151
|
Upadhaya S, Reizis B, Sawai CM. New genetic tools for the in vivo study of hematopoietic stem cell function. Exp Hematol 2018; 61:26-35. [PMID: 29501466 DOI: 10.1016/j.exphem.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/18/2022]
Abstract
The production of blood cells is dependent on the activity of a rare stem cell population that normally resides in the bone marrow (BM) of the organism. These hematopoietic stem cells (HSCs) have the ability to both self-renew and differentiate, ensuring this lifelong hematopoiesis. Determining the regulation of HSC functions should thus provide critical insight to advancing regenerative medicine. Until quite recently, HSCs were primarily studied using in vitro studies and transplantations into immunodeficient hosts. Indeed, the definition of a bona fide HSC is its ability to reconstitute lymphopenic hosts. In this review, we discuss the development of novel, HSC-specific genetic reporter systems that enable the prospective identification of HSCs and the study of their functions in the absence of transplantation. Coupled with additional technological advances, these studies are now defining the fundamental properties of HSCs in vivo. Furthermore, complex cellular and molecular mechanisms that regulate HSC dormancy, self-renewal, and differentiation are being identified and further dissected. These novel reporter systems represent a major technological advance for the stem cell field and allow new questions to be addressed.
Collapse
Affiliation(s)
- Samik Upadhaya
- Graduate Program in Pathobiology and Molecular Medicine, Columbia University Medical Center, New York, NY, USA; Department of Pathology, New York University Langone Medical Center, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Department of Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Catherine M Sawai
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
152
|
Kim DY, Jung SY, Kim YJ, Kang S, Park JH, Ji ST, Jang WB, Lamichane S, Lamichane BD, Chae YC, Lee D, Chung JS, Kwon SM. Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018. [PMID: 29520173 PMCID: PMC5840079 DOI: 10.4196/kjpp.2018.22.2.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Da Yeon Kim
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Seok Yun Jung
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yeon Ju Kim
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Songhwa Kang
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Ji Hye Park
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Seung Taek Ji
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Woong Bi Jang
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Shreekrishna Lamichane
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Babita Dahal Lamichane
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Dongjun Lee
- Department of Medical Science, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Joo Seop Chung
- Division of Hemato-Oncology, Department of Internal Medicine, Pusan National University Hospital Medical Research Institute, Busan 49241, Korea
| | - Sang-Mo Kwon
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
153
|
García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Proteostatic and Metabolic Control of Stemness. Cell Stem Cell 2018; 20:593-608. [PMID: 28475885 DOI: 10.1016/j.stem.2017.04.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adult stem cells, particularly those resident in tissues with little turnover, are largely quiescent and only activate in response to regenerative demands, while embryonic stem cells continuously replicate, suggesting profoundly different regulatory mechanisms within distinct stem cell types. In recent years, evidence linking metabolism, mitochondrial dynamics, and protein homeostasis (proteostasis) as fundamental regulators of stem cell function has emerged. Here, we discuss new insights into how these networks control potency, self-renewal, differentiation, and aging of highly proliferative embryonic stem cells and quiescent adult stem cells, with a focus on hematopoietic and muscle stem cells and implications for anti-aging research.
Collapse
Affiliation(s)
- Laura García-Prat
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), E-08003 Barcelona, Spain; Spanish National Center on Cardiovascular Research (CNIC), E-28029 Madrid, Spain; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Pedro Sousa-Victor
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA 94945-1400, USA
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), E-08003 Barcelona, Spain; Spanish National Center on Cardiovascular Research (CNIC), E-28029 Madrid, Spain; ICREA, E-08010 Barcelona, Spain.
| |
Collapse
|
154
|
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553:418-426. [PMID: 29364285 PMCID: PMC6555401 DOI: 10.1038/nature25022] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
The development of mature blood cells from haematopoietic stem cells has long served as a model for stem-cell research, with the haematopoietic differentiation tree being widely used as a model for the maintenance of hierarchically organized tissues. Recent results and new technologies have challenged the demarcations between stem and progenitor cell populations, the timing of cell-fate choices and the contribution of stem and multipotent progenitor cells to the maintenance of steady-state blood production. These evolving views of haematopoiesis have broad implications for our understanding of the functions of adult stem cells, as well as the development of new therapies for malignant and non-malignant haematopoietic diseases.
