151
|
Liu J, Liao X, Zhu X, Lv P, Li R. Identification of potential prognostic small nucleolar RNA biomarkers for predicting overall survival in patients with sarcoma. Cancer Med 2020; 9:7018-7033. [PMID: 32780509 PMCID: PMC7541128 DOI: 10.1002/cam4.3361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Objective The main purpose of the present study is to screen prognostic small nucleolar RNA (snoRNA) markers using the RNA‐sequencing (RNA‐seq) dataset of The Cancer Genome Atlas (TCGA) sarcoma cohort. Methods The sarcoma RNA‐seq dataset comes from the TCGA cohort. A total of 257 sarcoma patients were included into the prognostic analysis. Multiple bioinformatics analysis methods for functional annotation of snoRNAs and screening of targeted drugs, including biological network gene ontology tool, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and connectivity map (CMap) are used. Results We had identified 15 snoRNAs that were significantly related to the prognosis of sarcoma and constructed a prognostic signature based on four prognostic snoRNA (U3, SNORA73B, SNORD46, and SNORA26) expression values. Functional annotation of these four snoRNAs by their co‐expression genes suggests that some of them were closely related to cell cycle‐related biological processes and tumor‐related signaling pathways, such as Wnt, mitogen‐activated protein kinase, target of rapamycin, and nuclear factor‐kappa B signaling pathway. GSEA of the risk score suggests that high risk score phenotype was significantly enriched in cell cycle‐related biological processes, protein SUMOylation, DNA replication, p53 binding, regulation of DNA repair, and DNA methylation, as well as Myc, Wnt, RB1, E2F, and TEL pathways. Then we also used the CMap online tool to screen five targeted drugs (rilmenidine, pizotifen, amiprilose, quipazine, and cinchonidine) for this risk score model in sarcoma. Conclusion Our study have identified 15 snoRNAs that may be serve as novel prognostic biomarkers for sarcoma, and constructed a prognostic signature based on four prognostic snoRNA expression values.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xianze Zhu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Peizhen Lv
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong Li
- Department of Reproductive Center, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
152
|
|
153
|
Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, Xie C, Zhou H, Luo X, Liu H, Chen L, Ren J, Wang W, Zhao Y. METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. Mol Cell 2020; 79:425-442.e7. [PMID: 32615088 DOI: 10.1016/j.molcel.2020.06.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.
Collapse
Affiliation(s)
- Canfeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liping Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Di Peng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Ao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yunru He
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanru Zeng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haoxian Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaotong Luo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Ren
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China.
| |
Collapse
|
154
|
Li Y, Song Y, Xu W, Li Q, Wang X, Li K, Wang J, Liu Z, Velychko S, Ye R, Xia Q, Wang L, Guo R, Dong X, Zheng Z, Dai Y, Li H, Yao M, Xue Y, Schöler HR, Sun Q, Yao H. R-loops coordinate with SOX2 in regulating reprogramming to pluripotency. SCIENCE ADVANCES 2020; 6:eaba0777. [PMID: 32704541 PMCID: PMC7360481 DOI: 10.1126/sciadv.aba0777] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/09/2020] [Indexed: 05/06/2023]
Abstract
R-loops modulate genome stability and regulate gene expression, but the functions and the regulatory mechanisms of R-loops in stem cell biology are still unclear. Here, we profiled R-loops during somatic cell reprogramming and found that dynamic changes in R-loops are essential for reprogramming and occurred before changes in gene expression. Disrupting the homeostasis of R-loops by depleting RNaseH1 or catalytic inactivation of RNaseH1 at D209 (RNaseH1D209N) blocks reprogramming. Sox2, but not any other factor in the Yamanaka cocktail, overcomes the inhibitory effects of RNaseH1 activity loss on reprogramming. Sox2 interacts with the reprogramming barrier factor Ddx5 and inhibits the resolvase activity of Ddx5 on R-loops and thus facilitates reprogramming. Furthermore, reprogramming efficiency can be modulated by dCas9-mediated RNaseH1/RNaseH1D209N targeting the specific R-loop regions. Together, these results show that R-loops play important roles in reprogramming and shed light on the regulatory module of Sox2/Ddx5 on R-loops during reprogramming.
Collapse
Affiliation(s)
- Yaoyi Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yawei Song
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Li
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinxiu Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kuan Li
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juehan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zicong Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Sergiy Velychko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Medical Faculty, University of Muenster, Münster 48149, Germany
| | - Rong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Xia
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotao Dong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhikai Zheng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yushuang Dai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Haojie Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingze Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Medical Faculty, University of Muenster, Münster 48149, Germany
- Medical Faculty, University of Muenster, Domagkstrasse 3, 48149 Muenster, Germany
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Corresponding author. (Q.S.); (H.Y.)
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (Q.S.); (H.Y.)
| |
Collapse
|
155
|
Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells 2020; 9:cells9040968. [PMID: 32295254 PMCID: PMC7227002 DOI: 10.3390/cells9040968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are rare diseases but the most common primary tumors of bone. The genes directly involved in the sarcomagenesis, tumor progression and treatment responsiveness are not completely defined for these tumors, and the powerful discovery of genetic analysis is highly warranted in the view of improving the therapy and cure of patients. The review summarizes recent advances concerning the molecular and genetic background of these three neoplasms and, of their most common variants, highlights the putative therapeutic targets and the clinical trials that are presently active, and notes the fundamental issues that remain unanswered. In the era of personalized medicine, the rarity of sarcomas may not be the major obstacle, provided that each patient is studied extensively according to a road map that combines emerging genomic and functional approaches toward the selection of novel therapeutic strategies.
Collapse
|
156
|
Miller HE, Gorthi A, Bassani N, Lawrence LA, Iskra BS, Bishop AJR. Reconstruction of Ewing Sarcoma Developmental Context from Mass-Scale Transcriptomics Reveals Characteristics of EWSR1-FLI1 Permissibility. Cancers (Basel) 2020; 12:E948. [PMID: 32290418 PMCID: PMC7226175 DOI: 10.3390/cancers12040948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/03/2023] Open
Abstract
Ewing sarcoma is an aggressive pediatric cancer of enigmatic cellular origins typically resulting from a single translocation event t (11; 22) (q24; q12). The resulting fusion gene, EWSR1-FLI1, is toxic or unstable in most primary tissues. Consequently, attempts to model Ewing sarcomagenesis have proven unsuccessful thus far, highlighting the need to identify the cellular features which permit stable EWSR1-FLI1 expression. By re-analyzing publicly available RNA-Sequencing data with manifold learning techniques, we uncovered a group of Ewing-like tissues belonging to a developmental trajectory between pluripotent, neuroectodermal, and mesodermal cell states. Furthermore, we demonstrated that EWSR1-FLI1 expression levels control the activation of these developmental trajectories within Ewing sarcoma cells. Subsequent analysis and experimental validation demonstrated that the capability to resolve R-loops and mitigate replication stress are probable prerequisites for stable EWSR1-FLI1 expression in primary tissues. Taken together, our results demonstrate how EWSR1-FLI1 hijacks developmental gene programs and advances our understanding of Ewing sarcomagenesis.
Collapse
Affiliation(s)
- Henry E. Miller
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (H.E.M.)
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Aparna Gorthi
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (H.E.M.)
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Nicklas Bassani
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Liesl A. Lawrence
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (H.E.M.)
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Brian S. Iskra
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (H.E.M.)
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Alexander J. R. Bishop
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (H.E.M.)
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
157
|
Berger AK, Mughal SS, Allgäuer M, Springfeld C, Hackert T, Weber TF, Naumann P, Hutter B, Horak P, Jahn A, Schröck E, Haag GM, Apostolidis L, Jäger D, Stenzinger A, Fröhling S, Glimm H, Heining C. Metastatic adult pancreatoblastoma: Multimodal treatment and molecular characterization of a very rare disease. Pancreatology 2020; 20:425-432. [PMID: 32156527 DOI: 10.1016/j.pan.2020.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pancreatoblastoma is a rare malignancy that occurs predominantly in children. Less than 50 adult cases, including 17 patients with metastatic disease, have been published to date. Recent outcome data from children with advanced-stage disease suggest an intensive multimodal treatment approach; however, little is known about the most beneficial therapy in adults. Molecular characterization of pancreatoblastoma is limited to a small number of pediatric cases and revealed few recurrent genetic events without immediate clinical relevance. METHODS Patients were treated between 2013 and 2018 at a high-volume German university cancer center. Molecular analyses included whole genome, exome, transcriptome, and fusion gene panel sequencing. Molecularly guided treatment recommendations were discussed within a dedicated molecular tumor board (MTB) embedded in a precision oncology program (NCT MASTER). RESULTS We identified four adult patients with metastatic pancreatoblastoma. In three patients, local approaches were combined with systemic treatment. Oxaliplatin-containing protocols showed an acceptable tumor control as well as an adequate toxicity profile. Overall survival was 15, 17, 18 and 24 months, respectively. Three tumors harbored genetic alterations involving the FGFR pathway that included an oncogenic FGFR2 fusion. CONCLUSION Oxaliplatin-containing chemotherapy seems to be a reasonable approach in adult patients with advanced pancreatoblastoma, whereas the benefit of intensified treatment including local ablative techniques or surgical resection remains unclear. Our finding of FGFR alterations in three of four cases indicates a potential role of FGFR signaling in adult pancreatoblastoma whose clinical significance warrants further study.
