151
|
Silva R, Glennon K, Metoudi M, Moran B, Salta S, Slattery K, Treacy A, Martin T, Shaw J, Doran P, Lynch L, Jeronimo C, Perry AS, Brennan DJ. Unveiling the epigenomic mechanisms of acquired platinum-resistance in high-grade serous ovarian cancer. Int J Cancer 2023; 153:120-132. [PMID: 36883413 DOI: 10.1002/ijc.34496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Resistance to platinum-based chemotherapy is the major cause of death from high-grade serous ovarian cancer (HGSOC). We hypothesise that detection of specific DNA methylation changes may predict platinum resistance in HGSOC. Using a publicly available "discovery" dataset we examined epigenomic and transcriptomic alterations between primary platinum-sensitive (n = 32) and recurrent acquired drug resistant HGSOC (n = 28) and identified several genes involved in immune and chemoresistance-related pathways. Validation via high-resolution melt analysis of these findings, in cell lines and HGSOC tumours, demonstrated the most consistent changes were observed in three of the genes: APOBEC3A, NKAPL and PDCD1. Plasma samples from an independent HGSOC cohort (n = 17) were analysed using droplet digital PCR. Hypermethylation of NKAPL was detected in 46% and hypomethylation of APOBEC3A in 69% of plasma samples taken from women with relapsed HGSOC (n = 13), with no alterations identified in disease-free patients (n = 4). Following these results, and using a CRISPR-Cas9 approach, we were also able to demonstrate that in vitro NKAPL promoter demethylation increased platinum sensitivity by 15%. Overall, this study demonstrates the importance of aberrant methylation, especially of the NKAPL gene, in acquired platinum resistance in HGSOC.
Collapse
Affiliation(s)
- Romina Silva
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Kate Glennon
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Metoudi
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bruce Moran
- Department of Pathology, St Vincent's University Hospital, Dublin, Ireland
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto /Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Karen Slattery
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Ann Treacy
- Department of Pathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Terri Martin
- Clinical Research Centre, UCD School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jacqui Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Peter Doran
- Clinical Research Centre, UCD School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lydia Lynch
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Carmen Jeronimo
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto /Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Donal J Brennan
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
152
|
Inhibition of branched-chain alpha-keto acid dehydrogenase kinase augments the sensitivity of ovarian and breast cancer cells to paclitaxel. Br J Cancer 2023; 128:896-906. [PMID: 36526674 PMCID: PMC9977917 DOI: 10.1038/s41416-022-02095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
CONTEXT Many cancer patients who initially respond to chemotherapy eventually develop chemoresistance, and to address this, we previously conducted a RNAi screen to identify genes contributing to resistance. One of the hits from the screen was branched-chain α-keto acid dehydrogenase kinase (BCKDK). BCKDK controls the metabolism of branched-chain amino acids (BCAAs) through phosphorylation and inactivation of the branched-chain α-keto acid dehydrogenase complex (BCKDH), thereby inhibiting catabolism of BCAAs. METHODS We measured the impact on paclitaxel sensitivity of inhibiting BCKDK in ovarian and breast cancer cell lines. RESULTS Inhibition of BCKDK using siRNA or two chemical inhibitors (BCKDKi) was synergistic with paclitaxel in both breast and ovarian cancer cells. BCKDKi reduced levels of BCAA and the addition of exogenous BCAA suppressed this synergy. BCKDKi inactivated the mTORC1-Aurora pathway, allowing cells to overcame M-phase arrest induced by paclitaxel. In some cases, cells almost completed cytokinesis, then reverted to a single cell, resulting in multinucleate cells. CONCLUSION BCKDK is an attractive target to augment the sensitivity of cancer cells to paclitaxel.
Collapse
|
153
|
Establishment of four head and neck squamous cell carcinoma cell lines: importance of reference DNA for accurate genomic characterisation. J Laryngol Otol 2023; 137:301-307. [PMID: 35317874 PMCID: PMC9975763 DOI: 10.1017/s0022215122000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE There is significant interest in developing early passage cell lines with matched normal reference DNA to facilitate a precision medicine approach in assessing drug response. This study aimed to establish early passage cell lines, and perform whole exome sequencing and short tandem repeat profiling on matched normal reference DNA, primary tumour and corresponding cell lines. METHODS A cell culture based, in vitro study was conducted of patients with primary human papillomavirus positive and human papillomavirus negative tumours. RESULTS Four early passage cell lines were established. Two cell lines were human papillomavirus positive, confirmed by sequencing and p16 immunoblotting. Short tandem repeat profiling confirmed that all cell lines were established from their index tumours. Whole exome sequencing revealed that the matched normal reference DNA was critical for accurate mutational analysis: a high rate of false positive mutation calls were excluded (87.6 per cent). CONCLUSION Early passage cell lines were successfully established. Patient-matched reference DNA is important for accurate cell line mutational calls.
Collapse
|
154
|
Malgundkar SH, Hassan NA, Al Badi H, Gupta I, Burney IA, Al Hashami Z, Al Barwani H, Al Riyami H, Al Kalbani M, Lakhtakia R, Okamoto A, Tamimi Y. Identification and validation of a novel long non-coding RNA (LINC01465) in ovarian cancer. Hum Cell 2023; 36:762-774. [PMID: 36513868 DOI: 10.1007/s13577-022-00842-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Epithelial Ovarian Cancer (EOC) is a heterogeneous disease usually diagnosed at advanced stages. Therefore, early detection is crucial for better survival. Despite the advances in ovarian research, mechanisms underlying EOC carcinogenesis are not elucidated. We performed chromatin immunoprecipitation sequencing to identify genes regulated by E2F5, a transcription factor involved in ovarian carcinogenesis. Results revealed several putative candidate genes (115 protein-coding genes, 20 lncRNAs, 6 pseudogenes, and 4 miRNAs). A literature review and bioinformatics analysis of these genes revealed a novel lncRNA candidate (LINC01465) in EOC. We validated LINC01465 by quantifying its expression in EOC cell lines and selected OVSAHO and SKOV3 as a model with high LINC01465 levels. We silenced LINC01465 and performed proliferation, wound healing, invasion, and drug resistance assays. Knocking-down LINC01465 resulted in reduced migration, suggesting potential involvement in EOC. Furthermore, to identify the significance of LINC01465 in chemoresistance, we assessed the LINC01465 levels in A2780 S cells treated with malformin, which revealed higher LINC01465 expression as compared to untreated A2780S cells implying the involvement of LINC01465 in cell death. Thus, this study unraveled the repertoire of E2F5 regulated candidate genes and suggested a putative role of LINC01465 in malformin-induced cell death in EOC.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Nada Abdullah Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Hala Al Badi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Ishita Gupta
- College of Medicine, Qatar University, PO Box 2713, Doha, Qatar
| | - Ikram A Burney
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Zainab Al Hashami
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Hamida Al Barwani
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Hamad Al Riyami
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Moza Al Kalbani
- Obstetrics and Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Ritu Lakhtakia
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Aikou Okamoto
- Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
155
|
Elevated Levels of Lamin A Promote HR and NHEJ-Mediated Repair Mechanisms in High-Grade Ovarian Serous Carcinoma Cell Line. Cells 2023; 12:cells12050757. [PMID: 36899893 PMCID: PMC10001195 DOI: 10.3390/cells12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Extensive research for the last two decades has significantly contributed to understanding the roles of lamins in the maintenance of nuclear architecture and genome organization which is drastically modified in neoplasia. It must be emphasized that alteration in lamin A/C expression and distribution is a consistent event during tumorigenesis of almost all tissues of human bodies. One of the important signatures of a cancer cell is its inability to repair DNA damage which befalls several genomic events that transform the cells to be sensitive to chemotherapeutic agents. This genomic and chromosomal instability is the most common feature found in cases of high-grade ovarian serous carcinoma. Here, we report elevated levels of lamins in OVCAR3 cells (high-grade ovarian serous carcinoma cell line) in comparison to IOSE (immortalised ovarian surface epithelial cells) and, consequently, altered damage repair machinery in OVCAR3. We have analysed the changes in global gene expression as a sequel to DNA damage induced by etoposide in ovarian carcinoma where lamin A is particularly elevated in expression and reported some differentially expressed genes associated with pathways conferring cellular proliferation and chemoresistance. We hereby establish the role of elevated lamin A in neoplastic transformation in the context of high-grade ovarian serous cancer through a combination of HR and NHEJ mechanisms.
Collapse
|
156
|
Wang L, Evans JC, Ahmed L, Allen C. Folate receptor targeted nanoparticles containing niraparib and doxorubicin as a potential candidate for the treatment of high grade serous ovarian cancer. Sci Rep 2023; 13:3226. [PMID: 36828860 PMCID: PMC9958112 DOI: 10.1038/s41598-023-28424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/18/2023] [Indexed: 02/26/2023] Open
Abstract
Combination chemotherapy is an established approach used to manage toxicities while eliciting an enhanced therapeutic response. Delivery of drug combinations at specific molar ratios has been considered a means to achieve synergistic effects resulting in improvements in efficacy while minimizing dose related adverse drug reactions. The benefits of this approach have been realized with the FDA approval of Vyxeos®, the first liposome formulation to deliver a synergistic drug combination leading to improved overall survival against standard of care. In the current study, we demonstrate the synergistic potential of the PARP inhibitor niraparib and doxorubicin for the treatment of ovarian cancer. Through in vitro screening in a panel of ovarian cancer cell lines, we find that niraparib and doxorubicin demonstrate consistent synergy/additivity at the majority of evaluated molar ratio combinations. Further to these findings, we report formulation of a nanoparticle encapsulating our identified synergistic combination. We describe a rational design process to achieve highly stable liposomes that are targeted with folate to folate-receptor-alpha, which is known to be overexpressed on the surface of ovarian cancer cells. With this approach, we aim to achieve targeted delivery of niraparib and doxorubicin at a pre-determined synergistic molar ratio via increased receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Lucy Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Lubabah Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
157
|
Kollara A, Burt BD, Ringuette MJ, Brown TJ. The adaptor protein VEPH1 interacts with the kinase domain of ERBB2 and impacts EGF signaling in ovarian cancer cells. Cell Signal 2023; 106:110634. [PMID: 36828346 DOI: 10.1016/j.cellsig.2023.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Upregulation of ERBB2 and activating mutations in downstream KRAS/BRAF and PIK3CA are found in several ovarian cancer histotypes. ERBB2 enhances signaling by the ERBB family of EGF receptors, and contains docking positions for proteins that transduce signaling through multiple pathways. We identified the adaptor protein ventricular zone-expressed pleckstrin homology domain-containing protein 1 (VEPH1) as a potential interacting partner of ERBB2 in a screen of proteins co-immunoprecipitated with VEPH1. In this study, we confirm a VEPH1 - ERBB2 interaction by co-immunoprecipitation and biotin proximity labelling and show that VEPH1 interacts with the juxtamembrane-kinase domain of ERBB2. In SKOV3 ovarian cancer cells, which bear a PIK3CA mutation and ERBB2 overexpression, ectopic VEPH1 expression enhanced EGF activation of ERK1/2, and mTORC2 activation of AKT. In contrast, in ES2 ovarian cancer cells, which bear a BRAFV600E mutation with VEPH1 amplification but low ERBB2 expression, loss of VEPH1 expression enabled further activation of ERK1/2 by EGF and enhanced EGF activation of AKT. VEPH1 expression in SKOV3 cells enhanced EGF-induced cell migration consistent with increased Snail2 and decreased E-cadherin levels. In comparison, loss of VEPH1 expression in ES2 cells led to decreased cell motility independent of EGF treatment despite higher levels of N-cadherin and Snail2. Importantly, we found that loss of VEPH1 expression rendered ES2 cells less sensitive to BRAF and MEK inhibition. This study extends the range of adaptor function of VEPH1 to ERBB2, and indicates VEPH1 has differential effects on EGF signaling in ovarian cancer cells that may be influenced by driver gene mutations.