Collapse
Affiliation(s)
- Elisa Laurenti
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| | - Berthold Göttgens
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| |
Collapse
|
155
|
Mitochondrial regulation of hematopoietic stem cells. Curr Opin Cell Biol 2018; 49:91-98. [PMID: 29309987 DOI: 10.1016/j.ceb.2017.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem cells (HSCs) preferentially use glycolysis rather than mitochondrial oxidative phosphorylation for energy production. While glycolysis in HSC is typically viewed as response to a hypoxic bone marrow environment that protects HSC from damaging reactive oxygen species, other interpretations are possible. Furthermore, recent evidence directly supports a critical role for mitochondria in the maintenance and function of HSCs that goes beyond ATP production. Here, we review recent advances in our understanding of metabolism and the role of mitochondria in the biology of HSCs.
Collapse
|
156
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
157
|
de Almeida MJ, Luchsinger LL, Corrigan DJ, Williams LJ, Snoeck HW. Dye-Independent Methods Reveal Elevated Mitochondrial Mass in Hematopoietic Stem Cells. Cell Stem Cell 2017; 21:725-729.e4. [PMID: 29198942 DOI: 10.1016/j.stem.2017.11.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/25/2017] [Accepted: 11/01/2017] [Indexed: 02/03/2023]
Abstract
Hematopoietic stem cells (HSCs) produce most cellular energy through glycolysis rather than through mitochondrial respiration. Consistent with this notion, mitochondrial mass has been reported to be low in HSCs. However, we found that staining with MitoTracker Green, a commonly used dye to measure mitochondrial content, leads to artefactually low fluorescence specifically in HSCs because of dye efflux. Using mtDNA quantification, enumeration of mitochondrial nucleoids, and fluorescence intensity of a genetically encoded mitochondrial reporter, we unequivocally show here that HSCs and multipotential progenitors (MPPs) have higher mitochondrial mass than lineage-committed progenitors and mature cells. Despite similar mitochondrial mass, respiratory capacity of MPPs exceeds that of HSCs. Furthermore, although elevated mitophagy has been invoked to explain low mitochondrial mass in HSCs, we observed that mitochondrial turnover capacity is comparatively low in HSCs. We propose that the role of mitochondria in HSC biology may have to be revisited in light of these findings.
Collapse
Affiliation(s)
- Mariana Justino de Almeida
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Larry L Luchsinger
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - David J Corrigan
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Linda J Williams
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
158
|
Adams WC, Chen YH, Kratchmarov R, Yen B, Nish SA, Lin WHW, Rothman NJ, Luchsinger LL, Klein U, Busslinger M, Rathmell JC, Snoeck HW, Reiner SL. Anabolism-Associated Mitochondrial Stasis Driving Lymphocyte Differentiation over Self-Renewal. Cell Rep 2017; 17:3142-3152. [PMID: 28009285 DOI: 10.1016/j.celrep.2016.11.065] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/24/2016] [Accepted: 11/21/2016] [Indexed: 01/15/2023] Open
Abstract
Regeneration requires related cells to diverge in fate. We show that activated lymphocytes yield sibling cells with unequal elimination of aged mitochondria. Disparate mitochondrial clearance impacts cell fate and reflects larger constellations of opposing metabolic states. Differentiation driven by an anabolic constellation of PI3K/mTOR activation, aerobic glycolysis, inhibited autophagy, mitochondrial stasis, and ROS production is balanced with self-renewal maintained by a catabolic constellation of AMPK activation, mitochondrial elimination, oxidative metabolism, and maintenance of FoxO1 activity. Perturbations up and down the metabolic pathways shift the balance of nutritive constellations and cell fate owing to self-reinforcement and reciprocal inhibition between anabolism and catabolism. Cell fate and metabolic state are linked by transcriptional regulators, such as IRF4 and FoxO1, with dual roles in lineage and metabolic choice. Instructing some cells to utilize nutrients for anabolism and differentiation while other cells catabolically self-digest and self-renew may enable growth and repair in metazoa.