Collapse
Affiliation(s)
- Anne Katrin Berger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| | - Sadaf Shabbir Mughal
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Frederik Weber
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick Naumann
- Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Hutter
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases, DKFZ, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Horak
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and DKFZ Dresden, Dresden, Germany; Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Georg Martin Haag
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Leonidas Apostolidis
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and DKFZ Dresden, Dresden, Germany; Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Christoph Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and DKFZ Dresden, Dresden, Germany; Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany.
| |
Collapse
|
158
|
Breakthrough Technologies Reshape the Ewing Sarcoma Molecular Landscape. Cells 2020; 9:cells9040804. [PMID: 32225029 PMCID: PMC7226764 DOI: 10.3390/cells9040804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ewing sarcoma is a highly aggressive round cell mesenchymal neoplasm, most often occurring in children and young adults. At the molecular level, it is characterized by the presence of recurrent chromosomal translocations. In the last years, next-generation technologies have contributed to a more accurate diagnosis and a refined classification. Moreover, the application of these novel technologies has highlighted the relevance of intertumoral and intratumoral molecular heterogeneity and secondary genetic alterations. Furthermore, they have shown evidence that genomic features can change as the tumor disseminates and are influenced by treatment as well. Similarly, next-generation technologies applied to liquid biopsies will significantly impact patient management by allowing the early detection of relapse and monitoring response to treatment. Finally, the use of these novel technologies has provided data of great value in order to discover new druggable pathways. Thus, this review provides concise updates on the latest progress of these breakthrough technologies, underscoring their importance in the generation of key knowledge, prognosis, and potential treatment of Ewing Sarcoma.
Collapse
|
159
|
Tan J, Lan L. The DNA secondary structures at telomeres and genome instability. Cell Biosci 2020; 10:47. [PMID: 32257105 PMCID: PMC7104500 DOI: 10.1186/s13578-020-00409-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Telomeric DNA are TTAGGG tandem repeats, which are susceptible for oxidative DNA damage and hotspot regions for formation of DNA secondary structures such as t-loop, D-loop, G-quadruplexes (G4), and R-loop. In the past two decades, unique DNA or RNA secondary structures at telomeres or some specific regions of genome have become promising therapeutic targets. G-quadruplex and R-loops at telomeres or transcribed regions of genome have been considered as the potential targets for cancer therapy. Here we discuss the potentials to target the secondary structures (G4s and R-loops) in genome as therapy approaches.
Collapse
Affiliation(s)
- Jun Tan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Li Lan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| |
Collapse
|
160
|
Flores G, Everett JH, Boguslawski EA, Oswald BM, Madaj ZB, Beddows I, Dikalov S, Adams M, Klumpp-Thomas CA, Kitchen-Goosen SM, Martin SE, Caplen NJ, Helman LJ, Grohar PJ. CDK9 Blockade Exploits Context-dependent Transcriptional Changes to Improve Activity and Limit Toxicity of Mithramycin for Ewing Sarcoma. Mol Cancer Ther 2020; 19:1183-1196. [PMID: 32127464 DOI: 10.1158/1535-7163.mct-19-0775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/17/2019] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
There is a need to develop novel approaches to improve the balance between efficacy and toxicity for transcription factor-targeted therapies. In this study, we exploit context-dependent differences in RNA polymerase II processivity as an approach to improve the activity and limit the toxicity of the EWS-FLI1-targeted small molecule, mithramycin, for Ewing sarcoma. The clinical activity of mithramycin for Ewing sarcoma is limited by off-target liver toxicity that restricts the serum concentration to levels insufficient to inhibit EWS-FLI1. In this study, we perform an siRNA screen of the druggable genome followed by a matrix drug screen to identify mithramycin potentiators and a synergistic "class" effect with cyclin-dependent kinase 9 (CDK9) inhibitors. These CDK9 inhibitors enhanced the mithramycin-mediated suppression of the EWS-FLI1 transcriptional program leading to a shift in the IC50 and striking regressions of Ewing sarcoma xenografts. To determine whether these compounds may also be liver protective, we performed a qPCR screen of all known liver toxicity genes in HepG2 cells to identify mithramycin-driven transcriptional changes that contribute to the liver toxicity. Mithramycin induces expression of the BTG2 gene in HepG2 but not Ewing sarcoma cells, which leads to a liver-specific accumulation of reactive oxygen species (ROS). siRNA silencing of BTG2 rescues the induction of ROS and the cytotoxicity of mithramycin in these cells. Furthermore, CDK9 inhibition blocked the induction of BTG2 to limit cytotoxicity in HepG2, but not Ewing sarcoma cells. These studies provide the basis for a synergistic and less toxic EWS-FLI1-targeted combination therapy for Ewing sarcoma.
Collapse
Affiliation(s)
- Guillermo Flores
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan.,College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Joel H Everett
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Elissa A Boguslawski
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Brandon M Oswald
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Ian Beddows
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Sergey Dikalov
- The Free Radicals in Medicine Core, Division of Clinical Pharmacology Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marie Adams
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Carleen A Klumpp-Thomas
- Trans-NIH RNAi Screening Facility, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Susan M Kitchen-Goosen
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Scott E Martin
- Trans-NIH RNAi Screening Facility, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Natasha J Caplen
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Lee J Helman
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Patrick J Grohar
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan. .,Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland.,Department of Pediatrics, Vanderbilt University, Nashville, Tennessee.,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan.,Division of Pediatric Hematology-Oncology, Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
161
|
From R-Loops to G-Quadruplexes: Emerging New Threats for the Replication Fork. Int J Mol Sci 2020; 21:ijms21041506. [PMID: 32098397 PMCID: PMC7073102 DOI: 10.3390/ijms21041506] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Replicating the entire genome is one of the most complex tasks for all organisms. Research carried out in the last few years has provided us with a clearer picture on how cells preserve genomic information from the numerous insults that may endanger its stability. Different DNA repair pathways, coping with exogenous or endogenous threat, have been dissected at the molecular level. More recently, there has been an increasing interest towards intrinsic obstacles to genome replication, paving the way to a novel view on genomic stability. Indeed, in some cases, the movement of the replication fork can be hindered by the presence of stable DNA: RNA hybrids (R-loops), the folding of G-rich sequences into G-quadruplex structures (G4s) or repetitive elements present at Common Fragile Sites (CFS). Although differing in their nature and in the way they affect the replication fork, all of these obstacles are a source of replication stress. Replication stress is one of the main hallmarks of cancer and its prevention is becoming increasingly important as a target for future chemotherapeutics. Here we will try to summarize how these three obstacles are generated and how the cells handle replication stress upon their encounter. Finally, we will consider their role in cancer and their exploitation in current chemotherapeutic approaches.
Collapse
|
162
|
Schafer ES, Rau RE, Berg SL, Liu X, Minard CG, Bishop AJR, Romero JC, Hicks MJ, Nelson MD, Voss S, Reid JM, Fox E, Weigel BJ, Blaney SM. Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: A Children's Oncology Group Phase 1 Consortium study (ADVL1411). Pediatr Blood Cancer 2020; 67:e28073. [PMID: 31724813 PMCID: PMC9134216 DOI: 10.1002/pbc.28073] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE We conducted a phase 1/2 trial of the poly(ADP-ribose) polymerase 1/2 inhibitor talazoparib in combination with low-dose temozolomide (TMZ) to determine the dose-limiting toxicities (DLTs), recommended phase 2 dose (RP2D), and pharmacokinetics of this combination in children with recurrent/refractory solid tumors; and to explore clinical activity in Ewing sarcoma (EWS) (NCT02116777). METHODS Talazoparib (400-600 µg/m2 /dose, maximum daily dose 800-1000 µg) was administered q.d. or b.i.d. orally on day 1 followed by q.d. dosing concomitant with q.d. dosing of oral TMZ (20-55 mg/m2 /day) on days 2 to 6, every 28 days. RESULTS Forty patients, aged 4 to 25 years, were enrolled. Talazoparib was increased to 600 µg/m2 /dose b.i.d. on day 1, and q.d. thereafter, with 20 mg/m2 /day of TMZ, without DLTs. TMZ was subsequently increased, during which dose-limiting neutropenia and thrombocytopenia occurred in two of three subjects at 55 mg/m2 /day, two of six subjects at 40 mg/m2 /day, and one of six subjects at 30 mg/m2 /day. During dose-finding, two of five EWS and four of 25 non-EWS subjects experienced prolonged stable disease (SD), and one subject with malignant glioma experienced a partial response. In phase 2, 0 of 10 EWS subjects experienced an objective response; two experienced prolonged SD. CONCLUSIONS Talazoparib and low-dose TMZ are tolerated in children with recurrent/refractory solid tumors. Reversible neutropenia and thrombocytopenia were dose limiting. The RP2D is talazoparib 600 µg/m2 b.i.d. on day 1 followed by 600 µg/m2 q.d. on days 2 to 6 (daily maximum 1000 µg) in combination with temozolomide 30 mg/m2 /day on days 2 to 6. Antitumor activity was not observed in EWS, and limited antitumor activity was observed in central nervous system tumors.