Collapse
Affiliation(s)
- Alexandra Kollara
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Brian D Burt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Maurice J Ringuette
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
158
|
Shibuya Y, Kudo K, Zeligs KP, Anderson D, Hernandez L, Ning F, Cole CB, Fergusson M, Kedei N, Lyons J, Taylor J, Korrapati S, Annunziata CM. SMAC Mimetics Synergistically Cooperate with HDAC Inhibitors Enhancing TNF-α Autocrine Signaling. Cancers (Basel) 2023; 15:cancers15041315. [PMID: 36831656 PMCID: PMC9954505 DOI: 10.3390/cancers15041315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The overexpression of inhibitor of apoptosis (IAP) proteins is strongly related to poor survival of women with ovarian cancer. Recurrent ovarian cancers resist apoptosis due to the dysregulation of IAP proteins. Mechanistically, Second Mitochondrial Activator of Caspases (SMAC) mimetics suppress the functions of IAP proteins to restore apoptotic pathways resulting in tumor death. We previously conducted a phase 2 clinical trial of the single-agent SMAC mimetic birinapant and observed minimal drug response in women with recurrent ovarian cancer despite demonstrating on-target activity. Accordingly, we performed a high-throughput screening matrix to identify synergistic drug combinations with birinapant. SMAC mimetics in combination with an HDAC inhibitor showed remarkable synergy and was, therefore, selected for further evaluation. We show here that this synergy observed both in vitro and in vivo results from multiple convergent pathways to include increased caspase activation, HDAC inhibitor-mediated TNF-α upregulation, and alternative NF-kB signaling. These findings provide a rationale for the integration of SMAC mimetics and HDAC inhibitors in clinical trials for recurrent ovarian cancer where treatment options are still limited.
Collapse
Affiliation(s)
- Yusuke Shibuya
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Division of Gynecology Oncology, Tohoku University School of Medicine, Miyagi 980-8574, Japan
| | - Kei Kudo
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Division of Gynecology Oncology, Tohoku University School of Medicine, Miyagi 980-8574, Japan
| | - Kristen P. Zeligs
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- Department of Obstetrics, Gynecology and Reproductive Science, Division of Gynecologic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Anderson
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Lidia Hernandez
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Franklin Ning
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher B. Cole
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fergusson
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, MD 20814, USA
| | | | - Jason Taylor
- Astex Pharmaceuticals, Pleasanton, CA 94588, USA
| | - Soumya Korrapati
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina M. Annunziata
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-240-760-6125
| |
Collapse
|
159
|
McCabe A, Zaheed O, McDade SS, Dean K. Investigating the suitability of in vitro cell lines as models for the major subtypes of epithelial ovarian cancer. Front Cell Dev Biol 2023; 11:1104514. [PMID: 36861035 PMCID: PMC9969113 DOI: 10.3389/fcell.2023.1104514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy, accounting for over 200,000 deaths worldwide per year. EOC is a highly heterogeneous disease, classified into five major histological subtypes-high-grade serous (HGSOC), clear cell (CCOC), endometrioid (ENOC), mucinous (MOC) and low-grade serous (LGSOC) ovarian carcinomas. Classification of EOCs is clinically beneficial, as the various subtypes respond differently to chemotherapy and have distinct prognoses. Cell lines are often used as in vitro models for cancer, allowing researchers to explore pathophysiology in a relatively cheap and easy to manipulate system. However, most studies that make use of EOC cell lines fail to recognize the importance of subtype. Furthermore, the similarity of cell lines to their cognate primary tumors is often ignored. Identification of cell lines with high molecular similarity to primary tumors is needed in order to better guide pre-clinical EOC research and to improve development of targeted therapeutics and diagnostics for each distinctive subtype. This study aims to generate a reference dataset of cell lines representative of the major EOC subtypes. We found that non-negative matrix factorization (NMF) optimally clustered fifty-six cell lines into five groups, putatively corresponding to each of the five EOC subtypes. These clusters validated previous histological groupings, while also classifying other previously unannotated cell lines. We analysed the mutational and copy number landscapes of these lines to investigate whether they harboured the characteristic genomic alterations of each subtype. Finally we compared the gene expression profiles of cell lines with 93 primary tumor samples stratified by subtype, to identify lines with the highest molecular similarity to HGSOC, CCOC, ENOC, and MOC. In summary, we examined the molecular features of both EOC cell lines and primary tumors of multiple subtypes. We recommend a reference set of cell lines most suited to represent four different subtypes of EOC for both in silico and in vitro studies. We also identify lines displaying poor overall molecular similarity to EOC tumors, which we argue should be avoided in pre-clinical studies. Ultimately, our work emphasizes the importance of choosing suitable cell line models to maximise clinical relevance of experiments.
Collapse
Affiliation(s)
- Aideen McCabe
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| | - Oza Zaheed
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| | - Simon Samuel McDade
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
160
|
Brown Y, Hua S, Tanwar PS. Extracellular Matrix in High-Grade Serous Ovarian Cancer: Advances in Understanding of Carcinogenesis and Cancer Biology. Matrix Biol 2023; 118:16-46. [PMID: 36781087 DOI: 10.1016/j.matbio.2023.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is notoriously known as the "silent killer" of post-menopausal women as it has an insidious progression and is the deadliest gynaecological cancer. Although a dual origin of HGSOC is now widely accepted, there is growing evidence that most cases of HGSOC originate from the fallopian tube epithelium. In this review, we will address the fallopian tube origin and involvement of the extracellular matrix (ECM) in HGSOC development. There is limited research on the role of ECM at the earliest stages of HGSOC carcinogenesis. Here we aim to synthesise current understanding on the contribution of ECM to each stage of HGSOC development and progression, beginning at serous tubal intraepithelial carcinoma (STIC) precursor lesions and proceeding across key events including dissemination of tumourigenic fallopian tube epithelial cells to the ovary, survival of these cells in peritoneal fluid as multicellular aggregates, and colonisation of the ovary. Likewise, as part of the metastatic series of events, serous ovarian cancer cells survive travel in peritoneal fluid, attach to, migrate across the mesothelium and invade into the sub-mesothelial matrix of secondary sites in the peritoneal cavity. Halting cancer at the pre-metastatic stage and finding ways to stop the dissemination of ovarian cancer cells from the primary site is critical for improving patient survival. The development of drug resistance also contributes to poor survival statistics in HGSOC. In this review, we provide an update on the involvement of the ECM in metastasis and drug resistance in HGSOC. Interplay between different cell-types, growth factor gradients as well as evolving ECM composition and organisation, creates microenvironment conditions that promote metastatic progression and drug resistance of ovarian cancer cells. By understanding ECM involvement in the carcinogenesis and chemoresistance of HGSOC, this may prompt ideas for further research for developing new early diagnostic tests and therapeutic strategies for HGSOC with the end goal of improving patient health outcomes.
Collapse
Affiliation(s)
- Yazmin Brown
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Pradeep S Tanwar
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| |
Collapse
|
161
|
Wlodarczyk MT, Dragulska SA, Chen Y, Poursharifi M, Acosta Santiago M, Martignetti JA, Mieszawska AJ. Pt(II)-PLGA Hybrid in a pH-Responsive Nanoparticle System Targeting Ovarian Cancer. Pharmaceutics 2023; 15:pharmaceutics15020607. [PMID: 36839929 PMCID: PMC9961376 DOI: 10.3390/pharmaceutics15020607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Platinum-based agents are the main treatment option in ovarian cancer (OC). Herein, we report a poly(lactic-co-glycolic acid) (PLGA) nanoparticle (NP) encapsulating platinum (II), which is targeted to a cell-spanning protein overexpressed in above 90% of late-stage OC, mucin 1 (MUC1). The NP is coated with phospholipid-DNA aptamers against MUC1 and a pH-sensitive PEG derivative containing an acid-labile hydrazone linkage. The pH-sensitive PEG serves as an off-on switch that provides shielding effects at the physiological pH and is shed at lower pH, thus exposing the MUC1 ligands. The pH-MUC1-Pt NPs are stable in the serum and display pH-dependent PEG cleavage and drug release. Moreover, the NPs effectively internalize in OC cells with higher accumulation at lower pH. The Pt (II) loading into the NP was accomplished via PLGA-Pt (II) coordination chemistry and was found to be 1.62 wt.%. In vitro screening using a panel of OC cell lines revealed that pH-MUC1-Pt NP has a greater effect in reducing cellular viability than carboplatin, a clinically relevant drug analogue. Biodistribution studies have demonstrated NP accumulation at tumor sites with effective Pt (II) delivery. Together, these results demonstrate a potential for pH-MUC1-Pt NP for the enhanced Pt (II) therapy of OC and other solid tumors currently treated with platinum agents.
Collapse
Affiliation(s)
- Marek T. Wlodarczyk
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Sylwia A. Dragulska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Ying Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Mina Poursharifi
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Maxier Acosta Santiago
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - John A. Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Women’s Health Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Rudy Ruggles Research Institute, Western Connecticut Health Network, 131 West St., Danbury, CT 06810, USA
| | - Aneta J. Mieszawska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence:
| |
Collapse
|
162
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-022-00739-y. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.,Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany.,Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | | |
Collapse
|
163
|
Acharayothin O, Thiengtrong B, Juengwiwattanakitti P, Anekwiang P, Riansuwan W, Chinswangwatanakul V, Tanjak P. Impact of Washing Processes on RNA Quantity and Quality in Patient-Derived Colorectal Cancer Tissues. Biopreserv Biobank 2023; 21:31-37. [PMID: 35230139 DOI: 10.1089/bio.2021.0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a common and lethal cancer worldwide. Extraction of high-quality RNA from CRC samples plays a key role in scientific research and translational medicine. Specimen collection and washing methods that do not compromise RNA quality or quantity are needed to ensure high quality specimens for gene expression analysis and other RNA-based downstream applications. We investigated the effect of tissue specimen collection and different preparation processes on the quality and quantity of RNA extracted from surgical CRC tissues. Materials and Methods: After surgical resection, tissues were harvested and prepared with various washing processes in a room adjacent to the operating room. One hundred fourteen tissues from 36 CRC patients were separately washed in either cold phosphate-buffered saline reagent (n = 34) or Dulbecco's modified Eagle's medium (DMEM; n = 34) for 2-3 minutes until the stool was removed, and unwashed specimens served as controls (n = 34). Six tissue specimens were washed and immersed in DMEM for up to 1 hour at 4°C. Before RNA extraction, all specimens were kept in the stabilizing reagent for 3 months at -80°C. RNA was extracted, and the concentration per milligram of tissue was measured. RNA quality was assessed using the RNA integrity number (RIN) value. Results: Different washing processes did not result in significant differences in RNA quantity or RIN values. In the six tissues that were washed and immersed in DMEM for 1 hour, RIN values significantly decreased. The quality of the extracted RNA from most specimens was excellent with the average RIN greater than 7. Conclusions: RNA is stable in specimens washed in different processes for short periods, but RIN values may decrease with prolonged wash times.
