151
|
Abstract
Salmonellae invasion and intracellular replication within host cells result in a range of diseases, including gastroenteritis, bacteraemia, enteric fever and focal infections. In recent years, considerable progress has been made in our understanding of the molecular mechanisms that salmonellae use to alter host cell physiology; through the delivery of effector proteins with specific activities and through the modulation of defence and stress response pathways. In this Review, we summarize our current knowledge of the complex interplay between bacterial and host factors that leads to inflammation, disease and, in most cases, control of the infection by its animal hosts, with a particular focus on Salmonella enterica subsp. enterica serovar Typhimurium. We also highlight gaps in our knowledge of the contributions of salmonellae and the host to disease pathogenesis, and we suggest future avenues for further study.
Collapse
Affiliation(s)
- Doris L. LaRock
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Anu Chaudhary
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, WA 98195
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Department of Immunology, University of Washington, Seattle, WA 98195
- Department of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
152
|
Abstract
Control of typhoid fever relies on clinical information, diagnosis, and an understanding for the epidemiology of the disease. Despite the breadth of work done so far, much is not known about the biology of this human-adapted bacterial pathogen and the complexity of the disease in endemic areas, especially those in Africa. The main barriers to control are vaccines that are not immunogenic in very young children and the development of multidrug resistance, which threatens efficacy of antimicrobial chemotherapy. Clinicians, microbiologists, and epidemiologists worldwide need to be familiar with shifting trends in enteric fever. This knowledge is crucial, both to control the disease and to manage cases. Additionally, salmonella serovars that cause human infection can change over time and location. In areas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the main cause of enteric fever, but now S Typhi is being displaced by infections with drug-resistant S enterica serovar Paratyphi A. New conjugate vaccines are imminent and new treatments have been promised, but the engagement of local medical and public health institutions in endemic areas is needed to allow surveillance and to implement control measures.
Collapse
Affiliation(s)
- John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and European Union Reference Laboratory for Antimicrobial Resistance, Kongens Lyngby, Denmark
| | - Matthew L Mikoleit
- National Enteric Reference Laboratory Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen H Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service (NHLS), Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
153
|
Deng L, Song J, Gao X, Wang J, Yu H, Chen X, Varki N, Naito-Matsui Y, Galán JE, Varki A. Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi. Cell 2015; 159:1290-9. [PMID: 25480294 DOI: 10.1016/j.cell.2014.10.057] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/09/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Salmonella Typhi is an exclusive human pathogen that causes typhoid fever. Typhoid toxin is a S. Typhi virulence factor that can reproduce most of the typhoid fever symptoms in experimental animals. Toxicity depends on toxin binding to terminally sialylated glycans on surface glycoproteins. Human glycans are unusual because of the lack of CMAH, which in other mammals converts N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc). Here, we report that typhoid toxin binds to and is toxic toward cells expressing glycans terminated in Neu5Ac (expressed by humans) over glycans terminated in Neu5Gc (expressed by other mammals). Mice constitutively expressing CMAH thus displaying Neu5Gc in all tissues are resistant to typhoid toxin. The atomic structure of typhoid toxin bound to Neu5Ac reveals the structural bases for its binding specificity. These findings provide insight into the molecular bases for Salmonella Typhi's host specificity and may help the development of therapies for typhoid fever.