Collapse
Affiliation(s)
- Eric S. Schafer
- Baylor College of Medicine, Houston, TX,Texas Children’s Cancer and Hematology Centers, Houston, TX
| | - Rachel E. Rau
- Baylor College of Medicine, Houston, TX,Texas Children’s Cancer and Hematology Centers, Houston, TX
| | - Stacey L. Berg
- Baylor College of Medicine, Houston, TX,Texas Children’s Cancer and Hematology Centers, Houston, TX
| | | | | | - Alexander J. R. Bishop
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX,Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX
| | - J. Carolina Romero
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX
| | | | | | | | | | - Elizabeth Fox
- Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Susan M. Blaney
- Baylor College of Medicine, Houston, TX,Texas Children’s Cancer and Hematology Centers, Houston, TX
| |
Collapse
|
163
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
164
|
Koppenhafer SL, Goss KL, Terry WW, Gordon DJ. Inhibition of the ATR-CHK1 Pathway in Ewing Sarcoma Cells Causes DNA Damage and Apoptosis via the CDK2-Mediated Degradation of RRM2. Mol Cancer Res 2020; 18:91-104. [PMID: 31649026 PMCID: PMC6942212 DOI: 10.1158/1541-7786.mcr-19-0585] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Inhibition of ribonucleotide reductase (RNR), the rate-limiting enzyme in the synthesis of deoxyribonucleotides, causes DNA replication stress and activates the ataxia telangiectasia and rad3-related protein (ATR)-checkpoint kinase 1 (CHK1) pathway. Notably, a number of different cancers, including Ewing sarcoma tumors, are sensitive to the combination of RNR and ATR-CHK1 inhibitors. However, multiple, overlapping mechanisms are reported to underlie the toxicity of ATR-CHK1 inhibitors, both as single agents and in combination with RNR inhibitors, toward cancer cells. Here, we identified a feedback loop in Ewing sarcoma cells in which inhibition of the ATR-CHK1 pathway depletes RRM2, the small subunit of RNR, and exacerbates the DNA replication stress and DNA damage caused by RNR inhibitors. Mechanistically, we identified that the inhibition of ATR-CHK1 activates CDK2, which targets RRM2 for degradation via the proteasome. Similarly, activation of CDK2 by inhibition or knockdown of the WEE1 kinase also depletes RRM2 and causes DNA damage and apoptosis. Moreover, we show that the concurrent inhibition of ATR and WEE1 has a synergistic effect in Ewing sarcoma cells. Overall, our results provide novel insight into the response to DNA replication stress, as well as a rationale for targeting the ATR, CHK1, and WEE1 pathways, in Ewing sarcoma tumors. IMPLICATIONS: Targeting the ATR, CHK1, and WEE1 kinases in Ewing sarcoma cells activates CDK2 and increases DNA replication stress by promoting the proteasome-mediated degradation of RRM2.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Kelli L Goss
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - William W Terry
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - David J Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
165
|
Processing for destruction. Nat Chem Biol 2019; 16:3-4. [PMID: 31819275 DOI: 10.1038/s41589-019-0428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
166
|
Ross NT, Lohmann F, Carbonneau S, Fazal A, Weihofen WA, Gleim S, Salcius M, Sigoillot F, Henault M, Carl SH, Rodríguez-Molina JB, Miller HR, Brittain SM, Murphy J, Zambrowski M, Boynton G, Wang Y, Chen A, Molind GJ, Wilbertz JH, Artus-Revel CG, Jia M, Akinjiyan FA, Turner J, Knehr J, Carbone W, Schuierer S, Reece-Hoyes JS, Xie K, Saran C, Williams ET, Roma G, Spencer M, Jenkins J, George EL, Thomas JR, Michaud G, Schirle M, Tallarico J, Passmore LA, Chao JA, Beckwith REJ. CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing's sarcoma. Nat Chem Biol 2019; 16:50-59. [PMID: 31819276 DOI: 10.1038/s41589-019-0424-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Nathan T Ross
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.,Vertex Pharmaceuticals, Boston, MA, USA
| | - Felix Lohmann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Seth Carbonneau
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Aleem Fazal
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Scott Gleim
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Michael Salcius
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Martin Henault
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Howard R Miller
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Jason Murphy
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mark Zambrowski
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Yuan Wang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Aye Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Johannes H Wilbertz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Min Jia
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Jonathan Turner
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Judith Knehr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Kevin Xie
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Chitra Saran
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Eric T Williams
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Matt Spencer
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jeremy Jenkins
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Jason R Thomas
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Gregory Michaud
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - John Tallarico
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
167
|
Drugging the R-loop interactome: RNA-DNA hybrid binding proteins as targets for cancer therapy. DNA Repair (Amst) 2019; 84:102642. [DOI: 10.1016/j.dnarep.2019.102642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
|
168
|
Lambo S, Gröbner SN, Rausch T, Waszak SM, Schmidt C, Gorthi A, Romero JC, Mauermann M, Brabetz S, Krausert S, Buchhalter I, Koster J, Zwijnenburg DA, Sill M, Hübner JM, Mack N, Schwalm B, Ryzhova M, Hovestadt V, Papillon-Cavanagh S, Chan JA, Landgraf P, Ho B, Milde T, Witt O, Ecker J, Sahm F, Sumerauer D, Ellison DW, Orr BA, Darabi A, Haberler C, Figarella-Branger D, Wesseling P, Schittenhelm J, Remke M, Taylor MD, Gil-da-Costa MJ, Łastowska M, Grajkowska W, Hasselblatt M, Hauser P, Pietsch T, Uro-Coste E, Bourdeaut F, Masliah-Planchon J, Rigau V, Alexandrescu S, Wolf S, Li XN, Schüller U, Snuderl M, Karajannis MA, Giangaspero F, Jabado N, von Deimling A, Jones DTW, Korbel JO, von Hoff K, Lichter P, Huang A, Bishop AJR, Pfister SM, Korshunov A, Kool M. The molecular landscape of ETMR at diagnosis and relapse. Nature 2019; 576:274-280. [PMID: 31802000 PMCID: PMC6908757 DOI: 10.1038/s41586-019-1815-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.
Collapse
Affiliation(s)
- Sander Lambo
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne N Gröbner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Christin Schmidt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aparna Gorthi
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - July Carolina Romero
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Monika Mauermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brabetz
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Krausert
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivo Buchhalter
- Omics IT and Data Management Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens-Martin Hübner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norman Mack
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Schwalm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Papillon-Cavanagh
- Department of Pediatrics, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pablo Landgraf
- Department of Pediatrics, Pediatric Oncology and Hematology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ben Ho
- Division of Hematology/Oncology Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Anna Darabi
- Department of Clinical Sciences Lund, Section of Neurosurgery, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Dominique Figarella-Branger
- Aix-Marseille University, Neurophysiopathology Institute (INP), CNRS, Marseille, France
- Department of Pathology, APHM, Marseille, France
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/location VUmc, Amsterdam, The Netherlands
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital of Tübingen, Tübingen, Germany
| | - Marc Remke
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Maria J Gil-da-Costa
- Pediatric Hematology and Oncology Division, University Hospital São João Alameda Hernani Monteiro, Porto, Portugal
| | - Maria Łastowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Peter Hauser
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society of Neuropathology and Neuroanatomy, University of Bonn Medical Center, Bonn, Germany
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Paris Sciences Lettres Research University, Curie Institute, Paris, France
| | - Julien Masliah-Planchon
- Pediatric Oncology Department, SIREDO Pediatric Oncology Centre, Curie Institute, Paris, France
- Paris Sciences et Lettres Research University, Institut Curie Hospital, Laboratory of Somatic Genetics, Paris, France
| | - Valérie Rigau
- Department of Pathology, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier (INM), INSERM U1051, Montpellier University Hospital, Montpellier, France
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, High Throughput Sequencing Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Matthias A Karajannis
- Division of Pediatric Hematology/Oncology, NYU Langone Medical Center, The Stephen D. Hassenfeld Children's Center for Cancer and Blood Disorders, New York, NY, USA
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed-Mediterranean Neurological Institute, Pozzilli, Italy
| | - Nada Jabado
- Department of Pediatrics, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Andreas von Deimling
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Katja von Hoff
- Department of Pediatric Oncology/Hematology, Charité University Medicine, Berlin, Germany
- Department for Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Lichter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annie Huang
- Division of Hematology/Oncology Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Medical Biophysics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander J R Bishop
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
169
|
Abbott D, O'Brien S, Farnham JM, Young EL, Yap J, Jones K, Lessnick SL, Randall RL, Schiffman JD, Cannon‐Albright LA. Increased risk for other cancers in individuals with Ewing sarcoma and their relatives. Cancer Med 2019; 8:7924-7930. [PMID: 31670911 PMCID: PMC6912049 DOI: 10.1002/cam4.2575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND There are few reports of the association of other cancers with Ewing sarcoma in patients and their relatives. We use a resource combining statewide genealogy and cancer reporting to provide unbiased risks. METHODS Using a combined genealogy of 2.3 million Utah individuals and the Utah Cancer Registry (UCR), relative risks (RRs) for cancers of other sites were estimated in 143 Ewing sarcoma patients using a Cox proportional hazards model with matched controls; however, risks in relatives were estimated using internal cohort-specific cancer rates in first-, second-, and third-degree relatives. RESULTS Cancers of three sites (breast, brain, complex genotype/karyotype sarcoma) were observed in excess in Ewing sarcoma patients. No Ewing sarcoma patients were identified among first-, second-, or third-degree relatives of Ewing sarcoma patients. Significantly increased risk for brain, lung/bronchus, female genital, and prostate cancer was observed in first-degree relatives. Significantly increased risks were observed in second-degree relatives for breast cancer, nonmelanoma eye cancer, malignant peripheral nerve sheath cancer, non-Hodgkin lymphoma, and translocation sarcomas. Significantly increased risks for stomach cancer, prostate cancer, and acute lymphocytic leukemia were observed in third-degree relatives. CONCLUSIONS This analysis of risk for cancer among Ewing sarcoma patients and their relatives indicates evidence for some increased cancer predisposition in this population which can be used to individualize consideration of potential treatment of patients and screening of patients and relatives.