Collapse
Affiliation(s)
- Onchira Acharayothin
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Benjarat Thiengtrong
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panudeth Juengwiwattanakitti
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panatna Anekwiang
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Woramin Riansuwan
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vitoon Chinswangwatanakul
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pariyada Tanjak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
164
|
Yamaguchi M, Murata T, Ramos JW. The overexpressed regucalcin represses the growth via regulating diverse pathways linked to EGF signaling in human ovarian cancer SK-OV-3 cells: Involvement of extracellular regucalcin. Life Sci 2023; 314:121328. [PMID: 36584916 DOI: 10.1016/j.lfs.2022.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIMS Regucalcin, which plays a multifunctional role in cell regulation, contributes as a suppressor in carcinogenesis. Survival of cancer patients is prolonged with high expression of regucalcin in tumor tissues. Ovarian cancer is the most lethal in gynecologic malignancies. This study elucidates the repressive role of regucalcin on the growth of human ovarian cancer SK-OV-3 cells that are resistant to cytotoxic cancer drugs. MATERIALS AND METHODS SK-OV-3 wild type-cells and regucalcin-overexpressing cells (transfectants) were cultured in Dulbecco's Modification of Eagle's Medium containing 10 % fetal bovine serum. KEY FINDINGS Colony formation and proliferation of SK-OV-3 cells were repressed by regucalcin overexpression. The suppressive effects of regucalcin on proliferation were independent of cell death. The proliferation of SK-OV-3 wild-type cells was repressed by various inhibitors, including cell cycle, signaling processes, and transcriptional activity. The effects of all inhibitors were not revealed in transfectants, suggesting the involvement of multiple signaling pathways in regucalcin effects. Of note, the overexpressed regucalcin declined the levels of Ras, Akt, mitogen-activating protein kinase, NF-κB p65, β-catenin, and STAT3, while it raised the levels of tumor suppressors p53 and Rb, and cell cycle inhibitor p21. Interestingly, the stimulatory effects of epidermal growth factor (EGF) on cell proliferation were blocked in regucalcin-overexpressing cells. Extracellular regucalcin repressed the proliferation independent of the death of SK-OV-3 cells and blocked EGF-enhanced cell proliferation. SIGNIFICANCES The overexpressed regucalcin may repress cell proliferation by targeting diverse signal pathways, including EGF signaling. This study offers a novel approach to the treatment of ovarian cancer with regucalcin.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, HI 96813, USA.
| | - Tomiyasu Murata
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, HI 96813, USA
| |
Collapse
|
165
|
Wang W, Xiong Y, Hu X, Lu F, Qin T, Zhang L, Guo E, Yang B, Fu Y, Hu D, Fan J, Qin X, Liu C, Xiao R, Chen G, Li Z, Sun C. Codelivery of adavosertib and olaparib by tumor-targeting nanoparticles for augmented efficacy and reduced toxicity. Acta Biomater 2023; 157:428-441. [PMID: 36549633 DOI: 10.1016/j.actbio.2022.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) ranks first among gynecologic malignancies in terms of mortality. The benefits of poly (ADP-ribose) polymerase (PARP) inhibitors appear to be limited to OC with BRCA mutations. Concurrent administration of WEE1 inhibitors (eg, adavosertib (Ada)) and PARP inhibitors (eg, olaparib (Ola)) effectively suppress ovarian tumor growth regardless of BRCA mutation status, but is poorly tolerated. Henceforth, we aimed to seek a strategy to reduce the toxic effects of this combination by taking advantage of the mesoporous polydopamine (MPDA) nanoparticles with good biocompatibility and high drug loading capacity. In this work, we designed a tumor-targeting peptide TMTP1 modified MPDA-based nano-drug delivery system (TPNPs) for targeted co-delivery of Ada and Ola to treat OC. Ada and Ola could be effectively loaded into MPDA nanoplatform and showed tumor microenvironment triggered release behavior. The nanoparticles induced more apoptosis in OC cells, and significantly enhanced the synergy of combination therapy with Ada plus Ola in murine OC models. Moreover, the precise drug delivery of TPNPs towards tumor cells significantly diminished the toxic side effects caused by concurrent administration of Ada and Ola. Co-delivery of WEE1 inhibitors and PARP inhibitors via TPNPs represents a promising approach for the treatment of OC. STATEMENT OF SIGNIFICANCE: Combination therapy of WEE1 inhibitors (eg, Ada) with PARP inhibitors (eg, Ola) effectively suppress ovarian tumor growth regardless of BRCA mutation status. However, poor tolerability limits its clinical application. To address this issue, we construct a tumor-targeting nano-drug delivery system (TPNP) for co-delivery of Ada and Ola. The nanoparticles specifically target ovarian cancer and effectively enhance the antitumor effect while minimizing undesired toxic side effects. As the first nanomedicine co-loaded with a WEE1 inhibitor and a PARP inhibitor, TPNP-Ada-Ola may provide a promising and generally applicable therapeutic strategy for ovarian cancer patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingyuan Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - JunPeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - RouRou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
166
|
Suicide gene strategies applied in ovarian cancer studies. Cancer Gene Ther 2023:10.1038/s41417-023-00590-6. [PMID: 36717737 DOI: 10.1038/s41417-023-00590-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Ovarian cancer represents the most lethal gynecological malignancy among women in developed countries. Despite the recent innovations, the improvements in the 5-year survival rate have been insufficient and the management of this disease still remains a challenge. The fact that the majority of patients experience recurrent or resistant disease have substantiated the necessity of an innovative treatment. Among various strategies investigated, the recent strides made in gene delivery techniques have made gene therapy, including suicide gene strategies, a potential alternative for treating ovarian cancer. Various suicide gene candidates, which are capable of promoting cancer cell apoptosis directly after its entry or indirectly by prodrug administration, can be separated into three systems using enzyme-coding, toxin or pro-apoptotic genes. With this review, we aim to provide an overview of different suicide genes depending on therapeutic strategies, the vectors used to deliver these transgenes specifically to malignant cells, and the combined treatments of these genes with various therapeutic regimens.
Collapse
|
167
|
Mo Y, Leung LL, Mak CSL, Wang X, Chan WS, Hui LMN, Tang HWM, Siu MKY, Sharma R, Xu D, Tsui SKW, Ngan HYS, Yung MMH, Chan KKL, Chan DW. Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis. Mol Cancer 2023; 22:4. [PMID: 36624516 PMCID: PMC9827705 DOI: 10.1186/s12943-022-01703-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Metastatic colonization is one of the critical steps in tumor metastasis. A pre-metastatic niche is required for metastatic colonization and is determined by tumor-stroma interactions, yet the mechanistic underpinnings remain incompletely understood. METHODS PCR-based miRNome profiling, qPCR, immunofluorescent analyses evaluated the expression of exosomal miR-141 and cell-to-cell communication. LC-MS/MS proteomic profiling and Dual-Luciferase analyses identified YAP1 as the direct target of miR-141. Human cytokine profiling, ChIP, luciferase reporter assays, and subcellular fractionation analyses confirmed YAP1 in modulating GROα production. A series of in vitro tumorigenic assays, an ex vivo model and Yap1 stromal conditional knockout (cKO) mouse model demonstrated the roles of miR-141/YAP1/GROα/CXCR1/2 signaling cascade. RNAi, CRISPR/Cas9 and CRISPRi systems were used for gene silencing. Blood sera, OvCa tumor tissue samples, and tissue array were included for clinical correlations. RESULTS Hsa-miR-141-3p (miR-141), an exosomal miRNA, is highly secreted by ovarian cancer cells and reprograms stromal fibroblasts into proinflammatory cancer-associated fibroblasts (CAFs), facilitating metastatic colonization. A mechanistic study showed that miR-141 targeted YAP1, a critical effector of the Hippo pathway, reducing the nuclear YAP1/TAZ ratio and enhancing GROα production from stromal fibroblasts. Stromal-specific knockout (cKO) of Yap1 in murine models shaped the GROα-enriched microenvironment, facilitating in vivo tumor colonization, but this effect was reversed after Cxcr1/2 depletion in OvCa cells. The YAP1/GROα correlation was demonstrated in clinical samples, highlighting the clinical relevance of this research and providing a potential therapeutic intervention for impeding premetastatic niche formation and metastatic progression of ovarian cancers. CONCLUSIONS This study uncovers miR-141 as an OvCa-derived exosomal microRNA mediating the tumor-stroma interactions and the formation of tumor-promoting stromal niche through activating YAP1/GROα/CXCRs signaling cascade, providing new insight into therapy for OvCa patients with peritoneal metastases.
Collapse
Affiliation(s)
- Yulan Mo
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Leanne L. Leung
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Celia S. L. Mak
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Xueyu Wang
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Wai-Sun Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Lynn M. N. Hui
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Hermit W. M. Tang
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Michelle K. Y. Siu
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Rakesh Sharma
- grid.194645.b0000000121742757Centre for PanorOmic Sciences Proteomics and Metabolomics Core, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Dakang Xu
- grid.16821.3c0000 0004 0368 8293Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Stephen K. W. Tsui
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, The Chinese University of Hong Kong, SAR Hong Kong, China
| | - Hextan Y. S. Ngan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Mingo M. H. Yung
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Karen K. L. Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - David W. Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, The Chinese University of Hong Kong, SAR Hong Kong, China ,grid.511521.3School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, 518172 China
| |
Collapse
|
168
|
Chen D, Su X, Zhu L, Jia H, Han B, Chen H, Liang Q, Hu C, Yang H, Liu L, Li P, Wei W, Zhao Y. Papillary thyroid cancer organoids harboring BRAF V600E mutation reveal potentially beneficial effects of BRAF inhibitor-based combination therapies. J Transl Med 2023; 21:9. [PMID: 36624452 PMCID: PMC9827684 DOI: 10.1186/s12967-022-03848-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUNDS Papillary thyroid cancer (PTC), which is often driven by acquired somatic mutations in BRAF genes, is the most common pathologic type of thyroid cancer. PTC has an excellent prognosis after treatment with conventional therapies such as surgical resection, thyroid hormone therapy and adjuvant radioactive iodine therapy. Unfortunately, about 20% of patients develop regional recurrence or distant metastasis, making targeted therapeutics an important treatment option. Current in vitro PTC models are limited in representing the cellular and mutational characteristics of parental tumors. A clinically relevant tool that predicts the efficacy of therapy for individuals is urgently needed. METHODS Surgically removed PTC tissue samples were dissociated, plated into Matrigel, and cultured to generate organoids. PTC organoids were subsequently subjected to histological analysis, DNA sequencing, and drug sensitivity assays, respectively. RESULTS We established 9 patient-derived PTC organoid models, 5 of which harbor BRAFV600E mutation. These organoids have been cultured stably for more than 3 months and closely recapitulated the histological architectures as well as mutational landscapes of the respective primary tumors. Drug sensitivity assays of PTC organoid cultures demonstrated the intra- and inter-patient specific drug responses. BRAFV600E inhibitors, vemurafenib and dabrafenib monotherapy was mildly effective in treating BRAFV600E-mutant PTC organoids. Nevertheless, BRAF inhibitors in combination with MEK inhibitors, RTK inhibitors, or chemotherapeutic agents demonstrated improved efficacy compared to BRAF inhibition alone. CONCLUSIONS These data indicate that patient-derived PTC organoids may be a powerful research tool to investigate tumor biology and drug responsiveness, thus being useful to validate or discover targeted drug combinations.
Collapse
Affiliation(s)
- Dong Chen
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Xi Su
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Lizhang Zhu
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Hao Jia
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Bin Han
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Haibo Chen
- grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Qingzhuang Liang
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Chenchen Hu
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Hao Yang
- grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Lisa Liu
- grid.264727.20000 0001 2248 3398Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122 USA
| | - Peng Li
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Wei Wei
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Yongsheng Zhao
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China ,grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| |
Collapse
|
169
|
Chowdhury S, Ramchandran R, Palecek SP, Acevedo-Acevedo S, Bishop E. Sucrose Nonfermenting-Related Kinase Expression Is Related to a Metabolic Switch in Ovarian Cancer Cells That Results in Increased Fatty Acid Oxidation. Cancer Invest 2023; 41:330-344. [PMID: 36227231 DOI: 10.1080/07357907.2022.2136376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovarian cancer frequently metastasizes to the omentum, which is primarily comprised of adipocytes. Our previous study found that sucrose nonfermenting-related kinase (SNRK) expression is lower in advanced-stage compared with early-stage ovarian cancer tissue. In this study, SNRK knockdown was performed in ovarian cancer cell lines using lentiviral transduction and resulted in decreased cell proliferation, increased invasion, and a switch in metabolism to increased fatty acid oxidation (FAO). Our data suggest that SNRK works as a metabolic checkpoint that allows for oxidative phosphorylation and prevents FAO during a time of rapid tumor growth.
Collapse
Affiliation(s)
- Shreya Chowdhury
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ramani Ramchandran
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Erin Bishop
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
170
|
Patient-Derived In Vitro Models of Ovarian Cancer: Powerful Tools to Explore the Biology of the Disease and Develop Personalized Treatments. Cancers (Basel) 2023; 15:cancers15020368. [PMID: 36672318 PMCID: PMC9856518 DOI: 10.3390/cancers15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy worldwide due to a late diagnosis caused by the lack of specific symptoms and rapid dissemination into the peritoneal cavity. The standard of care for OC treatment is surgical cytoreduction followed by platinum-based chemotherapy. While a response to this frontline treatment is common, most patients undergo relapse within 2 years and frequently develop a chemoresistant disease that has become unresponsive to standard treatments. Moreover, also due to the lack of actionable mutations, very few alternative therapeutic strategies have been designed as yet for the treatment of recurrent OC. This dismal clinical perspective raises the need for pre-clinical models that faithfully recapitulate the original disease and therefore offer suitable tools to design novel therapeutic approaches. In this regard, patient-derived models are endowed with high translational relevance, as they can better capture specific aspects of OC such as (i) the high inter- and intra-tumor heterogeneity, (ii) the role of cancer stem cells (a small subset of tumor cells endowed with tumor-initiating ability, which can sustain tumor spreading, recurrence and chemoresistance), and (iii) the involvement of the tumor microenvironment, which interacts with tumor cells and modulates their behavior. This review describes the different in vitro patient-derived models that have been developed in recent years in the field of OC research, focusing on their ability to recapitulate specific features of this disease. We also discuss the possibilities of leveraging such models as personalized platforms to design new therapeutic approaches and guide clinical decisions.
