellular protein homeostasis by trimming ubiquitin chains from their substrates. However, the roles of USP14 in response to virus infection still remains largely unknown. In the current study, a USP14 homolog from orange spotted grouper (EcUSP14) was cloned and its roles in innate immune response were investigated. EcUSP14 was composed of 1479 base pairs encoding a 492-amino acid (aa) polypeptide. Sequence analysis indicated that EcUSP14 shared 96.14% and 81.30% identity to USP14 of bicolor damselfish (Stegastes partitus) and humans (homo sapiens), respectively. EcUSP14 contains conserved ubiquitin-like (UBL) domain (aa 3-76) and peptidase-C19A domain (aa 106-481). In response to Singapore grouper iridovirus (SGIV) infection in vitro, EcUSP14 was significantly up-regulated. Subcellular localization showed that EcUSP14 was predominantly localized in the cytoplasm of grouper spleen (GS) cells and mostly co-localized with the viral assembly sites after SGIV infection. The ectopic expression of EcUSP14 significantly promoted the replication of SGIV, as demonstrated by the accelerated progression of severity of cytopathic effect (CPE), the increased viral gene transcription and viral protein synthesis during infection. Consistently, treatment with IU1, a USP14 specific inhibitor, significantly inhibited the replication of SGIV, suggesting that USP14 function as a pro-viral factor during SGIV replication. Further analysis showed that EcUSP14 overexpression decreased the promoter activities of interferon (IFN)-1, IFN-3, IFN-stimulated response element (ISRE), and nuclear factor of kappa B (NF-κB). Furthermore, the ectopic expression of EcUSP14 decreased the activities of IFN-1 promoter evoked by TANK-binding kinase (TBK)-1 and melanoma differentiation-associated protein (MDA)-5, but not stimulator of interferon genes (STING). Thus, we speculated that EcUSP14 facilitated virus replication by negatively regulating the IFN response. Taken together, our results firstly demonstrated that fish USP14 functioned as a pro-viral factor by negatively regulating interferon response against virus infection.
Collapse
Affiliation(s)
- Liwei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Na Ni
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
181
|
Tian T, McLean JW, Wilson JA, Wilson SM. Examination of genetic and pharmacological tools to study the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 in the nervous system. J Neurochem 2020; 156:309-323. [PMID: 32901953 DOI: 10.1111/jnc.15180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Strategies for enhancing protein degradation have been proposed for treating neurological diseases associated with a decline in proteasome activity. A proteasomal deubiquitinating enzyme that controls substrate entry into proteasomes, ubiquitin-specific protease 14 (USP14), is an attractive candidate for therapies that modulate proteasome activity. This report tests the validity of genetic and pharmacological tools to study USP14's role in regulating protein abundance. Although previous studies implicated USP14 in the degradation of microtubule associate protein tau, tar DNA binding protein, and prion protein, the levels of these proteins were similar in our neurons cultured from wild type and USP14-deficient mice. Neither loss nor over-expression of USP14 affected the levels of these proteins in mice, implying that modifying the amount of USP14 is not sufficient to alter their steady-state levels. However, neuronal over-expression of a catalytic mutant of USP14 showed that manipulating USP14's ubiquitin-hydrolase activity altered the levels of specific proteins in vivo. Although pharmacological inhibitors of USP14's ubiquitin-hydrolase activity reduced microtubule associate protein tau, tar DNA binding protein, and prion protein in culture, the effect was similar in wild type and USP14-deficient neurons, thus impacting their use for specifically evaluating USP14 in a therapeutic manner. While examining how targeting USP14 may affect other proteins in vivo, this report showed that fatty acid synthase, v-rel reticuloendotheliosis viral oncogene homolog, CTNNB1, and synaptosome associated protein 23 are reduced in USP14-deficient mice; however, loss of USP14 differentially altered the levels of these proteins in the liver and brain. As such, it is critical to more thoroughly examine how inhibiting USP14 alters protein abundance to determine if targeting USP14 will be a beneficial strategy for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Tina Tian