Collapse
Affiliation(s)
- Diana Abbott
- Genetic EpidemiologyDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | | | - James M. Farnham
- Genetic EpidemiologyDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Erin L. Young
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Jeffrey Yap
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
- Department of Orthopedic SurgeryUniversity of UtahSalt Lake CityUTUSA
| | - Kevin Jones
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
- Department of RadiologyUniversity of UtahSalt Lake CityUTUSA
| | - Stephen L. Lessnick
- Center for Childhood Cancer and Blood Diseases at Nationwide Children's HospitalDivision of Pediatric Hematology/Oncology/Blood and Marrow TransplantThe Ohio State University College of MedicineColumbusOHUSA
| | | | - Joshua D. Schiffman
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
- Division of Pediatric Hematology/OncologyDepartment of PediatricsUniversity of UtahSalt Lake CityUTUSA
| | - Lisa A. Cannon‐Albright
- Genetic EpidemiologyDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
- George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUTUSA
| |
Collapse
|
170
|
Zhang T, Wallis M, Petrovic V, Challis J, Kalitsis P, Hudson DF. Loss of TOP3B leads to increased R-loop formation and genome instability. Open Biol 2019; 9:190222. [PMID: 31795919 PMCID: PMC6936252 DOI: 10.1098/rsob.190222] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Topoisomerase III beta (TOP3B) is one of the least understood members of the topoisomerase family of proteins and remains enigmatic. Our recent data shed light on the function and relevance of TOP3B to disease. A homozygous deletion for the TOP3B gene was identified in a patient with bilateral renal cancer. Analyses in both patient and modelled human cells show the disruption of TOP3B causes genome instability with a rise in DNA damage and chromosome bridging (mis-segregation). The primary molecular defect underlying this pathology is a significant increase in R-loop formation. Our data show that TOP3B is necessary to prevent the accumulation of excessive R-loops and identify TOP3B as a putative cancer gene, and support recent data showing that R-loops are involved in cancer aetiology.
Collapse
Affiliation(s)
- Tao Zhang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Services, Royal Hobart Hospital, Hobart, Tasmania 7001, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Vida Petrovic
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Jackie Challis
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Paul Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Damien F. Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| |
Collapse
|
171
|
He S, Huang Q, Hu J, Li L, Xiao Y, Yu H, Han Z, Wang T, Zhou W, Wei H, Xiao J. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma. Br J Cancer 2019; 121:922-933. [PMID: 31649319 PMCID: PMC6889507 DOI: 10.1038/s41416-019-0608-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The extracellular matrix has been critically associated with the tumorigenesis and progression of Ewing sarcoma (ES). However, the regulatory and prognostic roles of tenascin-C (TNC) in ES remain unclear. METHODS TNC expression was examined in specimens by immunohistochemistry, and the association of TNC expression with ES patient survival was also analysed. TNC-knockout cell lines were constructed using CRISPR/Cas9 methods. In vitro experiments and in vivo bioluminescent imaging using BALB/c nude mice were conducted to evaluate the effect of TNC on ES tumour progression. RNA sequencing was performed, and the underlying mechanism of TNC was further explored. RESULTS TNC was overexpressed in ES tissue and cell lines, and TNC overexpression was associated with poor survival in ES patients. TNC enhanced cell proliferation, migration and angiogenesis in vitro and promoted ES metastasis in vivo. The oncoprotein EWS-FLI1 profoundly increased TNC expression by directly binding to the TNC promoter region. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) upregulation induced by Yes-associated protein (YAP) activation was responsible for TNC-regulated ES tumour progression. Activated integrin α5β1 signalling might be correlated with YAP dephosphorylation and nuclear translocation. CONCLUSIONS TNC may promote ES tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation.
Collapse
Affiliation(s)
- Shaohui He
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Quan Huang
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Jinbo Hu
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Yanbin Xiao
- Department of Orthopaedics, Musculoskeletal Tumor Center of Yunnan Province, the Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650106, Yunnan, P. R. China
| | - Hongyu Yu
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Zhitao Han
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Ting Wang
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Wang Zhou
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China. .,School of Medicine, Tsinghua University, Beijing, 100084, P. R. China.
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China.
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China.
| |
Collapse
|
172
|
R Loops: From Physiological to Pathological Roles. Cell 2019; 179:604-618. [PMID: 31607512 DOI: 10.1016/j.cell.2019.08.055] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
DNA-RNA hybrids play a physiological role in cellular processes, but often, they represent non-scheduled co-transcriptional structures with a negative impact on transcription, replication and DNA repair. Accumulating evidence suggests that they constitute a source of replication stress, DNA breaks and genome instability. Reciprocally, DNA breaks facilitate DNA-RNA hybrid formation by releasing the double helix torsional conformation. Cells avoid DNA-RNA accumulation by either preventing or removing hybrids directly or by DNA repair-coupled mechanisms. Given the R-loop impact on chromatin and genome organization and its potential relation with genetic diseases, we review R-loop homeostasis as well as their physiological and pathological roles.
Collapse
|
173
|
Abstract
The repair of DNA double-strand breaks occurs through a series of defined steps that are evolutionarily conserved and well-understood in most experimental organisms. However, it is becoming increasingly clear that repair does not occur in isolation from other DNA transactions. Transcription of DNA produces topological changes, RNA species, and RNA-dependent protein complexes that can dramatically influence the efficiency and outcomes of DNA double-strand break repair. The transcription-associated history of several double-strand break repair factors is reviewed here, with an emphasis on their roles in regulating R-loops and the emerging role of R-loops in coordination of repair events. Evidence for nucleolytic processing of R-loops is also discussed, as well as the molecular tools commonly used to measure RNA-DNA hybrids in cells.
Collapse
Affiliation(s)
- Tanya T Paull
- The Department of Molecular Biosciences and the Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
174
|
Wells JP, White J, Stirling PC. R Loops and Their Composite Cancer Connections. Trends Cancer 2019; 5:619-631. [DOI: 10.1016/j.trecan.2019.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
|
175
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
176
|
Chang EYC, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, Chan YA, Kumar A, Dan Zhu Y, Wang AYH, Fournier LA, Hieter P, Kobor MS, Masson JY, Stirling PC. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun 2019; 10:4265. [PMID: 31537797 PMCID: PMC6753070 DOI: 10.1038/s41467-019-12271-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.
Collapse
Affiliation(s)
| | - Shuhe Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yan Coulombe
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Franciele F Busatto
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Yujia A Chan
- The Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yi Dan Zhu
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | | | | | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - Jean-Yves Masson
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
177
|
Venkitaraman AR. How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility? DNA Repair (Amst) 2019; 81:102668. [PMID: 31337537 PMCID: PMC6765401 DOI: 10.1016/j.dnarep.2019.102668] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The inheritance of monoallelic germline mutations affecting BRCA1 or BRCA2 predisposes with a high penetrance to several forms of epithelial malignancy. The large, nuclear-localized BRCA proteins act as custodians of chromosome integrity through distinct functions in the assembly and activity of macromolecular complexes that mediate DNA repair, replication reactivation and mitotic progression. The loss of these tumour suppressive functions following biallelic BRCA gene inactivation has long been thought to provoke genomic instability and carcinogenesis. However, recent studies not only identify new functions for BRCA1 and BRCA2 in the regulation of transcription and RNA processing potentially relevant to their tumour suppressive activity, but also suggest that monoallelic BRCA2 gene mutations suffice for carcinogenesis. This emerging evidence opens fresh lines of enquiry concerning tissue-specific cancer evolution in BRCA mutation carriers. Collectively, these insights engender new models to explain how BRCA gene mutations cause cancer susceptibility in specific tissues.
