151
|
Qiao S, Hou Y, Rong Q, Han B, Liu P. Tregs are involved in VEGFA/ VASH1-related angiogenesis pathway in ovarian cancer. Transl Oncol 2023; 32:101665. [PMID: 37018867 PMCID: PMC10106963 DOI: 10.1016/j.tranon.2023.101665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Vasohibin1 (VASH1) is a kind of vasopressor, produced by negative feedback from vascular endothelial growth factor A (VEGFA). Anti-angiogenic therapy targeting VEGFA is currently the first-line treatment for advanced ovarian cancer (OC), but there are still many adverse effects. Regulatory T cells (Tregs) are the main lymphocytes mediating immune escape function in the tumor microenvironment (TME) and have been reported to influence the function of VEGFA. However, whether Tregs are associated with VASH1 and angiogenesis in TME in OC is unclear. We aimed to explore the relationship between angiogenesis and immunosuppression in the TME of OC. We validated the relationship between VEGFA, VASH1, and angiogenesis in ovarian cancer and their prognostic implications. The infiltration level of Tregs and its marker forkhead box protein 3 (FOXP3) were explored in relation to angiogenesis-related molecules. The results showed that VEGFA and VASH1 were associated with clinicopathological stage, microvessel density and poor prognosis of ovarian cancer. Both VEGFA and VASH1 expression were associated with angiogenic pathways and there was a positive correlation between VEGFA and VASH1 expression. Tregs correlated with angiogenesis-related molecules and indicated that high FOXP3 expression is harmful to the prognosis. Gene set enrichment analysis (GSEA) predicted that angiogenesis, IL6/JAK/STAT3 signaling, PI3K/AKT/mTOR signaling, TGF-β signaling, and TNF-α signaling via NF-κB may be common pathways for VEGFA, VASH1, and Tregs to be involved in the development of OC. These findings suggest that Tregs may be involved in the regulation of tumor angiogenesis through VEGFA and VASH1, providing new ideas for synergistic anti-angiogenic therapy and immunotherapy in OC.
Collapse
Affiliation(s)
- Sijing Qiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Yue Hou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Qing Rong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Bing Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China.
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
152
|
Nabhan M, Egan D, Kreileder M, Zhernovkov V, Timosenko E, Slidel T, Dovedi S, Glennon K, Brennan D, Kolch W. Deciphering the tumour immune microenvironment cell by cell. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 18:100383. [PMID: 37234284 PMCID: PMC10206805 DOI: 10.1016/j.iotech.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have rejuvenated therapeutic approaches in oncology. Although responses tend to be durable, response rates vary in many cancer types. Thus, the identification and validation of predictive biomarkers is a key clinical priority, the answer to which is likely to lie in the tumour microenvironment (TME). A wealth of data demonstrates the huge impact of the TME on ICI response and resistance. However, these data also reveal the complexity of the TME composition including the spatiotemporal interactions between different cell types and their dynamic changes in response to ICIs. Here, we briefly review some of the modalities that sculpt the TME, in particular the metabolic milieu, hypoxia and the role of cancer-associated fibroblasts. We then discuss recent approaches to dissect the TME with a focus on single-cell RNA sequencing, spatial transcriptomics and spatial proteomics. We also discuss some of the clinically relevant findings these multi-modal analyses have yielded.
Collapse
Affiliation(s)
- M. Nabhan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - D. Egan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - M. Kreileder
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - V. Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - E. Timosenko
- ICC, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, , UK
| | - T. Slidel
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - S. Dovedi
- ICC, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, , UK
| | - K. Glennon
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| | - D. Brennan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| | - W. Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland
| |
Collapse
|
153
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
154
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
155
|
Wang M, Song Q, Song Z, Xie Y. Development of an Immune Prognostic Model for Clear Cell Renal Cell Carcinoma Based on Tumor Microenvironment. Horm Metab Res 2023. [PMID: 37192644 DOI: 10.1055/a-2079-2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Immune infiltration remains at a high level in clear cell renal cell carcinoma (ccRCC). It has been confirmed that immune cell infiltration in tumor microenvironment (TME) is intimately bound up with the progression and the clinical outcome of ccRCC. The prognostic model, developed based on different immune subtypes of ccRCC, has a predictive value in patients' prognosis. RNA sequencing data, somatic mutation data of ccRCC and clinical information were acquired from the cancer genome atlas (TCGA) database. The key immune-related genes (IRGs) were selected and by univariate Cox, LASSO, and multivariate Cox regression analyses. Then the ccRCC prognostic model was developed. The applicability of this model was verified in the independent dataset GSE29609. Thirteen IRGs including CCL7, ATP6V1C2, ATP2B3, ELAVL2, SLC22A8, DPP6, EREG, SERPINA7, PAGE2B, ADCYAP1, ZNF560, MUC20, and ANKRD30A were finally selected and a 13-IRGs prognostic model was developed. Survival analysis demonstrated that when compared with the low-risk group, patients in the high-risk group had a lower overall survival (p<0.05). AUC values based on the 13-IRGs prognostic model used to predict 3- and 5-year survival of ccRCC patients were greater than 0.70. And risk score was an independent prognostic factor (p<0.001). In addition, nomogram could accurately predict ccRCC patient's prognosis. This 13-IRGs model can effectively evaluate the prognosis of ccRCC patients, and also provide guidance for the treatment and prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Munan Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qianqian Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhijie Song
- School of Integrated Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuduan Xie
- Laboratory Department, Wangjing Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
156
|
Cheu JWS, Chiu DKC, Kwan KKL, Yang C, Yuen VWH, Goh CC, Chui NNQ, Shen W, Law CT, Li Q, Zhang MS, Bao MHR, Wong BPY, Chan CYK, Liu CX, Sit GFW, Ooi ZY, Deng H, Tse APW, Ng IOL, Wong CCL. Hypoxia-inducible factor orchestrates adenosine metabolism to promote liver cancer development. SCIENCE ADVANCES 2023; 9:eade5111. [PMID: 37146141 PMCID: PMC10162666 DOI: 10.1126/sciadv.ade5111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Hypoxia-induced adenosine creates an immunosuppressive tumor microenvironment (TME) and dampens the efficacy of immune checkpoint inhibitors (ICIs). We found that hypoxia-inducible factor 1 (HIF-1) orchestrates adenosine efflux through two steps in hepatocellular carcinoma (HCC). First, HIF-1 activates transcriptional repressor MXI1, which inhibits adenosine kinase (ADK), resulting in the failure of adenosine phosphorylation to adenosine monophosphate. This leads to adenosine accumulation in hypoxic cancer cells. Second, HIF-1 transcriptionally activates equilibrative nucleoside transporter 4, pumping adenosine into the interstitial space of HCC, elevating extracellular adenosine levels. Multiple in vitro assays demonstrated the immunosuppressive role of adenosine on T cells and myeloid cells. Knockout of ADK in vivo skewed intratumoral immune cells to protumorigenic and promoted tumor progression. Therapeutically, combination treatment of adenosine receptor antagonists and anti-PD-1 prolonged survival of HCC-bearing mice. We illustrated the dual role of hypoxia in establishing an adenosine-mediated immunosuppressive TME and offered a potential therapeutic approach that synergizes with ICIs in HCC.