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John W McLean
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie A Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott M Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
182
|
Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Sci Rep 2020; 10:15765. [PMID: 32978409 PMCID: PMC7519072 DOI: 10.1038/s41598-020-71550-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (β1–β2–β5), the immunoproteasome (β1i–β2i–β5i) and the two intermediate proteasomes (β1–β2–β5i and β1i–β2–β5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear. Using cells expressing exclusively one proteasome subtype, we observed that ubiquitinated p21 and c-myc were degraded at similar rates, indicating that the four 26S proteasomes degrade ubiquitinated proteins equally well. Under oxidative stress, we observed a partial dissociation of 26S into 20S proteasomes, which can degrade non-ubiquitinated oxidized proteins. Oxidized calmodulin and hemoglobin were best degraded in vitro by the three β5i-containing 20S proteasomes, while their native forms were not degraded. Circular dichroism analyses indicated that ubiquitin-independent recognition of oxidized proteins by 20S proteasomes was triggered by the disruption of their structure. Accordingly, β5i-containing 20S proteasomes degraded unoxidized naturally disordered protein tau, while 26S proteasomes did not. Our results suggest that the three β5i-containing 20S proteasomes, namely the immunoproteasome and the two intermediate proteasomes, might help cells to eliminate proteins containing disordered domains, including those induced by oxidative stress.
Collapse
|
183
|
Xu L, Wang J, Yuan X, Yang S, Xu X, Li K, He Y, Wei L, Zhang J, Tian Y. IU1 suppresses proliferation of cervical cancer cells through MDM2 degradation. Int J Biol Sci 2020; 16:2951-2963. [PMID: 33061808 PMCID: PMC7545697 DOI: 10.7150/ijbs.47999] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/02/2020] [Indexed: 02/02/2023] Open
Abstract
Previous studies have demonstrated that the antitumor potential of IU1 (a pharmacological compound), which was mediated by selective inhibition of proteasome-associated deubiquitinase ubiquitin-specific protease 14 (USP14). However, the underlying molecular mechanisms remain elusive. It has been well established that mdm2 (Murine double minute 2) gene was amplified and/or overexpressed in a variety of human neoplasms, including cervical cancer. Furthermore, MDM2 is critical to cervical cancer development and progression. Relatively studies have reported that USP15 and USP7 stabilized MDM2 protein levels by removing its ubiquitin chain. In the current study, we studied the cell proliferation status after IU1 treatment and the USP14-MDM2 protein interaction in cervical cancer cells. This study experimentally revealed that IU1 treatment reduced MDM2 protein expression in HeLa cervical cancer cells, along with the activation of autophagy-lysosomal protein degradation and promotion of ubiquitin-proteasome system (UPS) function, thereby blocked G0/G1 to S phase transition, decreased cell growth and triggered cell apoptosis. Thus, these results indicate that IU1 treatment simultaneously targets two major intracellular protein degradation systems, ubiquitin-proteasome and autophagy-lysosome systems, which leads to MDM2 degradation and contributes to the antitumor effect of IU1.