Collapse
Affiliation(s)
- Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
178
|
Jalan M, Olsen KS, Powell SN. Emerging Roles of RAD52 in Genome Maintenance. Cancers (Basel) 2019; 11:E1038. [PMID: 31340507 PMCID: PMC6679097 DOI: 10.3390/cancers11071038] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The maintenance of genome integrity is critical for cell survival. Homologous recombination (HR) is considered the major error-free repair pathway in combatting endogenously generated double-stranded lesions in DNA. Nevertheless, a number of alternative repair pathways have been described as protectors of genome stability, especially in HR-deficient cells. One of the factors that appears to have a role in many of these pathways is human RAD52, a DNA repair protein that was previously considered to be dispensable due to a lack of an observable phenotype in knock-out mice. In later studies, RAD52 deficiency has been shown to be synthetically lethal with defects in BRCA genes, making RAD52 an attractive therapeutic target, particularly in the context of BRCA-deficient tumors.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Olsen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
179
|
Cortés-Ciriano I, Bender A. KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images. J Cheminform 2019; 11:41. [PMID: 31218493 PMCID: PMC6582521 DOI: 10.1186/s13321-019-0364-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/09/2019] [Indexed: 02/08/2023] Open
Abstract
The application of convolutional neural networks (ConvNets) to harness high-content screening images or 2D compound representations is gaining increasing attention in drug discovery. However, existing applications often require large data sets for training, or sophisticated pretraining schemes. Here, we show using 33 IC50 data sets from ChEMBL 23 that the in vitro activity of compounds on cancer cell lines and protein targets can be accurately predicted on a continuous scale from their Kekulé structure representations alone by extending existing architectures (AlexNet, DenseNet-201, ResNet152 and VGG-19), which were pretrained on unrelated image data sets. We show that the predictive power of the generated models, which just require standard 2D compound representations as input, is comparable to that of Random Forest (RF) models and fully-connected Deep Neural Networks trained on circular (Morgan) fingerprints. Notably, including additional fully-connected layers further increases the predictive power of the ConvNets by up to 10%. Analysis of the predictions generated by RF models and ConvNets shows that by simply averaging the output of the RF models and ConvNets we obtain significantly lower errors in prediction for multiple data sets, although the effect size is small, than those obtained with either model alone, indicating that the features extracted by the convolutional layers of the ConvNets provide complementary predictive signal to Morgan fingerprints. Lastly, we show that multi-task ConvNets trained on compound images permit to model COX isoform selectivity on a continuous scale with errors in prediction comparable to the uncertainty of the data. Overall, in this work we present a set of ConvNet architectures for the prediction of compound activity from their Kekulé structure representations with state-of-the-art performance, that require no generation of compound descriptors or use of sophisticated image processing techniques. The code needed to reproduce the results presented in this study and all the data sets are provided at https://github.com/isidroc/kekulescope .
Collapse
Affiliation(s)
- Isidro Cortés-Ciriano
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| |
Collapse
|
180
|
Tomino L, Bopp E, Felgenhauer J, Selich‐Anderson J, Shah N. Combinatorial BRD4 and AURKA inhibition is synergistic against preclinical models of Ewing sarcoma. Cancer Rep (Hoboken) 2019. [DOI: 10.1002/cnr2.1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Laura Tomino
- Center for Childhood Cancer and Blood DisordersNationwide Children's Hospital Columbus Ohio USA
| | - Emily Bopp
- College of Arts and SciencesThe Ohio State University Columbus Ohio USA
| | - Joshua Felgenhauer
- Center for Childhood Cancer and Blood DisordersNationwide Children's Hospital Columbus Ohio USA
| | - Julia Selich‐Anderson
- Center for Childhood Cancer and Blood DisordersNationwide Children's Hospital Columbus Ohio USA
| | - Nilay Shah
- Center for Childhood Cancer and Blood DisordersNationwide Children's Hospital Columbus Ohio USA
- College of Medicine, Department of PediatricsThe Ohio State University Columbus Ohio USA
| |
Collapse
|
181
|
Ju HY. Ewing Sarcoma. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2019. [DOI: 10.15264/cpho.2019.26.1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
182
|
Ma Y, Baltezor M, Rajewski L, Crow J, Samuel G, Staggs VS, Chastain KM, Toretsky JA, Weir SJ, Godwin AK. Targeted inhibition of histone deacetylase leads to suppression of Ewing sarcoma tumor growth through an unappreciated EWS-FLI1/HDAC3/HSP90 signaling axis. J Mol Med (Berl) 2019; 97:957-972. [PMID: 31025088 DOI: 10.1007/s00109-019-01782-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/17/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Ewing sarcoma (ES) are aggressive pediatric bone and soft tissue tumors driven by EWS-ETS fusion oncogenes, most commonly EWS-FLI1. Treatment of ES patients consists of up to 9 months of alternating courses of 2 chemotherapeutic regimens. Furthermore, EWS-ETS-targeted therapies have yet to demonstrate clinical benefit, thereby emphasizing a clinical responsibility to search for new therapeutic approaches. Our previous in silico drug screening identified entinostat as a drug hit that was predicted to reverse the ES disease signatures and EWS-FLI1-mediated gene signatures. Here, we establish preclinical proof of principle by investigating the in vitro and in vivo efficacy of entinostat in preclinical ES models, as well as characterizing the mechanisms of action and in vivo pharmacokinetics of entinostat. ES cells are preferentially sensitive to entinostat in an EWS-FLI1 or EWS-ERG-dependent manner. Entinostat induces apoptosis of ES cells through G0/G1 cell cycle arrest, intracellular reactive oxygen species (ROS) elevation, DNA damage, homologous recombination (HR) repair impairment, and caspase activation. Mechanistically, we demonstrate for the first time that HDAC3 is a transcriptional target of EWS-FLI1 and that entinostat inhibits growth of ES cells through suppressing a previously unexplored EWS-FLI1/HDAC3/HSP90 signaling axis. Importantly, entinostat significantly reduces tumor burden by 97.4% (89.5 vs. 3397.3 mm3 of vehicle, p < 0.001) and prolongs the median survival of mice (15.5 vs. 8.5 days of vehicle, p < 0.001), in two independent ES xenograft mouse models, respectively. Overall, our studies demonstrate promising activity of entinostat against ES, and support the clinical development of the entinostat-based therapies for children and young adults with metastatic/relapsed ES. KEY MESSAGES: • Entinostat potently inhibits ES both in vitro and in vivo. • EWS-FLI1 and EWS-ERG confer sensitivity to entinostat treatment. • Entinostat suppresses the EWS-FLI1/HDAC3/HSP90 signaling. • HDAC3 is a transcriptional target of EWS-FLI1. • HDAC3 is essential for ES cell viability and genomic stability maintenance.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 4005B Wahl Hall East, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Michael Baltezor
- Lead Development Optimization Shared Resource, University of Kansas Cancer Center, Biotechnology Innovation and Optimization Center, Lawrence, KS, USA.,Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lian Rajewski
- Lead Development Optimization Shared Resource, University of Kansas Cancer Center, Biotechnology Innovation and Optimization Center, Lawrence, KS, USA
| | - Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 4005B Wahl Hall East, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Glenson Samuel
- Division of Hematology/Oncology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Vincent S Staggs
- Health Services & Outcomes Research, Children's Mercy Kansas City and School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Katherine M Chastain
- Division of Hematology/Oncology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., USA
| | - Scott J Weir
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 4005B Wahl Hall East, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA. .,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
183
|
Bailey K, Cost C, Davis I, Glade-Bender J, Grohar P, Houghton P, Isakoff M, Stewart E, Laack N, Yustein J, Reed D, Janeway K, Gorlick R, Lessnick S, DuBois S, Hingorani P. Emerging novel agents for patients with advanced Ewing sarcoma: a report from the Children's Oncology Group (COG) New Agents for Ewing Sarcoma Task Force. F1000Res 2019; 8:F1000 Faculty Rev-493. [PMID: 31031965 PMCID: PMC6468706 DOI: 10.12688/f1000research.18139.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
Ewing sarcoma is a small round blue cell malignancy arising from bone or soft tissue and most commonly affects adolescents and young adults. Metastatic and relapsed Ewing sarcoma have poor outcomes and recurrences remain common. Owing to the poor outcomes associated with advanced disease and the need for a clear research strategy, the Children's Oncology Group Bone Tumor Committee formed the New Agents for Ewing Sarcoma Task Force to bring together experts in the field to evaluate and prioritize new agents for incorporation into clinical trials. This group's mission was to evaluate scientific and clinical challenges in moving new agents forward and to recommend agents and trial designs to the Bone Tumor Committee. The task force generated a framework for vetting prospective agents that included critical evaluation of each drug by using both clinical and non-clinical parameters. Representative appraisal of agents of highest priority, including eribulin, dinutuximab, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, anti-angiogenic tyrosine kinase inhibitors, and poly-ADP-ribose polymerase (PARP) inhibitors, is described. The task force continues to analyze new compounds by using the paradigm established.
Collapse
Affiliation(s)
- Kelly Bailey
- Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carrye Cost
- Center for Cancer and Blood Disorders, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ian Davis
- Departments of Pediatrics and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Julia Glade-Bender
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Patrick Grohar
- Departement of Pediatrics, Van Andel Institute, Helen De Vos Children’s Hospital and Michigan State University, Grand Rapids, MI, USA
| | - Peter Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT, USA
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jason Yustein
- The Faris D. Virani Ewing Sarcoma Center at the Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Damon Reed
- AYA Program, Moffitt Cancer Center, Tampa, FL, USA
- Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Katherine Janeway
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Lessnick
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplantation, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Steven DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Pooja Hingorani
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
184
|
Gulhan DC, Lee JJK, Melloni GEM, Cortés-Ciriano I, Park PJ. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat Genet 2019; 51:912-919. [DOI: 10.1038/s41588-019-0390-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/13/2019] [Indexed: 11/09/2022]
|
185
|
Herold S, Kalb J, Büchel G, Ade CP, Baluapuri A, Xu J, Koster J, Solvie D, Carstensen A, Klotz C, Rodewald S, Schülein-Völk C, Dobbelstein M, Wolf E, Molenaar J, Versteeg R, Walz S, Eilers M. Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature 2019; 567:545-549. [PMID: 30894746 DOI: 10.1038/s41586-019-1030-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/18/2019] [Indexed: 01/17/2023]
Abstract
MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.