Collapse
Affiliation(s)
- Jacinth Wing-Sum Cheu
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - David Kung-Chun Chiu
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kenneth Kin-Leung Kwan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Chunxue Yang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Vincent Wai-Hin Yuen
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Chi Ching Goh
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Noreen Nog-Qin Chui
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wei Shen
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Cheuk-Ting Law
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qidong Li
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Misty Shuo Zhang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Macus Hao-Ran Bao
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Bowie Po-Yee Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Cerise Yuen-Ki Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Cindy Xinqi Liu
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Grace Fu-Wan Sit
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Zher Yee Ooi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Haijing Deng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Aki Pui-Wah Tse
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Carmen Chak-Lui Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China 510120
- Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
157
|
Zhen W, Weichselbaum RR, Lin W. Nanoparticle-Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206370. [PMID: 36524978 PMCID: PMC10213153 DOI: 10.1002/adma.202206370] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/12/2022] [Indexed: 05/26/2023]
Abstract
Radiotherapy (RT) uses ionizing radiation to eradicate localized tumors and, in rare cases, control tumors outside of the irradiated fields via stimulating an antitumor immune response (abscopal effect). However, the therapeutic effect of RT is often limited by inherent physiological barriers of the tumor microenvironment (TME), such as hypoxia, abnormal vasculature, dense extracellular matrix (ECM), and an immunosuppressive TME. Thus, it is critical to develop new RT strategies that can remodel the TME to overcome radio-resistance and immune suppression. In the past decade, high-Z-element nanoparticles have been developed to increase radiotherapeutic indices of localized tumors by reducing X-ray doses and side effects to normal tissues and enhance abscopal effects by activating the TME to elicit systemic antitumor immunity. In this review, the principles of RT and radiosensitization, the mechanisms of radio-resistance and immune suppression, and the use of various nanoparticles to sensitize RT and remodel TMEs for enhanced antitumor efficacy are discussed. The challenges in clinical translation of multifunctional TME-remodeling nanoradiosensitizers are also highlighted.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, Department of Radiation and Cellular Oncology, and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, Department of Radiation and Cellular Oncology, and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
158
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
159
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
160
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
161
|
Zhong Y, Li F, Zhang S, Yang Z, Ren X, Cao X, Xu Y, Guo D, Zhou Y, Mao F, Shen S, Sun Q. Syndecan-1 as an immunogene in Triple-negative breast cancer: regulation tumor-infiltrating lymphocyte in the tumor microenviroment and EMT by TGFb1/Smad pathway. Cancer Cell Int 2023; 23:76. [PMID: 37069585 PMCID: PMC10111802 DOI: 10.1186/s12935-023-02917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are the most studied forms of immunotherapy for triple-negative breast cancer (TNBC). The Cancer Genome Map (TCGA) and METABRIC project provide large-scale cancer samples that can be used for comprehensive and reliable immunity-related gene research. METHODS We analyzed data from TCGA and METABRIC and established an immunity-related gene prognosis model for breast cancer. The SDC1 expression in tumor and cancer associated fibroblasts (CAFs) was then observed in 282 TNBC patients by immunohistochemistry. The effects of SDC1 on MDA-MB-231 proliferation, migration and invasion were evaluated. Qualitative real-time PCR and western blotting were performed to identify mRNA and protein expression, respectively. RESULTS SDC1, as a key immunity-related gene, was significantly correlated with survival in the TCGA and METABRIC databases, while SDC1 was found to be highly expressed in TNBC in the METABRIC database. In the TNBC cohort, patients with high SDC1 expression in tumor cells and low expression in CAFs had significantly lower disease-free survival (DFS) and fewer tumor-infiltrating lymphocytes (TILs). The downregulation of SDC1 decreased the proliferation of MDA-MB-231, while promoting the migration of MDA-MB-231 cells by reducing the gene expression of E-cadherin and TGFb1 and activating p-Smad2 and p-Smad3 expression. CONCLUSION SDC1 is a key immunity-related gene that is highly expressed TNBC patients. Patients with high SDC1 expression in tumors and low expression in CAFs had poor prognoses and low TILs. Our findings also suggest that SDC1 regulates the migration of MDA-MB-231 breast cancer cells through a TGFb1-Smad and E-cadherin-dependent mechanism.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Fangyuan Li
- Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Sumei Zhang
- Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Zhenli Yang
- Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng, Beijing, 100730, China
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xi Cao
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yali Xu
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Dan Guo
- Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yidong Zhou
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Feng Mao
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Songjie Shen
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Qiang Sun
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
162
|
Nelson BE, Adashek JJ, Lin SH, Subbiah V. The abscopal effect in patients with cancer receiving immunotherapy. MED 2023; 4:233-244. [PMID: 36893753 PMCID: PMC10116408 DOI: 10.1016/j.medj.2023.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/08/2022] [Accepted: 02/07/2023] [Indexed: 03/10/2023]
Abstract
Interest in the abscopal effect has been rekindled over the past decade with the advent of immunotherapy. Although purportedly elusive, this phenomenon is being increasingly reported. Venturing further using a multimodality approach with an array of systemic agents and unconventional modalities is direly needed. In this perspective, we describe the fundamentals of abscopal responses (ARs), explore combinations with systemic therapies that hold promise in eliciting ARs, and reconnoiter unconventional modalities that may induce ARs. Finally, we scrutinize prospective agents and modalities that exhibit preclinical ability to elicit ARs and discuss prognostic biomarkers, their limitations, and pathways of abscopal resistance for reproducibility.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
163
|
Yang Z, Zheng Y, Wu H, Xie H, Zhao J, Chen Z, Li L, Yue X, Zhao B, Bian E. Integrative analysis of a novel super-enhancer-associated lncRNA prognostic signature and identifying LINC00945 in aggravating glioma progression. Hum Genomics 2023; 17:33. [PMID: 37004060 PMCID: PMC10064652 DOI: 10.1186/s40246-023-00480-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Super-enhancers (SEs), driving high-level expression of genes with tumor-promoting functions, have been investigated recently. However, the roles of super-enhancer-associated lncRNAs (SE-lncRNAs) in tumors remain undetermined, especially in gliomas. We here established a SE-lncRNAs expression-based prognostic signature to choose the effective treatment of glioma and identify a novel therapeutic target. METHODS Combined analysis of RNA sequencing (RNA-seq) data and ChIP sequencing (ChIP-seq) data of glioma patient-derived glioma stem cells (GSCs) screened SE-lncRNAs. Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets served to construct and validate SE-lncRNA prognostic signature. The immune profiles and potential immuno- and chemotherapies response prediction value of the signature were also explored. Moreover, we verified the epigenetic activation mechanism of LINC00945 via the ChIP assay, and its effect on glioma was determined by performing the functional assay and a mouse xenograft model. RESULTS 6 SE-lncRNAs were obtained and identified three subgroups of glioma patients with different prognostic and clinical features. A risk signature was further constructed and demonstrated to be an independent prognostic factor. The high-risk group exhibited an immunosuppressive microenvironment and was higher enrichment of M2 macrophage, regulatory T cells (Tregs), and Cancer-associated fibroblasts (CAFs). Patients in the high-risk group were better candidates for immunotherapy and chemotherapeutics. The SE of LINC00945 was further verified via ChIP assay. Mechanistically, BRD4 may mediate epigenetic activation of LINC00945. Additionally, overexpression of LINC00945 promoted glioma cell proliferation, EMT, migration, and invasion in vitro and xenograft tumor formation in vivo. CONCLUSION Our study constructed the first prognostic SE-lncRNA signature with the ability to optimize the choice of patients receiving immuno- and chemotherapies and provided a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Jiajia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
| |
Collapse
|
164
|
Thomas JA, Gireesh Moly AG, Xavier H, Suboj P, Ladha A, Gupta G, Singh SK, Palit P, Babykutty S. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Front Oncol 2023; 13:1063051. [PMID: 37056346 PMCID: PMC10088512 DOI: 10.3389/fonc.2023.1063051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL-1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.
Collapse
Affiliation(s)
- Juvin Ann Thomas
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Athira Gireesh Gireesh Moly
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Hima Xavier
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Priya Suboj
- Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India
| | - Amit Ladha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Palit
- Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India
| | - Suboj Babykutty
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| |
Collapse
|
165
|
Astarita JL, Dominguez CX, Tan C, Guillen J, Pauli ML, Labastida R, Valle J, Kleinschek M, Lyons J, Zarrin AA. Treg specialization and functions beyond immune suppression. Clin Exp Immunol 2023; 211:176-183. [PMID: 36571811 PMCID: PMC10019124 DOI: 10.1093/cei/uxac123] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The actions of the immune system are finely tuned, involving complex communication and coordination between diverse immune and non-immune cells across the tissues of the body. A healthy immune system requires a precise balance between immunity and tolerance. Regulatory T cells (Tregs) have long been appreciated as one of the master regulators of this balance; their importance is underscored by the autoimmunity that develops in mice and humans when Tregs are missing or dysfunctional. In addition to the immunoregulatory roles of Tregs in suppressing autoimmunity and inflammation via control of adaptive and innate immune responses, several non-immune modulatory functions of Tregs have been identified in recent years. In this review, we have highlighted the growing literature on the action of Tregs in metabolism, stem cell maintenance, tissue repair, and angiogenesis. Alongside Tregs' immune suppressive role, these non-suppressive activities comprise a key function of Tregs in regulating health and disease. As Tregs receive increasing attention as therapeutic targets, understanding their non-canonical functions may become an important feature of Treg-directed interventions.