Collapse
Affiliation(s)
- Liu Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Wang
- Department of Pathology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoning Yuan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shuhua Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaolong Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kai Li
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanqi He
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lei Wei
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| | - Yihao Tian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
184
|
Kitajima Y, Suzuki N, Yoshioka K, Izumi R, Tateyama M, Tashiro Y, Takahashi R, Aoki M, Ono Y. Inducible Rpt3, a Proteasome Component, Knockout in Adult Skeletal Muscle Results in Muscle Atrophy. Front Cell Dev Biol 2020; 8:859. [PMID: 32984340 PMCID: PMC7492297 DOI: 10.3389/fcell.2020.00859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin–proteasome system has the capacity to degrade polyubiquitinated proteins and plays an important role in many cellular processes. However, the role of Rpt3, a crucial proteasomal gene, has not been investigated in adult muscles in vivo. Herein, we generated skeletal-muscle-specific Rpt3 knockout mice, in which genetic inactivation of Rpt3 could be induced by doxycycline administration. The Rpt3-knockout mice showed a significant reduction by more than 90% in the expression of Rpt3 in adult muscles. Using this model, we found that proteasome dysfunction in adult muscles resulted in muscle wasting and a decrease in the myofiber size. Immunoblotting analysis showed that the amounts of ubiquitinated proteins were markedly higher in muscles of Rpt3-deficient mice than in those of the control mice. Analysis of the autophagy pathway in the Rpt3-deficient mice showed that the upregulation of LC3II, p62, Atg5, Atg7, and Beclin-1 in protein levels, which supposed to be compensatory proteolysis activation. Our results suggest that the proteasome inhibition in adult muscle severely deteriorates myofiber integrity and results in muscle atrophy.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.,Department of Neurology, Shodo-kai Southern Tohoku General Hospital, Iwanuma, Japan
| | - Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.,National Hospital Organization Iwate National Hospital, Hanamaki, Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
185
|
Sharma A, Almasan A. USP14 Regulates DNA Damage Response and Is a Target for Radiosensitization in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:E6383. [PMID: 32887472 PMCID: PMC7503721 DOI: 10.3390/ijms21176383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) represents ~85% of the lung cancer cases. Despite recent advances in NSCLC treatment, the five-year survival rate is still around 23%. Radiotherapy is indicated in the treatment of both early and advanced stage NSCLC; however, treatment response in patients is heterogeneous. Thus, identification of new and more effective treatment combinations is warranted. We have identified Ubiquitin-specific protease 14 (USP14) s a regulator of major double-strand break (DSB) repair pathways in response to ionizing radiation (IR) by its impact on both non-homologous end joining (NHEJ) and homologous recombination (HR) in NSCLC. USP14 is a proteasomal deubiquitinase. IR treatment increases levels and DSB recruitment of USP14 in NSCLC cell lines. Genetic knockdown, using shUSP14 expression or pharmacological inhibition of USP14, using IU1, increases radiosensitization in NSCLC cell lines, as determined by a clonogenic survival assay. Moreover, shUSP14-expressing NSCLC cells show increased NHEJ efficiency, as indicated by chromatin recruitment of key NHEJ proteins, NHEJ reporter assay, and increased IR-induced foci formation by 53BP1 and pS2056-DNA-PKcs. Conversely, shUSP14-expressing NSCLC cells show decreased RPA32 and BRCA1 foci formation, suggesting HR-deficiency. These findings identify USP14 as an important determinant of DSB repair in response to radiotherapy and a promising target for NSCLC radiosensitization.
Collapse
Affiliation(s)
- Arishya Sharma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
186
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
187
|
Celebi G, Kesim H, Ozer E, Kutlu O. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. Int J Mol Sci 2020; 21:ijms21176335. [PMID: 32882786 PMCID: PMC7503467 DOI: 10.3390/ijms21176335] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a multi-step enzymatic process that involves the marking of a substrate protein by bonding a ubiquitin and protein for proteolytic degradation mainly via the ubiquitin–proteasome system (UPS). The process is regulated by three main types of enzymes, namely ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Under physiological conditions, ubiquitination is highly reversible reaction, and deubiquitinases or deubiquitinating enzymes (DUBs) can reverse the effect of E3 ligases by the removal of ubiquitin from substrate proteins, thus maintaining the protein quality control and homeostasis in the cell. The dysfunction or dysregulation of these multi-step reactions is closely related to pathogenic conditions; therefore, understanding the role of ubiquitination in diseases is highly valuable for therapeutic approaches. In this review, we first provide an overview of the molecular mechanism of ubiquitination and UPS; then, we attempt to summarize the most common diseases affecting the dysfunction or dysregulation of these mechanisms.