Collapse
Affiliation(s)
- Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Jacqueline Kalb
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jiajia Xu
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel Solvie
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anne Carstensen
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christina Klotz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sabrina Rodewald
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Molenaar
- Department of Translational Research, Prinses Máxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
186
|
Abstract
MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.
Collapse
|
187
|
Crossley MP, Bocek M, Cimprich KA. R-Loops as Cellular Regulators and Genomic Threats. Mol Cell 2019; 73:398-411. [PMID: 30735654 PMCID: PMC6402819 DOI: 10.1016/j.molcel.2019.01.024] [Citation(s) in RCA: 441] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
During transcription, the nascent RNA strand can base pair with its template DNA, displacing the non-template strand as ssDNA and forming a structure called an R-loop. R-loops are common across many domains of life and cause DNA damage in certain contexts. In this review, we summarize recent results implicating R-loops as important regulators of cellular processes such as transcription termination, gene regulation, and DNA repair. We also highlight recent work suggesting that R-loops can be problematic to cells as blocks to efficient transcription and replication that trigger the DNA damage response. Finally, we discuss how R-loops may contribute to cancer, neurodegeneration, and inflammatory diseases and compare the available next-generation sequencing-based approaches to map R-loops genome wide.
Collapse
Affiliation(s)
- Madzia P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Michael Bocek
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| |
Collapse
|
188
|
Takagi M, Ogawa C, Aoki-Nogami Y, Iehara T, Ishibashi E, Imai M, Kihara T, Nobori K, Hasebe K, Mizutani S, Kimura T, Nagata M, Yasuhara M, Yoshimura K, Yorozu P, Hosoi H, Koike R. Phase I clinical study of oral olaparib in pediatric patients with refractory solid tumors: study protocol. BMC Pediatr 2019; 19:31. [PMID: 30684955 PMCID: PMC6347807 DOI: 10.1186/s12887-019-1409-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/18/2019] [Indexed: 01/19/2023] Open
Abstract
Background There is no established standard chemotherapy for recurrent pediatric solid tumors such as neuroblastoma and sarcoma. Since some of these tumor cells show dysfunctions in homologous recombination repair, the goal is to conduct a phase I study of olaparib, a poly(ADP-ribose) polymerase inhibitor. In this clinical trial, the aims are to evaluate the safety, tolerability, and efficacy of olaparib in pediatric patients with refractory solid tumors and to recommend a dose for phase II trials. Methods In this open-label, multicenter study, olaparib tablets (62.5, 125, and 187.5 mg/m2 b.i.d.) will be administered orally in a standard 3 + 3 dose escalation design. Patients aged 3 to 18 years with recurrent pediatric solid tumors are eligible. Pharmacokinetic and pharmacodynamic analyses will also be performed. Discussion This study aims to extend the indications for olaparib by assessing its safety and efficacy in pediatric refractory solid tumor patients. Trial registration UMIN-CTR (UMIN000025521); Registered on January 4, 2017.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Chitose Ogawa
- Department of Pediatric Oncology, National Cancer Center, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Aoki-Nogami
- Department of Pediatric Oncology, National Cancer Center, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Eri Ishibashi
- University Research Administration Division, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Minoru Imai
- University Research Administration Division, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuro Kihara
- University Research Administration Division, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kiyoshi Nobori
- Medical Innovation Promotion Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuhisa Hasebe
- University Research Administration Division, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuki Mizutani
- University Research Administration Division, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshimi Kimura
- Department of Pharmacodynamics, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masashi Nagata
- Department of Pharmacodynamics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Yasuhara
- Department of Pharmacodynamics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Yoshimura
- Innovative Clinical Research Center, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Pariko Yorozu
- Medical Innovation Promotion Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryuji Koike
- Medical Innovation Promotion Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
189
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
190
|
Bailey KM. Prospective investigation of drug resistance: an approach to understanding and optimizing the clinical benefit of targeted agents in Ewing sarcoma. Oncotarget 2018; 9:37270-37271. [PMID: 30647860 PMCID: PMC6324671 DOI: 10.18632/oncotarget.26465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Kelly M Bailey
- Kelly M. Bailey: Department of Pediatrics, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
191
|
Lowery CD, Dowless M, Renschler M, Blosser W, VanWye AB, Stephens JR, Iversen PW, Lin AB, Beckmann RP, Krytska K, Cole KA, Maris JM, Hawkins DS, Rubin BP, Kurmasheva RT, Houghton PJ, Gorlick R, Kolb EA, Kang MH, Reynolds CP, Erickson SW, Teicher BA, Smith MA, Stancato LF. Broad Spectrum Activity of the Checkpoint Kinase 1 Inhibitor Prexasertib as a Single Agent or Chemopotentiator Across a Range of Preclinical Pediatric Tumor Models. Clin Cancer Res 2018; 25:2278-2289. [PMID: 30563935 DOI: 10.1158/1078-0432.ccr-18-2728] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/13/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Checkpoint kinase 1 (CHK1) inhibitors potentiate the DNA-damaging effects of cytotoxic therapies and/or promote elevated levels of replication stress, leading to tumor cell death. Prexasertib (LY2606368) is a CHK1 small-molecule inhibitor under clinical evaluation in multiple adult and pediatric cancers. In this study, prexasertib was tested in a large panel of preclinical models of pediatric solid malignancies alone or in combination with chemotherapy. EXPERIMENTAL DESIGN DNA damage and changes in cell signaling following in vitro prexasertib treatment in pediatric sarcoma cell lines were analyzed by Western blot and high content imaging. Antitumor activity of prexasertib as a single agent or in combination with different chemotherapies was explored in cell line-derived (CDX) and patient-derived xenograft (PDX) mouse models representing nine different pediatric cancer histologies. RESULTS Pediatric sarcoma cell lines were highly sensitive to prexasertib treatment in vitro, resulting in activation of the DNA damage response. Two PDX models of desmoplastic small round cell tumor and one malignant rhabdoid tumor CDX model responded to prexasertib with complete regression. Prexasertib monotherapy also elicited robust responses in mouse models of rhabdomyosarcoma. Concurrent administration with chemotherapy was sufficient to overcome innate resistance or prevent acquired resistance to prexasertib in preclinical models of neuroblastoma, osteosarcoma, and Ewing sarcoma, or alveolar rhabdomyosarcoma, respectively. CONCLUSIONS Prexasertib has significant antitumor effects as a monotherapy or in combination with chemotherapy in multiple preclinical models of pediatric cancer. These findings support further investigation of prexasertib in pediatric malignancies.
Collapse
Affiliation(s)
- Caitlin D Lowery
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Michele Dowless
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Matthew Renschler
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Wayne Blosser
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Alle B VanWye
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | | | - Philip W Iversen
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Aimee Bence Lin
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | | | - Kateryna Krytska
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kristina A Cole
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John M Maris
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Douglas S Hawkins
- Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Brian P Rubin
- Departments of Pathology and Cancer Biology, Robert J Tomsich Pathology and Laboratory Medicine Institute and Cleveland Clinic, Cleveland, Ohio
| | | | - Peter J Houghton
- Greehey Children's Cancer Research Institute, San Antonio, Texas
| | | | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Wilmington, Delaware
| | - Min H Kang
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | | | | | | | - Louis F Stancato
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana.
| |
Collapse
|
192
|
Rhabdomyosarcoma and Extraosseous Ewing Sarcoma. CHILDREN-BASEL 2018; 5:children5120165. [PMID: 30544742 PMCID: PMC6306718 DOI: 10.3390/children5120165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Rhabdomyosarcoma (RMS) is a malignant tumor that represents the most common form of pediatric soft tissue sarcoma. It arises from mesenchymal origin and forms part of the group of small round blue cell tumors of childhood. It has a constant annual incidence of 4.5 cases per 1,000,000 children. The known histological diagnosis of the two major subtypes (embryonal and alveolar) has been recently enhanced by tumor biological markers and molecular differentiation diagnostic tools that have improved not only the updated classification based on risk stratification, but also the treatment approach based on the clinical group. Ewing sarcoma (ES) is a round cell tumor, highly malignant and poorly differentiated that is currently the second most common malignant bone tumor in children. In rare instances, it develops from an extraskeletal origin, classified as extraosseous Ewing sarcoma (EES). We provide an updated, evidence-based and comprehensive review of the molecular diagnosis, clinical and diagnostic approach and a multidisciplinary medical and surgical management according to the latest standard of care for the treatment of pediatric RMS and EES.