Collapse
Affiliation(s)
| | | | - Corey Tan
- TRex Biosciences, South San Francisco, CA, USA
| | | | | | | | - Jose Valle
- TRex Biosciences, South San Francisco, CA, USA
| | | | - Jesse Lyons
- TRex Biosciences, South San Francisco, CA, USA
| | - Ali A Zarrin
- Correspondence: TRexBio, fourth floor, 681 Gateway Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
166
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
167
|
Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol 2023; 949:175586. [PMID: 36906141 DOI: 10.1016/j.ejphar.2023.175586] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Angiogenesis is a double-edged sword; it is a mechanism that defines the boundary between health and disease. In spite of its central role in physiological homeostasis, it provides the oxygen and nutrition needed by tumor cells to proceed from dormancy if pro-angiogenic factors tip the balance in favor of tumor angiogenesis. Among pro-angiogenic factors, vascular endothelial growth factor (VEGF) is a prominent target in therapeutic methods due to its strategic involvement in the formation of anomalous tumor vasculature. In addition, VEGF exhibits immune-regulatory properties which suppress immune cell antitumor activity. VEGF signaling through its receptors is an integral part of tumoral angiogenic approaches. A wide variety of medicines have been designed to target the ligands and receptors of this pro-angiogenic superfamily. Herein, we summarize the direct and indirect molecular mechanisms of VEGF to demonstrate its versatile role in the context of cancer angiogenesis and current transformative VEGF-targeted strategies interfering with tumor growth.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | | | |
Collapse
|
168
|
Miyamoto Y, Ogawa K, Ohuchi M, Tokunaga R, Baba H. Emerging evidence of immunotherapy for colorectal cancer. Ann Gastroenterol Surg 2023; 7:216-224. [PMID: 36998297 PMCID: PMC10043776 DOI: 10.1002/ags3.12633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Since the advent of immune checkpoint inhibitors, which modulate the interplay between the tumor cell and immune system, immunotherapy has become widely recognized as a new standard treatment for cancers including microsatellite instability-high (MSI-H) colorectal cancer. Immune checkpoint inhibitors such as pembrolizumab and nivolumab (anti-PD-1 antibodies) that act in the effector phase of T cells and ipilimumab (anti-CTLA-4 antibody) that acts mainly in the priming phase are now in clinical use. These antibodies have shown therapeutic efficacy in MSI colorectal cancer patients who have failed to respond to existing standard therapies. Pembrolizumab is also strongly recommended as first-line therapy for MSI-H metastatic colorectal cancer. Therefore, the MSI status and tumor mutation burden of the tumor should be clarified before starting treatment. Because many patients do not respond to immune checkpoint inhibitors, combination therapies with immune checkpoint inhibitors, including chemotherapy, radiotherapy, or molecularly targeted agents, are being investigated. Furthermore, treatment methods for preoperative adjuvant therapy for rectal cancer are being developed.
Collapse
Affiliation(s)
- Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Katsuhiro Ogawa
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Mayuko Ohuchi
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Ryuma Tokunaga
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
169
|
Su X, Wang G, Zheng S, Ge C, Kong F, Wang C. Comprehensive Explorations of CCL28 in Lung Adenocarcinoma Immunotherapy and Experimental Validation. J Inflamm Res 2023; 16:1325-1342. [PMID: 37006812 PMCID: PMC10065022 DOI: 10.2147/jir.s399193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Background Chemokines have been reported to play an important role in cancer immunotherapy. This study aimed to explore the chemokines involved in lung cancer immunotherapy. Methods All the public data were downloaded from The Cancer Genome Atlas Program database. Quantitative real time-PCR was used to detect the mRNA level of specific molecules and Western blot was used for the protein level. Other experiments used include luciferase reporter experiments, flow cytometric analysis, Chromatin immunoprecipitation assay, ELISA and co-cultured system. Results We found that the CCL7, CCL11, CCL14, CCL24, CCL25, CCL26, CCL28 had a higher level, while the CCL17, CCL23 had a lower level in immunotherapy non-responders. Also, we found that immunotherapy non-responders had a higher level of CD56dim NK cells, NK cells, Th1 cells, Th2 cells and Treg, yet a lower level of iDC and Th17 cells. Biological enrichment analysis indicated that in the patients with high Treg infiltration, the pathways of pancreas beta cells, KRAS signaling, coagulation, WNT BETA catenin signaling, bile acid metabolism, interferon alpha response, hedgehog signaling, PI3K/AKT/mTOR signaling, apical surface, myogenesis were significantly enriched in. CCL7, CCL11, CCL26 and CCL28 were selected for further analysis. Compared with the patients with high CCL7, CCL11, CCL26 and CCL28 expression, the patients with low CCL7, CCL11, CCL26 and CCL28 expression had a better performance of immunotherapy response and this effect might partly be due to Treg cells. Furthermore, biological exploration and clinical correlation of CCL7, CCL11, CCL26 and CCL28 were conducted, Finally, CCL28 was selected for validation. Experiments showed that under the hypoxia condition, HIF-1α was upregulated, which can directly bind to the promoter region of CCL28 and lead to its higher level. Also, CCL28 secreted by lung cancer cells could induce Tregs infiltration. Conclusion Our study provides a novel insight focused on the chemokines in lung cancer immunotherapy. Also, CCL28 was identified as an underlying biomarker for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Su
- School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Guoqing Wang
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Chang Ge
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Fei Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Cailian Wang
- School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Correspondence: Cailian Wang, Email
| |
Collapse
|
170
|
Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment. Nat Commun 2023; 14:1161. [PMID: 36859428 PMCID: PMC9977869 DOI: 10.1038/s41467-023-36747-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The role of N6-methyladenosine (m6A) modification in AKI remains unclear. Here, we characterize the role of AlkB homolog 5 (ALKBH5) and m6A modification in an I/R-induced renal injury model in male mice. Alkbh5-knockout mice exhibit milder pathological damage and better renal function than wild-type mice post-IRI, whereas Alkbh5-knockin mice show contrary results. Also conditional knockout of Alkbh5 in the tubular epithelial cells alleviates I/R-induced AKI and fibrosis. CCL28 is identified as a target of ALKBH5. Furthermore, Ccl28 mRNA stability increases with Alkbh5 deficiency, mediating by the binding of insulin-like growth factor 2 binding protein 2. Treg recruitment is upregulated and inflammatory cells are inhibited by the increased CCL28 level in IRI-Alkbh5fl/flKspCre mice. The ALKBH5 inhibitor IOX1 exhibits protective effects against I/R-induced AKI. In summary, inhibition of ALKBH5 promotes the m6A modifications of Ccl28 mRNA, enhancing its stability, and regulating the Treg/inflammatory cell axis. ALKBH5 and this axis is a potential AKI treatment target.
Collapse
|
171
|
McNamara B, Chang Y, Mutlu L, Harold J, Santin AD. Pembrolizumab with chemotherapy, with or without bevacizumab for persistent, recurrent, or metastatic cervical cancer. Expert Opin Biol Ther 2023; 23:227-233. [PMID: 36800548 DOI: 10.1080/14712598.2023.2182679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
INTRODUCTION Despite progress on prevention and treatment of cervical cancer, global morbidity and mortality remain high. Immunotherapy, in conjunction with standard chemotherapy, presents an opportunity for further benefit. AREAS COVERED Here we report the pharmacologic properties, evidence for clinical efficacy, safety, and tolerability of pembrolizumab in addition to standard chemotherapy with and without bevacizumab for treatment of advanced or recurrent cervical cancer. EXPERT OPINION In patients with progressive, recurrent, or metastatic PD-L1 expressing cervical cancer, without contraindication to anti-VEGF therapy, the use of pembrolizumab with bevacizumab and standard chemotherapy with carboplatin and paclitaxel is warranted. There is no evidence to support the use of pembrolizumab for this population broadly, and no evidence to support its use in PD-L1 non-expressing tumors.
Collapse
Affiliation(s)
- Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yifan Chang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Justin Harold
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
172
|
Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA. Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins. Toxins (Basel) 2023; 15:toxins15030181. [PMID: 36977072 PMCID: PMC10059012 DOI: 10.3390/toxins15030181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
Streptavidin-Saporin can be considered a type of ‘secondary’ targeted toxin. The scientific community has taken advantage of this conjugate in clever and fruitful ways using many kinds of biotinylated targeting agents to send saporin into a cell selected for elimination. Saporin is a ribosome-inactivating protein that causes inhibition of protein synthesis and cell death when delivered inside a cell. Streptavidin-Saporin, mixed with biotinylated molecules to cell surface markers, results in powerful conjugates that are used both in vitro and in vivo for behavior and disease research. Streptavidin-Saporin harnesses the ‘Molecular Surgery’ capability of saporin, creating a modular arsenal of targeted toxins used in applications ranging from the screening of potential therapeutics to behavioral studies and animal models. The reagent has become a well-published and validated resource in academia and industry. The ease of use and diverse functionality of Streptavidin-Saporin continues to have a significant impact on the life science industry.
Collapse
|
173
|
RIOK3 promotes mTORC1 activation by facilitating SLC7A2-mediated arginine uptake in pancreatic ductal adenocarcinoma. Aging (Albany NY) 2023; 15:1039-1051. [PMID: 36880835 PMCID: PMC10008507 DOI: 10.18632/aging.204528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis. Reprogramming of amino acid metabolism is one of the characteristics of PDAC, in which arginine metabolism is significantly altered in PDAC cells and is involved in important signaling pathways. Current studies have identified arginine deprivation as a potential strategy for PDAC treatment. In this study, we performed Liquid Chromatograph Mass Spectrometer (LC-MS)-based non-targeted metabolomic analysis on PDAC cell lines with stable Rio Kinase 3 (RIOK3) knockdown and PDAC tissues with different RIOK3 expressions and found that RIOK3 expression was significantly correlated with arginine metabolism in PDAC. Subsequent RNA sequencing (RNA-Seq) and Western blot analysis showed that RIOK3 knockdown significantly inhibited the expression of arginine transporter solute carrier family 7 member 2 (SLC7A2). Further studies revealed that RIOK3 promoted arginine uptake, mechanistic target of rapamycin complex 1 (mTORC1) activation, cell invasion, and metastasis in PDAC cells via SLC7A2. Finally, we found that patients with high expression of both RIOK3 and infiltrating Treg cells had a worse prognosis. Overall, our study found that RIOK3 in PDAC cells promotes arginine uptake and mTORC1 activation through upregulation of SLC7A2 expression, and also provides a new therapeutic target for therapeutic strategies targeting arginine metabolism.