Collapse
Affiliation(s)
- William C Adams
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Yen-Hua Chen
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Radomir Kratchmarov
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Bonnie Yen
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Simone A Nish
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Wen-Hsuan W Lin
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Nyanza J Rothman
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Larry L Luchsinger
- Department of Medicine and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ulf Klein
- Department of Pathology and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Jeffrey C Rathmell
- Vanderbilt Centre for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hans-Willem Snoeck
- Department of Medicine and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Steven L Reiner
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
159
|
Sequences flanking the transmembrane segments facilitate mitochondrial localization and membrane fusion by mitofusin. Proc Natl Acad Sci U S A 2017; 114:E9863-E9872. [PMID: 29093165 PMCID: PMC5699052 DOI: 10.1073/pnas.1708782114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria constantly connect through membrane fusion. The merging of the outer mitochondrial membrane requires mitofusin (MFN) proteins. MFN is a membrane-anchored GTPase, but whether it is sufficient to achieve fusion, and if so how, is largely unknown. We have taken advantage of a similar GTPase named atlastin (ATL), which mediates fusion of the endoplasmic reticulum (ER), as its mechanism is better understood. Domain swapping experiments show that MFN is capable of fusing membranes, even on the ER. The C-terminal tail of MFN contains an amphipathic helix that promotes fusion. MFN is properly inserted into the mitochondrial membrane with the help of the helix and neighboring hydrophobic residues. These findings provide insight into how mitochondria fuse. Mitochondria constantly divide and fuse. Homotypic fusion of the outer mitochondrial membranes requires the mitofusin (MFN) proteins, a family of dynamin-like GTPases. MFNs are anchored in the membrane by transmembrane (TM) segments, exposing both the N-terminal GTPase domain and the C-terminal tail (CT) to the cytosol. This arrangement is very similar to that of the atlastin (ATL) GTPases, which mediate fusion of endoplasmic reticulum (ER) membranes. We engineered various MFN-ATL chimeras to gain mechanistic insight into MFN-mediated fusion. When MFN1 is localized to the ER by TM swapping with ATL1, it functions in the maintenance of ER morphology and fusion. In addition, an amphipathic helix in the CT of MFN1 is exchangeable with that of ATL1 and critical for mitochondrial localization of MFN1. Furthermore, hydrophobic residues N-terminal to the TM segments of MFN1 play a role in membrane targeting but not fusion. Our findings provide important insight into MFN-mediated membrane fusion.
Collapse
|
160
|
Abstract
Purpose of review Hematopoietic stem cell (HSC) transplantation has yielded tremendous information on experimental properties of HSCs. Yet, it remains unclear whether transplantation reflects the physiology of hematopoiesis. A limitation is the difficulty in accessing HSC functions without isolation, in-vitro manipulation and readout for potential. New genetic fate mapping and clonal marking techniques now shed light on hematopoiesis under physiological conditions. Recent findings Transposon-based genetic marks were introduced across the entire hematopoietic system to follow the clonal dynamics of these tags over time. A polyclonal source downstream from stem cells was found responsible for the production of at least granulocytes. In independent experiments, HSCs were genetically marked in adult mice, and the kinetics of label emergence throughout the system was followed over time. These experiments uncovered that during physiological steady-state hematopoiesis large numbers of HSCs yield differentiated progeny. Individual HSCs were active only rarely, indicating their very slow periodicity of differentiation rather than quiescence. Summary Noninvasive genetic experiments in mice have identified a major role of stem and progenitor cells downstream from HSCs as drivers of adult hematopoiesis, and revealed that post-transplantation hematopoiesis differs quantitatively from normal steady-state hematopoiesis.