Collapse
|
193
|
Li L, Li W, Chen N, Zhao H, Xu G, Zhao Y, Pan X, Zhang X, Zhou L, Yu D, Li A, Hu JF, Cui J. FLI1 Exonic Circular RNAs as a Novel Oncogenic Driver to Promote Tumor Metastasis in Small Cell Lung Cancer. Clin Cancer Res 2018; 25:1302-1317. [PMID: 30429198 DOI: 10.1158/1078-0432.ccr-18-1447] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The aberrantly upregulated Friend leukemia virus integration 1 (FLI1) is closely correlated with the malignant phenotype of small cell lung cancer (SCLC). It is interesting to note that the CRISPR gene knockout by Cas9 gRNAs that target the FLI1 coding region and the posttranscriptional knockdown by shRNAs that target the 3' region of FLI1 mRNA yielded distinct antimetastasis effects in SCLC cells. This study attempts to examine if FLI1 exonic circular RNAs (FECR) function as a new malignant driver that determines the metastatic phenotype in SCLC. EXPERIMENTAL DESIGN The clinical relevance of FECRs was examined in 56 primary SCLC tissues and 50 non-small cell lung cancer (NSCLC) tissues. The prognostic value of FECRs was examined by measuring serum exosomal FECRs in a longitudinal cohort of patients with SCLC. The oncogenic activity of FECRs was investigated in both SCLC cell lines and animal xenograft studies. Finally, we explored the molecular mechanisms underlying these noncoding RNAs as a malignant driver. RESULTS Therapeutic comparison of CRISPR Cas9 knockout and shRNA knockdown of FLI1 identified FECRs as a new noncanonical malignant driver in SCLC. Using RNA FISH and quantitative PCR, we found that FECR1 (exons 4-2-3) and FECR2 (exons 5-2-3-4) were aberrantly upregulated in SCLC tissues (P < 0.0001), and was positively associated with lymph node metastasis (P < 0.01). Notably, serum exosomal FECR1 was associated with poor survival (P = 0.038) and clinical response to chemotherapy. Silencing of FECRs significantly inhibited the migration in two highly aggressive SCLC cell lines and reduced tumor metastasis in vivo. Mechanistically, we uncovered that FECRs sequestered and subsequently inactivated tumor suppressor miR584-3p, leading to the activation of the Rho Associated Coiled-Coil Containing Protein Kinase 1 gene (ROCK1). CONCLUSIONS This study identifies FLI1 exonic circular RNAs as a new oncogenic driver that promotes tumor metastasis through the miR584-ROCK1 pathway. Importantly, serum exosomal FECR1 may serve as a promising biomarker to track disease progression of SCLC.
Collapse
Affiliation(s)
- Lingyu Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Naifei Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Haixin Zhao
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Guang Xu
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yijing Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xiaoying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ailing Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| | - Ji-Fan Hu
- Cancer Center, The First Hospital of Jilin University, Changchun, China. .,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
194
|
Chromatin modifiers Mdm2 and RNF2 prevent RNA:DNA hybrids that impair DNA replication. Proc Natl Acad Sci U S A 2018; 115:E11311-E11320. [PMID: 30413623 DOI: 10.1073/pnas.1809592115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The p53-Mdm2 system is key to tumor suppression. We have recently reported that p53 as well as Mdm2 are capable of supporting DNA replication fork progression. On the other hand, we found that Mdm2 is a modifier of chromatin, modulating polycomb repressor complex (PRC)-driven histone modifications. Here we show that, similar to Mdm2 knockdown, the depletion of PRC members impairs DNA synthesis, as determined in fiber assays. In particular, the ubiquitin ligase and PRC1 component RNF2/Ring1B is required to support DNA replication, similar to Mdm2. Moreover, the Ring finger domain of Mdm2 is not only essential for its ubiquitin ligase activity, but also for proper DNA replication. Strikingly, Mdm2 overexpression can rescue RNF2 depletion with regard to DNA replication fork progression, and vice versa, strongly suggesting that the two ubiquitin ligases perform overlapping functions in this context. H2A overexpression also rescues fork progression upon depletion of Mdm2 or RNF2, but only when the ubiquitination sites K118/K119 are present. Depleting the H2A deubiquitinating enzyme BAP1 reduces the fork rate, suggesting that both ubiquitination and deubiquitination of H2A are required to support fork progression. The depletion of Mdm2 elicits the accumulation of RNA/DNA hybrids, suggesting R-loop formation as a mechanism of impaired DNA replication. Accordingly, RNase H overexpression or the inhibition of the transcription elongation kinase CDK9 each rescues DNA replication upon depletion of Mdm2 or RNF2. Taken together, our results suggest that chromatin modification by Mdm2 and PRC1 ensures smooth DNA replication through the avoidance of R-loop formation.
Collapse
|
195
|
Heisey DAR, Lochmann TL, Floros KV, Coon CM, Powell KM, Jacob S, Calbert ML, Ghotra MS, Stein GT, Maves YK, Smith SC, Benes CH, Leverson JD, Souers AJ, Boikos SA, Faber AC. The Ewing Family of Tumors Relies on BCL-2 and BCL-X L to Escape PARP Inhibitor Toxicity. Clin Cancer Res 2018; 25:1664-1675. [PMID: 30348635 DOI: 10.1158/1078-0432.ccr-18-0277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/11/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE It was recently demonstrated that the EWSR1-FLI1 t(11;22)(q24;12) translocation contributes to the hypersensitivity of Ewing sarcoma to PARP inhibitors, prompting clinical evaluation of olaparib in a cohort of heavily pretreated Ewing sarcoma tumors. Unfortunately, olaparib activity was disappointing, suggesting an underappreciated resistance mechanism to PARP inhibition in patients with Ewing sarcoma. We sought to elucidate the resistance factors to PARP inhibitor therapy in Ewing sarcoma and identify a rational drug combination capable of rescuing PARP inhibitor activity. EXPERIMENTAL DESIGN We employed a pair of cell lines derived from the same patient with Ewing sarcoma prior to and following chemotherapy, a panel of Ewing sarcoma cell lines, and several patient-derived xenograft (PDX) and cell line xenograft models. RESULTS We found olaparib sensitivity was diminished following chemotherapy. The matched cell line pair revealed increased expression of the antiapoptotic protein BCL-2 in the chemotherapy-resistant cells, conferring apoptotic resistance to olaparib. Resistance to olaparib was maintained in this chemotherapy-resistant model in vivo, whereas the addition of the BCL-2/XL inhibitor navitoclax led to tumor growth inhibition. In 2 PDXs, olaparib and navitoclax were minimally effective as monotherapy, yet induced dramatic tumor growth inhibition when dosed in combination. We found that EWS-FLI1 increases BCL-2 expression; however, inhibition of BCL-2 alone by venetoclax is insufficient to sensitize Ewing sarcoma cells to olaparib, revealing a dual necessity for BCL-2 and BCL-XL in Ewing sarcoma survival. CONCLUSIONS These data reveal BCL-2 and BCL-XL act together to drive olaparib resistance in Ewing sarcoma and reveal a novel, rational combination therapy that may be put forward for clinical trial testing.
Collapse
Affiliation(s)
- Daniel A R Heisey
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Timothy L Lochmann
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Konstantinos V Floros
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Colin M Coon
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Krista M Powell
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Sheeba Jacob
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Marissa L Calbert
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Maninderjit S Ghotra
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Giovanna T Stein
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Steven C Smith
- Division of Anatomic Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | - Sosipatros A Boikos
- Hematology, Oncology and Palliative Care, School of Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Anthony C Faber
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia.
| |
Collapse
|
196
|
Chakraborty P, Huang JTJ, Hiom K. DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat Commun 2018; 9:4346. [PMID: 30341290 PMCID: PMC6195550 DOI: 10.1038/s41467-018-06677-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
R-loops are stable nucleic acid structures that have important physiological functions, but which also pose a significant threat to genomic stability. Increased R-loops cause replication stress and chromosome fragility and have been associated with diseases such as neurodegeneration and cancer. Although excessive R-loops are a feature of cells that are defective in RNA processing, what causes them to form is unclear. Here, we demonstrate that DHX9 (RNA helicase A) promotes the formation of pathological and non-pathological R-loops. In the absence of splicing factors, formation of R-loops correlates with the prolonged association of DHX9 with RNA Polymerase II (RNA Pol II). This leads to the production of DNA–RNA hybrid, which traps RNA Pol II on chromatin with the potential to block DNA replication. Our data provide a molecular mechanism for the formation of R-loops that is relevant to neurodegenerative diseases and cancers in which deregulated RNA processing is a feature. Unresolved R-loops can represent a threat to genome stability. Here the authors reveal that DHX9 helicase can promote R-loop formation in the absence of splicing factors SFPQ and SF3B3.
Collapse
Affiliation(s)
- Prasun Chakraborty
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Jeffrey T J Huang
- Biomarker and Drug Analysis Core Facility, School of Medicine, University of Dundee, Scotland, UK
| | - Kevin Hiom
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK.
| |
Collapse
|
197
|
Teng Y, Yadav T, Duan M, Tan J, Xiang Y, Gao B, Xu J, Liang Z, Liu Y, Nakajima S, Shi Y, Levine AS, Zou L, Lan L. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat Commun 2018; 9:4115. [PMID: 30297739 PMCID: PMC6175878 DOI: 10.1038/s41467-018-06586-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
Actively transcribed regions of the genome are protected by transcription-coupled DNA repair mechanisms, including transcription-coupled homologous recombination (TC-HR). Here we used reactive oxygen species (ROS) to induce and characterize TC-HR at a transcribed locus in human cells. As canonical HR, TC-HR requires RAD51. However, the localization of RAD51 to damage sites during TC-HR does not require BRCA1 and BRCA2, but relies on RAD52 and Cockayne Syndrome Protein B (CSB). During TC-HR, RAD52 is recruited by CSB through an acidic domain. CSB in turn is recruited by R loops, which are strongly induced by ROS in transcribed regions. Notably, CSB displays a strong affinity for DNA:RNA hybrids in vitro, suggesting that it is a sensor of ROS-induced R loops. Thus, TC-HR is triggered by R loops, initiated by CSB, and carried out by the CSB-RAD52-RAD51 axis, establishing a BRCA1/2-independent alternative HR pathway protecting the transcribed genome.