Collapse
|
174
|
Zhou AL, Jensen DR, Peterson FC, Thomas MA, Schlimgen RR, Dwinell MB, Smith BC, Volkman BF. Fragment-based drug discovery of small molecule ligands for the human chemokine CCL28. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00019-9. [PMID: 36841432 DOI: 10.1016/j.slasd.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The mucosal chemokine CCL28 is a promising target for immunotherapy drug development due to its elevated expression level in epithelial cells and critical role in creating and maintaining an immunosuppressive tumor microenvironment. Using sulfotyrosine as a probe, NMR chemical shift mapping identified a potential receptor-binding hotspot on the human CCL28 surface. CCL28 was screened against 2,678 commercially available chemical fragments by 2D NMR, yielding thirteen verified hits. Computational docking predicted that two fragments could occupy adjoining subsites within the sulfotyrosine recognition cleft. Dual NMR titrations confirmed their ability to bind CCL28 simultaneously, thereby validating an initial fragment pair for linking and merging strategies to design high-potency CCL28 inhibitors.
Collapse
Affiliation(s)
- Angela L Zhou
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Roman R Schlimgen
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Center for Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Center for Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
175
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
176
|
Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15041282. [PMID: 36831623 PMCID: PMC9953912 DOI: 10.3390/cancers15041282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.
Collapse
|
177
|
Mangani D, Yang D, Anderson AC. Learning from the nexus of autoimmunity and cancer. Immunity 2023; 56:256-271. [PMID: 36792572 PMCID: PMC9986833 DOI: 10.1016/j.immuni.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The immune system plays critical roles in both autoimmunity and cancer, diseases at opposite ends of the immune spectrum. Autoimmunity arises from loss of T cell tolerance against self, while in cancer, poor immunity against transformed self fails to control tumor growth. Blockade of pathways that preserve self-tolerance is being leveraged to unleash immunity against many tumors; however, widespread success is hindered by the autoimmune-like toxicities that arise in treated patients. Knowledge gained from the treatment of autoimmunity can be leveraged to treat these toxicities in patients. Further, the understanding of how T cell dysfunction arises in cancer can be leveraged to induce a similar state in autoreactive T cells. Here, we review what is known about the T cell response in autoimmunity and cancer and highlight ways in which we can learn from the nexus of these two diseases to improve the application, efficacy, and management of immunotherapies.
Collapse
Affiliation(s)
- Davide Mangani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Bellinzona 6500, Switzerland.
| | - Dandan Yang
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
178
|
Sun L, Zhang Y, Cai J, Rimal B, Rocha ER, Coleman JP, Zhang C, Nichols RG, Luo Y, Kim B, Chen Y, Krausz KW, Harris CC, Patterson AD, Zhang Z, Takahashi S, Gonzalez FJ. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat Commun 2023; 14:755. [PMID: 36765047 PMCID: PMC9918522 DOI: 10.1038/s41467-023-36089-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Bile salt hydrolase (BSH) in Bacteroides is considered a potential drug target for obesity-related metabolic diseases, but its involvement in colon tumorigenesis has not been explored. BSH-expressing Bacteroides is found at high abundance in the stools of colorectal cancer (CRC) patients with overweight and in the feces of a high-fat diet (HFD)-induced CRC mouse model. Colonization of B. fragilis 638R, a strain with low BSH activity, overexpressing a recombinant bsh gene from B. fragilis NCTC9343 strain, results in increased unconjugated bile acids in the colon and accelerated progression of CRC under HFD treatment. In the presence of high BSH activity, the resultant elevation of unconjugated deoxycholic acid and lithocholic acid activates the G-protein-coupled bile acid receptor, resulting in increased β-catenin-regulated chemokine (C-C motif) ligand 28 (CCL28) expression in colon tumors. Activation of the β-catenin/CCL28 axis leads to elevated intra-tumoral immunosuppressive CD25+FOXP3+ Treg cells. Blockade of the β-catenin/CCL28 axis releases the immunosuppression to enhance the intra-tumoral anti-tumor response, which decreases CRC progression under HFD treatment. Pharmacological inhibition of BSH reduces HFD-accelerated CRC progression, coincident with suppression of the β-catenin/CCL28 pathway. These findings provide insights into the pro-carcinogenetic role of Bacteroides in obesity-related CRC progression and characterize BSH as a potential target for CRC prevention and treatment.
Collapse
Affiliation(s)
- Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Cai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Bipin Rimal
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Edson R Rocha
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - James P Coleman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Chenran Zhang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Robert G Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Bora Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yaozong Chen
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Zhipeng Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
179
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
180
|
Chen Z, Haus JM, DiPietro LA, Koh TJ, Minshall RD. Neutralization of excessive CCL28 improves wound healing in diabetic mice. Front Pharmacol 2023; 14:1087924. [PMID: 36713846 PMCID: PMC9880283 DOI: 10.3389/fphar.2023.1087924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Introduction: Chronic, non-healing skin wounds such as diabetic foot ulcers (DFUs) are common in patients with type 2 diabetes mellitus (T2DM) and often result in limb amputation and even death. However, mechanisms by which T2DM and inflammation negatively impact skin wound healing remains poorly understood. Here we investigate a mechanism by which an excessive level of chemokine CCL28, through its receptor CCR10, impairs wound healing in patients and mice with T2DM. Methods & Results: Firstly, a higher level of CCL28 was observed in skin and plasma in both patients with T2DM, and in obesity-induced type 2 diabetic db/db mice. Compared with WT mice, adipose tissue from db/db mice released 50% more CCL28, as well as 2- to 3-fold more IL-1β, IL-6, and TNF-α, and less VEGF, as determined by ELISA measurements. Secondly, overexpression of CCL28 with adenovirus (Adv-CCL28) caused elevation of proinflammatory cytokines as well as CCR10 expression and also reduced eNOS expression in the dorsal skin of WT mice as compared with control Adv. Thirdly, topical application of neutralizing anti-CCL28 Ab dose-dependently accelerated wound closure and eNOS expression, and decreased IL-6 level, with an optimal dose of 1 μg/wound. In addition, mRNA levels of eNOS and anti-inflammatory cytokine IL-4 were increased as shown by real-time RT-PCR. The interaction between eNOS and CCR10 was significantly reduced in diabetic mouse wounds following application of the optimal dose of anti-CCL28 Ab, and eNOS expression increased. Finally, enhanced VEGF production and increased subdermal vessel density as indicated by CD31 immunostaining were also observed with anti-CCL28 Ab. Discussion: Taken together, topical application of neutralizing anti-CCL28 Ab improved dorsal skin wound healing by reducing CCR10 activation and inflammation in part by preventing eNOS downregulation, increasing VEGF production, and restoring angiogenesis. These results indicate anti-CCL28 Ab has significant potential as a therapeutic strategy for treatment of chronic non-healing diabetic skin wounds such as DFUs.
Collapse
Affiliation(s)
- Zhenlong Chen
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
181
|
Wang Z, Wu S, Wang G, Yang Z, Zhang Y, Zhu C, Qin X. ARHGAP21 Is Involved in the Carcinogenic Mechanism of Cholangiocarcinoma: A Study Based on Bioinformatic Analyses and Experimental Validation. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010139. [PMID: 36676763 PMCID: PMC9867224 DOI: 10.3390/medicina59010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023]
Abstract
Background and Objectives: Rho GTPase-activating protein (RhoGAP) is a negative regulatory element of Rho GTPases and participates in tumorigenesis. Rho GTPase-activating protein 21 (ARHGAP21) is one of the RhoGAPs and its role in cholangiocarcinoma (CCA) has never been disclosed in any publications. Materials and Methods: The bioinformatics public datasets were utilized to investigate the expression patterns and mutations of ARHGAP21 as well as its prognostic significance in CCA. The biological functions of ARHGAP21 in CCA cells (RBE and Hccc9810 cell) were evaluated by scratch assay, cell counting kit-8 assay (CCK8) assay, and transwell migration assay. In addition, the underlying mechanism of ARHGAP21 involved in CCA was investigated by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the most significant signaling pathway was identified through gene set enrichment analysis (GSEA) and the Western blot method. The ssGSEA algorithm was further used to explore the immune-related mechanism of ARHGAP21 in CCA. Results: The ARHGAP21 expression in CCA tissue was higher than it was in normal tissue, and missense mutation was the main alteration of ARHGAP21 in CCA. Moreover, the expression of ARHGAP21 had obvious differences in patients with different clinical characteristics and it had great prognostic significance. Based on cell experiments, we further observed that the proliferation ability and migration ability of the ARHGAP21-knockdown group was reduced in CCA cells. Several pathological signaling pathways correlated with proliferation and migration were determined by GO and KEGG analysis. Furthermore, the PI3K/Akt signaling pathway was the most significant one. GSEA analysis further verified that ARHGAP21 was highly enriched in PI3K/Akt signaling pathway, and the results of Western blot suggested that the phosphorylated PI3K and Akt were decreased in the ARHGAP21-knockdown group. The drug susceptibility of the PI3K/Akt signaling pathway targeted drugs were positively correlated with ARHGAP21 expression. Moreover, we also discovered that ARHGAP21 was correlated with neutrophil, pDC, and mast cell infiltration as well as immune-related genes in CCA. Conclusions: ARHGAP21 could promote the proliferation and migration of CCA cells by activating the PI3K/Akt signaling pathway, and ARHGAP21 may participate in the immune modulating function of the tumor microenvironment.