Collapse
Affiliation(s)
- Lingquan Deng
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeongmin Song
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Xiang Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jiawei Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, PRC
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Nissi Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuko Naito-Matsui
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
154
|
Williams K, Gokulan K, Shelman D, Akiyama T, Khan A, Khare S. Cytotoxic Mechanism ofCytolethal Distending Toxinin NontyphoidalSalmonellaSerovar (SalmonellaJaviana) During Macrophage Infection. DNA Cell Biol 2015; 34:113-24. [DOI: 10.1089/dna.2014.2602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Katherine Williams
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Diamond Shelman
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Tatsuya Akiyama
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ashraf Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
155
|
Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC, Ryan ET. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol 2014; 22:648-55. [PMID: 25065707 PMCID: PMC4252485 DOI: 10.1016/j.tim.2014.06.007] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Typhoid (enteric fever) remains a major cause of morbidity and mortality worldwide, causing over 21 million new infections annually, with the majority of deaths occurring in young children. Because typhoid fever-causing Salmonella have no known environmental reservoir, the chronic, asymptomatic carrier state is thought to be a key feature of continued maintenance of the bacterium within human populations. Despite the importance of this disease to public health, our understanding of the molecular mechanisms that catalyze carriage, as well as our ability to reliably identify and treat the Salmonella carrier state, have only recently begun to advance.
Collapse
Affiliation(s)
- John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, OH, USA.
| | - Joanna M Marshall
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, OH, USA
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Oxford University, Oxford, United Kingdom; The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
156
|
DiRienzo JM. Uptake and processing of the cytolethal distending toxin by mammalian cells. Toxins (Basel) 2014; 6:3098-116. [PMID: 25365527 PMCID: PMC4247254 DOI: 10.3390/toxins6113098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 11/16/2022] Open
Abstract
The cytolethal distending toxin (Cdt) is a heterotrimeric holotoxin produced by a diverse group of Gram-negative pathogenic bacteria. The Cdts expressed by the members of this group comprise a subclass of the AB toxin superfamily. Some AB toxins have hijacked the retrograde transport pathway, carried out by the Golgi apparatus and endoplasmic reticulum (ER), to translocate to cytosolic targets. Those toxins have been used as tools to decipher the roles of the Golgi and ER in intracellular transport and to develop medically useful delivery reagents. In comparison to the other AB toxins, the Cdt exhibits unique properties, such as translocation to the nucleus, that present specific challenges in understanding the precise molecular details of the trafficking pathway in mammalian cells. The purpose of this review is to present current information about the mechanisms of uptake and translocation of the Cdt in relation to standard concepts of endocytosis and retrograde transport. Studies of the Cdt intoxication process to date have led to the discovery of new translocation pathways and components and most likely will continue to reveal unknown features about the mechanisms by which bacterial proteins target the mammalian cell nucleus. Insight gained from these studies has the potential to contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
157
|
Dougan G, Baker S. Salmonella entericaSerovar Typhi and the Pathogenesis of Typhoid Fever. Annu Rev Microbiol 2014; 68:317-36. [DOI: 10.1146/annurev-micro-091313-103739] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Program, Oxford University, Clinical Research Unit, Ho Chi Minh City, Vietnam;
- Centre for Tropical Medicine, Oxford University, Oxford OX3 7FZ, United Kingdom
- The London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
158
|
|
159
|
Simon NC, Aktories K, Barbieri JT. Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 2014; 12:599-611. [PMID: 25023120 PMCID: PMC5846498 DOI: 10.1038/nrmicro3310] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to promote bacterial pathogenesis. In this Review, we use prototype bARTTs, such as diphtheria toxin and pertussis toxin, as references for the characterization of several new bARTTs from human, insect and plant pathogens, which were recently identified by bioinformatic analyses. Several of these toxins, including cholix toxin (ChxA) from Vibrio cholerae, SpyA from Streptococcus pyogenes, HopU1 from Pseudomonas syringae and the Tcc toxins from Photorhabdus luminescens, ADP-ribosylate novel substrates and have unique organizations, which distinguish them from the reference toxins. The characterization of these toxins increases our appreciation of the range of structural and functional properties that are possessed by bARTTs and their roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- Nathan C. Simon
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs-University Freiburg; Freiburg, Germany
| | - Joseph T. Barbieri
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| |
Collapse
|
160
|
Bumann D. Identification of Protective Antigens for Vaccination against Systemic Salmonellosis. Front Immunol 2014; 5:381. [PMID: 25157252 PMCID: PMC4127814 DOI: 10.3389/fimmu.2014.00381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50–200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel , Basel , Switzerland
| |
Collapse
|
161
|
Wangdi T, Lee CY, Spees AM, Yu C, Kingsbury DD, Winter SE, Hastey CJ, Wilson RP, Heinrich V, Bäumler AJ. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis. PLoS Pathog 2014; 10:e1004306. [PMID: 25101794 PMCID: PMC4125291 DOI: 10.1371/journal.ppat.1004306] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.