Collapse
|
161
|
Abstract
PURPOSE OF REVIEW Cell-cycle checkpoints are surveillance mechanisms in eukaryotic cells that monitor the condition of the cell, repair cellular damages, and allow the cell to progress through the various phases of the cell cycle when conditions become favorable. We review recent advances in hematopoietic stem cell (HSC) biology, highlighting a mitochondrial metabolic checkpoint that is essential for HSCs to return to the quiescent state. RECENT FINDINGS As quiescent HSCs enter the cell cycle, mitochondrial biogenesis is induced, which is associated with increased mitochondrial protein folding stress and mitochondrial oxidative stress. Mitochondrial unfolded protein response and mitochondrial oxidative stress response are activated to alleviate stresses and allow HSCs to exit the cell cycle and return to quiescence. Other mitochondrial maintenance mechanisms include mitophagy and asymmetric segregation of aged mitochondria. SUMMARY Because loss of HSC quiescence results in the depletion of the HSC pool and compromised tissue regeneration, deciphering the molecular mechanisms that regulate the mitochondrial metabolic checkpoint in HSCs will increase our understanding of hematopoiesis and how it becomes dysregulated under pathological conditions and during aging. More broadly, this knowledge is instrumental for understanding the maintenance of cells that convert between quiescence and proliferation to support their physiological functions.
Collapse
|
162
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) possess two fundamental characteristics, the capacity for self-renewal and the sustained production of all blood cell lineages. The fine balance between HSC expansion and lineage specification is dynamically regulated by the interplay between external and internal stimuli. This review introduces recent advances in the roles played by the stem cell niche, regulatory transcriptional networks, and metabolic pathways in governing HSC self-renewal, commitment, and lineage differentiation. We will further focus on discoveries made by studying hematopoiesis at single-cell resolution. RECENT FINDINGS HSCs require the support of an interactive milieu with their physical position within the perivascular niche dynamically regulating HSC behavior. In these microenvironments, transcription factor networks and nutrient-mediated regulation of energy resources, signaling pathways, and epigenetic status govern HSC quiescence and differentiation. Once HSCs begin their lineage specification, single-cell analyses show that they do not become oligopotent but rather, differentiate directly into committed unipotent progenitors. SUMMARY The diversity of transcriptional networks and metabolic pathways in HSCs and their downstream progeny allows a high level of plasticity in blood differentiation. The intricate interactions between these pathways, within the perivascular niche, broaden the specification of HSCs in pathological and stressed conditions.
Collapse
|
163
|
Yong CS, Abba Moussa D, Cretenet G, Kinet S, Dardalhon V, Taylor N. Metabolic orchestration of T lineage differentiation and function. FEBS Lett 2017; 591:3104-3118. [PMID: 28901530 DOI: 10.1002/1873-3468.12849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
T cells are stimulated by the engagement of antigen, cytokine, pathogen, and hormone receptors. While research performed over many years has focused on deciphering the molecular components of these pathways, recent data underscore the importance of the metabolic environment in conditioning responses to receptor engagement. The ability of T cells to undergo a massive proliferation and cytokine secretion in response to receptor signals requires alterations to their bioenergetic homeostasis, allowing them to meet new energetic and biosynthetic demands. The metabolic reprogramming of activated T cells is regulated not only by changes in intracellular nutrient uptake and utilization but also by nutrient and oxygen concentrations in the extracellular environment. Notably, the extracellular environment can be profoundly altered by pathological conditions such as infections and tumors, thereby perturbing the metabolism and function of antigen-specific T lymphocytes. This review highlights the interplay between diverse metabolic networks and the transcriptional/epigenetic states that condition T-cell differentiation, comparing the metabolic features of T lymphocytes with other immune cells. We further address recent discoveries in the metabolic pathways that govern T-cell function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carmen S Yong
- IGMM, CNRS, Univ. Montpellier, Montpellier, France
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | | | | | | | | | - Naomi Taylor
- IGMM, CNRS, Univ. Montpellier, Montpellier, France
| |
Collapse
|
164
|
Abstract
Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.
