151
|
Benetatos L, Vartholomatos G. On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver. Ann Hematol 2016; 95:1571-82. [PMID: 26983918 DOI: 10.1007/s00277-016-2636-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
DNA methylation is the most common epigenetic modification in the mammalian genome. DNA methylation is governed by the DNA methyltransferases mainly DNMT1, DNMT3A, and DNMT3B. DNMT1 methylates hemimethylated DNA ensuring accurate DNA methylation maintenance. DNMT1 is involved in the proper differentiation of hematopoietic stem cells (HSCs) through the interaction with effector molecules. DNMT1 is deregulated in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) as early as the leukemic stem cell stage. Through the interaction with fundamental transcription factors, non-coding RNAs, fusion oncogenes and by modulating core members of signaling pathways, it can affect leukemic cells biology. DNMT1 action might be also catalytic-independent highlighting a methylation-independent mode of action. In this review, we have gathered some current facts of DNMT1 role in AML and MDS and we also propose some perspectives for future studies.
Collapse
|
152
|
Novakovic B, Napier CE, Vryer R, Dimitriadis E, Manuelpillai U, Sharkey A, Craig JM, Reddel RR, Saffery R. DNA methylation mediated up-regulation of TERRA non-coding RNA is coincident with elongated telomeres in the human placenta. Mol Hum Reprod 2016; 22:791-799. [PMID: 27604461 DOI: 10.1093/molehr/gaw053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What factors regulate elongated telomere length in the human placenta? SUMMARY ANSWER Hypomethylation of TERRA promoters in the human placenta is associated with high TERRA expression, however, no clear mechanistic link between these phenomena and elongated telomere length in the human placenta was found. WHAT IS KNOWN ALREADY Human placenta tissue and trophoblasts show longer telomere lengths compared to gestational age-matched somatic cells. However, telomerase (hTERT) expression and activity in the placenta is low, suggesting a role for an alternative lengthening of telomeres (ALT). While ALT is observed in 10-15% of human cancers and in some mouse stem cells, ALT has never been reported in non-cancerous human tissues. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term placental tissue and matched cord blood mononuclear cells (CBMCs) were collected as part of the Peri/Postnatal Epigenetic Twins study (PETS). In addition, first trimester placental villi, purified cytotrophoblasts, choriocarcinoma cell lines and a panel of ALT-positive cancer cell lines were tested. Telomere length was determined using the Terminal Restriction Fragment (TRF) assay and a relative quantitative PCR method. DNA methylation levels at several CpG rich subtelomeric TERRA promoters were determined using bisulfite conversion and the SEQUENOM EpiTYPER platform. Expression of TERRA and hTERT was determined using quantitative RT-PCR. ALT was assessed using the C-circle assay (CCA). MAIN RESULTS AND THE ROLE OF CHANCE The human placenta tissue and purified first trimester trophoblasts showed low subtelomeric (TERRA) DNA methylation compared to matched CBMCs and other somatic cells. Interestingly placental TERRA methylation was lower than ALT-cancer cell lines, previously reported to be hypomethylated at these loci. Low TERRA methylation was associated with higher expression of TERRA RNA in placenta compared to matched CBMCs. Detectable levels of C-circles were observed in first trimester placental villi, but not term placenta, suggesting that the ALT mechanism may be active in specific placental cells in early gestation. C-circle analysis of purified first trimester trophoblasts and ALT-associated PML bodies (APB) staining of first trimester villi cross-sections failed to identify this specific cell type population. LIMITATIONS, REASONS FOR CAUTION While first trimester villi showed detectable levels of C-circles, these levels were very low compared with those observed in ALT-positive tumours and cell lines. This is consistent with a small sub-population of ALT-positive cells but this requires further investigation. Finally, no mechanistic link was established between TERRA DNA methylation, the presence of C-circles and longer telomere length. WIDER IMPLICATIONS OF THE FINDINGS Given the previously described role of TERRA ncRNA as a negative regulator of telomerase, the finding of elevated TERRA and long telomeres is counterintutive. ALT as a mechanism for telomere length maintenance has only been reported in certain human cancers, and recently in mouse embryonic stem cells and embryos. As with many aspects of cancer, it appears that ALT activity in tumours may be the inappropriate activation of a pathway found in very specific cell types in human development. Our data are the first supportive evidence for ALT in a non-cancerous human tissue, a result that requires further investigation and replication. The level of TERRA methylation in the human placenta is significantly lower than found in ALT cancer cell lines and somatic cells, raising the possibility of a novel mechanism in maintaining low methylation at subtelomeric regions. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by NHMRC early career fellowship (B.N.), NHMRC Senior Research Fellowship (R.S.) and the Victoria Government Infrastructure Grant. R.R. holds a patent for the C-circle assay. No other conflicts declared.
Collapse
Affiliation(s)
- Boris Novakovic
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia
| | - Christine E Napier
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Regan Vryer
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 305 2
| | - Eva Dimitriadis
- Embryo Implantation Laboratory, Hudson Institute for Medical Research, Monash University, Clayton VIC 3168, Australia
| | - Ursula Manuelpillai
- Pregnancy Research Centre, Department of Perinatal Medicine, Royal Women's Hospital , Parkville, Victoria 3052, Australia.,Centre for Genetic Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Sharkey
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Parkville VIC 305 2.,Early Life Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville VIC 3052, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia .,Department of Paediatrics, University of Melbourne, Parkville VIC 305 2
| |
Collapse
|
153
|
Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Sci Rep 2016; 6:32186. [PMID: 27561200 PMCID: PMC4999948 DOI: 10.1038/srep32186] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
The physiological, biochemical and functional differences between oxidative and glycolytic muscles play important roles in human metabolic health and in animal meat quality. To explore these differences, we determined the genome-wide landscape of DNA methylomes and their relationship with the mRNA and miRNA transcriptomes of the oxidative muscle psoas major (PMM) and the glycolytic muscle longissimus dorsi (LDM). We observed the hypo-methylation of sub-telomeric regions. A high mitochondrial content contributed to fast replicative senescence in PMM. The differentially methylated regions (DMRs) in promoters (478) and gene bodies (5,718) were mainly enriched in GTPase regulator activity and signaling cascade-mediated pathways. Integration analysis revealed that the methylation status within gene promoters (or gene bodies) and miRNA promoters was negatively correlated with mRNA and miRNA expression, respectively. Numerous genes were closely related to distinct phenotypic traits between LDM and PMM. For example, the hyper-methylation and down-regulation of HK-2 and PFKFB4 were related to decrease glycolytic potential in PMM. In addition, promoter hypo-methylation and the up-regulation of miR-378 silenced the expression of the target genes and promoted capillary biosynthesis in PMM. Together, these results improve understanding of muscle metabolism and development from genomic and epigenetic perspectives.
Collapse
|
154
|
Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production. Cytotechnology 2016; 69:451-460. [PMID: 27544513 DOI: 10.1007/s10616-016-0017-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used for therapeutic protein production. When a transgene is integrated into the genome of a CHO cell, the expression level is highly dependent on the site of integration because of positional effects such as gene silencing. To overcome negative positional effects and establish stable CHO cell lines with high productivity, several regulatory DNA elements are used in vector construction. Previously, we established the CHO DR1000L-4N cell line, a stable and high copy number Dhfr gene-amplified cell line. It was hypothesized that the chromosomal location of the exogenous gene-amplified region in the CHO DR1000L-4N genome contains regulatory motifs for stable protein production. Therefore, we isolated DNA regulatory motifs from the CHO DR1000L-4N cell line and determined whether these motifs act as an insulator. Our results suggest that stable expression of a transgene can be promoted by the CHO genome sequence, and it would be a powerful tool for therapeutic protein manufacturing.
Collapse
|
155
|
Kroes RA, Moskal JR. The role of DNA methylation in ST6Gal1 expression in gliomas. Glycobiology 2016; 26:1271-1283. [PMID: 27510958 DOI: 10.1093/glycob/cww058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanism of transcriptional silencing of ST6Gal1 in gliomas has not yet been elucidated. Multiple independent promoters govern the expression of the ST6Gal I gene. Here, we investigated whether epigenetic abnormalities involving DNA methylation affect ST6Gal1 expression. Transcript-specific qRT-PCR following exposure of glioma cell lines to 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, resulted in the re-expression of the normally quiescent ST6Gal1 mRNA driven exclusively by the P3 promoter sequence. The P3 promoter-specific transcription start site (TSS) was delineated by primer extension and core promoter sequences and associated functional transcription elements identified by deletion analysis utilizing chloramphenicol acetyltransferase reporter constructs. Minimal promoter activity was found to reside within the first 100 bp of the TSS and maximal activity was controlled by functional AP2 binding sites residing between 400 and 500 bp upstream of the initiation site. As altered AP2 binding was not directly associated with AP2 availability, these analyses demonstrate that ST6Gal1 transcription is regulated by DNA methylation within core promoter regions, ultimately by determining critical transcription factor accessibility within these regions. Transcriptional reactivation of ST6Gal1 expression by 5-aza-dC resulted in increased cell surface α2,6 sialoglycoconjugate expression, increased α2,6 sialylation of β1 integrin, and decreased adhesion to fibronectin substrate: functional correlates of decreased invasivity. The effects of global hypomethylation are not glycome-wide. Focused glycotranscriptomic analyses of three invasive glioma cell lines following 5-aza-dC treatment demonstrated the modulation of select glycogene transcripts. Taken together, these results demonstrate that epigenetic modulation of ST6Gal1 expression plays a key role in the glioma phenotype in vitro and that that therapeutic approaches targeting elements of the epigenetic machinery for the treatment of human glioblastoma are warranted.