Collapse
|
171
|
McMellen A, Yamamoto TM, Qamar L, Sanders BE, Nguyen LL, Chavez DO, Bapat J, Berning A, Post MD, Johnson J, Behbakht K, Nurmemmedov E, Chuong EB, Bitler BG. ATF6-Mediated Signaling Contributes to PARP Inhibitor Resistance in Ovarian Cancer. Mol Cancer Res 2023; 21:3-13. [PMID: 36149636 PMCID: PMC9812934 DOI: 10.1158/1541-7786.mcr-22-0102] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/08/2022] [Accepted: 09/21/2022] [Indexed: 02/03/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest ovarian cancer histotype due in-part to the lack of therapeutic options for chemotherapy-resistant disease. PARP inhibitors (PARPi) represent a targeted treatment. However, PARPi resistance is becoming a significant clinical challenge. There is an urgent need to overcome resistance mechanisms to extend disease-free intervals. We established isogeneic PARPi-sensitive and -resistant HGSOC cell lines. In three PARPi-resistant models, there is a significant increase in AP-1 transcriptional activity and DNA repair capacity. Using RNA-sequencing and an shRNA screen, we identified activating transcription factor 6 (ATF6) as a mediator of AP-1 activity, DNA damage response, and PARPi resistance. In publicly available datasets, ATF6 expression is elevated in HGSOC and portends a poorer recurrence-free survival. In a cohort of primary HGSOC tumors, higher ATF6 expression significantly correlated to PARPi resistance. In PARPi-resistant cell lines and a PDX model, inhibition of a known ATF6 regulator, p38, attenuated AP-1 activity and RAD51 foci formation, enhanced DNA damage, significantly inhibited tumor burden, and reduced accumulation of nuclear ATF6. IMPLICATIONS This study highlights that a novel p38-ATF6-mediated AP-1 signaling axis contributes to PARPi resistance and provides a clinical rationale for combining PARPi and AP-1 signaling inhibitors.
Collapse
Affiliation(s)
- Alexandra McMellen
- Cancer Biology Graduate Program, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tomomi M. Yamamoto
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lubna Qamar
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke E. Sanders
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lily L. Nguyen
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Daniela Ortiz Chavez
- Cancer Biology Graduate Program, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jaidev Bapat
- Cancer Biology Graduate Program, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amber Berning
- Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Miriam D. Post
- Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua Johnson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kian Behbakht
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Edward B. Chuong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Benjamin G. Bitler
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Corresponding author: Benjamin G. Bitler, Ph.D., 12700 East 19th Avenue, MS 8613, Aurora, CO 80045, USA; Phone: 303-724-0574;
| |
Collapse
|
172
|
Discovery of antibodies and cognate surface targets for ovarian cancer by surface profiling. Proc Natl Acad Sci U S A 2023; 120:e2206751120. [PMID: 36574667 PMCID: PMC9910589 DOI: 10.1073/pnas.2206751120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although antibodies targeting specific tumor-expressed antigens are the standard of care for some cancers, the identification of cancer-specific targets amenable to antibody binding has remained a bottleneck in development of new therapeutics. To overcome this challenge, we developed a high-throughput platform that allows for the unbiased, simultaneous discovery of antibodies and targets based on phenotypic binding profiles. Applying this platform to ovarian cancer, we identified a wide diversity of cancer targets including receptor tyrosine kinases, adhesion and migration proteins, proteases and proteins regulating angiogenesis in a single round of screening using genomics, flow cytometry, and mass spectrometry. In particular, we identified BCAM as a promising candidate for targeted therapy in high-grade serous ovarian cancers. More generally, this approach provides a rapid and flexible framework to identify cancer targets and antibodies.
Collapse
|
173
|
Cavarzerani E, Caligiuri I, Bartoletti M, Canzonieri V, Rizzolio F. 3D dynamic cultures of HGSOC organoids to model innovative and standard therapies. Front Bioeng Biotechnol 2023; 11:1135374. [PMID: 37143603 PMCID: PMC10151532 DOI: 10.3389/fbioe.2023.1135374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) needs new technologies for improving cancer diagnosis and therapy. It is a fatal disease with few options for the patients. In this context, dynamic culture systems coupling with patient-derived cancer 3D microstructures could offer a new opportunity for exploring novel therapeutic approaches. In this study, we optimized a passive microfluidic platform with 3D cancer organoids, which allows a standardized approach among different patients, a minimum requirement of samples, multiple interrogations of biological events, and a rapid response. The passive flow was optimized to improve the growth of cancer organoids, avoiding the disruption of the extracellular matrix (ECM). Under optimized conditions of the OrganoFlow (tilting angle of 15° and an interval of rocking every 8 min), the cancer organoids grow faster than when they are in static conditions and the number of dead cells is reduced over time. To calculate the IC 50 values of standard chemotherapeutic drugs (carboplatin, paclitaxel, and doxorubicin) and targeted drugs (ATRA), different approaches were utilized. Resazurin staining, ATP-based assay, and DAPI/PI colocalization assays were compared, and the IC 50 values were calculated. The results showed that in the passive flow, the IC 50 values are lower than in static conditions. FITC-labeled paclitaxel shows a better penetration of ECM under passive flow than in static conditions, and cancer organoids start to die after 48 h instead of 96 h, respectively. Cancer organoids are the last frontiers for ex vivo testing of drugs that replicate the response of patients in the clinic. For this study, organoids derived from ascites or tissues of patients with Ovarian Cancer have been used. In conclusion, it was possible to develop a protocol for organoid cultures in a passive microfluidic platform with a higher growth rate, faster drug response, and better penetration of drugs into ECM, maintaining the samples' vitals and collecting the data on the same plate for up to 16 drugs.
Collapse
Affiliation(s)
- Enrico Cavarzerani
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy
| | - Michele Bartoletti
- Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
- *Correspondence: Flavio Rizzolio,
| |
Collapse
|
174
|
Koc ZC, Sollars VE, Bou Zgheib N, Rankin GO, Koc EC. Evaluation of mitochondrial biogenesis and ROS generation in high-grade serous ovarian cancer. Front Oncol 2023; 13:1129352. [PMID: 36937395 PMCID: PMC10014927 DOI: 10.3389/fonc.2023.1129352] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Ovarian cancer is one of the leading causes of death for women with cancer worldwide. Energy requirements for tumor growth in epithelial high-grade serous ovarian cancer (HGSOC) are fulfilled by a combination of aerobic glycolysis and oxidative phosphorylation (OXPHOS). Although reduced OXPHOS activity has emerged as one of the significant contributors to tumor aggressiveness and chemoresistance, up-regulation of mitochondrial antioxidant capacity is required for matrix detachment and colonization into the peritoneal cavity to form malignant ascites in HGSOC patients. However, limited information is available about the mitochondrial biogenesis regulating OXPHOS capacity and generation of mitochondrial reactive oxygen species (mtROS) in HGSOC. Methods To evaluate the modulation of OXPHOS in HGSOC tumor samples and ovarian cancer cell lines, we performed proteomic analyses of proteins involved in mitochondrial energy metabolism and biogenesis and formation of mtROS by immunoblotting and flow cytometry, respectively. Results and discussion We determined that the increased steady-state expression levels of mitochondrial- and nuclear-encoded OXPHOS subunits were associated with increased mitochondrial biogenesis in HGSOC tumors and ovarian cancer cell lines. The more prominent increase in MT-COII expression was in agreement with significant increase in mitochondrial translation factors, TUFM and DARS2. On the other hand, the ovarian cancer cell lines with reduced OXPHOS subunit expression and mitochondrial translation generated the highest levels of mtROS and significantly reduced SOD2 expression. Evaluation of mitochondrial biogenesis suggested that therapies directed against mitochondrial targets, such as those involved in transcription and translation machineries, should be considered in addition to the conventional chemotherapies in HGSOC treatment.
Collapse
Affiliation(s)
- Zeynep C. Koc
- Department of Obstetrics, Gynecology and Reproductive Sciences, Temple University, Philadelphia, PA, United States
| | - Vincent E. Sollars
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nadim Bou Zgheib
- Edwards Comprehensive Cancer Center, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc,
| |
Collapse
|
175
|
Proteomics of High-Grade Serous Ovarian Cancer Models Identifies Cancer-Associated Fibroblast Markers Associated with Clinical Outcomes. Biomolecules 2022; 13:biom13010075. [PMID: 36671461 PMCID: PMC9855416 DOI: 10.3390/biom13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The tumor microenvironment has recently emerged as a critical component of high-grade serous ovarian cancer (HGSC) disease progression. Specifically, cancer-associated fibroblasts (CAFs) have been recognized as key players in various pro-oncogenic processes. Here, we use mass-spectrometry (MS) to characterize the proteomes of HGSC patient-derived CAFs and compare them to those of the epithelial component of HGSC to gain a deeper understanding into their tumor-promoting phenotype. We integrate our data with primary tissue data to define a proteomic signature of HGSC CAFs and uncover multiple novel CAF proteins that are prognostic in an independent HGSC patient cohort. Our data represent the first MS-based global proteomic characterization of CAFs in HGSC and further highlights the clinical significance of HGSC CAFs.
Collapse
|
176
|
Winkelmann R, Bankov K, Döring C, Cinatl J, Grothe S, Rothweiler F, Michaelis M, Schmitt C, Wild PJ, Demes M, Cinatl J, Vallo S. Increased HRD score in cisplatin resistant penile cancer cells. BMC Cancer 2022; 22:1352. [PMID: 36564761 PMCID: PMC9789628 DOI: 10.1186/s12885-022-10432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/INTRODUCTION Penile cancer is a rare disease in demand for new therapeutic options. Frequently used combination chemotherapy with 5 fluorouracil (5-FU) and cisplatin (CDDP) in patients with metastatic penile cancer mostly results in the development of acquired drug resistance. Availability of cell culture models with acquired resistance against standard therapy could help to understand molecular mechanisms underlying chemotherapy resistance and to identify candidate treatments for an efficient second line therapy. METHODS We generated a cell line from a humanpapilloma virus (HPV) negative penile squamous cell carcinoma (UKF-PEC-1). This cell line was subject to chronic exposure to chemotherapy with CDDP and / or 5-FU to induce acquired resistance in the newly established chemo-resistant sublines (PEC-1rCDDP2500, adapted to 2500 ng/ml CDDP; UKF-PEC-1r5-FU500, adapted to 500 ng/ml 5- FU; UKF-PEC1rCDDP2500/r5-FU500, adapted to 2500 ng/ml CDDP and 500 ng/ml 5 -FU). Afterwards cell line pellets were formalin-fixed, paraffin embedded and subject to sequencing as well as testing for homologous recombination deficiency (HRD). Additionally, exemplary immunohistochemical stainings for p53 and gammaH2AX were applied for verification purposes. Finally, UKF-PEC-1rCDDP2500, UKF-PEC-1r5-FU500, UKF-PEC1rCDDP2500/r5-FU500, and UKF-PEC-3 (an alternative penis cancer cell line) were tested for sensitivity to paclitaxel, docetaxel, olaparib, and rucaparib. RESULTS AND CONCLUSIONS The chemo-resistant sublines differed in their mutational landscapes. UKF-PEC-1rCDDP2500 was characterized by an increased HRD score, which is supposed to be associated with increased PARP inhibitor and immune checkpoint inhibitor sensitivity in cancer. However, UKF-PEC-1rCDDP2500 did not display sensitivity to PARP inhibitors.