Collapse
Affiliation(s)
- Tamding Wangdi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Cheng-Yuk Lee
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
| | - Alanna M. Spees
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Chenzhou Yu
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
| | - Dawn D. Kingsbury
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Sebastian E. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Christine J. Hastey
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
| | - R. Paul Wilson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
162
|
Spanò S. Host restriction inSalmonella: insights from Rab GTPases. Cell Microbiol 2014; 16:1321-8. [DOI: 10.1111/cmi.12327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Stefania Spanò
- School of Medical Sciences; University of Aberdeen; Ashgrove Road West Aberdeen UK
| |
Collapse
|
163
|
Kannan TR, Krishnan M, Ramasamy K, Becker A, Pakhomova ON, Hart PJ, Baseman JB. Functional mapping of community-acquired respiratory distress syndrome (CARDS) toxin of Mycoplasma pneumoniae defines regions with ADP-ribosyltransferase, vacuolating and receptor-binding activities. Mol Microbiol 2014; 93:568-81. [PMID: 24948331 DOI: 10.1111/mmi.12680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Abstract
Community-acquired respiratory distress syndrome (CARDS) toxin from Mycoplasma pneumoniae is a 591-amino-acid virulence factor with ADP-ribosyltransferase (ADPRT) and vacuolating activities. It is expressed at low levels during in vitro growth and at high levels during colonization of the lung. Exposure of experimental animals to purified recombinant CARDS toxin alone is sufficient to recapitulate the cytopathology and inflammatory responses associated with M. pneumoniae infection in humans and animals. Here, by molecular modelling, serial truncations and site-directed mutagenesis, we show that the N-terminal region is essential for ADP-ribosylating activity. Also, by systematic truncation and limited proteolysis experiments we identified a portion of the C-terminal region that mediates toxin binding to mammalian cell surfaces and subsequent internalization. In addition, the C-terminal region alone induces vacuolization in a manner similar to full-length toxin. Together, these data suggest that CARDS toxin has a unique architecture with functionally separable N-terminal and C-terminal domains.
Collapse
Affiliation(s)
- Thirumalai R Kannan
- Department of Microbiology and Immunology/Center for Airway Inflammation Research, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Bezine E, Vignard J, Mirey G. The cytolethal distending toxin effects on Mammalian cells: a DNA damage perspective. Cells 2014; 3:592-615. [PMID: 24921185 PMCID: PMC4092857 DOI: 10.3390/cells3020592] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022] Open
Abstract
The cytolethal distending toxin (CDT) is produced by many pathogenic Gram-negative bacteria and is considered as a virulence factor. In human cells, CDT exposure leads to a unique cytotoxicity associated with a characteristic cell distension and induces a cell cycle arrest dependent on the DNA damage response (DDR) triggered by DNA double-strand breaks (DSBs). CDT has thus been classified as a cyclomodulin and a genotoxin. Whereas unrepaired damage can lead to cell death, effective, but improper repair may be detrimental. Indeed, improper repair of DNA damage may allow cells to resume the cell cycle and induce genetic instability, a hallmark in cancer. In vivo, CDT has been shown to induce the development of dysplastic nodules and to lead to genetic instability, defining CDT as a potential carcinogen. It is therefore important to characterize the outcome of the CDT-induced DNA damage and the consequences for intoxicated cells and organisms. Here, we review the latest results regarding the host cell response to CDT intoxication and focus on DNA damage characteristics, cell cycle modulation and cell outcomes.