Collapse
Affiliation(s)
- Roger A Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
156
|
Choudhury SR, Cui Y, Narayanan A, Gilley DP, Huda N, Lo CL, Zhou FC, Yernool D, Irudayaraj J. Optogenetic regulation of site-specific subtelomeric DNA methylation. Oncotarget 2016; 7:50380-50391. [PMID: 27391261 PMCID: PMC5226589 DOI: 10.18632/oncotarget.10394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/18/2016] [Indexed: 01/24/2023] Open
Abstract
Telomere length homeostasis, critical for chromosomal integrity and genome stability, is controlled by intricate molecular regulatory machinery that includes epigenetic modifications. Here, we examine site-specific and spatiotemporal alteration of the subtelomeric methylation of CpG islands using optogenetic tools to understand the epigenetic regulatory mechanisms of telomere length maintenance. Human DNA methyltransferase3A (DNMT3A) were assembled selectively at chromosome ends by fusion to cryptochrome 2 protein (CRY2) and its interacting complement, the basic helix loop helix protein-1 (CIB1). CIB1 was fused to the telomere-associated protein telomere repeat binding factor-1 (TRF1), which localized the protein complex DNMT3A-CRY2 at telomeric regions upon excitation by blue-light monitored by single-molecule fluorescence analyses. Increased methylation was achieved selectively at subtelomeric CpG sites on the six examined chromosome ends specifically after blue-light activation, which resulted in progressive increase in telomere length over three generations of HeLa cell replications. The modular design of the fusion constructs presented here allows for the selective substitution of other chromatin modifying enzymes and for loci-specific targeting to regulate the epigenetic pathways at telomeres and other selected genomic regions of interest.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Department of Agricultural & Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Cui
- Department of Agricultural & Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Anoop Narayanan
- Bindley Laboratory of Structural Biology, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - David P. Gilley
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nazmul Huda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chiao-Ling Lo
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Institute of Neuroscience Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dinesh Yernool
- Bindley Laboratory of Structural Biology, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Department of Agricultural & Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
157
|
Vega-Vaquero A, Bonora G, Morselli M, Vaquero-Sedas MI, Rubbi L, Pellegrini M, Vega-Palas MA. Novel features of telomere biology revealed by the absence of telomeric DNA methylation. Genome Res 2016; 26:1047-56. [PMID: 27405804 PMCID: PMC4971770 DOI: 10.1101/gr.202465.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
Cytosine methylation regulates the length and stability of telomeres, which can affect a wide variety of biological features, including cell differentiation, development, or illness. Although it is well established that subtelomeric regions are methylated, the presence of methylated cytosines at telomeres has remained controversial. Here, we have analyzed multiple bisulfite sequencing studies to address the methylation status of Arabidopsis thaliana telomeres. We found that the levels of estimated telomeric DNA methylation varied among studies. Interestingly, we estimated higher levels of telomeric DNA methylation in studies that produced C-rich telomeric strands with lower efficiency. However, these high methylation estimates arose due to experimental limitations of the bisulfite technique. We found a similar phenomenon for mitochondrial DNA: The levels of mitochondrial DNA methylation detected were higher in experiments with lower mitochondrial read production efficiencies. Based on experiments with high telomeric C-rich strand production efficiencies, we concluded that Arabidopsis telomeres are not methylated, which was confirmed by methylation-dependent restriction enzyme analyses. Thus, our studies indicate that telomeres are refractory to de novo DNA methylation by the RNA-directed DNA methylation machinery. This result, together with previously reported data, reveals that subtelomeric DNA methylation controls the homeostasis of telomere length.
Collapse
Affiliation(s)
- Alejandro Vega-Vaquero
- Technical Superior School of Informatics Engineering, University of Seville, 41080 Seville, Spain
| | - Giancarlo Bonora
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - María I Vaquero-Sedas
- Institute of Vegetal Biochemistry and Photosynthesis, CSIC-University of Seville, IBVF (CSIC-US), 41092 Seville, Spain
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Miguel A Vega-Palas
- Institute of Vegetal Biochemistry and Photosynthesis, CSIC-University of Seville, IBVF (CSIC-US), 41092 Seville, Spain
| |
Collapse
|
158
|
One-carbon metabolites and telomere length in a prospective and randomized study of B- and/or D-vitamin supplementation. Eur J Nutr 2016; 56:1887-1898. [PMID: 27379829 DOI: 10.1007/s00394-016-1231-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Vitamin B deficiency is common in elderly people and has been associated with an increased risk of developing age-related diseases. B-vitamins are essential for the synthesis and stability of DNA. Telomers are the end caps of chromosomes that shorten progressively with age, and short telomers are associated with DNA instability. OBJECTIVE In the present randomized intervention study, we investigated whether the one-carbon metabolism is related to telomere length, a surrogate marker for cellular aging. DESIGN Sixty-five subjects (>54 years) were randomly assigned to receive either a daily combination of vitamin D3 (1200 IU), folic acid (0.5 mg), vitamin B12 (0.5 mg), vitamin B6 (50 mg) and calcium carbonate (456 mg) (group A) or vitamin D3 and calcium carbonate alone (group B). Blood testing was performed at baseline and after 1 year of supplementation. The concentrations of several metabolites of the one-carbon pathway, as well as relative telomere length (RTL) and 5,10-methylenetetrahydrofolate reductase C677T genotype, were analyzed. RESULTS At baseline, age- and gender-adjusted RTL correlated with total folate and 5-methyltetrahydrofolate (5-methylTHF). Subjects with RTL above the median had higher concentrations of total folate and 5-methylTHF compared to subjects below the median. At study end, gender- and age-adjusted RTL correlated in group A with methylmalonic acid (MMA; r = -0.460, p = 0.0012) and choline (r = 0.434, p = 0.0021) and in group B with 5,10-methenyltetrahydrofolate (r = 0.455, p = 0.026) and dimethylglycine (DMG; r = -0.386, p = 0.047). Subjects in the group A with RTL above the median had lower MMA and higher choline compared to subjects below the median. CONCLUSIONS The present pilot study suggests a functional relationship between one-carbon metabolism and telomere length. This conclusion is supported by several correlations that were modified by B-vitamin supplementation. In agreement with our hypothesis, the availability of nucleotides and methylation groups seems to impact telomere length. Due to the small sample size and the limitations of the study, further studies should confirm the present results in a larger cohort.
Collapse
|
159
|
Tan R, Lan L. Guarding chromosomes from oxidative DNA damage to the very end. Acta Biochim Biophys Sin (Shanghai) 2016; 48:617-622. [PMID: 27174872 PMCID: PMC4930116 DOI: 10.1093/abbs/gmw040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/05/2016] [Indexed: 11/12/2022] Open
Abstract
The ends of each chromosome are capped by the telomere assembly to protect chromosomal integrity from telomere attrition and DNA damage. In response to DNA damage, DNA repair factors are enriched at damage sites by a sophisticated signaling and recruitment cascade. However, DNA damage response at telomeres is different from non-telomeric region of genomic DNA due to specialized sequences and structures of the telomeres. In the course of normal DNA replication or DNA damage repair, both the telomere shelterin protein complex and the condensed telomeric chromatin structure in mammalian cells are modified to protect telomeres from exposing free DNA ends which are subject to both telemere shortening and chromosome end fusion. Initiation of either homologous recombination or non-homologous end joint repair at telomeres requires disassembling and/or post-translational modifications of the shelterin complex and telomeric chromatin. In addition, cancer cells utilize distinct mechanisms to maintain telomere length and cell survival upon damage. In this review, we summarize current studies that focus on telomere end protection and telomere DNA repair using different methodologies to model telomere DNA damage and disruption. These include genetic ablation of sheltering proteins, targeting endonuclease to telomeres, and delivering oxidative damage directly. These different approaches, when combined, offer better understanding of the mechanistic differences in DNA damage response between telomeric and genomic DNA, which will provide new hope to identify potential cancer therapeutic targets to curtail cancer cell proliferation via induction of telomere dysfunctions.