Collapse
Affiliation(s)
- Gizem Celebi
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Hale Kesim
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ebru Ozer
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
- Correspondence: ; Tel.: +90-216-483-9000 (ext. 2413)
| |
Collapse
|
188
|
Xu F, Ma Y, Huang W, Gao J, Guo M, Li J, Kong L, Liang G, Du R, Xu Q, Wu X. Typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis. Cell Death Dis 2020; 11:666. [PMID: 32820146 PMCID: PMC7441392 DOI: 10.1038/s41419-020-02898-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/07/2023]
Abstract
Macrophages, with diverse functions and variable phenotypes, are considered as an important executor of inflammatory diseases. And it has been proved that autophagy is deeply connected with the development of inflammation, while the exact regulatory mechanism still remains unclear, and the application of autophagy regulators in anti-inflammation needs to be further confirmed. Here, we firstly verified that neochromine S5 (hereinafter referred to as S5) significantly inhibited M1-like macrophage polarization with decrease of the proinflammatory cytokines and downregulation of NF-κB and STAT1 signals. Then, in vivo experiments demonstrated S5 improved cecal ligation and puncture (CLP)-induced sepsis specially based on the regulation of M1-like macrophages. Mechanistic studies indicated that S5 treatment dramatically upregulated cellular autophagy in M1-like macrophage. Furthermore, by multiple methods, S5 was revealed to directly bind with ubiquitin-specific proteases 14 (USP14) at Ser404, Phe405, and Cys414 by hydrogen bond to inhibit its deubiquitinating activity, and block USP14-TRAF6 (TNF receptor associated factor 6) interaction, subsequently promoting ubiquitination of Beclin1, interrupting Beclin1-Bcl2 interaction, and accumulating the autophagosome in macrophages, which finally resulted in the blockade of M1-like macrophage polarization. Animal experiments also confirmed the protection of S5 in CLP mice was dependent on activation of macrophage autophagy. What's more, as a novel USP14 inhibitor, S5 exhibited higher efficiency and safety than IU1, the known USP14 inhibitor. Therefore, this study has demonstrated that typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis. Moreover, we provide a new candidate compound, S5, for sensitizing autophagy to interfere with the macrophage inflammation.
Collapse
Affiliation(s)
- Fang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Yuxiang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Mengmeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jianxin Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Guang Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China ,grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou Zhejiang, 325035 China
| | - Ronghui Du
- grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093 China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
189
|
Huang X, Zhang X, Xu J, Wang X, Zhang G, Tang T, Shen X, Liang T, Bai X. Deubiquitinating Enzyme: A Potential Secondary Checkpoint of Cancer Immunity. Front Oncol 2020; 10:1289. [PMID: 32850399 PMCID: PMC7426525 DOI: 10.3389/fonc.2020.01289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of cancer immunotherapy depends on the fine interplay between tumoral immune checkpoints and host immune system. However, the up-to-date clinical performance of checkpoint blockers in cancer therapy revealed that higher-level regulation should be further investigated for better therapeutic outcomes. It is becoming increasingly evident that the expression of immune checkpoints is largely associated to the immunotherapeutic response and consequent prognosis. Deubiquitinating enzymes (DUBs) with their role of cleaving ubiquitin from proteins and other molecules, thus reversing ubiquitination-mediated protein degradation, modulate multiple cellular processes, including, but not limited to, transcriptional regulation, cell cycle progression, tissue development, and antiviral response. Accumulating evidence indicates that DUBs also have the critical influence on anticancer immunity, simply by stabilizing pivotal checkpoints or key regulators of T-cell functions. Therefore, this review summarizes the current knowledge about DUBs, highlights the secondary checkpoint-like role of DUBs in cancer immunity, in particular their direct effects on the stability control of pivotal checkpoints and key regulators of T-cell functions, and suggests the therapeutic potential of DUBs-based strategy in targeted immunotherapy for cancer.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Jian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaochao Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
190
|
Lim KH, Joo JY, Baek KH. The potential roles of deubiquitinating enzymes in brain diseases. Ageing Res Rev 2020; 61:101088. [PMID: 32470641 DOI: 10.1016/j.arr.2020.101088] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Most proteins undergo posttranslational modification such as acetylation, methylation, phosphorylation, biotinylation, and ubiquitination to regulate various cellular processes. Ubiquitin-targeted proteins from the ubiquitin-proteasome system (UPS) are degraded by 26S proteasome, along with this, deubiquitinating enzymes (DUBs) have specific activity against the UPS through detaching of ubiquitin on ubiquitin-targeted proteins. Balancing between protein expression and degradation through interplay between the UPS and DUBs is important to maintain cell homeostasis, and abnormal expression and elongation of proteins lead to diverse diseases such as cancer, diabetes, and autoimmune response. Therefore, development of DUB inhibitors as therapeutic targets has been challenging. In addition, understanding of the roles of DUBs in neurodegeneration, specifically brain diseases, has emerged gradually. This review highlights recent studies on the molecular mechanisms for DUBs, and discusses potential therapeutic targets for DUBs in cases of brain diseases.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Choeomdan-Ro 61, Daegu 41068, Republic of Korea.