Collapse
|
165
|
Wang Y, Subramanian M, Yurdagul A, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J, Ryan TA, Nomura M, Maxfield FR, Tabas I. Mitochondrial Fission Promotes the Continued Clearance of Apoptotic Cells by Macrophages. Cell 2017; 171:331-345.e22. [PMID: 28942921 DOI: 10.1016/j.cell.2017.08.041] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/21/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) prevents post-apoptotic necrosis and dampens inflammation. Defective efferocytosis drives important diseases, including atherosclerosis. For efficient efferocytosis, phagocytes must be able to internalize multiple ACs. We show here that uptake of multiple ACs by macrophages requires dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, which is triggered by AC uptake. When mitochondrial fission is disabled, AC-induced increase in cytosolic calcium is blunted owing to mitochondrial calcium sequestration, and calcium-dependent phagosome formation around secondarily encountered ACs is impaired. These defects can be corrected by silencing the mitochondrial calcium uniporter (MCU). Mice lacking myeloid Drp1 showed defective efferocytosis and its pathologic consequences in the thymus after dexamethasone treatment and in advanced atherosclerotic lesions in fat-fed Ldlr-/- mice. Thus, mitochondrial fission in response to AC uptake is a critical process that enables macrophages to clear multiple ACs and to avoid the pathologic consequences of defective efferocytosis in vivo.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Manikandan Subramanian
- Department of Medicine, Columbia University, New York, NY 10032, USA; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Arif Yurdagul
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - Bishuang Cai
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Jaime de Juan-Sanz
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Physiology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
166
|
Kameoka S, Adachi Y, Okamoto K, Iijima M, Sesaki H. Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. Trends Cell Biol 2017; 28:67-76. [PMID: 28911913 DOI: 10.1016/j.tcb.2017.08.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Membrane organelles comprise both proteins and lipids. Remodeling of these membrane structures is controlled by interactions between specific proteins and lipids. Mitochondrial structure and function depend on regulated fusion and the division of both the outer and inner membranes. Here we discuss recent advances in the regulation of mitochondrial dynamics by two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL). These two lipids interact with the core components of mitochondrial fusion and division (Opa1, mitofusin, and Drp1) to activate and inhibit these dynamin-related GTPases. Moreover, lipid-modifying enzymes such as phospholipases and lipid phosphatases may organize local lipid composition to spatially and temporarily coordinate a balance between fusion and division to establish mitochondrial morphology.
Collapse
Affiliation(s)
- Shoichiro Kameoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
167
|
Lymphocyte Fate and Metabolism: A Clonal Balancing Act. Trends Cell Biol 2017; 27:946-954. [PMID: 28818395 DOI: 10.1016/j.tcb.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023]
Abstract
Activated lymphocytes perform a clonal balancing act, yielding a daughter cell that differentiates owing to intense PI3K signaling, alongside a self-renewing sibling cell with blunted anabolic signaling. Divergent cellular anabolism versus catabolism is emerging as a feature of several developmental and regenerative paradigms. Metabolism can dictate cell fate, in part, because lineage-specific regulators are embedded in the circuitry of conserved metabolic switches. Unequal transmission of PI3K signaling during regenerative divisions is reminiscent of compartmentalized PI3K activity during directed motility or polarized information flow in non-dividing cells. The diverse roles of PI3K pathways in membrane traffic, cell polarity, metabolism, and gene expression may have converged to instruct sibling cell feast and famine, thereby enabling clonal differentiation alongside self-renewal.
Collapse
|
168
|
Shimada IS, Acar M, Burgess RJ, Zhao Z, Morrison SJ. Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells. Genes Dev 2017; 31:1134-1146. [PMID: 28698301 PMCID: PMC5538436 DOI: 10.1101/gad.291773.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/12/2017] [Indexed: 11/24/2022]
Abstract
Shimada et al. demonstrate that Prdm16 is required for neural stem cell maintenance and neurogenesis in the adult lateral ventricle subventricular zone and dentate gyrus. Prdm16 is also required for the formation of ciliated ependymal cells in the lateral ventricle. We and others showed previously that PR domain-containing 16 (Prdm16) is a transcriptional regulator required for stem cell function in multiple fetal and neonatal tissues, including the nervous system. However, Prdm16 germline knockout mice died neonatally, preventing us from testing whether Prdm16 is also required for adult stem cell function. Here we demonstrate that Prdm16 is required for neural stem cell maintenance and neurogenesis in the adult lateral ventricle subventricular zone and dentate gyrus. We also discovered that Prdm16 is required for the formation of ciliated ependymal cells in the lateral ventricle. Conditional Prdm16 deletion during fetal development using Nestin-Cre prevented the formation of ependymal cells, disrupting cerebrospinal fluid flow and causing hydrocephalus. Postnatal Prdm16 deletion using Nestin-CreERT2 did not cause hydrocephalus or prevent the formation of ciliated ependymal cells but caused defects in their differentiation. Prdm16 was required in neural stem/progenitor cells for the expression of Foxj1, a transcription factor that promotes ependymal cell differentiation. These studies show that Prdm16 is required for adult neural stem cell maintenance and neurogenesis as well as the formation of ependymal cells.