Collapse
Affiliation(s)
- Rong Tan
- Xiangya Hospital, Central South University, Changsha 410008, China University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
160
|
He Q, Kim H, Huang R, Lu W, Tang M, Shi F, Yang D, Zhang X, Huang J, Liu D, Songyang Z. The Daxx/Atrx Complex Protects Tandem Repetitive Elements during DNA Hypomethylation by Promoting H3K9 Trimethylation. Cell Stem Cell 2016; 17:273-86. [PMID: 26340527 DOI: 10.1016/j.stem.2015.07.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/14/2015] [Accepted: 07/28/2015] [Indexed: 01/02/2023]
Abstract
In mammals, DNA methylation is essential for protecting repetitive sequences from aberrant transcription and recombination. In some developmental contexts (e.g., preimplantation embryos) DNA is hypomethylated but repetitive elements are not dysregulated, suggesting that alternative protection mechanisms exist. Here we explore the processes involved by investigating the role of the chromatin factors Daxx and Atrx. Using genome-wide binding and transcriptome analysis, we found that Daxx and Atrx have distinct chromatin-binding profiles and are co-enriched at tandem repetitive elements in wild-type mouse ESCs. Global DNA hypomethylation further promoted recruitment of the Daxx/Atrx complex to tandem repeat sequences, including retrotransposons and telomeres. Knockdown of Daxx/Atrx in cells with hypomethylated genomes exacerbated aberrant transcriptional de-repression of repeat elements and telomere dysfunction. Mechanistically, Daxx/Atrx-mediated repression seems to involve Suv39h recruitment and H3K9 trimethylation. Our data therefore suggest that Daxx and Atrx safeguard the genome by silencing repetitive elements when DNA methylation levels are low.
Collapse
Affiliation(s)
- Quanyuan He
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rui Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengfan Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fengtao Shi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dong Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
161
|
Lee WK, Cho MH. Telomere-binding protein regulates the chromosome ends through the interaction with histone deacetylases in Arabidopsis thaliana. Nucleic Acids Res 2016; 44:4610-24. [PMID: 26857545 PMCID: PMC4889915 DOI: 10.1093/nar/gkw067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 01/13/2023] Open
Abstract
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes. Many telomere-binding proteins bind to telomeric repeat sequences and further generate T-loops in animals. However, it is not clear if they regulate telomere organization using epigenetic mechanisms and how the epigenetic molecules are involved in regulating the telomeres. Here, we show direct interactions between the telomere-binding protein, AtTRB2 and histone deacetylases, HDT4 and HDA6, in vitro and in vivo AtTRB2 mediates the associations of HDT4 and HDA6 with telomeric repeats. Telomere elongation is found in AtTRB2, HDT4 and HDA6 mutants over generations, but also in met1 and cmt3 DNA methyltransferases mutants. We also characterized HDT4 as an Arabidopsis H3K27 histone deacetylase. HDT4 binds to acetylated peptides at residue K27 of histone H3 in vitro, and deacetylates this residue in vivo Our results suggest that AtTRB2 also has a role in the regulation of telomeric chromatin as a possible scaffold protein for recruiting the epigenetic regulators in Arabidopsis, in addition to its telomere binding and length regulation activity. Our data provide evidences that epigenetic molecules associate with telomeres by direct physical interaction with telomere-binding proteins and further regulate homeostasis of telomeres in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Won Kyung Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeon Haeng Cho
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
162
|
Varela E, Muñoz-Lorente MA, Tejera AM, Ortega S, Blasco MA. Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat Commun 2016; 7:11739. [PMID: 27252083 PMCID: PMC4895768 DOI: 10.1038/ncomms11739] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Although telomere length is genetically determined, mouse embryonic stem (ES) cells with telomeres of twice the normal size have been generated. Here, we use such ES cells with ‘hyper-long' telomeres, which also express green fluorescent protein (GFP), to generate chimaeric mice containing cells with both hyper-long and normal telomeres. We show that chimaeric mice contain GFP-positive cells in all mouse tissues, display normal tissue histology and normal survival. Both hyper-long and normal telomeres shorten with age, but GFP-positive cells retain longer telomeres as mice age. Chimaeric mice with hyper-long telomeres also accumulate fewer cells with short telomeres and less DNA damage with age, and express lower levels of p53. In highly renewing compartments, such as the blood, cells with hyper-long telomeres are longitudinally maintained or enriched with age. We further show that wound-healing rates in the skin are increased in chimaeric mice. Our work demonstrates that mice with functional, longer and better preserved telomeres can be generated without the need for genetic manipulations, such as TERT overexpression. Telomere shortening has been linked to some aspects of organismal ageing. Here the authors create chimaeric mice that contain a mix of cells with normal or unnaturally long telomeres, and show chimaeric mice are protected from some forms of ageing-associated cellular damage and have accelerated wound-healing.
Collapse
Affiliation(s)
- Elisa Varela
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Miguel A Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Agueda M Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Sagrario Ortega
- Transgenics Mice Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| |
Collapse
|
163
|
Udomsinprasert W, Kitkumthorn N, Mutirangura A, Chongsrisawat V, Poovorawan Y, Honsawek S. Global methylation, oxidative stress, and relative telomere length in biliary atresia patients. Sci Rep 2016; 6:26969. [PMID: 27243754 PMCID: PMC4886632 DOI: 10.1038/srep26969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022] Open
Abstract
Alu and LINE-1 elements are retrotransposons with a ubiquitous presence in the human genome that can cause genomic instability, specifically relating to telomere length. Genotoxic agents may induce methylation of retrotransposons, in addition to oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Methylation of retrotransposons induced by these agents may contribute to biliary atresia (BA) etiology. Here, we investigated correlations between global methylation, 8-OHdG, and relative telomere length, as well as reporting on Alu and LINE-1 hypomethylation in BA patients. Alu and LINE-1 hypomethylation were found to be associated with elevated risk of BA (OR = 4.07; 95% CI: 2.27-7.32; P < 0.0001 and OR = 3.51; 95% CI: 1.87-6.59; P < 0.0001, respectively). Furthermore, LINE-1 methylation was associated with liver stiffness in BA patients (β coefficient = -0.17; 95% CI: -0.24 to -0.10; P < 0.0001). Stratified analysis revealed negative correlations between Alu and LINE-1 methylation and 8-OHdG in BA patients (P < 0.0001). In contrast, positive relationships were identified between Alu and LINE-1 methylation and relative telomere length in BA patients (P < 0.0001). These findings suggest that retrotransposon hypomethylation is associated with plasma 8-OHdG and telomere length in BA patients.
Collapse
Affiliation(s)
- Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral and Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Voranush Chongsrisawat
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
164
|
Yang J, Guo R, Wang H, Ye X, Zhou Z, Dan J, Wang H, Gong P, Deng W, Yin Y, Mao S, Wang L, Ding J, Li J, Keefe DL, Dawlaty MM, Wang J, Xu G, Liu L. Tet Enzymes Regulate Telomere Maintenance and Chromosomal Stability of Mouse ESCs. Cell Rep 2016; 15:1809-21. [PMID: 27184841 DOI: 10.1016/j.celrep.2016.04.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/24/2016] [Accepted: 04/14/2016] [Indexed: 02/05/2023] Open
Abstract
Ten-eleven translocation (Tet) family proteins convert 5-methylcytosine to 5-hydroxymethylcytosine. We show that mouse embryonic stem cells (ESCs) depleted of Tet1 and/or Tet2 by RNAi exhibit short telomeres and chromosomal instability, concomitant with reduced telomere recombination. Tet1 and Tet2 double-knockout ESCs also display short telomeres but to a lesser extent. Notably, Tet1/2/3 triple-knockout ESCs show heterogeneous telomere lengths and increased frequency of telomere loss and chromosomal fusion. Mechanistically, Tets depletion or deficiency increases Dnmt3b and decreases 5hmC levels, resulting in elevated methylation levels at sub-telomeres. Consistently, knockdown of Dnmt3b or addition of 2i (MAPK and GSK3β inhibitors), which also inhibits Dnmt3b, reduces telomere shortening, partially rescuing Tet1/2 deficiency. Interestingly, Tet1/2 double or Tet1/2/3 triple knockout in ESCs consistently upregulates Zscan4, which may counteract telomere shortening. Together, Tet enzymes play important roles in telomere maintenance and chromosomal stability of ESCs by modulating sub-telomeric methylation levels.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Jiameng Dan
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Wei Deng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - Yu Yin
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China
| | - ShiQing Mao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingbo Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Meelad M Dawlaty
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - GuoLiang Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu 610041, China.
| |
Collapse
|
165
|
Gonzalo S, Eissenberg JC. Tying up loose ends: telomeres, genomic instability and lamins. Curr Opin Genet Dev 2016; 37:109-118. [PMID: 27010504 DOI: 10.1016/j.gde.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 01/04/2023]
Abstract
On casual inspection, the eukaryotic nucleus is a deceptively simple organelle. Far from being a bag of chromatin, the nucleus is, in some ways, a structural and functional extension of the chromosomes it contains. Recently, interest has intensified in how chromosome compartmentalization and dynamics affect nuclear function. Different studies uncovered functional interactions between chromosomes and the filamentous nuclear meshwork comprised of lamin proteins. Here, we summarize recent research suggesting that telomeres, the capping structures that protect chromosome ends, are stabilized by lamin-binding and that alterations in nuclear lamins lead to defects in telomere compartmentalization, homeostasis and function. Telomere dysfunction contributes to the genomic instability that characterizes aging-related diseases, and might be an important factor in the pathophysiology of lamin-related diseases.