Collapse
Affiliation(s)
- Zhihuai Wang
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Siyuan Wu
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Gaochao Wang
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Yang
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Yinjie Zhang
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (C.Z.); (X.Q.)
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (C.Z.); (X.Q.)
| |
Collapse
|
182
|
Park C, Jeong DY, Choi Y, Oh YJ, Kim J, Ryu J, Paeng K, Lee SH, Ock CY, Lee HY. Tumor-infiltrating lymphocyte enrichment predicted by CT radiomics analysis is associated with clinical outcomes of non-small cell lung cancer patients receiving immune checkpoint inhibitors. Front Immunol 2023; 13:1038089. [PMID: 36660547 PMCID: PMC9844154 DOI: 10.3389/fimmu.2022.1038089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Background Enrichment of tumor-infiltrating lymphocytes (TIL) in the tumor microenvironment (TME) is a reliable biomarker of immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC). Phenotyping through computed tomography (CT) radiomics has the overcome the limitations of tissue-based assessment, including for TIL analysis. Here, we assess TIL enrichment objectively using an artificial intelligence-powered TIL analysis in hematoxylin and eosin (H&E) image and analyze its association with quantitative radiomic features (RFs). Clinical significance of the selected RFs is then validated in the independent NSCLC patients who received ICI. Methods In the training cohort containing both tumor tissue samples and corresponding CT images obtained within 1 month, we extracted 86 RFs from the CT images. The TIL enrichment score (TILes) was defined as the fraction of tissue area with high intra-tumoral or stromal TIL density divided by the whole TME area, as measured on an H&E slide. From the corresponding CT images, the least absolute shrinkage and selection operator model was then developed using features that were significantly associated with TIL enrichment. The CT model was applied to CT images from the validation cohort, which included NSCLC patients who received ICI monotherapy. Results A total of 220 NSCLC samples were included in the training cohort. After filtering the RFs, two features, gray level variance (coefficient 1.71 x 10-3) and large area low gray level emphasis (coefficient -2.48 x 10-5), were included in the model. The two features were both computed from the size-zone matrix, which has strength in reflecting intralesional texture heterogeneity. In the validation cohort, the patients with high predicted TILes (≥ median) had significantly prolonged progression-free survival compared to those with low predicted TILes (median 4.0 months [95% CI 2.2-5.7] versus 2.1 months [95% CI 1.6-3.1], p = 0.002). Patients who experienced a response to ICI or stable disease with ICI had higher predicted TILes compared with the patients who experienced progressive disease as the best response (p = 0.001, p = 0.036, respectively). Predicted TILes was significantly associated with progression-free survival independent of PD-L1 status. Conclusions In this CT radiomics model, predicted TILes was significantly associated with ICI outcomes in NSCLC patients. Analyzing TME through radiomics may overcome the limitations of tissue-based analysis and assist clinical decisions regarding ICI.
Collapse
Affiliation(s)
- Changhee Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Jeong
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeonu Choi
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - You Jin Oh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Jonghoon Kim
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | | | | | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea,Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chan-Young Ock
- Lunit, Seoul, Republic of Korea,*Correspondence: Chan-Young Ock, ; Ho Yun Lee,
| | - Ho Yun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea,*Correspondence: Chan-Young Ock, ; Ho Yun Lee,
| |
Collapse
|
183
|
Mao N, Wu X, Wang C, Mao H, Wei J. Effect of Moxibustion Combined With Cisplatin on Tumor Microenvironment Hypoxia and Vascular Normalization in Lewis Lung Cancer Mice. Integr Cancer Ther 2023; 22:15347354231198195. [PMID: 37694878 PMCID: PMC10498697 DOI: 10.1177/15347354231198195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
PURPOSE This study was developed to evaluate the effects of moxibustion on tumor microenvironmental hypoxia in a murine model of Lewis lung carcinoma (LLC). METHODS Twenty-four tumor-bearing mice were randomized into tumor group (T), tumor + cisplatin group (TC), tumor + moxibustion group (TM), and tumor + cisplatin + moxibustion group (TMC) (n = 6/group). Six age-matched C57BL/6 mice were employed as control group (Ctrl). A tumor model was established by implanting LLC cells into the right flank of each mouse. Animals in the TM group received moxibustion treatment at the ST36 (bilateral) and GV4 acupoints on the day of visible tumor formation. Moxibustion treatment was performed every other day for a total of 7 sessions. Animals in the TC group were intraperitoneally injected with cisplatin (3 mg/kg) on day 3 after visible tumor formation, and this treatment was performed every 3 days for 4 times. Animals in the TMC group underwent combined moxibustion and chemotherapy treatment, following the same conditions as outlined above. Following treatment, the concentrations of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), CD31, and Ki67 were measured using ELISA, Western blot, and immunohistochemical staining. RESULTS Compared to the tumor group, treatment in the TM, TC, and TCM groups resulted in varying reductions in tumor growth (P < .001 or P < .05), while tumor microenvironmental hypoxia was alleviated as evidenced by the downregulation of HIF-1α, VEGFA, and CD31(P < .001-P < .05). CONCLUSION Our results suggest that a combined approach of moxibustion and cisplatin can alleviate intratumoral hypoxia, promote vascular normalization, and slow the growth of LLC tumors in mice.
Collapse
Affiliation(s)
- Ni Mao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaofeng Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
184
|
Bergerhoff K, Pedersen M. Isolation and Analysis of Tumor-Infiltrating Treg. Methods Mol Biol 2023; 2559:51-63. [PMID: 36180626 DOI: 10.1007/978-1-0716-2647-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Besides their important function in immune homeostasis, autoimmunity, and peripheral tolerance, regulatory T cells (Tregs) also play a crucial role in cancer immune evasion, by assisting tumors to shield from antitumor responses by effector cells. Tregs are recruited to infiltrate tumors and upon finding favourable conditions in the tumor microenvironment, proliferate and suppress effector T cell function thereby promoting tumor escape and growth. In human cancer patients and mouse models, a low ratio of effector T cells to Tregs is a key feature of this immune-suppressive tumor microenvironment and correlates with poor prognosis. This chapter describes protocols for the isolation of tumor-infiltrating lymphocytes (TILs) from solid tumors, their quantification, and phenotyping via flow cytometry to assess the effector T cell:Treg ratio and the expression of relevant markers.
Collapse
Affiliation(s)
- Katharina Bergerhoff
- UCL Cancer Institute, Research Department of Haematology, Cancer Immunology Unit, London, UK.
- Institute of Cancer Research, Targeted Therapy Team, London, UK.
- Quell Therapeutics, London, UK.