| | - Jae-Yeol Joo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Choeomdan-Ro 61, Daegu 41068, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| |
Collapse
|
191
|
Kumar D, Ambasta RK, Kumar P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Res Rev 2020; 61:101078. [PMID: 32407951 DOI: 10.1016/j.arr.2020.101078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
The abnormal accumulation of neurotoxic proteins is the typical hallmark of various age-related neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis and Multiple sclerosis. The anomalous proteins, such as Aβ, Tau in Alzheimer's disease and α-synuclein in Parkinson's disease, perturb the neuronal physiology and cellular homeostasis in the brain thereby affecting the millions of human lives across the globe. Here, ubiquitin proteasome system (UPS) plays a decisive role in clearing the toxic metabolites in cells, where any aberrancy is widely reported to exaggerate the neurodegenerative pathologies. In spite of well-advancement in the ubiquitination research, their molecular markers and mechanisms for target-specific protein ubiquitination and clearance remained elusive. Therefore, this review substantiates the role of UPS in the brain signaling and neuronal physiology with their mechanistic role in the NDD's specific pathogenic protein clearance. Moreover, current and future promising therapies are discussed to target UPS-mediated neurodegeneration for better public health.
Collapse
|
192
|
Banerjee C, Roy M, Mondal R, Chakraborty J. USP14 as a Therapeutic Target Against Neurodegeneration: A Rat Brain Perspective. Front Cell Dev Biol 2020; 8:727. [PMID: 32850842 PMCID: PMC7411183 DOI: 10.3389/fcell.2020.00727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
In the recent past, many of the deubiquitinases (DUB) were found to modulate mitochondrial clearance or mitophagy and thus they are currently projected as therapeutic targets against neurodegeneration. Among these DUBs, USP14 stands at a distinctive juncture, since it can influence both proteasome complex activity and autophagy process. USP14 interference can enhance mitochondrial clearance and thus can protect Parkinsonian phenotypes in Drosophila model. However, in higher animal models of neurodegenerative disorders, evaluation of the protective role of USP14 is yet to be done. In this perspective, we pointed out a few of the major considerations that should be classified before designing experiments to evaluate the therapeutic potential of this DUB in rodent models of neurodegeneration. These are mainly: level of USP14 in the concerned brain region and how the level alters in the model system. Because USP14 mediated mitophagy is Prohibitin2 dependent, the anticipated impact of this protein in this aspect is also discussed. To illustrate our view, we show that USP14 levels increases in adult rat brain substantia nigra (SN) and cerebellum compared to the young ones. We also depict that rotenone treatment can immediately lead to increased SN specific USP14 levels. Our perception thus portrays USP14 as a therapeutic target, especially for addressing SN specific neurodegeneration in adult rat brain, but may vary with the disease model.