Collapse
Affiliation(s)
- Issei S Shimada
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Melih Acar
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Bahcesehir University, School of Medicine, Istanbul 34734, Turkey
| | - Rebecca J Burgess
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sean J Morrison
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
169
|
Abstract
Cancer and stem cells appear to share a common metabolic profile that is characterized by high utilization of glucose through aerobic glycolysis. In the presence of sufficient nutrients, this metabolic strategy provides sufficient cellular ATP while additionally providing important metabolites necessary for the biosynthetic demands of continuous cell proliferation. Recent studies indicate that this metabolic profile is dependent on genes that regulate the fusion and fission of mitochondria. High levels of mitochondrial fission activity are associated with high proliferation and invasiveness in some cancer cells and with self-renewal and resistance to differentiation in some stem cells. These observations reveal new ways in which mitochondria regulate cell physiology, through their effects on metabolism and cell signaling.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA 91125, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA 91125, USA.
| |
Collapse
|
170
|
Mitochondrial form, function and signalling in aging. Biochem J 2017; 473:3421-3449. [PMID: 27729586 DOI: 10.1042/bcj20160451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.
Collapse
|
171
|
Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions. Int J Hematol 2017; 106:18-26. [PMID: 28540498 DOI: 10.1007/s12185-017-2261-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) exhibit multilineage differentiation and self-renewal activities that maintain the entire hematopoietic system during an organism's lifetime. These abilities are sustained by intrinsic transcriptional programs and extrinsic cues from the microenvironment or niche. Recent studies using metabolomics technologies reveal that metabolic regulation plays an essential role in HSC maintenance. Metabolic pathways provide energy and building blocks for other factors functioning at steady state and in stress. Here we review recent advances in our understanding of metabolic regulation in HSCs relevant to cell cycle quiescence, symmetric/asymmetric division, and proliferation following stress and lineage commitment, and discuss the therapeutic potential of targeting metabolic factors or pathways to treat hematological malignancies.
Collapse
|
172
|
Kissig M, Ishibashi J, Harms MJ, Lim HW, Stine RR, Won KJ, Seale P. PRDM16 represses the type I interferon response in adipocytes to promote mitochondrial and thermogenic programing. EMBO J 2017; 36:1528-1542. [PMID: 28408438 DOI: 10.15252/embj.201695588] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/13/2022] Open
Abstract
Brown adipose has the potential to counteract obesity, and thus, identifying signaling pathways that regulate the activity of this tissue is of great clinical interest. PRDM16 is a transcription factor that activates brown fat-specific genes while repressing white fat and muscle-specific genes in adipocytes. Whether PRDM16 also controls other gene programs to regulate adipocyte function was unclear. Here, we identify a novel role for PRDM16 in suppressing type I interferon (IFN)-stimulated genes (ISGs), including Stat1, in adipocytes in vitro and in vivo Ectopic activation of type I IFN signaling in brown adipocytes induces mitochondrial dysfunction and reduces uncoupling protein 1 (UCP1) expression. Prdm16-deficient adipose displays an exaggerated response to type I IFN, including higher STAT1 levels and reduced mitochondrial gene expression. Mechanistically, PRDM16 represses ISGs through binding to promoter regions of these genes and blocking the activating function of IFN regulatory factor 1 (IRF1). Together, these data indicate that PRDM16 diminishes responsiveness to type I IFN in adipose cells to promote thermogenic and mitochondrial function.
Collapse
Affiliation(s)
- Megan Kissig
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Harms
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hee-Woong Lim
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Genetics Department, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel R Stine
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Genetics Department, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA .,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
173
|
Abstract
In this review, Ng and Shyh-Chang review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. Advances in metabolomics have deepened our understanding of the roles that specific modes of metabolism play in programming stem cell fates. Here, we review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. The metabolic programming of stem cells represents a fine balance between the intrinsic needs of a cellular state and the constraints imposed by extrinsic conditions. A more complete understanding of these needs and constraints will afford us greater mastery over our control of stem cell fates.