| | - Malin Pedersen
- Institute of Cancer Research, Targeted Therapy Team, London, UK
| |
Collapse
|
185
|
Celada L, Cubiella T, San-Juan-Guardado J, Gutiérrez G, Beiguela B, Rodriguez R, Poch M, Astudillo A, Grijalba A, Sánchez-Sobrino P, Tous M, Navarro E, Serrano T, Paja M, Valdés N, Chiara MD. Pseudohypoxia in paraganglioma and pheochromocytoma is associated with an immunosuppressive phenotype. J Pathol 2023; 259:103-114. [PMID: 36314599 PMCID: PMC10107524 DOI: 10.1002/path.6026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022]
Abstract
Metastatic pheochromocytoma and paraganglioma (PPGL) have poor prognosis and limited therapeutic options. The recent advent of immunotherapies showing remarkable clinical efficacies against various cancer types offers the possibility of novel opportunities also for metastatic PPGL. Most PPGLs are pathogenically linked to inactivating mutations in genes encoding different succinate dehydrogenase (SDH) subunits. This causes activation of the hypoxia-inducible factor 2 (HIF2)-mediated transcriptional program in the absence of decreased intratumoral oxygen levels, a phenomenon known as pseudohypoxia. Genuine hypoxia in a tumor creates an immunosuppressive tumor microenvironment. However, the impact of pseudohypoxia in the immune landscape of tumors remains largely unexplored. In this study, tumoral expression of programmed death-ligand 1 (PD-L1) and HIF2α and tumor infiltration of CD8 T lymphocytes (CTLs) were examined in PPGL specimens from 102 patients. We assessed associations between PD-L1, CTL infiltration, HIF2α expression, and the mutational status of SDH genes. Our results show that high PD-L1 expression levels in tumor cells and CTL tumor infiltration were more frequent in metastatic than nonmetastatic PPGL. However, this phenotype was negatively associated with SDH mutations and high HIF2α protein expression. These data were validated by analysis of mRNA levels of genes expressing PD-L1, CD8, and HIF2α in PPGL included in The Cancer Genome Atlas database. Further, PD-L1 and CD8 expression was lower in norepinephrine than epinephrine-secreting PPGL. This in silico analysis also revealed the low PD-L1 or CD8 expression levels in tumors with inactivating mutations in VHL or activating mutations in the HIF2α-coding gene, EPAS1, which, together with SDH-mutated tumors, comprise the pseudohypoxic molecular subtype of PPGL. These findings suggest that pseudohypoxic tumor cells induce extrinsic signaling toward the immune cells promoting the development of an immunosuppressive environment. It also provides compelling support to explore the differential response of metastatic PPGL to immune checkpoint inhibitors. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lucía Celada
- Institute of Sanitary Research of the Principado de Asturias, Oviedo, Spain.,CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain.,Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Tamara Cubiella
- Institute of Sanitary Research of the Principado de Asturias, Oviedo, Spain.,CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain.,Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | | | - Gala Gutiérrez
- Department of Internal Medicine, Section of Endocrinology and Nutrition, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Brenda Beiguela
- Department of Internal Medicine, Section of Endocrinology and Nutrition, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Raúl Rodriguez
- Department of Pathology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - María Poch
- Department of Pathology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Aurora Astudillo
- Institute of Sanitary Research of the Principado de Asturias, Oviedo, Spain
| | - Ana Grijalba
- Department of Clinical Analysis, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Paula Sánchez-Sobrino
- Department of Endocrinology and Nutrition, Complejo Hospitalario de Pontevedra, Pontevedra, Spain
| | - Maria Tous
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Elena Navarro
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Teresa Serrano
- Department of Pathology, Hospital de Bellvitge, Barcelona, Spain
| | - Miguel Paja
- Department of Endocrinology and Nutrition, Hospital Universitario de Basurto, Bilbao, Spain
| | - Nuria Valdés
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain.,Department of Internal Medicine, Section of Endocrinology and Nutrition, Hospital Universitario de Cabueñes, Gijón, Spain
| | - María-Dolores Chiara
- Institute of Sanitary Research of the Principado de Asturias, Oviedo, Spain.,CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain.,Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
186
|
Chang B, Chen J, Bao J, Dong K, Chen S, Cheng Z. Design strategies and applications of smart optical probes in the second near-infrared window. Adv Drug Deliv Rev 2023; 192:114637. [PMID: 36476990 DOI: 10.1016/j.addr.2022.114637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, a series of synergistic advances in the synthesis chemistries and imaging instruments have largely boosted a significant revolution, in which large-scale biomedical applications are now benefiting from optical bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm). The large tissue penetration and limited autofluorescence associated with long-wavelength imaging improve translational potential of NIR-II imaging over common visible-light (400-650 nm) and NIR-I (750-900 nm) imaging, with ongoing profound effects on the studies of precision medicine. Unfortunately, the majority of NIR-II probes are designed as "always-on" luminescent imaging contrasts, continuously generating unspecific signals regardless of whether they reach pathological locations. Thus, in vivo imaging by traditional NIR-II probes usually suffers from weak detect precision due to high background noise. In this context, the advances of optical imaging now enter into an era of precise control of NIR-II photophysical kinetics. Developing NIR-II optical probes that can efficiently activate their luminescent signal in response to biological targets of interest and substantially suppress the background interferences have become a highly prospective research frontier. In this review, the merits and demerits of optical imaging probes from visible-light, NIR-I to NIR-II windows are carefully discussed along with the lens of stimuli-responsive photophysical kinetics. We then highlight the latest development in engineering methods for designing smart NIR-II optical probes. Finally, to appreciate such advances, challenges and prospect in rapidly growing study of smart NIR-II probes are addressed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kangfeng Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha 410008, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| |
Collapse
|
187
|
Drouillard D, Craig BT, Dwinell MB. Physiology of chemokines in the cancer microenvironment. Am J Physiol Cell Physiol 2023; 324:C167-C182. [PMID: 36317799 PMCID: PMC9829481 DOI: 10.1152/ajpcell.00151.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Chemokines are chemotactic cytokines whose canonical functions govern movement of receptor-expressing cells along chemical gradients. Chemokines are a physiological system that is finely tuned by ligand and receptor expression, ligand or receptor oligomerization, redundancy, expression of atypical receptors, and non-GPCR binding partners that cumulatively influence discrete pharmacological signaling responses and cellular functions. In cancer, chemokines play paradoxical roles in both the directed emigration of metastatic, receptor-expressing cancer cells out of the tumor as well as immigration of tumor-infiltrating immune cells that culminate in a tumor-unique immune microenvironment. In the age of precision oncology, strategies to effectively harness the power of immunotherapy requires consideration of chemokine gradients within the unique spatial topography and temporal influences with heterogeneous tumors. In this article, we review current literature on the diversity of chemokine ligands and their cellular receptors that detect and process chemotactic gradients and illustrate how differences between ligand recognition and receptor activation influence the signaling machinery that drives cellular movement into and out of the tumor microenvironment. Facets of chemokine physiology across discrete cancer immune phenotypes are contrasted to existing chemokine-centered therapies in cancer.
Collapse
Affiliation(s)
- Donovan Drouillard
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian T Craig
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
188
|
Antitumor Therapy Targeting the Tumor Microenvironment. JOURNAL OF ONCOLOGY 2023; 2023:6886135. [PMID: 36908706 PMCID: PMC10005879 DOI: 10.1155/2023/6886135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The development and progression of tumors in human tissues extensively rely on its surrounding environment, that is, tumor microenvironment which includes a variety of cells, molecules, and blood vessels. These components are modified, organized, and integrated to support and facilitate the growth, invasion, and metabolism of tumor cells, suggesting them as potential therapeutic targets in anticancer treatment. An increasing number of pharmacological agents have been developed and clinically applied to target the oncogenic components in the tumor microenvironment, and in this review, we will summarize these pharmacological agents that directly or indirectly target the cellular or molecular components in the tumor microenvironment. However, difficulties and challenges still exist in this field, which will also be reported in this literature.
Collapse
|
189
|
A macrophage membrane-coated mesoporous silica nanoplatform inhibiting adenosine A2AR via in situ oxygen supply for immunotherapy. J Control Release 2023; 353:535-548. [PMID: 36481693 DOI: 10.1016/j.jconrel.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Immunotherapy has achieved remarkable research outcomes and shows the potential to cure cancer. However, its therapeutic response is limited in terms of the immunosuppressive tumor microenvironment induced by hypoxia, in which the adenosinergic A2A receptor (A2AR) pathway is mainly participated. Here, we developed a novel core/shell structured nanoplatform composed of macrophage membrane-coated mesoporous silica nanoparticles which loaded catalase, doxorubicin (Dox), and resiquimod (R848), to promote the efficacy of immunotherapy. The nanoplatform is able to actively target the tumor site via ligand binding, and the A2AR of T regulatory (Treg) cells can further be blocked due to in situ oxygen production by hydrogen peroxide catalysis. Meanwhile, Dox and R848 released from the nanoplatform can induce immunogenic cell death and enhance the activation of dendritic cells (DCs), respectively. Thus, the improved microenvironment by A2AR blockade and the stimulation of the DCs to enhance the CD8+ T cells mediated immune response were achieved. Consequently, the expression of Treg cells decreased to 9.79% in tumor tissue and the inhibition rate of tumor growth reached 73.58%. Therefore, this nanoplatform provides a potential strategy for clinical application in cancer immunotherapy.
Collapse
|
190
|
Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022; 12:cells12010064. [PMID: 36611857 PMCID: PMC9818185 DOI: 10.3390/cells12010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.