Collapse
Affiliation(s)
- Elisabeth Bezine
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| | - Julien Vignard
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| | - Gladys Mirey
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| |
Collapse
|
165
|
Kohler AC, Spanò S, Galán JE, Stebbins CE. Structural and enzymatic characterization of a host-specificity determinant from Salmonella. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:384-91. [PMID: 24531472 PMCID: PMC3940199 DOI: 10.1107/s1399004713028393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/15/2013] [Indexed: 12/18/2022]
Abstract
GtgE is an effector protein from Salmonella Typhimurium that modulates trafficking of the Salmonella-containing vacuole. It exerts its function by cleaving the Rab-family GTPases Rab29, Rab32 and Rab38, thereby preventing the delivery of antimicrobial factors to the bacteria-containing vacuole. Here, the crystal structure of GtgE at 1.65 Å resolution is presented, and structure-based mutagenesis and in vivo infection assays are used to identify its catalytic triad. A panel of cysteine protease inhibitors were examined and it was determined that N-ethylmaleimide, antipain and chymostatin inhibit GtgE activity in vitro. These findings provide the basis for the development of novel therapeutic strategies to combat Salmonella infections.
Collapse
Affiliation(s)
- Amanda C. Kohler
- Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10065, USA
| | - Stefania Spanò
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - C. Erec Stebbins
- Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
166
|
Strugnell RA, Scott TA, Wang N, Yang C, Peres N, Bedoui S, Kupz A. Salmonella vaccines: lessons from the mouse model or bad teaching? Curr Opin Microbiol 2014; 17:99-105. [PMID: 24440968 DOI: 10.1016/j.mib.2013.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
Salmonella enterica subsp. enterica includes several very important human serovars including Typhi, Paratyphi, Typhimurium and Enteritidis. These bacteria cause a significant global burden of disease, typically classified into enteric fever, gastroenteritis and, more recently, invasive non-typhoidal salmonellosis (iNTS). Vaccines have been developed for one of these serovars, S. Typhi and the recent increase in iNTS cases has resulted in a push to develop new vaccines that will inhibit disease by S. Typhimurium and S. Enteritidis, the most common iNTS S. enterica serovars. The development of new human vaccines has been informed by studies in the murine model of typhoid fever based on S. Typhimurium infections of very 'sensitive' (Nramp-1(S)) mice, which has some obvious deficiencies, not the least that antibodies protect humans against S. Typhi infection but are only weakly protective in 'sensitive' mice infected with S. Typhimurium. S. Typhimurium also lacks Vi, the target of protective antibodies in typhoid fever. Notwithstanding these deficiencies, the murine model has identified a very complex series of innate and adaptive immune responses to infection that might be exploited to develop new vaccines. Equally, advances in understanding the pathogenesis of infection, through pathogenomics and more sophisticated animal models will likely contribute to the development of novel immunogens.
Collapse
Affiliation(s)
- Richard A Strugnell
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Timothy A Scott
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nancy Wang
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Chenying Yang
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Newton Peres
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andreas Kupz
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
167
|
Abstract
PURPOSE OF REVIEW Infection caused by ingestion of human-restricted Salmonella enterica serovars Typhi and Paratyphi predominantly affects the most impoverished sections of society. In this review, we describe recent advances made in estimating the burden of illness and the important role improved diagnostic tests may have in controlling infection and report the development of a new human challenge model of typhoid infection. RECENT FINDINGS Typhoid continues to be a major cause of morbidity, particularly in children and young adults in south east Asia, although accurate assessments are still hindered by the lack of reliable surveillance data. Recent reports of high rates of infection in Africa and the dominance of paratyphoid in several geographic areas are of particular concern. Diagnosis of enteric fever remains frustrated by the nonspecific clinical presentation of cases and the lack of test sensitivity. Methods to improve diagnostic accuracy are hindered by the incomplete understanding of immunobiological mechanisms of infection and lack of a suitable animal infection model. SUMMARY Enteric fever is a major global problem, the burden of which has only partially been recognized. Control strategies utilizing cheap accurate diagnostics and effective vaccines are urgently required, and their development should be accelerated by the use of a human challenge model.