Collapse
Affiliation(s)
| | - Huck-Hui Ng
- Genome Institute of Singapore, Singapore 138675
| |
Collapse
|
174
|
Herrera-Cruz MS, Simmen T. Of yeast, mice and men: MAMs come in two flavors. Biol Direct 2017; 12:3. [PMID: 28122638 PMCID: PMC5267431 DOI: 10.1186/s13062-017-0174-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022] Open
Abstract
The past decade has seen dramatic progress in our understanding of membrane contact sites (MCS). Important examples of these are endoplasmic reticulum (ER)-mitochondria contact sites. ER-mitochondria contacts have originally been discovered in mammalian tissue, where they have been designated as mitochondria-associated membranes (MAMs). It is also in this model system, where the first critical MAM proteins have been identified, including MAM tethering regulators such as phospho-furin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2. However, the past decade has seen the discovery of the MAM also in the powerful yeast model system Saccharomyces cerevisiae. This has led to the discovery of novel MAM tethers such as the yeast ER-mitochondria encounter structure (ERMES), absent in the mammalian system, but whose regulators Gem1 and Lam6 are conserved. While MAMs, sometimes referred to as mitochondria-ER contacts (MERCs), regulate lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy and apoptosis, not all of these functions exist in both systems or operate differently. This biological difference has led to puzzling discrepancies on findings obtained in yeast or mammalian cells at the moment. Our review aims to shed some light onto mechanistic differences between yeast and mammalian MAM and their underlying causes. Reviewers: This article was reviewed by Paola Pizzo (nominated by Luca Pellegrini), Maya Schuldiner and György Szabadkai (nominated by Luca Pellegrini).
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada.
| |
Collapse
|
175
|
Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 2017; 74:1999-2017. [PMID: 28083595 DOI: 10.1007/s00018-016-2451-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.
Collapse
|
176
|
ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis 2016; 7:e2459. [PMID: 27831567 PMCID: PMC5260898 DOI: 10.1038/cddis.2016.370] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022]
Abstract
The bone marrow microenvironment facilitates the proliferation and survival of leukemia cells, contributing to disease relapse. Bone marrow-derived mesenchymal stem cells (MSCs) are well known to promote cancer chemoresistance via soluble factors and cell adhesion. However, little is known about the effects of MSCs on the mitochondrial dynamics of T-cell acute lymphoblastic leukemia (T-ALL) cells, or how this may influence the chemoresistance of these cells. Here, we tested both indirect (Transwell) and direct coculture strategies, and found that MSCs protected T-ALL cells from chemotherapeutic cell death and cytotoxicity under both culture conditions. In addition, cell viability was higher in the direct contact system compared with the Transwell system. We further showed that exposure of T-ALL cells to MSCs decreased mitochondrial reactive oxygen species (ROS) levels and promoted a pro-glycolytic shift that was characterized by increased glucose uptake and lactate production with concomitant reductions in adenosine triphosphate production and mitochondrial membrane potential. In T-ALL cells cocultured with MSCs, the mitochondrial morphology of T-ALL cells were altered from elongation to fragmentation because of the extracellular signal-regulated kinase activation-mediated phosphorylation of the pro-fission factor, dynamin-related protein 1 (Drp1), at residue S616. Consistent with this, the expression of S616-phosphorylated Drp1 recapitulated the mitochondrial dynamics, mitochondrial ROS levels, metabolic switching and chemoresistance seen in T-ALL cells cocultured with MSCs. These findings suggest that the ability of MSCs to trigger Drp1 activation-induced changes in mitochondrial dynamics is crucial to their ability to protect cells against chemotherapeutic agents.