Collapse
Affiliation(s)
- Ria Winkelmann
- grid.411088.40000 0004 0578 8220Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Katrin Bankov
- grid.411088.40000 0004 0578 8220Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Claudia Döring
- grid.411088.40000 0004 0578 8220Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | | | - Sebastian Grothe
- Dr. Petra Joh Forschungshaus, Frankfurt Am Main, Germany ,grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Florian Rothweiler
- Dr. Petra Joh Forschungshaus, Frankfurt Am Main, Germany ,grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Martin Michaelis
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Christina Schmitt
- grid.411088.40000 0004 0578 8220Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Peter J. Wild
- grid.411088.40000 0004 0578 8220Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt Am Main, Germany ,grid.417999.b0000 0000 9260 4223Frankfurt Institute for Advanced Studies (FIAS), Frankfurt Am Main, Germany
| | - Melanie Demes
- grid.411088.40000 0004 0578 8220Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Jindrich Cinatl
- Dr. Petra Joh Forschungshaus, Frankfurt Am Main, Germany ,grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Stefan Vallo
- grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Frankfurt Am Main, Germany ,grid.411088.40000 0004 0578 8220Department of Urology, University Hospital Frankfurt, Frankfurt Am Main, Germany ,Urologie an der Zeil, Frankfurt Am Main, Germany
| |
Collapse
|
177
|
Dragulska SA, Poursharifi M, Chen Y, Wlodarczyk MT, Acosta Santiago M, Dottino P, Martignetti JA, Mieszawska AJ. Engineering and Validation of a Peptide-Stabilized Poly(lactic- co-glycolic) Acid Nanoparticle for Targeted Delivery of a Vascular Disruptive Agent in Cancer Therapy. Bioconjug Chem 2022; 33:2348-2360. [PMID: 36367382 DOI: 10.1021/acs.bioconjchem.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Developing a biocompatible and biodegradable nanoparticle (NP) carrier that integrates drug-loading capability, active targeting, and imaging modality is extremely challenging. Herein, we report an NP with a core of poly(lactic-co-glycolic) acid (PLGA) chemically modified with the drug combretastatin A4 (CA4), a vascular disrupting agent (VDA) in clinical development for ovarian cancer (OvCA) therapy. The NP is stabilized with a short arginine-glycine-aspartic acid-phenylalanine x3 (RGDFFF) peptide via self-assembly of the peptide on the PLGA surface. Importantly, the use of our RGDFFF coating replaces the commonly used polyethylene glycol (PEG) polymer that itself often induces an unwanted immunogenic response. In addition, the RGD motif of the peptide is well-known to preferentially bind to αvβ3 integrin that is implicated in tumor angiogenesis and is exploited as the NP's targeting component. The NP is enhanced with an optical imaging fluorophore label via chemical modification of the PLGA. The RGDFFF-CA4 NPs are synthesized using a nanoprecipitation method and are ∼75 ± 3.7 nm in diameter, where a peptide coating comprises a 2-3 nm outer layer. The NPs are serum stable for 72 h. In vitro studies using human umbilical cord vascular endothelial cells (HUVEC) confirmed the high uptake and biological activity of the RGDFFF-CA4 NP. NP uptake and viability reduction were demonstrated in OvCA cells grown in culture, and the NPs efficiently accumulated in tumors in a preclinical OvCA mouse model. The RGDFFF NP did not induce an inflammatory response when cultured with immune cells. Finally, the NP was efficiently taken up by patient-derived OvCA cells, suggesting a potential for future clinical applications.
Collapse
Affiliation(s)
- Sylwia A Dragulska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| | - Mina Poursharifi
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| | - Ying Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York10029, United States
| | - Marek T Wlodarczyk
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| | - Maxier Acosta Santiago
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| | - Peter Dottino
- Department of Obstetrics/Gynecology & Reproductive Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York10029, United States
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York10029, United States.,Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl., New York, New York10029, United States.,Rudy Ruggles Research Institute, Western Connecticut Health Network, 131 West St., Danbury, Connecticut06810, United States
| | - Aneta J Mieszawska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| |
Collapse
|
178
|
Utilization of Cancer Cell Line Screening to Elucidate the Anticancer Activity and Biological Pathways Related to the Ruthenium-Based Therapeutic BOLD-100. Cancers (Basel) 2022; 15:cancers15010028. [PMID: 36612025 PMCID: PMC9817855 DOI: 10.3390/cancers15010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BOLD-100 (sodium trans-[tetrachlorobis(1H indazole)ruthenate(III)]) is a ruthenium-based anticancer compound currently in clinical development. The identification of cancer types that show increased sensitivity towards BOLD-100 can lead to improved developmental strategies. Sensitivity profiling can also identify mechanisms of action that are pertinent for the bioactivity of complex therapeutics. Sensitivity to BOLD-100 was measured in a 319-cancer-cell line panel spanning 24 tissues. BOLD-100's sensitivity profile showed variation across the tissue lineages, including increased response in esophageal, bladder, and hematologic cancers. Multiple cancers, including esophageal, bile duct and colon cancer, had higher relative response to BOLD-100 than to cisplatin. Response to BOLD-100 showed only moderate correlation to anticancer compounds in the Genomics of Drug Sensitivity in Cancer (GDSC) database, as well as no clear theme in bioactivity of correlated hits, suggesting that BOLD-100 may have a differentiated therapeutic profile. The genomic modalities of cancer cell lines were modeled against the BOLD-100 sensitivity profile, which revealed that genes related to ribosomal processes were associated with sensitivity to BOLD-100. Machine learning modeling of the sensitivity profile to BOLD-100 and gene expression data provided moderative predictive value. These findings provide further mechanistic understanding around BOLD-100 and support its development for additional cancer types.
Collapse
|
179
|
Psilopatis I, Sykaras AG, Mandrakis G, Vrettou K, Theocharis S. Patient-Derived Organoids: The Beginning of a New Era in Ovarian Cancer Disease Modeling and Drug Sensitivity Testing. Biomedicines 2022; 11:1. [PMID: 36672509 PMCID: PMC9855526 DOI: 10.3390/biomedicines11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies. Despite great advances in treatment strategies, therapeutic resistance and the gap between preclinical data and actual clinical efficacy justify the necessity of developing novel models for investigating OC. Organoids represent revolutionary three-dimensional cell culture models, deriving from stem cells and reflecting the primary tissue's biology and pathology. The aim of the current review is to study the current status of mouse- and patient-derived organoids, as well as their potential to model carcinogenesis and perform drug screenings for OC. Herein, we describe the role of organoids in the assessment of high-grade serous OC (HGSOC) cells-of-origin, illustrate their use as promising preclinical OC models and highlight the advantages of organoid technology in terms of disease modelling and drug sensitivity testing.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Department of Gynecology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexandros G. Sykaras
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Department of Cytopathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Mandrakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
180
|
Nokhostin F, Azadehrah M, Azadehrah M. The multifaced role and therapeutic regulation of autophagy in ovarian cancer. Clin Transl Oncol 2022; 25:1207-1217. [PMID: 36534371 DOI: 10.1007/s12094-022-03045-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) is one of the tumors that occurs most frequently in women. Autophagy is involved in cell homeostasis, biomolecule recycling, and survival, making it a potential target for anti-tumor drugs. It is worth noting that growing evidence reveals a close link between autophagy and OC. In the context of OC, autophagy demonstrates activity as both a tumor suppressor and a tumor promoter, depending on the context. Autophagy's exact function in OC is greatly reliant on the tumor microenvironment (TME) and other conditions, such as hypoxia, nutritional deficiency, chemotherapy, and so on. However, what can be concluded from different studies is that autophagy-related signaling pathways, especially PI3K/AKT/mTOR axis, increase in advanced stages and malignant phenotype of the disease reduces autophagy and ultimately leads to tumor progression. This study sought to present a thorough understanding of the role of autophagy-related signaling pathways in OC and existing therapies targeting these signaling pathways.
Collapse
Affiliation(s)
- Fahimeh Nokhostin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Mahboobeh Azadehrah
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Malihe Azadehrah
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
181
|
Atiya HI, Frisbie L, Goldfeld E, Orellana T, Donnellan N, Modugno F, Calderon M, Watkins S, Zhang R, Elishaev E, Soong TR, Vlad A, Coffman L. Endometriosis-Associated Mesenchymal Stem Cells Support Ovarian Clear Cell Carcinoma through Iron Regulation. Cancer Res 2022; 82:4680-4693. [PMID: 36219681 PMCID: PMC9755968 DOI: 10.1158/0008-5472.can-22-1294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
Ovarian clear cell carcinoma (OCCC) is a deadly and treatment-resistant cancer, which arises within the unique microenvironment of endometriosis. In this study, we identified a subset of endometriosis-derived mesenchymal stem cells (enMSC) characterized by loss of CD10 expression that specifically support OCCC growth. RNA sequencing identified alterations in iron export in CD10-negative enMSCs and reciprocal changes in metal transport in cocultured OCCC cells. CD10-negative enMSCs exhibited elevated expression of iron export proteins hephaestin and ferroportin and donate iron to associated OCCCs, functionally increasing the levels of labile intracellular iron. Iron is necessary for OCCC growth, and CD10-negative enMSCs prevented the growth inhibitory effects of iron chelation. In addition, enMSC-mediated increases in OCCC iron resulted in a unique sensitivity to ferroptosis. In vitro and in vivo, treatment with the ferroptosis inducer erastin resulted in significant death of cancer cells grown with CD10-negative enMSCs. Collectively, this work describes a novel mechanism of stromal-mediated tumor support via iron donation. This work also defines an important role of endometriosis-associated MSCs in supporting OCCC growth and identifies a critical therapeutic vulnerability of OCCC to ferroptosis based on stromal phenotype. SIGNIFICANCE Endometriosis-derived mesenchymal stem cells support ovarian clear cell carcinoma via iron donation necessary for cancer growth, which also confers sensitivity to ferroptosis-inducing therapy.
Collapse
Affiliation(s)
- Huda I. Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ester Goldfeld
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taylor Orellana
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicole Donnellan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Calderon
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thing Rinda Soong
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anda Vlad
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Corresponding Author: Lan Coffman, Department of Medicine, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213. E-mail:
| |
Collapse
|
182
|
Microfibril Associated Protein 5 (MFAP5) Is Related to Survival of Ovarian Cancer Patients but Not Useful as a Prognostic Biomarker. Int J Mol Sci 2022; 23:ijms232415994. [PMID: 36555638 PMCID: PMC9787877 DOI: 10.3390/ijms232415994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer (OC) is usually diagnosed late due to its nonspecific symptoms and lack of reliable tools for early diagnostics and screening. OC studies concentrate on the search for new biomarkers and therapeutic targets. This study aimed to validate the MFAP5 gene, and its encoded protein, as a potential prognostic biomarker. In our previous study, we found that patients with high-grade serous OC who had higher MFAP5 mRNA levels had shorter survival, as compared with those with lower levels. Here, we used the Kaplan-Meier Plotter and CSIOVDB online tools to analyze possible associations of MFAP5 expression with survival and other clinico-pathological features. In these analyses, higher MFAP5 mRNA expression was observed in the more advanced FIGO stages and high-grade tumors, and was significantly associated with shorter overall and progression-free survival. Next, we analyzed the expression of the MFAP5 protein by immunohistochemistry (IHC) in 108 OC samples and tissue arrays. Stronger MFAP5 expression was associated with stronger desmoplastic reaction and serous vs. non-serous histology. We found no significant correlation between IHC results and survival, although there was a trend toward shorter survival in patients with the highest IHC scores. We searched for co-expressed genes/proteins using cBioPortal and analyzed potential MFAP5 interaction networks with the STRING tool. MFAP5 was shown to interact with many extracellular matrix proteins, and was connected to the Notch signaling pathway. Therefore, although not suitable as a prognostic biomarker for evaluation with a simple diagnostic tool like IHC, MFAP5 is worth further studies as a possible therapeutic target.