Collapse
Affiliation(s)
- Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, 1100 South Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
166
|
Poojary SS, Mishra G, Gupta S, Shrivastav BR, Tiwari PK. Dysfunction of subtelomeric methylation and telomere length in gallstone disease and gallbladder cancer patients of North Central India. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 23:276-82. [PMID: 26856965 DOI: 10.1002/jhbp.332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Telomeres play an important role in cancer progression. Recently it has been shown that subtelomeric methylation negatively regulates telomere length in various diseases, including cancers. Here, we evaluated the influence of subtelomeric methylation in telomere dysfunction in gallbladder cancer (GBC), and whether this dysfunction is affected by the presence of gallstones. METHODS Relative telomere length and subtelomeric methylation levels were assessed using monochrome multiplex quantitative polymerase chain reaction and bisulfite sequencing, respectively, in different gallbladder tissue types including different grades of GBC, gallstones and adjacent non-tumor. RESULTS We found telomere length to shorten significantly in overall GBC, but specifically in early grade cancer. We also found D4Z4 and DNF92 subtelomeric sequences to be hypermethylated and hypomethylated, respectively, in GBC; however, their methylation levels differed significantly, only in early grade cancer. We could not find any specific correlation between subtelomeric methylation and telomere length in GBC. Interestingly, telomere length and subtelomeric methylation differed significantly in GBC without gallstones but not in GBC with gallstones. CONCLUSIONS This study, thus, suggests that telomere dysfunction and changes in methylation levels may occur earlier in the progression of GBC, while the presence of gallstones may have no influence on telomere length as well as on methylation levels.
Collapse
Affiliation(s)
- Satish S Poojary
- Department of Molecular and Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Gunja Mishra
- Department of Molecular and Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sanjiv Gupta
- Department of Pathology, Cancer Hospital and Research Institute, Gwalior, Madhya Pradesh, India
| | - Braj Raj Shrivastav
- Department of Oncology, Cancer Hospital and Research Institute, Gwalior, Madhya Pradesh, India
| | - Pramod Kumar Tiwari
- Department of Molecular and Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
167
|
Zhang X, Li B, de Jonge N, Björkholm M, Xu D. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression. Oncotarget 2016; 6:4888-900. [PMID: 25682873 PMCID: PMC4467122 DOI: 10.18632/oncotarget.2917] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/14/2014] [Indexed: 01/27/2023] Open
Abstract
DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Bingnan Li
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Nick de Jonge
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Magnus Björkholm
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Dawei Xu
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
168
|
Hehar H, Mychasiuk R. The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats following a concussion/mild traumatic brain injury. Neurobiol Dis 2016; 87:11-8. [DOI: 10.1016/j.nbd.2015.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
|
169
|
Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training. Sports Med 2016; 46:1213-37. [DOI: 10.1007/s40279-016-0482-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
170
|
Xu B, Devi G, Shao F. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org Biomol Chem 2016; 13:5646-51. [PMID: 25886653 DOI: 10.1039/c4ob02646b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The two important epigenetic markers in the human genome, 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC), are involved in gene regulation processes. As a major epigenetic target, cytosines in a C-rich DNA sequence were substituted with mC and hmC to investigate the thermal stability and pH sensitivity of the corresponding i-motifs. Circular Dichroism (CD) studies indicate the formation of i-motifs at acidic pH (<6.5) for mC- and hmC-modified DNA sequences. Thermal denaturation results suggest that DNA i-motifs are stabilized when modified with one or two mCs. However, hypermethylation with mC and single modification with hmC cause destabilization of the structure. A biomimetic crowding agent does not alter the stability effect trends resulting from mC and hmC modifications, though the corresponding i-motifs show elevated melting temperatures without significant changes in pKa values.
Collapse
Affiliation(s)
- Baochang Xu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | | | | |
Collapse
|
171
|
Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets 2016; 20:689-703. [PMID: 26667209 DOI: 10.1517/14728222.2016.1132702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling the transcriptional activities of several genes. A growing number of epigenetic changes have been reported in the regulation of key genes involved in cancer and aging. Drugs with epigenetic modulatory activities, mainly histone deacetylase and DNA methyltransferase inhibitors, have received wider attention in aging and cancer research. AREAS COVERED In this review, we summarize the major epigenetic alterations in cancer and aging, with special emphasis on possible therapeutic targets and interventions by dietary as well as bioactive phytochemicals. EXPERT OPINION Some epigenetic-targeting drugs have received FDA approval and many others are undergoing different phases of clinical trials for cancer therapy. In addition to the synthetic compounds, several bioactive phytochemicals and dietary interventions, such as caloric restriction, have been shown to possess epigenetic modulatory activities in multiple cancers. These epigenetic modulators have been shown to delay aging and minimize the risk of cancer both in preclinical as well as clinical models. Therefore, knowledge of bioactive phytochemicals along with dietary interventions can be utilized for cancer prevention and therapy both alone and with existing drugs to achieve optimum efficacy.
Collapse
Affiliation(s)
- Sajid Khan
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Samriddhi Shukla
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Sonam Sinha
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Syed Musthapa Meeran
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
172
|
Uziel O, Yerushalmi R, Zuriano L, Naser S, Beery E, Nordenberg J, Lubin I, Adel Y, Shepshelovich D, Yavin H, Aharon IB, Pery S, Rizel S, Pasmanik-Chor M, Frumkin D, Lahav M. BRCA1/2 mutations perturb telomere biology: characterization of structural and functional abnormalities in vitro and in vivo. Oncotarget 2016; 7:2433-54. [PMID: 26515461 PMCID: PMC4823046 DOI: 10.18632/oncotarget.5693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/06/2015] [Indexed: 01/12/2023] Open
Abstract
BRCA1 mutation is associated with carcinogenesis, especially of breast tissue. Telomere maintenance is crucial for malignant transformation. Being a part of the DNA repair machinery, BRCA1 may be implicated in telomere biology. We explored the role of BRCA1 in telomere maintenance in lymphocytes of BRCA1/2 mutation carriers and in in vitro system by knocking down its expression in non-malignant breast epithelial cells.The results in both systems were similar. BRCA1/2 mutation caused perturbation of telomere homeostasis, shortening of the single stranded telomere overhang and increased the intercellular telomere length variability as well as the number of telomere free chromosomal ends and telomeric circles. These changes resulted in an increased DNA damage status. Telomerase activity, inducibility and expression remained unchanged. BRCA1 mutation resulted also in changes in the binding of shelterin proteins to telomeres. DNMT-1 levels were markedly reduced both in the carriers and in in vitro system. The methylation pattern of the sub-telomeric regions in carriers suggested hypomethylation in chromosome 10. The expression of a distinct set of genes was also changed, some of which may relate to pre-disposition to malignancy.These results show that BRCA gene products have a role in telomere length homeostasis. It is plausible that these perturbations contribute to malignant transformation in BRCA mutants.
Collapse
Affiliation(s)
- Orit Uziel
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rinat Yerushalmi
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Davidoff Cancer Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Lital Zuriano
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Shaden Naser
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Jardena Nordenberg
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ido Lubin
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yonatan Adel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Internal Medicine A, Beilinson Medical Center, Petah Tikva, Israel
| | - Daniel Shepshelovich
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Internal Medicine A, Beilinson Medical Center, Petah Tikva, Israel
| | - Hagai Yavin
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Internal Medicine A, Beilinson Medical Center, Petah Tikva, Israel
| | - Irit Ben Aharon
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Davidoff Cancer Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomit Pery
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Davidoff Cancer Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Shulamit Rizel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Davidoff Cancer Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Meir Lahav
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Beilinson Medical Center, Petah Tikva, Israel
| |
Collapse
|
173
|
|
174
|
Domaschenz R, Livernois AM, Rao S, Ezaz T, Deakin JE. Immunofluorescent staining reveals hypermethylation of microchromosomes in the central bearded dragon, Pogona vitticeps. Mol Cytogenet 2015; 8:104. [PMID: 26719769 PMCID: PMC4696178 DOI: 10.1186/s13039-015-0208-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Studies of model organisms have demonstrated that DNA cytosine methylation and histone modifications are key regulators of gene expression in biological processes. Comparatively little is known about the presence and distribution of epigenetic marks in non-model amniotes such as non-avian reptiles whose genomes are typically packaged into chromosomes of distinct size classes. Studies of chicken karyotypes have associated the gene-richness and high GC content of microchromosomes with a distinct epigenetic landscape. To determine whether this is likely to be a common feature of amniote microchromosomes, we have analysed the distribution of epigenetic marks using immunofluorescence on metaphase chromosomes of the central bearded dragon (Pogona vitticeps). This study is the first to study the distribution of epigenetic marks on non-avian reptile chromosomes. Results We observed an enrichment of DNA cytosine methylation, active modifications H3K4me2 and H3K4me3, as well as the repressive mark H3K27me3 in telomeric regions on macro and microchromosomes. Microchromosomes were hypermethylated compared to macrochromosomes, as they are in chicken. However, differences between macro- and microchromosomes for histone modifications associated with actively transcribed or repressed DNA were either less distinct or not detectable. Conclusions Hypermethylation of microchromosomes compared to macrochromosomes is a shared feature between P. vitticeps and avian species. The lack of the clear distinction between macro- and microchromosome staining patterns for active and repressive histone modifications makes it difficult to determine at this stage whether microchrosome hypermethylation is correlated with greater gene density as it is in aves, or associated with the greater GC content of P. vitticeps microchromosomes compared to macrochromosomes.