Collapse
|
177
|
Chandel NS, Jasper H, Ho TT, Passegué E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol 2016; 18:823-32. [PMID: 27428307 DOI: 10.1038/ncb3385] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Many tissues and organ systems in metazoans have the intrinsic capacity to regenerate, which is driven and maintained largely by tissue-resident somatic stem cell populations. Ageing is accompanied by a deregulation of stem cell function and a decline in regenerative capacity, often resulting in degenerative diseases. The identification of strategies to maintain stem cell function and regulation is therefore a promising avenue to allay a wide range of age-related diseases. Studies in various organisms have revealed a central role for metabolic pathways in the regulation of stem cell function. Ageing is associated with extensive metabolic changes, and interventions that influence cellular metabolism have long been recognized as robust lifespan-extending measures. In this Review, we discuss recent advances in our understanding of the metabolic control of stem cell function, and how stem cell metabolism relates to homeostasis and ageing.
Collapse
Affiliation(s)
- Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-2909, USA
| | - Heinrich Jasper
- The Buck Institute for Research on Aging, Novato, California 94945-1400, USA, and the Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Theodore T Ho
- Department of Medicine, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143-0667, USA
| | - Emmanuelle Passegué
- Department of Medicine, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143-0667, USA
| |
Collapse
|
178
|
Margineantu DH, Hockenbery DM. Mitochondrial functions in stem cells. Curr Opin Genet Dev 2016; 38:110-117. [DOI: 10.1016/j.gde.2016.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022]
|
179
|
Gong Q, Li L, Wu X, Ma H. Pyroglutamate aminopeptidase 1 may be an indicator of cellular inflammatory response as revealed using a sensitive long-wavelength fluorescent probe. Chem Sci 2016; 7:4694-4697. [PMID: 30155117 PMCID: PMC6013796 DOI: 10.1039/c6sc00951d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/09/2016] [Indexed: 12/13/2022] Open
Abstract
Pyroglutamate aminopeptidase 1 (PGP-1) can remove pyroglutamic acid from the N-terminus of a polypeptide, including some important anti-inflammatory proteins. Detecting the change and distribution of cellular PGP-1 in an inflammation process would be helpful to better understand the role of this enzyme. However, no report has been found on this subject, mainly due to the lack of a proper research approach. Herein, we develop such a new method by preparing a sensitive long-wavelength fluorescent probe combined with confocal fluorescence imaging. The probe, consisting of l-pyroglutamic acid and cresyl violet, exhibits high selectivity and sensitivity for PGP-1 under physiological conditions. With this probe, the up-regulation of PGP-1 in LO-2 cells under the stimulation of Freund's incomplete adjuvant and lipopolysaccharide (two main immunopotentiators) is revealed for the first time, and this up-regulation is also observed in typical phagocytic RAW264.7 cells, as evidenced by western blot and inhibition assays. Studies on the distribution of PGP-1 in cells using our probe showed that most PGP-1 is located in the cytoplasm, which is further supported by an immunofluorescence assay. Moreover, the inflammatory response induced by the immunopotentiators in either RAW264.7 or LO-2 cells is confirmed by measuring tumor necrosis factor alpha (a common inflammatory factor). The above findings indicate that cellular inflammation is accompanied by an increase in PGP-1, and PGP-1 may serve as a new indicator of cellular inflammatory response.
Collapse
Affiliation(s)
- Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| |
Collapse
|
180
|
|
181
|
Desbats MA, Giacomini I, Prayer-Galetti T, Montopoli M. Iron granules in plasma cells. J Clin Pathol 1982; 10:281. [PMID: 32211323 PMCID: PMC7068907 DOI: 10.3389/fonc.2020.00281] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023]
Abstract
Resistance of cancer cells to chemotherapy is the first cause of cancer-associated death. Thus, new strategies to deal with the evasion of drug response and to improve clinical outcomes are needed. Genetic and epigenetic mechanisms associated with uncontrolled cell growth result in metabolism reprogramming. Cancer cells enhance anabolic pathways and acquire the ability to use different carbon sources besides glucose. An oxygen and nutrient-poor tumor microenvironment determines metabolic interactions among normal cells, cancer cells and the immune system giving rise to metabolically heterogeneous tumors which will partially respond to metabolic therapy. Here we go into the best-known cancer metabolic profiles and discuss several studies that reported tumors sensitization to chemotherapy by modulating metabolic pathways. Uncovering metabolic dependencies across different chemotherapy treatments could help to rationalize the use of metabolic modulators to overcome therapy resistance.
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- *Correspondence: Monica Montopoli
| |
Collapse
|