Collapse
|
183
|
Zhi Z, Sun Q, Tang W. Research advances and challenges in tissue-derived extracellular vesicles. Front Mol Biosci 2022; 9:1036746. [PMID: 36589228 PMCID: PMC9797684 DOI: 10.3389/fmolb.2022.1036746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EV) are vesicular vesicles with phospholipid bilayer, which are present in biological fluids and extracellular microenvironment. Extracellular vesicles serve as pivotal mediators in intercellular communication by delivering lipids, proteins, and RNAs to the recipient cells. Different from extracellular vesicles derived from biofluids and that originate from cell culture, the tissue derived extracellular vesicles (Ti-EVs) send us more enriched and accurate information of tissue microenvironment. Notably, tissue derived extracellular vesicles directly participate in the crosstalk between numerous cell types within microenvironment. Current research mainly focused on the extracellular vesicles present in biological fluids and cell culture supernatant, yet the studies on tissue derived extracellular vesicles are increasing due to the tissue derived extracellular vesicles are promising agents to reflect the occurrence and development of human diseases more accurately. In this review, we aimed to clarify the characteristics of tissue derived extracellular vesicles, specify the isolation methods and the roles of tissue derived extracellular vesicles in various diseases, including tumors. Moreover, we summarized the advances and challenges of tissue derived extracellular vesicles research.
Collapse
|
184
|
Samec T, Alatise KL, Boulos J, Gilmore S, Hazelton A, Coffin C, Alexander-Bryant A. Fusogenic peptide delivery of bioactive siRNAs targeting CSNK2A1 for treatment of ovarian cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:95-111. [PMID: 36213692 PMCID: PMC9530961 DOI: 10.1016/j.omtn.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Ovarian cancer has shown little improvement in survival among advanced-stage patients over the past decade. Current treatment strategies have been largely unsuccessful in treating advanced disease, with many patients experiencing systemic toxicity and drug-resistant metastatic cancer. This study evaluates novel fusogenic peptide carriers delivering short interfering RNA (siRNA) targeting casein kinase II, CSNK2A1, for reducing the aggressiveness of ovarian cancer. The peptides were designed to address two significant barriers to siRNA delivery: insufficient cellular uptake and endosomal entrapment. The three peptide variants developed, DIVA3, DIV3H, and DIV3W, were able to form monodisperse nanoparticle complexes with siRNA and protect siRNAs from serum and RNase degradation. Furthermore, DIV3W demonstrated optimal delivery of bioactive siRNAs into ovarian cancer cells with high cellular uptake efficiency and mediated up to 94% knockdown of CSNK2A1 mRNA compared with non-targeting siRNAs, resulting in decreased cell migration and recolonization in vitro. Intratumoral delivery of DIV3W-siCSNK2A1 complexes to subcutaneous ovarian tumors resulted in reduced CSNK2A1 mRNA and CK2α protein expression after 48 h and reduced tumor growth and migration in a 2-week multi-dosing regimen. These results demonstrate the potential of the DIV3W peptide to deliver bioactive siRNAs and confirms the role of CSNK2A1 in cell-cell communication and proliferation in ovarian cancer.
Collapse
Affiliation(s)
- Timothy Samec
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Kharimat Lora Alatise
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Jessica Boulos
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Serena Gilmore
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Anthony Hazelton
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Carleigh Coffin
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Angela Alexander-Bryant
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| |
Collapse
|
185
|
Sanders LM, Chandra R, Zebarjadi N, Beale HC, Lyle AG, Rodriguez A, Kephart ET, Pfeil J, Cheney A, Learned K, Currie R, Gitlin L, Vengerov D, Haussler D, Salama SR, Vaske OM. Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors. Commun Biol 2022; 5:1367. [PMID: 36513728 PMCID: PMC9747808 DOI: 10.1038/s42003-022-04075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer cell lines have been widely used for decades to study biological processes driving cancer development, and to identify biomarkers of response to therapeutic agents. Advances in genomic sequencing have made possible large-scale genomic characterizations of collections of cancer cell lines and primary tumors, such as the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA). These studies allow for the first time a comprehensive evaluation of the comparability of cancer cell lines and primary tumors on the genomic and proteomic level. Here we employ bulk mRNA and micro-RNA sequencing data from thousands of samples in CCLE and TCGA, and proteomic data from partner studies in the MD Anderson Cell Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to characterize the extent to which cancer cell lines recapitulate tumors. We identify dysregulation of a long non-coding RNA and microRNA regulatory network in cancer cell lines, associated with differential expression between cell lines and primary tumors in four key cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling and TP53 signaling. Our results emphasize the necessity for careful interpretation of cancer cell line experiments, particularly with respect to therapeutic treatments targeting these important cancer pathways.
Collapse
Affiliation(s)
- Lauren M. Sanders
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Rahul Chandra
- grid.34477.330000000122986657Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA USA
| | - Navid Zebarjadi
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Holly C. Beale
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - A. Geoffrey Lyle
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Analiz Rodriguez
- grid.241054.60000 0004 4687 1637Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Ellen Towle Kephart
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Jacob Pfeil
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Allison Cheney
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Katrina Learned
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Rob Currie
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Leonid Gitlin
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California USA
| | - David Vengerov
- grid.419799.b0000 0004 4662 4679Oracle Labs, Oracle Corporation, Pleasanton, CA USA
| | - David Haussler
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Sofie R. Salama
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Howard Hughes Medical Institute, UC Santa Cruz, Santa Cruz, CA USA
| | - Olena M. Vaske
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| |
Collapse
|
186
|
Keles H, Schofield CA, Rannikmae H, Edwards EE, Mohamet L. A Scalable 3D High-Content Imaging Protocol for Measuring a Drug Induced DNA Damage Response Using Immunofluorescent Subnuclear γH2AX Spots in Patient Derived Ovarian Cancer Organoids. ACS Pharmacol Transl Sci 2022; 6:12-21. [PMID: 36654745 PMCID: PMC9841773 DOI: 10.1021/acsptsci.2c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/14/2022]
Abstract
The high morbidity rate of ovarian cancer has remained unchanged during the past four decades, partly due to a lack of understanding of disease mechanisms and difficulties in developing new targeted therapies. Defective DNA damage detection and repair is one of the hallmarks of cancer cells and is a defining characteristic of ovarian cancer. Most in vitro studies to date involve viability measurements at scale using relevant cancer cell lines; however, the translation to the clinic is often lacking. The use of patient derived organoids is closing that translational gap, yet the 3D nature of organoid cultures presents challenges for assay measurements beyond viability measurements. In particular, high-content imaging has the potential for screening at scale, providing a better understanding of the mechanism of action of drugs or genetic perturbagens. In this study we report a semiautomated and scalable immunofluorescence imaging assay utilizing the development of a 384-well plate based subnuclear staining and clearing protocol and optimization of 3D confocal image analysis for studying DNA damage dose response in human ovarian cancer organoids. The assay was validated in four organoid models and demonstrated a predictable response to etoposide drug treatment with the lowest efficacy observed in the clinically most resistant model. This imaging and analysis method can be applied to other 3D organoid and spheroid models for use in high content screening.
Collapse
Affiliation(s)
- Hakan Keles
- Genome
Biology, Genomic Sciences, R&D, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom,E-mail: ,
| | - Christopher A. Schofield
- Genome
Biology, Genomic Sciences, R&D, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Helena Rannikmae
- Complex
In Vitro Models, In Vitro In Vivo Translation, R&D, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Erin Elizabeth Edwards
- Genome
Biology, Genomic Sciences, R&D, GSK, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lisa Mohamet
- Genome
Biology, Genomic Sciences, R&D, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| |
Collapse
|
187
|
Alshehri S, Pavlovič T, Farsinejad S, Behboodi P, Quan L, Centeno D, Kung D, Rezler M, Lee W, Jasiński P, Dziabaszewska E, Nowak-Markwitz E, Kalyon D, Zaborowski MP, Iwanicki M. Extracellular Matrix Modulates Outgrowth Dynamics in Ovarian Cancer. Adv Biol (Weinh) 2022; 6:e2200197. [PMID: 36084257 PMCID: PMC9772079 DOI: 10.1002/adbi.202200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Indexed: 01/28/2023]
Abstract
Ovarian carcinoma (OC) forms outgrowths that extend from the outer surface of an afflicted organ into the peritoneum. OC outgrowth formation is poorly understood due to the limited availability of cell culture models examining the behavior of cells that form outgrowths. Prompted by immunochemical evaluation of extracellular matrix (ECM) components in human tissues, laminin and collagen-rich ECM-reconstituted cell culture models amenable to studies of cell clusters that can form outgrowths are developed. It is demonstrated that ECM promotes outgrowth formation in fallopian tube non-ciliated epithelial cells (FNE) expressing mutant p53 and various OC cell lines. Outgrowths are initiated by cells that underwent outward translocation and retained the ability to intercalate into mesothelial cell monolayers. Electron microscopy, optical coherence tomography, and small amplitude oscillatory shear experiments reveal that increased ECM levels led to increased fibrous network thickness and high shear elasticity of the microenvironment. These physical characteristics are associated with outgrowth suppression. The low ECM microenvironment mimicks the viscoelasticity of malignant peritoneal fluid (ascites) and supports cell proliferation, cell translocation, and outgrowth formation. These results highlight the importance of the ECM microenvironment in modulating OC growth and can provide additional insights into the mode of dissemination of primary and recurrent ovarian tumors.
Collapse
Affiliation(s)
- Sarah Alshehri
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Tonja Pavlovič
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Sadaf Farsinejad
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Panteha Behboodi
- Department of Chemical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Li Quan
- Department of Chemical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Daniel Centeno
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Douglas Kung
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Marta Rezler
- Poznań University of Medical Sciences, Collegium Maius, Fredry 10, Poznań, 61-701, Poland
| | - Woo Lee
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
- Department of Chemical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Piotr Jasiński
- Department of Pathology, Poznań University of Medical Sciences, Polna 33, Poznań, 60-535, Poland
| | - Elżbieta Dziabaszewska
- Department of Pathology, Poznań University of Medical Sciences, Polna 33, Poznań, 60-535, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznań University of Medical Sciences, Polna 33, Poznań, 60-535, Poland
| | - Dilhan Kalyon
- Department of Chemical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Mikołaj P Zaborowski
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznań University of Medical Sciences, Polna 33, Poznań, 60-535, Poland
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| |
Collapse
|
188
|
Saha A, Ha MJ, Acharyya S, Baladandayuthapani V. A Bayesian precision medicine framework for calibrating individualized therapeutic indices in cancer. Ann Appl Stat 2022. [DOI: 10.1214/21-aoas1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Abhisek Saha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health
| | - Min Jin Ha
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
189
|
Liu L, Cheng M, Guo H, Guan Q, You J, Dou H. Multidimensional Quantitative Measurement of Cancer Chemoresistance through Differential ZIF-8 Nanoparticle Cellular Retention. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51798-51807. [PMID: 36367515 DOI: 10.1021/acsami.2c17692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemoresistance of cancer cells is conventionally quantified by half-maximal inhibitory concentration (IC50) or multidrug resistance gene 1 (MDR1) values, but these metrics can only reflect the overall drug resistance level of a cancer cell line. Meanwhile, the multidimensional evaluation of both the heterogeneity in a cell line and the drug resistance degree of each cell still presents a daunting challenge. We report here that the cellular heterogeneity, cellular cross contamination, and the proportion of chemoresistant cancer cells can be visualized via flow cytometry through the differential cellular retention of fluorescent ZIF-8 nanoparticles. In addition, we show that the degree of drug resistance exhibited by each cell subpopulation can be quantified by differing fluorescence of the drug-resistant and drug-sensitive cells in the corresponding flow cytometry profile, and the quantified metric S is highly consistent with the MDR1 expression results. Importantly, this novel strategy is applicable to various cancer cell lines, thus demonstrating a universal diagnosis platform for multidimensional, quantitative, and highly efficient diagnosis of cancer chemoresistance.