Collapse
Affiliation(s)
- Renae Domaschenz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia.,Present address: John Curtin School of Medical Research, The Australian National University, Canberra, ACT Australia
| | | | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT 2601 Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| |
Collapse
|
175
|
Effect on Multipotency and Phenotypic Transition of Unrestricted Somatic Stem Cells from Human Umbilical Cord Blood after Treatment with Epigenetic Agents. Stem Cells Int 2015; 2016:7643218. [PMID: 26788071 PMCID: PMC4691642 DOI: 10.1155/2016/7643218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/19/2022] Open
Abstract
The epigenetic mechanism of DNA methylation is of central importance for cellular differentiation processes. Unrestricted somatic stem cells (USSCs) from human umbilical cord blood, which have a broad differentiation spectrum, reside in an uncommitted epigenetic state with partial methylation of the regulatory region of the gene coding for the pluripotency master regulator OCT4. Thus we hypothesized that further opening of this “poised” epigenetic state could broaden the differentiation potential of USSCs. Here we document that USSCs drastically change their phenotype after treatment by a new elaborated cultivation protocol which utilizes the DNA hypomethylating compound 5′-aza-2-deoxycytidine (5-Aza-CdR) and the histone deacetylase inhibitor trichostatin A (TSA). This treatment leads to a new stable, spheroid-forming cell type which we have named SpheUSSC. These cells can be stably propagated over at least 150 cell divisions, express OCT4, retain the potential to undergo osteogenic differentiation, and have additionally acquired the ability to uniformly differentiate into adipocytes, unlike the source USSC population. Here we describe our treatment protocol and provide evidence that it induces a dedifferentiation step and concomitantly the acquisition of an extended differentiation capability of the new SpheUSSC type.
Collapse
|
176
|
Melicher D, Buzas EI, Falus A. Genetic and epigenetic trends in telomere research: a novel way in immunoepigenetics. Cell Mol Life Sci 2015; 72:4095-109. [PMID: 26190020 PMCID: PMC11113282 DOI: 10.1007/s00018-015-1991-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 01/09/2023]
Abstract
Telomeres are protective heterochromatic structures that cap the end of linear chromosomes and play a key role in preserving genomic stability. Telomere length represents a balance between processes that shorten telomeres during cell divisions with incomplete DNA replication and the ones that lengthen telomeres by the action of telomerase, an RNA-protein complex with reverse transcriptase activity which adds telomeric repeats to DNA molecule ends. Telomerase activity and telomere length have a crucial role in cellular ageing and in the pathobiology of several human diseases attracting intense research. The last few decades have witnessed remarkable advances in our understanding about telomeres, telomere-associated proteins, and the biogenesis and regulation of the telomerase holoenzyme complex, as well as about telomerase activation and the telomere-independent functions of telomerase. Emerging data have revealed that telomere length can be modified by genetic and epigenetic factors, sex hormones, reactive oxygen species and inflammatory reactions. It has become clear that, in order to find out more about the factors influencing the rate of telomere attrition in vivo, it is crucial to explore both genetic and epigenetic mechanisms. Since the telomere/telomerase assembly is under the control of multiple epigenetic influences, the unique design of twin studies could help disentangle genetic and environmental factors in the functioning of the telomere/telomerase system. It is surprising that the literature on twin studies investigating this topic is rather scarce. This review aims to provide an overview of some important immune response- and epigenetics-related aspects of the telomere/telomerase system demanding more research, while presenting the available twin data published in connection with telomere research so far. By emphasising what we know and what we still do not know in these areas, another purpose of this review is to urge more twin studies in telomere research.
Collapse
Affiliation(s)
- Dora Melicher
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzas
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
177
|
DNA methylation Landscape of body size variation in sheep. Sci Rep 2015; 5:13950. [PMID: 26472088 PMCID: PMC4607979 DOI: 10.1038/srep13950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022] Open
Abstract
Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation – sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the “development process” (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective.
Collapse
|
178
|
Choudhury SR, Cui Y, Milton JR, Li J, Irudayaraj J. Selective increase in subtelomeric DNA methylation: an epigenetic biomarker for malignant glioma. Clin Epigenetics 2015; 7:107. [PMID: 26451167 PMCID: PMC4597615 DOI: 10.1186/s13148-015-0140-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Background Subtelomeric regions dynamically change their epigenetic pattern during development and progression of several malignancies and degenerative disorders. However, DNA methylation of human subtelomeres and their correlation to telomere length (TL) remain undetermined in glioma. Results Herein, we report on the selective changes in subtelomeric DNA methylation at the end of five chromosomes (Chr.) (7q, 8q. 18p, 21q, and XpYp) and ascertain their correlation with TL in patients with glioma. Subtelomeric methylation level was invariably higher in glioma patients compared to the control group, irrespective of their age and tumor grade. In particular, a significant increase in methylation was observed at the subtelomeric CpG sites of Chr. 8q, 21q, and XpYp in tissues, obtained from the brain tumor of glioma patients. In contrast, no significant change in methylation was observed at the subtelomere of Chr. 7q and 18p. Selective changes in the subtelomeric methylation level, however, did not show any significant correlation to the global TL. This observed phenomenon was validated in vitro by inducing demethylation in a glioblastoma cell line (SF-767) using 5-azacytidine (AZA) treatment. AZA treatment caused significant changes in the subtelomeric methylation pattern but did not alter the TL, which supports our hypothesis. Conclusions DNA methylation level dramatically increased at the subtelomere of Chr.8q, 21q, and XpYp in malignant glioma, which could be used as an early epigenetic diagnostic biomarker of the disease. Alterations in subtelomeric methylation, however, have no effects on the TL. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0140-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| | - Yi Cui
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| | - Jacob R Milton
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906 USA
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Joseph Irudayaraj
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| |
Collapse
|
179
|
Jacome A, Gutierrez-Martinez P, Schiavoni F, Tenaglia E, Martinez P, Rodríguez-Acebes S, Lecona E, Murga M, Méndez J, Blasco MA, Fernandez-Capetillo O. NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. EMBO J 2015; 34:2604-19. [PMID: 26443207 DOI: 10.15252/embj.201591829] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/01/2015] [Indexed: 01/16/2023] Open
Abstract
The SMC5/6 complex is the least understood of SMC complexes. In yeast, smc5/6 mutants phenocopy mutations in sgs1, the BLM ortholog that is deficient in Bloom's syndrome (BS). We here show that NSMCE2 (Mms21, in Saccharomyces cerevisiae), an essential SUMO ligase of the SMC5/6 complex, suppresses cancer and aging in mice. Surprisingly, a mutation that compromises NSMCE2-dependent SUMOylation does not have a detectable impact on murine lifespan. In contrast, NSMCE2 deletion in adult mice leads to pathologies resembling those found in patients of BS. Moreover, and whereas NSMCE2 deletion does not have a detectable impact on DNA replication, NSMCE2-deficient cells also present the cellular hallmarks of BS such as increased recombination rates and an accumulation of micronuclei. Despite the similarities, NSMCE2 and BLM foci do not colocalize and concomitant deletion of Blm and Nsmce2 in B lymphocytes further increases recombination rates and is synthetic lethal due to severe chromosome mis-segregation. Our work reveals that SUMO- and BLM-independent activities of NSMCE2 limit recombination and facilitate segregation; functions of the SMC5/6 complex that are necessary to prevent cancer and aging in mice.
Collapse
Affiliation(s)
- Ariana Jacome
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Federica Schiavoni
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Enrico Tenaglia
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
180
|
Global DNA Methylation patterns on marsupial and devil facial tumour chromosomes. Mol Cytogenet 2015; 8:74. [PMID: 26435750 PMCID: PMC4591559 DOI: 10.1186/s13039-015-0176-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/19/2015] [Indexed: 12/19/2022] Open
Abstract
Background Despite DNA methylation being one of the most widely studied epigenetic modifications in eukaryotes, only a few studies have examined the global methylation status of marsupial chromosomes. The emergence of devil facial tumour disease (DFTD), a clonally transmissible cancer spreading through the Tasmanian devil population, makes it a particularly pertinent time to determine the methylation status of marsupial and devil facial tumour chromosomes. DNA methylation perturbations are known to play a role in genome instability in human tumours. One of the interesting features of the devil facial tumour is its remarkable karyotypic stability over time as only four strains with minor karyotypic differences having been reported. The cytogenetic monitoring of devil facial tumour (DFT) samples collected over an eight year period and detailed molecular cytogenetic analysis performed on the different DFT strains enables chromosome rearrangements to be correlated with methylation status as the tumour evolves. Results We used immunofluorescent staining with an antibody to 5-methylcytosine on metaphase chromosomes prepared from fibroblast cells of three distantly related marsupials, including the Tasmanian devil, as well as DFTD chromosomes prepared from samples collected from different years and representing different karyotypic strains. Staining of chromosomes from male and female marsupial cell lines indicate species-specific differences in global methylation patterns but with the most intense staining regions corresponding to telomeric and/or centromeric regions of autosomes. In males, the X chromosome was hypermethylated as was one X in females. Similarly, telomeric regions on DFTD chromosomes and regions corresponding to material from one of the two X chromosomes were hypermethylated. No difference in global methylation in samples of the same strain taken in different years was observed. Conclusions The methylation patterns on DFTD chromosomes suggests that the hypermethylated active X was shattered in the formation of the tumour chromosomes, with atypical areas of methylation on DFTD chromosomes corresponding to locations of X chromosome material from the shattered X. The incredibly stable broad methylation patterns observed between strains and over time may reflect the overall genomic stability of the devil facial tumour. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0176-x) contains supplementary material, which is available to authorized users.