Collapse
Affiliation(s)
- Yaqun Teng
- School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing, 100084, China
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA, 15219, USA
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Meihan Duan
- School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing, 100084, China
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA, 15219, USA
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Jun Tan
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S362 Biomedical Science Tower South, Pittsburgh, PA, 15213, USA
| | - Boya Gao
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Jianquan Xu
- Department of Medicine and Bioengineering, University of Pittsburgh, 5117 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Zhuobin Liang
- Department of Molecular Biology and Biophysics, Yale Medical School, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Yang Liu
- Department of Medicine and Bioengineering, University of Pittsburgh, 5117 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Satoshi Nakajima
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA, 15219, USA
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S362 Biomedical Science Tower South, Pittsburgh, PA, 15213, USA
| | - Arthur S Levine
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA, 15219, USA
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Lan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA, 15219, USA.
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
198
|
Trabectedin and olaparib in patients with advanced and non-resectable bone and soft-tissue sarcomas (TOMAS): an open-label, phase 1b study from the Italian Sarcoma Group. Lancet Oncol 2018; 19:1360-1371. [PMID: 30217671 DOI: 10.1016/s1470-2045(18)30438-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Trabectedin is an alkylating drug with a unique mechanism of action causing single-strand and double-strand DNA breaks that activate DNA damage-response pathways. Based on our preclinical data, we hypothesised that poly(ADP-ribose) polymerase 1 (PARP1) inhibitors might be an ideal partner of trabectedin and aimed to assess the safety, identify the recommended phase 2 dose, and explore preliminary signs of activity of trabectedin and olaparib combination treatment in patients with bone and soft-tissue sarcoma. METHODS We did an open-label, multicentre, phase 1b study, recruiting patients from the national Italian sarcoma network aged 18 years and older with histologically confirmed bone and soft-tissue sarcoma progressing after standard treatments with Eastern Cooperative Oncology Group performance status of 1 or less. In a classic 3 + 3 design, patients received a 24 h infusion of trabectedin on day 1 and olaparib orally twice a day in 21-day cycles across six dose levels (trabectedin 0·675-1·3 mg/m2 every 3 weeks; olaparib 100-300 mg twice a day from day 1 to 21). Intermediate dose levels were permitted to improve safety and tolerability. The primary endpoint was determination of the recommended phase 2 dose (the maximum tolerated dose). Safety and antitumour activity were assessed in all patients who received at least one dose of the study drugs. We report the results of the dose-escalation and dose-expansion cohorts. The trial is still active but closed to enrolment, and follow-up for patients who completed treatment is ongoing. This trial is registered with ClinicalTrials.gov, number NCT02398058. FINDINGS Between Nov 17, 2014, and Jan 30, 2017, of 54 patients assessed for eligibility, we enrolled 50 patients: 28 patients in the dose-escalation cohort and 22 patients in the dose-expansion cohort. Patients received a median of four cycles of treatment (IQR 2-6; range 1-17 [the patients who received the highest number of cycles are still on treatment]) with a median follow-up of 10 months (IQR 5-23). Considering all dose levels, the most common grade 3-4 adverse events were lymphopenia (32 [64%] of 50 patients), neutropenia (31 [62%]), thrombocytopenia (14 [28%]), anaemia (13 [26%]), hypophosphataemia (20 [40%]), and alanine aminotransferase concentration increase (9 [18%]). No treatment-related life-threatening adverse events or deaths occurred. One (2%) patient interrupted treatment without progression without reporting any specific toxicity. Observed dose-limiting toxicities were thrombocytopenia, neutropenia for more than 7 days, and febrile neutropenia. We selected intermediate dose level 4b (trabectedin 1·1 mg/m2 every 3 weeks plus olaparib 150 mg twice a day) as the recommended phase 2 dose. Seven (14%; 95% CI 6-27) of 50 patients achieved a partial response according to Response Evaluation Criteria In Solid Tumors 1.1. INTERPRETATION Trabectedin and olaparib in combination showed manageable toxicities at active dose levels for both drugs. Preliminary data on antitumour activity are encouraging. Two dedicated phase 2 studies are planned to assess activity of this combination in both ovarian cancer (EudraCT2018-000230-35) and soft-tissue sarcomas. FUNDING Italian Association for Cancer Research, Italian Sarcoma Group, Foundation for Research on Musculoskeletal and Rare Tumors, and Italian Ministry of Health.
Collapse
|
199
|
Parrish JK, McCann TS, Sechler M, Sobral LM, Ren W, Jones KL, Tan AC, Jedlicka P. The Jumonji-domain histone demethylase inhibitor JIB-04 deregulates oncogenic programs and increases DNA damage in Ewing Sarcoma, resulting in impaired cell proliferation and survival, and reduced tumor growth. Oncotarget 2018; 9:33110-33123. [PMID: 30237855 PMCID: PMC6145692 DOI: 10.18632/oncotarget.26011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/04/2018] [Indexed: 12/03/2022] Open
Abstract
Ewing Sarcoma is an aggressive malignant neoplasm affecting children and young adults. Ewing Sarcoma is driven by transcription factor fusion oncoproteins, most commonly EWS/Fli1. While some patients can be cured with high-dose, multi-agent, chemotherapy, those that cannot currently have few options. Targeting of the driver oncofusion remains a logical therapeutic approach, but has proven difficult. Recent work has pointed to epigenetic mechanisms as key players, and potential new therapeutic targets, in Ewing Sarcoma. In this study we examined the activity of the pan-JHDM pharmacologic inhibitor JIB-04 in this disease. We show that JIB-04 potently inhibits the growth and viability of Ewing Sarcoma cells, and also impairs tumor xenograft growth. Effects on histone methylation at growth-inhibitory doses vary among cell lines, with most cell lines exhibiting increased total H3K27me3 levels, and some increased H3K4me3 and H3K9me3. JIB-04 treatment widely alters expression of oncogenic and tumor suppressive pathways, including downregulation of known oncogenic members of the Homeobox B and D clusters. JIB-04 also disrupts the EWS/Fli1 expression signature, including downregulation of pro-proliferative pathways normally under positive oncofusion control. Interestingly, these changes are accompanied by increased levels of the EWS/Fli1 oncofusion, suggesting that the drug could be uncoupling EWS/Fli1 from its oncogenic program. All Ewing Sarcoma cell lines examined also manifest increased DNA damage upon JIB-04 treatment. Together, the findings suggest that JIB-04 acts via multiple mechanisms to compromise Ewing Sarcoma cell growth and viability.
Collapse
Affiliation(s)
- Janet K Parrish
- Department of Pathology, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Tyler S McCann
- Department of Pathology, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Marybeth Sechler
- Cancer Biology Graduate Training Program, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Lays M Sobral
- Department of Pathology, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Wenhua Ren
- Department of Medicine, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Aik Choon Tan
- Cancer Biology Graduate Training Program, Anschutz Medical Campus, Aurora, CO, USA.,Department of Medicine, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Training Program, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
200
|
Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, Sorensen PH, Delattre O, Dirksen U. Ewing sarcoma. Nat Rev Dis Primers 2018; 4:5. [PMID: 29977059 DOI: 10.1038/s41572-018-0003-x] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ewing sarcoma is the second most frequent bone tumour of childhood and adolescence that can also arise in soft tissue. Ewing sarcoma is a highly aggressive cancer, with a survival of 70-80% for patients with standard-risk and localized disease and ~30% for those with metastatic disease. Treatment comprises local surgery, radiotherapy and polychemotherapy, which are associated with acute and chronic adverse effects that may compromise quality of life in survivors. Histologically, Ewing sarcomas are composed of small round cells expressing high levels of CD99. Genetically, they are characterized by balanced chromosomal translocations in which a member of the FET gene family is fused with an ETS transcription factor, with the most common fusion being EWSR1-FLI1 (85% of cases). Ewing sarcoma breakpoint region 1 protein (EWSR1)-Friend leukaemia integration 1 transcription factor (FLI1) is a tumour-specific chimeric transcription factor (EWSR1-FLI1) with neomorphic effects that massively rewires the transcriptome. Additionally, EWSR1-FLI1 reprogrammes the epigenome by inducing de novo enhancers at GGAA microsatellites and by altering the state of gene regulatory elements, creating a unique epigenetic signature. Additional mutations at diagnosis are rare and mainly involve STAG2, TP53 and CDKN2A deletions. Emerging studies on the molecular mechanisms of Ewing sarcoma hold promise for improvements in early detection, disease monitoring, lower treatment-related toxicity, overall survival and quality of life.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Eleni M Tomazou
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville/CIBERONC, Seville, Spain
| | - Heinrich Kovar
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Poul H Sorensen
- British Columbia Cancer Research Centre and University of British Columbia, Vancouver, Canada
| | - Olivier Delattre
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Uta Dirksen
- German Cancer Research Center, Heidelberg, Germany.,Cooperative Ewing Sarcoma Study group, Essen University Hospital, Essen, Germany.,German Cancer Consortium, partner site Essen, Essen, Germany
| |
Collapse
|