Collapse
Affiliation(s)
- Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai201203, China
| | - Meng Cheng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai201203, China
| | - Qixiao Guan
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai201203, China
| | - Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai201203, China
| |
Collapse
|
190
|
Rivera M, Toledo-Jacobo L, Romero E, Oprea TI, Moses ME, Hudson LG, Wandinger-Ness A, Grimes MM. Agent-based modeling predicts RAC1 is critical for ovarian cancer metastasis. Mol Biol Cell 2022; 33:ar138. [PMID: 36200848 PMCID: PMC9727804 DOI: 10.1091/mbc.e21-11-0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Experimental and computational studies pinpoint rate-limiting step(s) in metastasis governed by Rac1. Using ovarian cancer cell and animal models, Rac1 expression was manipulated, and quantitative measurements of cell-cell and cell-substrate adhesion, cell invasion, mesothelial clearance, and peritoneal tumor growth discriminated the tumor behaviors most highly influenced by Rac1. The experimental data were used to parameterize an agent-based computational model simulating peritoneal niche colonization, intravasation, and hematogenous metastasis to distant organs. Increased ovarian cancer cell survival afforded by the more rapid adhesion and intravasation upon Rac1 overexpression is predicted to increase the numbers of and the rates at which tumor cells are disseminated to distant sites. Surprisingly, crowding of cancer cells along the blood vessel was found to decrease the numbers of cells reaching a distant niche irrespective of Rac1 overexpression or knockdown, suggesting that sites for tumor cell intravasation are rate limiting and become accessible if cells intravasate rapidly or are displaced due to diminished viability. Modeling predictions were confirmed through animal studies of Rac1-dependent metastasis to the lung. Collectively, the experimental and modeling approaches identify cell adhesion, rapid intravasation, and survival in the blood as parameters in the ovarian metastatic cascade that are most critically dependent on Rac1.
Collapse
Affiliation(s)
- Melanie Rivera
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Leslie Toledo-Jacobo
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Elsa Romero
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Tudor I. Oprea
- Division of Translational Informatics, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131,Translational Informatics, Roivant Discovery, Boston, MA 02210
| | - Melanie E. Moses
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131
| | - Laurie G. Hudson
- Cancer Research Facility, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131,Cancer Research Facility, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131,*Address correspondence to: Angela Wandinger-Ness ()
| | - Martha M. Grimes
- Cancer Research Facility, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
191
|
Differences in Durability of PARP Inhibition by Clinically Approved PARP Inhibitors: Implications for Combinations and Scheduling. Cancers (Basel) 2022; 14:cancers14225559. [PMID: 36428653 PMCID: PMC9688250 DOI: 10.3390/cancers14225559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Six PARP inhibitors (PARPi) are approved for cancer therapy as monotherapy agents in daily or twice-daily continuous dosing schedules to maintain the necessary continuous suppression of PARP activity. Continuous PARP inhibition is required for single-agent anticancer activity. To investigate if such intense schedules are necessary, we determined the durability of PARP inhibition up to 72 h after a 1 h pulse of 1 µM of five of the approved PARPi, rucaparib, olaparib, niraparib, talazoparib and pamiparib, in IGROV-1 and ES-2 (human ovarian cancer) cells. Rucaparib caused the most persistent inhibition of PARP activity when maintained at ≥75% at 72 h after drug withdrawal in both IGROV-1 and ES-2 cells, but inhibition was more rapidly lost with the other PARPi. PARPi are also under clinical investigation with ATR inhibitors, and thus, we evaluated the implications for scheduling with an ATR inhibitor (VE-821). Rucaparib enhanced VE-821 cytotoxicity in co-exposure, sequential and delayed (24 h drug-free) schedules in IGROV-1 and ES-2 cells. Olaparib and niraparib enhanced VE-821 cytotoxicity only in co-exposed cells and not in sequential exposures. These data have clinical implications for the scheduling of PARPi as a monotherapy and in combination with ATR inhibitors and other cytotoxic drugs.
Collapse
|
192
|
Chang YH, Chu TY, Ding DC. Spontaneous Transformation of a p53 and Rb-Defective Human Fallopian Tube Epithelial Cell Line after Long Passage with Features of High-Grade Serous Carcinoma. Int J Mol Sci 2022; 23:ijms232213843. [PMID: 36430324 PMCID: PMC9695839 DOI: 10.3390/ijms232213843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers, and 80% are high-grade serous carcinomas (HGSOC). Despite advances in chemotherapy and the development of targeted therapies, the survival rate of HGSOC has only moderately improved. Therefore, a cell model that reflects the pathogenesis and clinical characteristics of this disease is urgently needed. We previously developed a human fallopian tube epithelial cell line (FE25) with p53 and Rb deficiencies. After long-term culture in vitro, cells at high-passage numbers showed spontaneous transformation (FE25L). This study aimed to compare FE25 cells cultured in vitro for low (passage 16-31) and high passages (passage 116-139) to determine whether these cells can serve as an ideal cell model of HGSOC. Compared to the cells at low passage, FE25L cells showed increased cell proliferation, clonogenicity, polyploidy, aneuploidy, cell migration, and invasion. They also showed more resistance to chemotherapy and the ability to grow tumors in xenografts. RNA-seq data also showed upregulation of hypoxia, epithelial-mesenchymal transition (EMT), and the NF-κB pathway in FE25L compared to FE25 cells. qRT-PCR confirmed the upregulation of EMT, cytokines, NF-κB, c-Myc, and the Wnt/β-catenin pathway. Cross-platform comparability found that FE25L cells could be grouped with the other most likely HGSOC lines, such as TYKNU and COV362. In conclusion, FE25L cells showed more aggressive malignant behavior than FE25 cells and hence might serve as a more suitable model for HGSOC research.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
| | - Tang-Yuan Chu
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
- Institute of Medical Sciences, Collagen of Medicine, Tzu Chi University, Hualien 97005, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
- Institute of Medical Sciences, Collagen of Medicine, Tzu Chi University, Hualien 97005, Taiwan
- Correspondence: ; Tel.: +886-3856-1825 (ext. 13383); Fax: +886-3857-7161
| |
Collapse
|
193
|
Gomez S, Cox OL, Walker RR, Rentia U, Hadley M, Arthofer E, Diab N, Grundy EE, Kanholm T, McDonald JI, Kobyra J, Palmer E, Noonepalle S, Villagra A, Leitenberg D, Bollard CM, Saunthararajah Y, Chiappinelli KB. Inhibiting DNA methylation and RNA editing upregulates immunogenic RNA to transform the tumor microenvironment and prolong survival in ovarian cancer. J Immunother Cancer 2022; 10:jitc-2022-004974. [PMID: 36343976 PMCID: PMC9644370 DOI: 10.1136/jitc-2022-004974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Novel therapies are urgently needed for ovarian cancer (OC), the fifth deadliest cancer in women. Preclinical work has shown that DNA methyltransferase inhibitors (DNMTis) can reverse the immunosuppressive tumor microenvironment in OC. Inhibiting DNA methyltransferases activate transcription of double-stranded (ds)RNA, including transposable elements. These dsRNAs activate sensors in the cytoplasm and trigger type I interferon (IFN) signaling, recruiting host immune cells to kill the tumor cells. Adenosine deaminase 1 (ADAR1) is induced by IFN signaling and edits mammalian dsRNA with an A-to-I nucleotide change, which is read as an A-to-G change in sequencing data. These edited dsRNAs cannot be sensed by dsRNA sensors, and thus ADAR1 inhibits the type I IFN response in a negative feedback loop. We hypothesized that decreasing ADAR1 editing would enhance the DNMTi-induced immune response. METHODS Human OC cell lines were treated in vitro with DNMTi and then RNA-sequenced to measure RNA editing. Adar1 was stably knocked down in ID8 Trp53-/- mouse OC cells. Control cells (shGFP) or shAdar1 cells were tested with mock or DNMTi treatment. Tumor-infiltrating immune cells were immunophenotyped using flow cytometry and cell culture supernatants were analyzed for secreted chemokines/cytokines. Mice were injected with syngeneic shAdar1 ID8 Trp53-/- cells and treated with tetrahydrouridine/DNMTi while given anti-interferon alpha and beta receptor 1, anti-CD8, or anti-NK1.1 antibodies every 3 days. RESULTS We show that ADAR1 edits transposable elements in human OC cell lines after DNMTi treatment in vitro. Combining ADAR1 knockdown with DNMTi significantly increases pro-inflammatory cytokine/chemokine production and sensitivity to IFN-β compared with either perturbation alone. Furthermore, DNMTi treatment and Adar1 loss reduces tumor burden and prolongs survival in an immunocompetent mouse model of OC. Combining Adar1 loss and DNMTi elicited the most robust antitumor response and transformed the immune microenvironment with increased recruitment and activation of CD8+ T cells. CONCLUSION In summary, we showed that the survival benefit from DNMTi plus ADAR1 inhibition is dependent on type I IFN signaling. Thus, epigenetically inducing transposable element transcription combined with inhibition of RNA editing is a novel therapeutic strategy to reverse immune evasion in OC, a disease that does not respond to current immunotherapies.
Collapse
Affiliation(s)
- Stephanie Gomez
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Olivia L Cox
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Reddick R Walker
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Uzma Rentia
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Melissa Hadley
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Elisa Arthofer
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Noor Diab
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Tomas Kanholm
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - James I McDonald
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Julie Kobyra
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Erica Palmer
- Department of Biochemistry, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Satish Noonepalle
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Alejandro Villagra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - David Leitenberg
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,Department of Pediatrics, Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
| | - Catherine M Bollard
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,Department of Pediatrics, Children's National Hospital, Washington, District of Columbia, USA
| | - Yogen Saunthararajah
- Department of Hematology and Medical Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
194
|
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H, Magalhaes I. Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol 2022; 86:207-223. [PMID: 35395389 DOI: 10.1016/j.semcancer.2022.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Ovarian cancer encompasses a heterogeneous group of malignancies that involve the ovaries, fallopian tubes and the peritoneal cavity. Despite major advances made within the field of cancer, the majority of patients with ovarian cancer are still being diagnosed at an advanced stage of the disease due to lack of effective screening tools. The overall survival of these patients has, therefore, not substantially improved over the past decades. Most patients undergo debulking surgery and treatment with chemotherapy, but often micrometastases remain and acquire resistance to the therapy, eventually leading to disease recurrence. Here, we summarize the current knowledge in epithelial ovarian cancer development and metastatic progression. For the most common subtypes, we focus further on the properties and functions of the immunosuppressive tumor microenvironment, including the extracellular matrix. Current and future treatment modalities are discussed and finally we provide an overview of the different experimental models used to develop novel therapies.
Collapse
Affiliation(s)
- Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Lheureux
- University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Toronto, Ontario, Canada
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical unit Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
195
|
Bi-EB: Empirical Bayesian Biclustering for Multi-Omics Data Integration Pattern Identification among Species. Genes (Basel) 2022; 13:genes13111982. [DOI: 10.3390/genes13111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Although several biclustering algorithms have been studied, few are used for cross-pattern identification across species using multi-omics data mining. A fast empirical Bayesian biclustering (Bi-EB) algorithm is developed to detect the patterns shared from both integrated omics data and between species. The Bi-EB algorithm addresses the clinical critical translational question using the bioinformatics strategy, which addresses how modules of genotype variation associated with phenotype from cancer cell screening data can be identified and how these findings can be directly translated to a cancer patient subpopulation. Empirical Bayesian probabilistic interpretation and ratio strategy are proposed in Bi-EB for the first time to detect the pairwise regulation patterns among species and variations in multiple omics on a gene level, such as proteins and mRNA. An expectation–maximization (EM) optimal algorithm is used to extract the foreground co-current variations out of its background noise data by adjusting parameters with bicluster membership probability threshold Ac; and the bicluster average probability p. Three simulation experiments and two real biology mRNA and protein data analyses conducted on the well-known Cancer Genomics Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE) verify that the proposed Bi-EB algorithm can significantly improve the clustering recovery and relevance accuracy, outperforming the other seven biclustering methods—Cheng and Church (CC), xMOTIFs, BiMax, Plaid, Spectral, FABIA, and QUBIC—with a recovery score of 0.98 and a relevance score of 0.99. At the same time, the Bi-EB algorithm is used to determine shared the causality patterns of mRNA to the protein between patients and cancer cells in TCGA and CCLE breast cancer. The clinically well-known treatment target protein module estrogen receptor (ER), ER (p118), AR, BCL2, cyclin E1, and IGFBP2 are identified in accordance with their mRNA expression variations in the luminal-like subtype. Ten genes, including CCNB1, CDH1, KDR, RAB25, PRKCA, etc., found which can maintain the high accordance of mRNA–protein for both breast cancer patients and cell lines in basal-like subtypes for the first time. Bi-EB provides a useful biclustering analysis tool to discover the cross patterns hidden both in multiple data matrixes (omics) and species. The implementation of the Bi-EB method in the clinical setting will have a direct impact on administrating translational research based on the cancer cell screening guidance.