Collapse
|
168
|
Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:280-5. [PMID: 24371257 DOI: 10.1128/cvi.00661-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously shown that an assay based on detection of anti-Salmonella enterica serotype Typhi antibodies in supernatant of lymphocytes harvested from patients presenting with typhoid fever (antibody in lymphocyte supernatant [ALS] assay) can identify 100% of patients with blood culture-confirmed typhoid fever in Bangladesh. In order to define immunodominant proteins within the S. Typhi membrane preparation used as antigen in these prior studies and to identify potential biomarkers unique to S. Typhi bacteremic patients, we probed microarrays containing 2,724 S. Typhi proteins with ALS collected at the time of clinical presentation from 10 Bangladeshis with acute typhoid fever. We identified 62 immunoreactive antigens when evaluating both the IgG and IgA responses. Immune responses to 10 of these antigens discriminated between individuals with acute typhoid infection and healthy control individuals from areas where typhoid infection is endemic, as well as Bangladeshi patients presenting with fever who were subsequently confirmed to have a nontyphoid illness. Using an ALS enzyme-linked immunosorbent assay (ELISA) format and purified antigen, we then confirmed that immune responses against the antigen with the highest immunoreactivity (hemolysin E [HlyE]) correctly identified individuals with acute typhoid or paratyphoid fever in Dhaka, Bangladesh. These observations suggest that purified antigens could be used with ALS and corresponding acute-phase activated B lymphocytes in diagnostic platforms to identify acutely infected patients, even in areas where enteric fever is endemic.
Collapse
|
169
|
Abstract
Some host-adapted bacterial pathogens are capable of causing persistent infections in humans. For example, Helicobacter pylori inhabits the human gastric mucosa and persistence can be lifelong. Salmonella enterica serovar Typhi causes systemic infections that involve colonization of the reticuloendothelial system and some individuals become lifelong carriers. In this review, I compare and contrast the different lifestyles of Helicobacter and Salmonella within the host and the strategies they have evolved to persist in mammalian hosts. Persistently infected carriers serve as the reservoirs for these pathogens, and the carrier state is an essential feature that is required for survival of the bacteria within a restricted host population. Therefore, investigating the chronic carrier state should provide insight into bacterial survival strategies, as well as new therapeutic approaches for treatments.
Collapse
Affiliation(s)
- Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
170
|
EcxAB is a founding member of a new family of metalloprotease AB5 toxins with a hybrid cholera-like B subunit. Structure 2013; 21:2003-13. [PMID: 24095060 DOI: 10.1016/j.str.2013.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/20/2022]
Abstract
AB5 toxins are composed of an enzymatic A subunit that disrupts cellular function associated with a pentameric B subunit required for host cell invasion. EcxAB is an AB5 toxin isolated from clinical strains of Escherichia coli classified as part of the cholera family due to B subunit homology. Cholera-group toxins have catalytic ADP-ribosyltransferases as their A subunits, so it was surprising that EcxA did not. We confirmed that EcxAB self-associates as a functional toxin and obtained its structure. EcxAB is a prototypical member of a hybrid AB5 toxin family containing metzincin-type metalloproteases as their active A subunit paired to a cholera-like B subunit. Furthermore, EcxA is distinct from previously characterized proteases and thus founds an AB5-associated metzincin family that we term the toxilysins. EcxAB provides the first observation of conserved B subunit usage across different AB5 toxin families and provides evidence that the intersubunit interface of these toxins is far more permissive than previously supposed.
Collapse
|
171
|
Stebbins CE. Toxins in tandem. Nature 2013; 499:293. [DOI: 10.1038/nature12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|