Collapse
Affiliation(s)
- Chayan Banerjee
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE, Kolkata, India
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Moumita Roy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE, Kolkata, India
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rupsha Mondal
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE, Kolkata, India
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Joy Chakraborty
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE, Kolkata, India
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
193
|
Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Int J Mol Sci 2020; 21:E5312. [PMID: 32726943 PMCID: PMC7432943 DOI: 10.3390/ijms21155312] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Collapse
Affiliation(s)
- Ji Yeong Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
| | - Non-Nuoc Tran
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeonjeong Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Sung Bae Lee
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
194
|
Tian M, Zhu R, Ding F, Liu Z. Ubiquitin-specific peptidase 46 promotes tumor metastasis through stabilizing ENO1 in human esophageal squamous cell carcinoma. Exp Cell Res 2020; 395:112188. [PMID: 32707136 DOI: 10.1016/j.yexcr.2020.112188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/06/2020] [Accepted: 07/19/2020] [Indexed: 01/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) has high aggressiveness and poor prognosis, and is the major histological subtype of esophageal cancer in East Asia and East Africa. In this study, we found that USP46, a deubiquitinating enzyme, is overexpressed in clinical ESCC samples, especially in patients with positive lymph node metastasis. Moreover, USP46 enhances the migration and invasion of ESCC cells by mediating the EMT process in vitro, and promotes lymph nodes and lung metastasis of ESCC in vivo. In addition, we found that USP46 is a bona fide deubiquitinating enzyme to stabilize the protein level of ENO1 through deubiquitination. ENO1 protein level was also positively correlated with USP46 in the ESCC samples. In summary, these findings reveal the functional role of USP46 as a deubiquitinating enzyme on ESCC metastasis, providing us a potential therapeutic target for the treatment of ESCC.
Collapse
Affiliation(s)
- Maoqing Tian
- Guizhou University School of Medicine, Guizhou, 550025, PR China
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| |
Collapse
|
195
|
Sarodaya N, Suresh B, Kim KS, Ramakrishna S. Protein Degradation and the Pathologic Basis of Phenylketonuria and Hereditary Tyrosinemia. Int J Mol Sci 2020; 21:ijms21144996. [PMID: 32679806 PMCID: PMC7404301 DOI: 10.3390/ijms21144996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
A delicate intracellular balance among protein synthesis, folding, and degradation is essential to maintaining protein homeostasis or proteostasis, and it is challenged by genetic and environmental factors. Molecular chaperones and the ubiquitin proteasome system (UPS) play a vital role in proteostasis for normal cellular function. As part of protein quality control, molecular chaperones recognize misfolded proteins and assist in their refolding. Proteins that are beyond repair or refolding undergo degradation, which is largely mediated by the UPS. The importance of protein quality control is becoming ever clearer, but it can also be a disease-causing mechanism. Diseases such as phenylketonuria (PKU) and hereditary tyrosinemia-I (HT1) are caused due to mutations in PAH and FAH gene, resulting in reduced protein stability, misfolding, accelerated degradation, and deficiency in functional proteins. Misfolded or partially unfolded proteins do not necessarily lose their functional activity completely. Thus, partially functional proteins can be rescued from degradation by molecular chaperones and deubiquitinating enzymes (DUBs). Deubiquitination is an important mechanism of the UPS that can reverse the degradation of a substrate protein by covalently removing its attached ubiquitin molecule. In this review, we discuss the importance of molecular chaperones and DUBs in reducing the severity of PKU and HT1 by stabilizing and rescuing mutant proteins.
Collapse
Affiliation(s)
- Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| |
Collapse
|
196
|
Bhaskar S, Gowda J, Prasanna J, Kumar A. Does altering proteasomal activity and trafficking reduce the arborization mediated specific vulnerability of SNpc dopaminergic neurons of Parkinson's disease? Med Hypotheses 2020; 143:110062. [PMID: 32652429 DOI: 10.1016/j.mehy.2020.110062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/27/2020] [Indexed: 01/15/2023]
Abstract
Parkinson's disease (PD) is a late-onset degenerative neuronal disorder and stands second among the neurological disorders with 1% of the total world population being affected. The disease originates majorly due to compromised function of the dopaminergic (DA) neurons in the Substantia Nigra pars compacta (SNpc), but not the ventral tegmental area (VTA) region of the midbrain. The differential susceptibility for degeneration is majorly attributed to morphological, molecular, and electrophysiological heterogeneity existing in DA neurons of SNpc and VTA. Long-range axonal arborization and a higher number of synapses in SNpc DA neurons make it more vulnerable compared to VTA DA neurons. Studies have shown that a decrease in such axonal arborization places DA neurons at decreased risk in PD. The two well established underlying mechanisms are a) As arborization is an energy-demanding process, increased redistribution of mitochondria to the axonal terminals occurs to satisfy the bioenergetic requirement b) The stabilization of axon-promoting factors at the axonal tip is an essential component for enhancing the arborization process. Interfering with any of these two processes would probably alleviate the degeneration of SNpc DA neurons. To accomplish the decreased stability of arborizing factors and thereby increase the resilience of SNpc DA neurons, we hypothesize the activation of anterograde transport-dependent recruitment of proteasomes to axon terminals as one of the most favorable approaches. Understanding this putative avenue of enhancing proteasomal activity and migration to the axonal tip could provide insight into the progression of neurodegeneration in PD and possibly offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Jeevan Gowda
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Jyothi Prasanna
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India.