Collapse
|
196
|
Gunel NS, Yildirim N, Ozates NP, Oktay LM, Bagca BG, Sogutlu F, Ozsaran A, Korkmaz M, Biray Avci C. Investigation of cytotoxic and apoptotic effects of disodium pentaborate decahydrate on ovarian cancer cells and assessment of gene profiling. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:8. [PMID: 36308567 DOI: 10.1007/s12032-022-01870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 01/17/2023]
Abstract
After revealing the anti-cancer properties of boron, which is included in the category of essential elements for human health by the World Health Organization, the therapeutic potential of boron compounds has been begun to be evaluated, and its molecular effect mechanisms have still been among the research subjects. In ovarian cancer, mutations or amplifications frequently occur in the PI3K/Akt/mTOR pathway components, and dysregulation of this pathway is shown among the causes of treatment failure. In the present study, it was aimed to investigate the anti-cancer properties of boron-containing DPD in SKOV3 cells, which is an epithelial ovarian cancer model, through PI3K/AKT/mTOR pathway. The cytotoxic activity of DPD in SKOV3 cells was evaluated by WST-1 test, apoptotic effect by Annexin V and JC-1 test. The gene expressions associated with PI3K/AKT/mTOR pathway were determined by real-time qRT-PCR. In SKOV3 cells, the IC50 value of DPD was found to be 6.7 mM, 5.6 mM, and 5.2 mM at 24th, 48th and 72nd hour, respectively. Compared with the untreated control group, DPD treatment was found to induce apoptosis 2.6-fold and increase mitochondrial membrane depolarization 4.5-fold. DPD treatment was found to downregulate PIK3CA, PIK3CG, AKT2, IGF1, IRS1, MAPK3, HIF-1, VEGFC, CAB39, CAB39L, STRADB, PRKAB2, PRKAG3, TELO2, RICTOR, MLST8, and EIF4B genes and upregulate TP53, GSK3B, FKBP8, TSC2, ULK1, and ULK2 genes. These results draw attention to the therapeutic potential of DPD, which is frequently exposed in daily life, in epithelial ovarian cancer and show that it can be a candidate compound in combination with chemotherapeutics.
Collapse
Affiliation(s)
- Nur Selvi Gunel
- Department of Medical Biology, Medicine Faculty, Ege University, Izmir, Turkey
| | - Nuri Yildirim
- Department of Obstetrics and Gynecology, Medicine Faculty, Ege University, Izmir, Turkey
| | | | - Latife Merve Oktay
- Department of Medical Biology, Medicine Faculty, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology, Medicine Faculty, Adnan Menderes University, Izmir, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Medicine Faculty, Ege University, Izmir, Turkey
| | - Aydin Ozsaran
- Department of Obstetrics and Gynecology, Medicine Faculty, Ege University, Izmir, Turkey
| | - Mehmet Korkmaz
- Department of Medical Biology, Medicine Faculty, Celal Bayar University, Manisa, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Medicine Faculty, Ege University, Izmir, Turkey.
| |
Collapse
|
197
|
Coelho R, Tozzi A, Disler M, Lombardo F, Fedier A, López MN, Freuler F, Jacob F, Heinzelmann-Schwarz V. Overlapping gene dependencies for PARP inhibitors and carboplatin response identified by functional CRISPR-Cas9 screening in ovarian cancer. Cell Death Dis 2022; 13:909. [PMID: 36307400 PMCID: PMC9616819 DOI: 10.1038/s41419-022-05347-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
Abstract
PARP inhibitors (PARPi) have revolutionized the therapeutic landscape of epithelial ovarian cancer (EOC) treatment with outstanding benefits in regard to progression-free survival, especially in patients either carrying BRCA1/2 mutations or harboring defects in the homologous recombination repair system. Yet, it remains uncertain which PARPi to apply and how to predict responders when platinum sensitivity is unknown. To shed light on the predictive power of genes previously suggested to be associated with PARPi response, we systematically reviewed the literature and identified 79 publications investigating a total of 93 genes. The top candidate genes were further tested using a comprehensive CRISPR-Cas9 mutagenesis screening in combination with olaparib treatment. Therefore, we generated six constitutive Cas9+ EOC cell lines and profiled 33 genes in a CRISPR-Cas9 cell competition assay using non-essential (AAVS1) and essential (RPA3 and PCNA) genes for cell fitness as negative and positive controls, respectively. We identified only ATM, MUS81, NBN, BRCA2, and RAD51B as predictive markers for olaparib response. As the major survival benefit of PARPi treatment was reported in platinum-sensitive tumors, we next assessed nine top candidate genes in combination with three PARPi and carboplatin. Interestingly, we observed similar dropout rates in a gene and compound independent manner, supporting the strong correlation of cancer cell response to compounds that rely on DNA repair for their effectiveness. In addition, we report on CDK12 as a common vulnerability for EOC cell survival and proliferation without altering the olaparib response, highlighting its potential as a therapeutic target in EOC.
Collapse
Affiliation(s)
- Ricardo Coelho
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandra Tozzi
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland ,grid.410567.1Hospital for Women, University Hospital Basel, Basel, Switzerland
| | - Muriel Disler
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Flavio Lombardo
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Florian Freuler
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland ,grid.410567.1Hospital for Women, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
198
|
Chang YH, Lin YJ, Huang CY, Harnod T, Ding DC. Shikonin impedes type 2 ovarian cancer progression via FasL/caspase-8 and mir-874-3p/XIAP axis and prohibits the properties of stemness. Am J Cancer Res 2022; 12:4584-4601. [PMID: 36381333 PMCID: PMC9641410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer in women. Shikonin (SHK), derived from Lithospermum eryothrorhizon, can reduce cancer activity; however, its clinical effect on type 2 ovarian cancer cells remains undetermined. Here, we studied the effects of SHK on type 2 ovarian cancer using the KURAMOCHI, OVSAHO, CP70, and ascites E04 cell lines. The proliferation curve and half-maximal inhibitory concentration of SHK for the cell lines were evaluated using the second-generation tetrazolium dye assay and the cell viability were determined by the annexin V/PI as well as TUNEL assay. The caspase dependent pathway was performed by western blotting assay with pan-caspase inhibitor Z-VAD-FMK and SHK induced miR-874-3p expression thus suppressed anti-apoptosis markers XIAP and Bcl-xL. The effect of SHK on type 2 ovarian cancer cell migration and invasion was evaluated using the wound healing and transwell assays. Quantitative RT-PCR and western blot was used to evaluate cancer stem cell (CSC)-related gene/protein (OCT4, SOX2, NANOG, ALDH1, and C-MYC) expressions, sphere formation assay was executed and a xenograft animal model for in vivo antitumor effects of SHK. Taken together, Shikonin suppressed type 2 ovarian cancer cell viability, migration, and invasion abilities; decreased CSC-related markers expression as well as the sphere colony numbers. It also reduced the tumorigenicity of KURAMOCHI ALDH+ cells and induced anti-tumor effect in a xenograft model. Thus, SHK could contribute a potential therapeutic strategy on type 2 ovarian cancer cells via multiple functions.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualien 970, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 970, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 970, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
- Department of Biological Science and Technology, Asia UniversityTaichung 404, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and TechnologyHualien 970, Taiwan
| | - Tomor Harnod
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualien 970, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi UniversityHualien 970, Taiwan
| |
Collapse
|
199
|
Hoare JI, Hockings H, Saxena J, Silva VL, Haughey MJ, Wood GE, Nicolini F, Mirza H, McNeish IA, Huang W, Maniati E, Graham TA, Lockley M. A novel cell line panel reveals non-genetic mediators of platinum resistance and phenotypic diversity in high grade serous ovarian cancer. Gynecol Oncol 2022; 167:96-106. [PMID: 35918200 DOI: 10.1016/j.ygyno.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Resistance to cancer therapy is an enduring challenge and accurate and reliable preclinical models are lacking. We interrogated this unmet need using high grade serous ovarian cancer (HGSC) as a disease model. METHODS We created five in vitro and two in vivo platinum-resistant HGSC models and characterised the entire cell panel via whole genome sequencing, RNASeq and creation of intraperitoneal models. RESULTS Mutational signature analysis indicated that platinum-resistant cell lines evolved from a pre-existing ancestral clone but a unifying mutational cause for drug resistance was not identified. However, cisplatin-resistant and carboplatin-resistant cells evolved recurrent changes in gene expression that significantly overlapped with independent samples obtained from multiple patients with relapsed HGSC. Gene Ontology Biological Pathways (GOBP) related to the tumour microenvironment, particularly the extracellular matrix, were repeatedly enriched in cisplatin-resistant cells, carboplatin-resistant cells and also in human resistant/refractory samples. The majority of significantly over-represented GOBP however, evolved uniquely in either cisplatin- or carboplatin-resistant cell lines resulting in diverse intraperitoneal behaviours that reflect different clinical manifestations of relapsed human HGSC. CONCLUSIONS Our clinically relevant and usable models reveal a key role for non-genetic factors in the evolution of chemotherapy resistance. Biological pathways relevant to the extracellular matrix were repeatedly expressed by resistant cancer cells in multiple settings. This suggests that recurrent gene expression changes provide a fitness advantage during platinum therapy and also that cancer cell-intrinsic mechanisms influence the tumour microenvironment during the evolution of drug resistance. Candidate genes and pathways identified here could reveal therapeutic opportunities in platinum-resistant HGSC.
Collapse
Affiliation(s)
- J I Hoare
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - H Hockings
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - J Saxena
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - V L Silva
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - M J Haughey
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - G E Wood
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - F Nicolini
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - H Mirza
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - I A McNeish
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - W Huang
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - E Maniati
- Bioinformatics Core Service, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - T A Graham
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - M Lockley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Gynaecological Oncology, Cancer Services, University College London Hospital, London, London, UK.
| |
Collapse
|
200
|
Tang S, Shen Y, Wei X, Shen Z, Lu W, Xu J. Olaparib synergizes with arsenic trioxide by promoting apoptosis and ferroptosis in platinum-resistant ovarian cancer. Cell Death Dis 2022; 13:826. [PMID: 36163324 PMCID: PMC9513087 DOI: 10.1038/s41419-022-05257-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are efficacious in treating platinum-sensitive ovarian cancer (OC), but demonstrate limited efficiency in patients with platinum-resistant OC. Thus, further investigations into combined strategies that enhance the response to PARP inhibitors (PARPi) in platinum-resistant OC are required. The present study aimed to investigate the combined therapy of arsenic trioxide (ATO) with olaparib, a common PARPi, and determine how this synergistic cytotoxicity works in platinum-resistant OC cells. Functional assays demonstrated that the combined treatment of olaparib with ATO significantly suppressed cell proliferation and colony formation, and enhanced DNA damage as well as cell apoptosis in A2780-CIS and SKOV3-CIS cell lines. Results of the present study also demonstrated that a combination of olaparib with ATO increased lipid peroxidation and eventually triggered ferroptosis. Consistently, the combined treatment synergistically suppressed tumor growth in mice xenograft models. Mechanistically, ATO in combination with olaparib activated the AMPK α pathway and suppressed the expression levels of stearoyl-CoA desaturase 1 (SCD1). Collectively, results of the present study demonstrated that treatment with ATO enhanced the effects of olaparib in platinum-resistant OC.
Collapse
Affiliation(s)
- Sangsang Tang
- grid.13402.340000 0004 1759 700XWomen’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, 310006 Hangzhou, Zhejiang China
| | - Yuanming Shen
- grid.13402.340000 0004 1759 700XDepartment of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, 310006 Hangzhou, Zhejiang China
| | - Xinyi Wei
- grid.13402.340000 0004 1759 700XWomen’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, 310006 Hangzhou, Zhejiang China
| | - Zhangjin Shen
- grid.13402.340000 0004 1759 700XWomen’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, 310006 Hangzhou, Zhejiang China
| | - Weiguo Lu
- grid.13402.340000 0004 1759 700XDepartment of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, 310006 Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Junfen Xu
- grid.13402.340000 0004 1759 700XDepartment of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, 310006 Hangzhou, Zhejiang China
| |
Collapse
|