Collapse
|
181
|
Zhang YY, Yao DM, Zhu XW, Zhou JD, Ma JC, Yang J, Wen XM, Guo H, Lin J, Qian J. DNMT3A intragenic hypomethylation is associated with adverse prognosis in acute myeloid leukemia. Leuk Res 2015; 39:1041-7. [DOI: 10.1016/j.leukres.2015.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
|
182
|
Dan J, Yang J, Liu Y, Xiao A, Liu L. Roles for Histone Acetylation in Regulation of Telomere Elongation and Two-cell State in Mouse ES Cells. J Cell Physiol 2015; 230:2337-44. [PMID: 25752831 DOI: 10.1002/jcp.24980] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/02/2015] [Indexed: 01/18/2023]
Abstract
Mammalian telomeres and subtelomeres are marked by heterochromatic epigenetic modifications, including repressive DNA methylation and histone methylation (e.g., H3K9me3 and H4K20me3). Loss of these epigenetic marks results in increased rates of telomere recombination and elongation. Other than these repressive epigenetic marks, telomeric and subtelomeric H3 and H4 are underacetylated. Yet, whether histone acetylation also regulates telomere length has not been directly addressed. We thought to test the effects of histone acetylation levels on telomere length using histone deacetylase (HDAC) inhibitor (sodium butyrate, NaB) that mediates histone hyperacetylation and histone acetyltransferase (HAT) inhibitor (C646) that mediates histone hypoacetylation. We show that histone hyperacetylation dramatically elongates telomeres in wild-type ES cells, and only slightly elongates telomeres in Terc(-/-) ES cells, suggesting that Terc is involved in histone acetylation-induced telomere elongation. In contrast, histone hypoacetylation shortens telomeres in both wild-type and Terc(-/-) ES cells. Additionally, histone hyperacetylation activates 2-cell (2C) specific genes including Zscan4, which is involved in telomere recombination and elongation, whereas histone hypoacetylation represses Zscan4 and 2C genes. These data suggest that histone acetylation levels affect the heterochromatic state at telomeres and subtelomeres, and regulate gene expression at subtelomeres, linking histone acetylation to telomere length maintenance.
Collapse
Affiliation(s)
- Jiameng Dan
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Yifei Liu
- Yale Stem Cell Center and Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Andrew Xiao
- Yale Stem Cell Center and Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
183
|
Abstract
Epigenetic regulation of gene expression allows the organism to respond/adapt to environmental conditions without changing the gene coding sequence. Epigenetic modifications have also been found to control gene expression in various diseases, including diabetes. Epigenetic changes induced by hyperglycemia in multiple target organs contribute to metabolic memory of diabetic complications. The long-lasting development of diabetic complications even after achieving glucose control has been partly attributed to epigenetic changes in target cells. Specific epigenetic drugs might rescue chromatin conformation associated to hyperglycemia possibly slowing down the onset of diabetes-related complications. The current review will describe the updated epigenetics in diabetes that can be used to personalize a more focused treatment.
Collapse
Affiliation(s)
- Adriana Fodor
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Angela Cozma
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Eddy Karnieli
- Institute of Endocrinology, Diabetes & Metabolism, Rambam Medical Center, Haifa, Israel
- Galil Center for Personalized Medicine & Medical Informatics, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
184
|
Pusceddu I, Herrmann M, Kirsch SH, Werner C, Hübner U, Bodis M, Laufs U, Wagenpfeil S, Geisel J, Herrmann W. Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr 2015; 55:1863-73. [DOI: 10.1007/s00394-015-1003-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023]
|
185
|
Martínez P, Blasco MA. Replicating through telomeres: a means to an end. Trends Biochem Sci 2015; 40:504-15. [PMID: 26188776 DOI: 10.1016/j.tibs.2015.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
Abstract
Proper replication of the telomeric DNA at chromosome ends is critical for preserving genome integrity. Yet, telomeres present challenges for the replication machinery, such as their repetitive and heterochromatic nature and their potential to form non-Watson-Crick structures as well as the fact that they are transcribed. Numerous telomere-bound proteins are required to facilitate progression of the replication fork throughout telomeric DNA. In particular, shelterin plays crucial functions in telomere length regulation, protection of telomeres from nuclease degradation, control of DNA damage response at telomeres, and the recruitment of associated factors required for telomere DNA processing and replication. In this review we discuss the recently uncovered functions of mammalian telomere-specific and telomere-associated proteins that facilitate proper telomere replication.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain.
| |
Collapse
|
186
|
Dvořáčková M, Fojtová M, Fajkus J. Chromatin dynamics of plant telomeres and ribosomal genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:18-37. [PMID: 25752316 DOI: 10.1111/tpj.12822] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 05/03/2023]
Abstract
Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
187
|
Morgani SM, Brickman JM. The molecular underpinnings of totipotency. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0549. [PMID: 25349456 DOI: 10.1098/rstb.2013.0549] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem (ES) cells are characterized by their functional potency and capacity to self-renew in culture. Historically, ES cells have been defined as pluripotent, able to make the embryonic but not the extraembryonic lineages (such as the yolk sac and the placenta). The functional capacity of ES cells has been judged based on their ability to contribute to all somatic lineages when they are introduced into an embryo. However, a number of recent reports have suggested that under certain conditions, ES cells, and other reprogrammed cell lines, can also contribute to the extraembryonic lineages and, therefore, can be said to be totipotent. Here, we consider the molecular basis for this totipotent state, its transcriptional signature and the signalling pathways that define it.
Collapse
Affiliation(s)
- Sophie M Morgani
- The Danish Stem Cell Centre-DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen 2200, Denmark
| | - Joshua M Brickman
- The Danish Stem Cell Centre-DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen 2200, Denmark
| |
Collapse
|
188
|
Lin Q, Wagner W. Epigenetic Aging Signatures Are Coherently Modified in Cancer. PLoS Genet 2015; 11:e1005334. [PMID: 26110659 PMCID: PMC4482318 DOI: 10.1371/journal.pgen.1005334] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/03/2015] [Indexed: 12/31/2022] Open
Abstract
Aging is associated with highly reproducible DNA methylation (DNAm) changes, which may contribute to higher prevalence of malignant diseases in the elderly. In this study, we analyzed epigenetic aging signatures in 5,621 DNAm profiles of 25 cancer types from The Cancer Genome Atlas (TCGA). Overall, age-associated DNAm patterns hardly reflect chronological age of cancer patients, but they are coherently modified in a non-stochastic manner, particularly at CpGs that become hypermethylated upon aging in non-malignant tissues. This coordinated regulation in epigenetic aging signatures can therefore be used for aberrant epigenetic age-predictions, which facilitate disease stratification. For example, in acute myeloid leukemia (AML) higher epigenetic age-predictions are associated with increased incidence of mutations in RUNX1, WT1, and IDH2, whereas mutations in TET2, TP53, and PML-PARA translocation are more frequent in younger age-predictions. Furthermore, epigenetic aging signatures correlate with overall survival in several types of cancer (such as lower grade glioma, glioblastoma multiforme, esophageal carcinoma, chromophobe renal cell carcinoma, cutaneous melanoma, lung squamous cell carcinoma, and neuroendocrine neoplasms). In conclusion, age-associated DNAm patterns in cancer are not related to chronological age of the patient, but they are coordinately regulated, particularly at CpGs that become hypermethylated in normal aging. Furthermore, the apparent epigenetic age-predictions correlate with clinical parameters and overall survival in several types of cancer, indicating that regulation of DNAm patterns in age-associated CpGs is relevant for cancer development. Our genome harbors epigenetic marks, such as DNA methylation (DNAm) at cytosine residues, which govern cellular differentiation. Some epigenetic modifications accumulate throughout life in a highly reproducible manner–they may contribute to the aging process and facilitate reliable age-predictions. So far, little is known how these “epigenetic aging signatures” are modified in cancer tissue and whether or not they are accelerated as compared to normal tissue. In this study, we systematically analyzed age-associated DNAm patterns in many types of cancer. In contrast to non-malignant tissue the epigenetic aging signatures hardly reflect chronological age of cancer patients. This may at least partially be attributed to the fact that cancer is a clonal disease capturing only the epigenetic make-up of the tumor-initiating cell. Notably, the aberrant DNAm patterns are not randomly distributed but reveal co-regulation at regions that become methylated upon aging in non-malignant tissue. Furthermore, we demonstrate that deviations of epigenetic age-predictions correlate with clinical parameters. In fact, they are clearly associated with overall survival in many types of cancer. These findings are particularly important, as they indicate relevance of age-associated DNA methylation patterns for malignant transformation, cancer development and prognosis.