Collapse
Affiliation(s)
- Huan-Xiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu-Qi Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.-L.D.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.-L.D.); (K.Y.)
| |
Collapse
|
191
|
程 昉, 杨 邵, 房 星, 王 璇, 赵 福. [Role of the CCL28-CCR10 pathway in monocyte migration in rheumatoid arthritis]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:1074-1078. [PMID: 36533335 PMCID: PMC9761822 DOI: 10.19723/j.issn.1671-167x.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To examine the expression of chemokine receptor CCR10 on monocytes/macrophages in the joints of patients with rheumatoid arthritis (RA), and to investigate the role of chemokine CCL28 and its receptor CCR10 in the migration of RA monocytes and its mechanism. METHODS The expression of CCR10 in synovial tissues from 8 RA patients, 4 osteoarthritis (OA) patients, and 4 normal controls was analyzed by immunohistochemistry, and cell staining was scored on a 0-5 scales. Flow cytometry was used to measure the percentage of CCR10 positive cells in CD14+ monocytes from peripheral blood of 26 RA patients and 20 healthy controls, as well as from synovial fluid of 15 RA patients. The chemotactic migration of monocytes from RA patients and healthy controls in response to CCL28 was evaluated using an in vitro Transwell system. Western blotting was conducted to assess phosphorylation of the extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) pathways in RA monocytes upon CCL28 treatment. RESULTS CCR10 was predominantly expressed in RA synovial lining cells and sublining macrophages, endothelial cells, and lymphocytes. CCR10 expression was significantly increased on lining cells and sublining macrophages in RA synovial tissue compared with OA and normal synovial tissue (both P < 0.01). The patients with RA had markedly elevated expression of CCR10 on peripheral blood CD14+ monocytes compared with the healthy controls [(15.6±3.0)% vs. (7.7±3.8)%, P < 0.01]. CCR10 expression on synovial fluid monocytes from the RA patients was (32.0±15.0)%, which was significantly higher than that on RA peripheral blood monocytes (P < 0.01). In vitro, CCL28 caused significant migration of CD14+ monocytes from peripheral blood of the RA patients and the healthy controls at concentrations ranging from 10-100 μg/L (all P < 0.01). The presence of neutralizing antibody to CCR10 greatly suppressed CCL28-driven chemotaxis of RA monocytes (P < 0.01). Stimulation of RA monocytes with CCL28 induced a remarkable increase in phosphorylation of ERK and Akt (both P < 0.05). ERK inhibitor (U0126) and phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) strongly reduced the migration of RA monocytes in response to CCL28 (both P < 0.01). CONCLUSION RA patients had increased CCR10 expression on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages. CCL28 ligation to CCR10 promoted RA monocyte migration through activation of the ERK and PI3K/Akt signaling pathways. The CCL28-CCR10 pathway could participate in monocyte recruitment into RA joints, thereby contributing to synovial inflammation and bone destruction.
Collapse
Affiliation(s)
- 昉 程
- 上海交通大学医学院附属第九人民医院风湿免疫科,上海 201999Department of Rheumatology and Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - 邵英 杨
- 上海交通大学医学院附属仁济医院风湿科,上海 200001Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - 星星 房
- 同济大学附属同济医院风湿免疫科,上海 200065Department of Rheumatology and Immunology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - 璇 王
- 同济大学附属同济医院风湿免疫科,上海 200065Department of Rheumatology and Immunology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - 福涛 赵
- 上海交通大学医学院附属第九人民医院风湿免疫科,上海 201999Department of Rheumatology and Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
192
|
Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: a novel treatment strategy in solid tumors. J Transl Med 2022; 20:586. [PMID: 36510315 PMCID: PMC9743606 DOI: 10.1186/s12967-022-03813-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) are the most abundant immune cells, which act as a key regulator in tumorigenesis and progression. Increasing evidence have demonstrated that the TME alters the nature of macrophages to maintain dynamic tissue homeostasis, allowing TAMs to acquire the ability to stimulate angiogenesis, promote tumor metastasis and recurrence, and suppress anti-tumor immune responses. Furthermore, tumors with high TAM infiltration have poor prognoses and are resistant to treatment. In the field of solid tumor, the exploration of tumor-promoting mechanisms of TAMs has attracted much attention and targeting TAMs has emerged as a promising immunotherapeutic strategy. Currently, the most common therapeutic options for targeting TAMs are as follows: the deletion of TAMs, the inhibition of TAMs recruitment, the release of phagocytosis by TAMs, and the reprogramming of macrophages to remodel their anti-tumor capacity. Promisingly, the study of chimeric antigen receptor macrophages (CAR-Ms) may provide even greater benefit for patients with solid tumors. In this review, we discuss how TAMs promote the progression of solid tumors as well as summarize emerging immunotherapeutic strategies that targeting macrophages.
Collapse
Affiliation(s)
- Mengmeng Liu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052 China
| | - Lina Liu
- grid.414008.90000 0004 1799 4638Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Yongping Song
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wei Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Linping Xu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
193
|
Liu L, Qu Y, Cheng L, Yoon CW, He P, Monther A, Guo T, Chittle S, Wang Y. Engineering chimeric antigen receptor T cells for solid tumour therapy. Clin Transl Med 2022; 12:e1141. [PMID: 36495108 PMCID: PMC9736813 DOI: 10.1002/ctm2.1141] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cell-based immunotherapy, for example, chimeric antigen receptor T (CAR-T) cell immunotherapy, has revolutionized cancer treatment, particularly for blood cancers. However, factors such as insufficient T cell tracking, tumour heterogeneity, inhibitory tumour microenvironment (TME) and T cell exhaustion limit the broad application of CAR-based immunotherapy for solid tumours. In particular, the TME is a complex and evolving entity, which is composed of cells of different types (e.g., cancer cells, immune cells and stromal cells), vasculature, soluble factors and extracellular matrix (ECM), with each component playing a critical role in CAR-T immunotherapy. Thus, developing approaches to mitigate the inhibitory TME factors is critical for future success in applying CAR-T cells for solid tumour treatment. Accordingly, understanding the bilateral interaction of CAR-T cells with the TME is in pressing need to pave the way for more efficient therapeutics. In the following review, we will discuss TME-associated aspects with an emphasis on T cell trafficking, ECM barriers, abnormal vasculature, solid tumour heterogenicity and immune suppressive microenvironment. We will then summarize current engineering strategies to overcome the challenges posed by the TME-associated factors. Lastly, the future directions for engineering efficient CAR-T cells for solid tumour therapy will be discussed.
Collapse
Affiliation(s)
- Longwei Liu
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Yunjia Qu
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Leonardo Cheng
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Chi Woo Yoon
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Peixiang He
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Abdula Monther
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Tianze Guo
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Sarah Chittle
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Yingxiao Wang
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
194
|
Xiong L, He X, Wang L, Dai P, Zhao J, Zhou X, Tang H. Hypoxia-associated prognostic markers and competing endogenous RNA coexpression networks in lung adenocarcinoma. Sci Rep 2022; 12:21340. [PMID: 36494419 PMCID: PMC9734750 DOI: 10.1038/s41598-022-25745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common form of non-small cell lung cancer (NSCLC). Hypoxia has been found in 50-60% of locally advanced solid tumors and is associated with poor prognosis in various tumors, including NSCLC. This study focused on hypoxia-associated molecular hallmarks in LUAD. Fifteen hypoxia-related genes were selected to define the hypoxia status of LUAD by ConsensusClusterPlus based on data from The Cancer Genome Atlas (TCGA). Then, we investigated the immune status under different hypoxia statuses. Subsequently, we constructed prognostic models based on hypoxia-related differentially expressed genes (DEGs), identified hypoxia-related microRNAs, lncRNAs and mRNAs, and built a network based on the competing endogenous RNA (ceRNA) theory. Two clusters (Cluster 1 and Cluster 2) were identified with different hypoxia statuses. Cluster 1 was defined as the hypoxia subgroup, in which all 15 hypoxia-associated genes were upregulated. The infiltration of CD4+ T cells and Tfh cells was lower, while the infiltration of regulatory T (Treg) cells, the expression of PD-1/PD-L1 and TMB scores were higher in Cluster 1, indicating an immunosuppressive status. Based on the DEGs, a risk signature containing 7 genes was established. Furthermore, three differentially expressed microRNAs (hsa-miR-9, hsa-miR-31, hsa-miR-196b) associated with prognosis under different hypoxia clusters and their related mRNAs and lncRNAs were identified, and a ceRNA network was built. This study showed that hypoxia was associated with poor prognosis in LUAD and explored the potential mechanism from the perspective of the gene signature and ceRNA theory.