| |
Collapse
|
197
|
Buratti E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br J Pharmacol 2020; 178:1298-1315. [PMID: 32469420 DOI: 10.1111/bph.15148] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Following the discovery of the involvement of the ribonucleoprotein TDP-43 in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), a major research focus has been to develop treatments that can prevent or alleviate these disease conditions. One pharmacological approach has been to use TDP-43-based disease models to test small molecules and drugs already known to have some therapeutic effect in a variety of neurodegenerative conditions. In parallel, various disease models have been used to perform high-throughput screens of drugs and small compound libraries. The aim of this review will be to provide a general overview of the compounds that have been described to alter pathological characteristics of TDP-43. These include expression levels, cytoplasmic mis-localization, post-translational modifications, cleavage, stress granule recruitment and aggregation. In parallel, this review will also address the use of compounds that modify the autophagic/proteasome systems that are known to target TDP-43 misfolding and aggregation. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
198
|
Zhao Y, Huang X, Zhang Z, Zhang Y, Zhang G, Zan T, Li Q. USP15 Enhances Re-epithelialization Through Deubiquitinating EIF4A1 During Cutaneous Wound Repair. Front Cell Dev Biol 2020; 8:529. [PMID: 32671073 PMCID: PMC7332549 DOI: 10.3389/fcell.2020.00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Re-epithelialization is a fundamental process in wound healing that involves various cytokines and cells during cutaneous barrier reconstruction. Ubiquitin-specific peptidase 15 (USP15), an important member of the deubiquitinating enzymes (DUBs), removes ubiquitin chains from target proteins and maintains protein stability. However, the dynamic role of USP15 in epithelialization remains unclear. We aimed to investigate the regulatory function of USP15 in re-epithelialization. An excisional wound splinting model was established to evaluate the re-epithelialization rate in Usp15 knockout (KO) mice. Coimmunoprecipitation (Co-IP) and mass spectrum analyses were performed to identify USP15-interacting proteins. RNA-sequencing was performed for transcriptome analysis in keratinocytes and uploaded into NODE database (http://www.biosino.org/node, accession numbers: OEP000770 and OEP000763). First, a significant delay in epithelialization was observed in the Usp15 KO mice. Moreover, inhibition of cell migration and proliferation was observed in the USP15-silenced keratinocytes (HaCaTs). Moreover, we revealed for the first time that USP15 could interact with eukaryotic initiation factor 4A-1 (EIF4A1), thereby promoting translational efficacy in keratinocytes, which is essential for keratinocyte proliferation and migration. Conclusively, the USP15-EIF4A1 complex significantly accelerated re-epithelialization in wound healing. These observations helped elucidate the function and mechanisms of USP15 in modulating re-epithelialization in wound healing, providing a promising target for refractory wound treatment.
Collapse
Affiliation(s)
- Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
199
|
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers (Basel) 2020; 12:E1579. [PMID: 32549302 PMCID: PMC7352412 DOI: 10.3390/cancers12061579] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
200
|
DUBs Activating the Hedgehog Signaling Pathway: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2020; 12:cancers12061518. [PMID: 32531973 PMCID: PMC7352588 DOI: 10.3390/cancers12061518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/29/2022] Open
Abstract
The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues. The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3 ligases regulating the stability and activity of the key components of the HH pathway have been identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the DUBs here reviewed, with potential applications for the treatment of HH-related tumors.
Collapse
|