Collapse
Affiliation(s)
- Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
- * E-mail:
| |
Collapse
|
189
|
Anjomani Virmouni S, Al-Mahdawi S, Sandi C, Yasaei H, Giunti P, Slijepcevic P, Pook MA. Identification of telomere dysfunction in Friedreich ataxia. Mol Neurodegener 2015; 10:22. [PMID: 26059974 PMCID: PMC4462004 DOI: 10.1186/s13024-015-0019-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Friedreich ataxia (FRDA) is a progressive inherited neurodegenerative disorder caused by mutation of the FXN gene, resulting in decreased frataxin expression, mitochondrial dysfunction and oxidative stress. A recent study has identified shorter telomeres in FRDA patient leukocytes as a possible disease biomarker. RESULTS Here we aimed to investigate both telomere structure and function in FRDA cells. Our results confirmed telomere shortening in FRDA patient leukocytes and identified similar telomere shortening in FRDA patient autopsy cerebellar tissues. However, FRDA fibroblasts showed significantly longer telomeres at early passage, occurring in the absence of telomerase activity, but with activation of an alternative lengthening of telomeres (ALT)-like mechanism. These cells also showed accelerated telomere shortening as population doubling increases. Furthermore, telomere dysfunction-induced foci (TIF) analysis revealed that FRDA fibroblasts have dysfunctional telomeres. CONCLUSIONS Our finding of dysfunctional telomeres in FRDA cells provides further insight into FRDA molecular disease mechanisms, which may have implications for future FRDA therapy.
Collapse
Affiliation(s)
- Sara Anjomani Virmouni
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK. .,Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, UK.
| | - Sahar Al-Mahdawi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK. .,Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, UK.
| | - Chiranjeevi Sandi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK. .,Current address: Uro-Oncology Research Group, Cancer Research UK-Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Hemad Yasaei
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Paola Giunti
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London, UK.
| | - Predrag Slijepcevic
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Mark A Pook
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK. .,Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, UK.
| |
Collapse
|
190
|
Babić Božović I, Stanković A, Živković M, Vraneković J, Kapović M, Brajenović-Milić B. Altered LINE-1 Methylation in Mothers of Children with Down Syndrome. PLoS One 2015; 10:e0127423. [PMID: 26017139 PMCID: PMC4446367 DOI: 10.1371/journal.pone.0127423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/15/2015] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS, also known as trisomy 21) most often results from chromosomal nondisjunction during oogenesis. Numerous studies sustain a causal link between global DNA hypomethylation and genetic instability. It has been suggested that DNA hypomethylation might affect the structure and dynamics of chromatin regions that are critical for chromosome stability and segregation, thus favouring chromosomal nondisjunction during meiosis. Maternal global DNA hypomethylation has not yet been analyzed as a potential risk factor for chromosome 21 nondisjunction. This study aimed to asses the risk for DS in association with maternal global DNA methylation and the impact of endogenous and exogenous factors that reportedly influence DNA methylation status. Global DNA methylation was analyzed in peripheral blood lymphocytes by quantifying LINE-1 methylation using the MethyLight method. Levels of global DNA methylation were significantly lower among mothers of children with maternally derived trisomy 21 than among control mothers (P = 0.000). The combination of MTHFR C677T genotype and diet significantly influenced global DNA methylation (R2 = 4.5%, P = 0.046). The lowest values of global DNA methylation were observed in mothers with MTHFR 677 CT+TT genotype and low dietary folate. Although our findings revealed an association between maternal global DNA hypomethylation and trisomy 21 of maternal origin, further progress and final conclusions regarding the role of global DNA methylation and the occurrence of trisomy 21 are facing major challenges.
Collapse
Affiliation(s)
- Ivana Babić Božović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Aleksandra Stanković
- Vinča Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- Vinča Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Jadranka Vraneković
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Miljenko Kapović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojana Brajenović-Milić
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
- * E-mail:
| |
Collapse
|
191
|
Osterwald S, Deeg KI, Chung I, Parisotto D, Wörz S, Rohr K, Erfle H, Rippe K. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening. J Cell Sci 2015; 128:1887-1900. [DOI: 10.1242/jcs.148296] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
ABSTRACT
The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis. We identified 29 proteins that affected APB formation, which included proteins involved in telomere and chromatin organization, protein sumoylation and DNA repair. By integrating and extending these findings, we found that APB formation induced clustering of telomere repeats, telomere compaction and concomitant depletion of the shelterin protein TRF2 (also known as TERF2). These APB-dependent changes correlated with the induction of a DNA damage response at telomeres in APBs as evident by a strong enrichment of the phosphorylated form of the ataxia telangiectasia mutated (ATM) kinase. Accordingly, we propose that APBs promote telomere maintenance by inducing a DNA damage response in ALT-positive tumor cells through changing the telomeric chromatin state to trigger ATM phosphorylation.
Collapse
Affiliation(s)
- Sarah Osterwald
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| | - Katharina I. Deeg
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| | - Inn Chung
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| | - Daniel Parisotto
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| | - Stefan Wörz
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg & DKFZ, BioQuant, IPMB, 69120 Heidelberg, Germany
| | - Karl Rohr
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg & DKFZ, BioQuant, IPMB, 69120 Heidelberg, Germany
| | - Holger Erfle
- ViroQuant-CellNetworks RNAi Screening Facility, University of Heidelberg & BioQuant, 69120 Heidelberg, Germany
| | - Karsten Rippe
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| |
Collapse
|
192
|
Kota LN, Purushottam M, Moily NS, Jain S. Shortened telomere in unremitted schizophrenia. Psychiatry Clin Neurosci 2015; 69:292-7. [PMID: 25430532 DOI: 10.1111/pcn.12260] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/31/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023]
Abstract
AIM Telomere attrition has been noted in many neuropsychiatric and neurodegenerative syndromes, and may indicate a shared molecular pathology across conditions. We evaluated telomere length in subjects with remitted and unremitted schizophrenia and in control subjects. METHODS We measured telomere length as relative telomere/single-copy gene ratios in subjects with schizophrenia (n = 71) using quantitative real-time polymerase chain reaction. This was compared with relative telomere/single-copy gene ratios in age-matched controls without neuropsychiatric illness (n = 73). RESULTS The relative telomere/single-copy gene ratios were significantly lower in subjects with unremitted schizophrenia when compared with control subjects (r = -0.281, P = 0.003), as well as the individuals with remitted schizophrenia. CONCLUSION The lower relative telomere length in unremitted schizophrenia subjects may thus indicate shared biological pathways with other neurodegenerative disorders that are also characterized by increased cellular senescence.
Collapse
Affiliation(s)
- Lakshmi Narayanan Kota
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | |
Collapse
|
193
|
Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet 2015; 6:143. [PMID: 25926849 PMCID: PMC4396414 DOI: 10.3389/fgene.2015.00143] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcribed giving rise to long noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA molecules play critical roles in telomere biology, including regulation of telomerase activity and heterochromatin formation at chromosome ends. Emerging evidence indicate that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can promote homologous recombination among telomeres, delaying cellular senescence and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids are involved in telomere length homeostasis of telomerase-negative cancer cells. Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered by dysfunctional telomeres. We discuss here recent developments on TERRA's role in telomere biology and genome integrity, and its implication in cancer.
Collapse
Affiliation(s)
- Emilio Cusanelli
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna Vienna, Austria
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
194
|
Blaze J, Asok A, Roth TL. The long-term impact of adverse caregiving environments on epigenetic modifications and telomeres. Front Behav Neurosci 2015; 9:79. [PMID: 25904853 PMCID: PMC4389567 DOI: 10.3389/fnbeh.2015.00079] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/14/2015] [Indexed: 12/18/2022] Open
Abstract
Early childhood is a sensitive period in which infant-caregiver experiences have profound effects on brain development and behavior. Clinical studies have demonstrated that infants who experience stress and adversity in the context of caregiving are at an increased risk for the development of psychiatric disorders. Animal models have helped to elucidate some molecular substrates of these risk factors, but a complete picture of the biological basis remains unknown. Studies continue to indicate that environmentally-driven epigenetic modifications may be an important mediator between adverse caregiving environments and psychopathology. Epigenetic modifications such as DNA methylation, which normally represses gene transcription, and microRNA processing, which interferes with both transcription and translation, show long-term changes throughout the brain and body following adverse caregiving. Recent evidence has also shown that telomeres (TTAGGG nucleotide repeats that cap the ends of DNA) exhibit long-term changes in the brain and in the periphery following exposure to adverse caregiving environments. Interestingly, telomeric enzymes and subtelomeric regions are subject to epigenetic modifications—a factor which may play an important role in regulating telomere length and contribute to future mental health. This review will focus on clinical and animal studies that highlight the long-term epigenetic and telomeric changes produced by adverse caregiving in early-life.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| | - Arun Asok
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| |
Collapse
|
195
|
Bürkle A, Moreno-Villanueva M, Bernhard J, Blasco M, Zondag G, Hoeijmakers JHJ, Toussaint O, Grubeck-Loebenstein B, Mocchegiani E, Collino S, Gonos ES, Sikora E, Gradinaru D, Dollé M, Salmon M, Kristensen P, Griffiths HR, Libert C, Grune T, Breusing N, Simm A, Franceschi C, Capri M, Talbot D, Caiafa P, Friguet B, Slagboom PE, Hervonen A, Hurme M, Aspinall R. MARK-AGE biomarkers of ageing. Mech Ageing Dev 2015; 151:2-12. [PMID: 25818235 DOI: 10.1016/j.mad.2015.03.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 01/29/2023]
Abstract
Many candidate biomarkers of human ageing have been proposed in the scientific literature but in all cases their variability in cross-sectional studies is considerable, and therefore no single measurement has proven to serve a useful marker to determine, on its own, biological age. A plausible reason for this is the intrinsic multi-causal and multi-system nature of the ageing process. The recently completed MARK-AGE study was a large-scale integrated project supported by the European Commission. The major aim of this project was to conduct a population study comprising about 3200 subjects in order to identify a set of biomarkers of ageing which, as a combination of parameters with appropriate weighting, would measure biological age better than any marker in isolation.