Collapse
Affiliation(s)
- Lecai Xiong
- grid.413247.70000 0004 1808 0969Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Xueyu He
- grid.413247.70000 0004 1808 0969Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Le Wang
- grid.413247.70000 0004 1808 0969Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Peng Dai
- grid.413247.70000 0004 1808 0969Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Jinping Zhao
- grid.413247.70000 0004 1808 0969Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Xuefeng Zhou
- grid.413247.70000 0004 1808 0969Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Hexiao Tang
- grid.413247.70000 0004 1808 0969Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| |
Collapse
|
195
|
Chen S, Wei H, Zhao W, Jiang W, Ning R, Zhou S, Tan L, Wang H, Su C, He J, Zeng A, Zhao Y, Yu Q. PD-1/PD-L1 inhibitors plus anti-angiogenic agents with or without chemotherapy versus PD-1/PD-L1 inhibitors plus chemotherapy as second or later-line treatment for patients with advanced non-small cell lung cancer: A real-world retrospective cohort study. Front Immunol 2022; 13:1059995. [PMID: 36569915 PMCID: PMC9767946 DOI: 10.3389/fimmu.2022.1059995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this study was to assessment the efficacy and safety of Programmed cell death protein 1 (PD-1)/Programmed cell death-Ligand protein 1 (PD-L1) inhibitors plus anti-angiogenic agents with or without chemotherapy versus PD-1/PD-L1 inhibitors plus chemotherapy as second or later-line treatment for patients with advanced non-small cell lung cancer. Methods In this study, pre-treatment clinical and laboratory indicators from 73 patients with advanced non-small cell lung cancer were retrieved for retrospective analysis. According to the therapy regimes they received, the patients were separated into groups, PD-1/PD-L1 inhibitors plus chemotherapy group (PC group), PD-1/PD-L1 inhibitors plus anti-angiogenic agents' group (PA group), PD-1/PD-L1 inhibitors plus anti-angiogenic agents plus chemotherapy group (PAC group). Cox's proportional hazards regression model and Kaplan-Meier (KM) curves were used to assess the connection between treatment regimens and progression free survival (PFS) and overall survival (OS). In addition, the association of treatment regimens with the risk of disease progression and death was evaluated by subgroup analysis. Results The average age of the enrolled patients was 58.2 ± 10.2 years and 75.3% were male. Multivariate analyses showed that patients in PA group (Disease progression: HR 0.4, P=0.005. Death: HR 0.4, P=0.024) and PAC group (Disease progression: HR 0.3, P=0.012. Death: HR 0.3, P=0.045) had a statistically significant lower hazard ratio (HR) for disease progression and death compared to patients in PC group. Kaplan-Meier analysis showed that patients in PA group (mPFS:7.5 vs.3.5, P=0.00052. mOS:33.1 vs.21.8, P=0.093) and PAC group (mPFS:5.1 vs.3.5, P=0.075. mOS:37.3 vs.21.8, P=0.14) had a longer PFS and OS compared to patients in PC group. In all the pre-defined subgroups, patients in PA and PAC groups showed a decreasing trend in the risk of disease progression and death in most subgroups. The patients in PA group (DCR:96.3% vs.58.3%, P=0.001) and PAC group (DCR:100% vs.58.3%, P=0.019) had a better disease control rate (DCR) than patients in PC group. Conclusion PD-1/PD-L1 inhibitors plus anti-angiogenic agents with or without chemotherapy were superior to PD-1/PD-L1 inhibitors plus chemotherapy as second or later-line treatment in patients with advanced non-small cell lung cancer.
Collapse
Affiliation(s)
- Shubin Chen
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Haowen Wei
- Department of Hepatobiliary Surgery, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Wenhua Zhao
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Wei Jiang
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Ruiling Ning
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Shaozhang Zhou
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Liping Tan
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Huilin Wang
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Cuiyun Su
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Jianbo He
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Aiping Zeng
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Yun Zhao
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China,Department of Hepatobiliary Surgery, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China,*Correspondence: Yun Zhao, ; Qitao Yu,
| | - Qitao Yu
- Medical Oncology of Respiratory, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning, China,*Correspondence: Yun Zhao, ; Qitao Yu,
| |
Collapse
|
196
|
Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022; 14:pharmaceutics14122708. [PMID: 36559202 PMCID: PMC9785496 DOI: 10.3390/pharmaceutics14122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and battling cancer has always been a challenging subject in medical sciences. All over the world, scientists from different fields of study try to gain a deeper knowledge about the biology and roots of cancer and, consequently, provide better strategies to fight against it. During the past few decades, nanoparticles (NPs) have attracted much attention for the delivery of therapeutic and diagnostic agents with high efficiency and reduced side effects in cancer treatment. Targeted and stimuli-sensitive nanoparticles have been widely studied for cancer therapy in recent years, and many more studies are ongoing. This review aims to provide a broad view of different nanoparticle systems with characteristics that allow them to target diverse properties of the tumor microenvironment (TME) from nanoparticles that can be activated and release their cargo due to the specific characteristics of the TME (such as low pH, redox, and hypoxia) to nanoparticles that can target different cellular and molecular targets of the present cell and molecules in the TME.
Collapse
|
197
|
Tong J, Jiang W, Zhang X, Wang R, Qiao T, Song Y, Gao D, Yu X, Lv Z, Li D. CCL22 and CCL26 are potential biomarkers for predicting distant metastasis in thyroid carcinoma. J Int Med Res 2022; 50:3000605221139555. [PMID: 36495170 DOI: 10.1177/03000605221139555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Chemokines have been suggested to play significant roles in the progression of malignant cancers. This study aimed to identify the chemokines related to malignant progression in thyroid carcinoma. METHODS The mRNA expression levels of 52 chemokines were compared between differentiated thyroid cancer (DTC) samples and normal thyroid tissues from The Cancer Genome Atlas database; survival analysis was then performed on the basis of differentially expressed chemokines. A retrospective study was conducted on the level of differentially expressed chemokines in 76 DTC patients. Functional pathway analysis was performed to explore chemokine-related regulatory mechanisms. RESULTS We identified 20 chemokines with differentially expressed mRNA levels through publicly available data. High levels of CCL22 and CCL26 were found to be related with metastasis in clinical DTC samples. High levels of CCL22 were found to be significantly related to poor prognosis in DTC patients. Pathway analyses revealed that cytokines might affect cancer progression through cytokine-cytokine receptor and cytokine-interleukin interactions. CONCLUSIONS CCL22 and CCL26 could serve as prognostic biomarkers in thyroid carcinoma.
Collapse
Affiliation(s)
- Junyu Tong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Wen Jiang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaoying Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China.,Department of Nuclear Medicine, The Affiliated Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai, P.R. China
| | - Ru Wang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Tingting Qiao
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yingchun Song
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Dingwei Gao
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaqing Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Dan Li
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
198
|
Bu MT, Chandrasekhar P, Ding L, Hugo W. The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. Pharmacol Ther 2022; 240:108211. [PMID: 35577211 PMCID: PMC10956517 DOI: 10.1016/j.pharmthera.2022.108211] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockade (ICB) has become well-known in cancer therapy, strengthening the body's antitumor immune response rather than directly targeting cancer cells. Therapies targeting immune inhibitory checkpoints, such as PD-1, PD-L1, and CTLA-4, have resulted in impressive clinical responses across different types of solid tumors. However, as with other types of cancer treatments, ICB-based immunotherapy is hampered by both innate and acquired drug resistance. We previously reported the enrichment of gene signatures associated with wound healing, epithelial-to-mesenchymal, and angiogenesis processes in the tumors of patients with innate resistance to PD-1 checkpoint antibody therapy; we termed these the Innate Anti-PD-1 Resistance Signatures (IPRES). The TGF-β and VEGFA pathways emerge as the dominant drivers of IPRES-associated processes. Here, we review these pathways' functions, their roles in immunosuppression, and the currently available therapies that target them. We also discuss recent developments in the targeting of TGF-β using a specific antibody class termed trap antibody. The application of trap antibodies opens the promise of localized targeting of the TGF-β and VEGFA pathways within the tumor microenvironment. Such specificity may offer an enhanced therapeutic window that enables suppression of the IPRES processes in the tumor microenvironment while sparing the normal homeostatic functions of TGF-β and VEGFA in healthy tissues.
Collapse
Affiliation(s)
- Melissa T Bu
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pallavi Chandrasekhar
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lizhong Ding
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy UCLA, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Willy Hugo
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy UCLA, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
199
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
200
|
Guo W, Qiao T, Li T. The role of stem cells in small-cell lung cancer: evidence from chemoresistance to immunotherapy. Semin Cancer Biol 2022; 87:160-169. [PMID: 36371027 DOI: 10.1016/j.semcancer.2022.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Small cell lung cancer (SCLC) is the most aggressive subtype of lung cancer, accounting for approximately 15% among all lung cancers. Despite the ability of chemotherapy, the first-line treatment for SCLC, to rapidly shrink tumors, nearly all patients experience recurrence and metastasis within a few months. Cancer stem cells (CSCs) are a small population of tumor cells responsible for tumorigenesis, metastasis, and recurrence after treatment, which play a crucial role in chemoresistance by promoting DNA repair and expression of drug resistance-associated proteins. Thus, targeting CSCs has been successful in certain malignancies. Tumor therapy has entered the era of immunotherapy and numerous preclinical trials have demonstrated the effectiveness of immunotherapeutic approaches targeting CSCs, such as tumor vaccines and chimeric antigen receptor (CAR) T cell, and the feasibility of combining them with chemotherapy. Therefore, a deeper understanding of the interaction between CSCs and immune system is essential to facilitate the advances of new immunotherapies approaches targeting CSCs as well as combination with standard drugs such as chemotherapy. This narrative review summarizes the mechanisms of chemoresistance of CSCs in SCLC and the latest advances in targeted therapies. Thereafter, we discuss the effects of CSCs on tumor immune microenvironment in SCLC and corresponding immunotherapeutic approaches. Eventually, we propose that the combination of immunotherapy targeting CSCs with standard drugs is a promising direction for SCLC therapies.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Pathology, Xianyang Central Hospital, Xianyang 712000, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|