Collapse
Affiliation(s)
- Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany
| | | | - María Blasco
- Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernandez Almagro, 28029 Madrid, Spain
| | | | - Jan H J Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Olivier Toussaint
- University of Namur, Research Unit on Cellular Biology, Rue de Bruxelles, 61, Namur B-5000, Belgium
| | - Beatrix Grubeck-Loebenstein
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10, 6020 Innsbruck, Austria
| | - Eugenio Mocchegiani
- Translational Research Center of Nutrition and Ageing, IRCCS-INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - Sebastiano Collino
- Nestlé Institute of Health Sciences SA, Molecular Biomarkers, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, 02-093 Warsaw, Poland
| | - Daniela Gradinaru
- Ana Aslan - National Institute of Gerontology and Geriatrics, Bucharest, Romania
| | - Martijn Dollé
- National Institute for Public Health and the Environment (RIVM), Centre for Prevention and Health Services Research, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Michel Salmon
- Straticell, Science Park Crealys, Rue Jean Sonet 10, 5032 Les Isnes, Belgium
| | - Peter Kristensen
- Department of Engineering - BCE Protein Engineering, Gustav Wiedsvej 10, 8000 Aarhus, Denmark
| | - Helen R Griffiths
- Life and Health Sciences, Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Claude Libert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Tilman Grune
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany; Department of Nutritional Toxicology, Friedrich Schiller University Jena, Dornburger Str. 24, 07743 Jena, Germany
| | - Nicolle Breusing
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Simm
- Department of Cardiothoracic Surgery, University Hospital Halle, Ernst-Grube Str. 40, 06120 Halle (Saale), Germany
| | - Claudio Franceschi
- CIG-Interdepartmental Center "L.Galvani", Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Miriam Capri
- CIG-Interdepartmental Center "L.Galvani", Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | | | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, "Sapienza" University Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Bertrand Friguet
- Sorbonne Universités, UPMC Univ Paris 06, UMR UPMC CNRS 8256, Biological adaptation and ageing - IBPS, INSERM U1164, F-75005 Paris, France
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Antti Hervonen
- Medical School, University of Tampere, 33014 Tampere, Finland
| | - Mikko Hurme
- Medical School, University of Tampere, 33014 Tampere, Finland
| | | |
Collapse
|
196
|
Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev 2015; 151:60-70. [PMID: 25708826 DOI: 10.1016/j.mad.2015.02.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
A complex interplay between multiple biological effects shapes the aging process. The advent of genome-wide quantitative approaches in the epigenetic field has highlighted the effective impact of epigenetic deregulation, particularly of DNA methylation, on aging. Age-associated alterations in DNA methylation are commonly grouped in the phenomenon known as "epigenetic drift" which is characterized by gradual extensive demethylation of genome and hypermethylation of a number of promoter-associated CpG islands. Surprisingly, specific DNA regions show directional epigenetic changes in aged individuals suggesting the importance of these events for the aging process. However, the epigenetic information obtained until now in aging needs a re-consideration due to the recent discovery of 5-hydroxymethylcytosine, a new DNA epigenetic mark present on genome. A recapitulation of the factors involved in the regulation of DNA methylation and the changes occurring in aging will be described in this review also considering the data available on 5 hmC.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Fabio Ciccarone
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Roberta Calabrese
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Claudio Franceschi
- Department of Experimental Pathology, Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy.
| |
Collapse
|
197
|
Widerøe TE. Re: Psykisk syke lever kortere. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2015; 135:1923. [DOI: 10.4045/tidsskr.15.1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
198
|
Gonzalez-Vasconcellos I, Alonso-Rodríguez S, López-Baltar I, Fernández JL. Telomere Chromatin Condensation Assay (TCCA): a novel approach to study structural telomere integrity. Mutat Res 2015; 771:51-55. [PMID: 25771980 DOI: 10.1016/j.mrfmmm.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes are essential for genome stability. Improper higher-order chromatin organization at the chromosome ends can give rise to telomeric recombination and genomic instability. We report the development of an assay to quantify differences in the condensation of telomeric chromatin, thereby offering new opportunities to study telomere biology and stability. We have combined a DNA nuclease digestion with a quantitative PCR (qPCR) assay of telomeric DNA, which we term the Telomere Chromatin Condensation Assay (TCCA). By quantifying the relative quantities of telomeric DNA that are progressively digested with the exonuclease Bal 31 the method can discriminate between different levels of telomeric chromatin condensation. The structural chromatin packaging at telomeres shielded against exonuclease digestion delivered an estimate, which we term Chromatin Protection Factor (CPF) that ranged from 1.7 to 2.3 fold greater than that present in unpacked DNA. The CPF was significantly decreased when cell cultures were incubated with the DNA hypomethylating agent 5-azacytidine, demonstrating the ability of the TCCA assay to discriminate between packaging levels of telomeric DNA.
Collapse
Affiliation(s)
- Iria Gonzalez-Vasconcellos
- INIBIC-Complejo Hospitalario Universitario A Coruña, Unidad de Genética, As Xubias, 84, 15006 A Coruña, Spain
| | - Silvia Alonso-Rodríguez
- INIBIC-Complejo Hospitalario Universitario A Coruña, Unidad de Genética, As Xubias, 84, 15006 A Coruña, Spain
| | - Isidoro López-Baltar
- Laboratorio de Genética Molecular y Radiobiología, Centro Oncológico de Galicia, 15009 A Coruña, Spain
| | - José Luis Fernández
- INIBIC-Complejo Hospitalario Universitario A Coruña, Unidad de Genética, As Xubias, 84, 15006 A Coruña, Spain; Laboratorio de Genética Molecular y Radiobiología, Centro Oncológico de Galicia, 15009 A Coruña, Spain.
| |
Collapse
|
199
|
O'Brien EC, Brewin J, Chevassut T. DNMT3A: the DioNysian MonsTer of acute myeloid leukaemia. Ther Adv Hematol 2014; 5:187-96. [PMID: 25469209 DOI: 10.1177/2040620714554538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the mythology of Ancient Greece, there was often a creative tension between the opposing forces of the gods Apollo and Dionysius, the two sons of Zeus. The Apollonian force was considered to be rational and lifegiving, whilst Dionysian forces were chaotic and elemental. Acute myeloid leukaemia is characterised by the clash of these forces: the chaotic proliferation of immature myeloid cells in the bone marrow overcomes the normal, orderly production of healthy blood cells. DNMT3A mutations occur early in the leukaemogenic process and may even act as "founder" mutations - the first step in a pathway towards malignant transformation. As such, these mutations may represent a Dionysian agent of disorder, inciting the chaotic myeloid proliferation and arrest of differentiation which are hallmarks of AML. This review will focus on the role of DNMT3A mutations in leukaemia pathogenesis, their influence on prognosis, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Emma Conway O'Brien
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton, UK
| | - John Brewin
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton, UK
| | - Timothy Chevassut
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton BN1 9PS, UK
| |
Collapse
|
200
|
Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, McGinnis KM, Dawe RK. Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. THE PLANT CELL 2014; 26:4903-17. [PMID: 25465407 PMCID: PMC4311197 DOI: 10.1105/tpc.114.130427] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 05/18/2023]
Abstract
RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM. The minority of the genome marked by RdDM was predominantly near genes, and its overall chromatin structure appeared more similar to euchromatin than to heterochromatin. These and other data indicate that the densely staining chromatin defined as heterochromatin differs fundamentally from RdDM-targeted chromatin. We propose that small interfering RNAs perform a specialized role in repressing transposons in accessible chromatin environments and that the bulk of heterochromatin is incompatible with small RNA production.
Collapse
Affiliation(s)
- Jonathan I. Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Thelma F. Madzima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Rechien Bader
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Matthew R. Kent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Karen M. McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - R. Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
- Address correspondence to
| |
Collapse
|