151
|
Abstract
PURPOSE OF REVIEW There is a long-standing hypothesis that febrile status epilepticus (FSE) can cause brain injury, particularly to the hippocampus. This review will evaluate recent evidence on the relationships between FSE and later epilepsy and cognitive impairments. Potential strategies for minimizing adverse outcomes will be discussed. RECENT FINDINGS There are two major longitudinal studies evaluating the outcomes for FSE. These studies provide evidence of acute hippocampal edema that evolves to mesial temporal sclerosis in a small number of children (∼7%). However, none of these children have developed temporal lobe epilepsy. There is also evidence of more global white matter injury. Development is affected, with a loss of about 10 developmental quotient points and there is evidence for accelerated forgetting. These findings do not correlate with MRI parameters. Therefore, FSE can cause a wide spectrum of injury, but the relationship between this and clinically relevant adverse outcomes remains uncertain. SUMMARY Although there is accumulating evidence that FSE can cause brain injury, the strategies to minimize the impact remain uncertain. Imaging requires sedation, with inherent risks, and may not be appropriate for all children with FSE, given the small number with significant hippocampal edema that could be a biomarker. The alternative of treating all children requires a very safe drug which currently does not exist.
Collapse
|
152
|
Cifuentes Castro VH, López Valenzuela CL, Salazar Sánchez JC, Peña KP, López Pérez SJ, Ibarra JO, Villagrán AM. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol 2014; 12:490-508. [PMID: 25977677 PMCID: PMC4428024 DOI: 10.2174/1570159x13666141223223657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto Morales Villagrán
- Department of Molecular and Cellular Biology, Camino Ramón Padilla Sánchez 2100, Nextipac, Zapopan,
Jalisco, México, Zip code: 45110, Mexico
| |
Collapse
|
153
|
Tyler AL, McGarr TC, Beyer BJ, Frankel WN, Carter GW. A genetic interaction network model of a complex neurological disease. GENES BRAIN AND BEHAVIOR 2014; 13:831-40. [PMID: 25251056 PMCID: PMC4241132 DOI: 10.1111/gbb.12178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/26/2014] [Accepted: 09/18/2014] [Indexed: 12/05/2022]
Abstract
Absence epilepsy (AE) is a complex, heritable disease characterized by a brief disruption of normal behavior and accompanying spike wave discharges (SWD) on the electroencephalogram. Only a handful of genes has been definitively associated with AE in humans and rodent models. Most studies suggest that genetic interactions play a large role in the etiology and severity of AE, but mapping and understanding their architecture remains a challenge, requiring new computational approaches. Here we use Combined Analysis of Pleiotropy and Epistasis (CAPE) to detect and interpret genetic interactions in a meta-population derived from three C3H x B6 strain crosses, each of which is fixed for a different SWD-causing mutation. Although each mutation causes SWD through a different molecular mechanism, the phenotypes caused by each mutation are exacerbated on the C3H genetic background compared with B6, suggesting common modifiers. By combining information across two phenotypic measures – SWD duration and frequency – CAPE revealed a large, directed genetic network consisting of suppressive and enhancing interactions between loci on 10 chromosomes. These results illustrate the power of CAPE in identifying novel modifier loci and interactions in a complex neurological disease, towards a more comprehensive view of its underlying genetic architecture.
Collapse
Affiliation(s)
- A L Tyler
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | | |
Collapse
|
154
|
Lachance-Touchette P, Choudhury M, Stoica A, Di Cristo G, Cossette P. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner. Front Cell Neurosci 2014; 8:317. [PMID: 25352779 PMCID: PMC4196543 DOI: 10.3389/fncel.2014.00317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/21/2014] [Indexed: 11/13/2022] Open
Abstract
Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1−/− GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic generalized epilepsy syndromes.
Collapse
Affiliation(s)
- Pamela Lachance-Touchette
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - Mayukh Choudhury
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal Montréal, QC, Canada
| | - Ana Stoica
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - Graziella Di Cristo
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal Montréal, QC, Canada
| | - Patrick Cossette
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
155
|
|
156
|
van Luijtelaar G, Onat FY, Gallagher MJ. Animal models of absence epilepsies: what do they model and do sex and sex hormones matter? Neurobiol Dis 2014; 72 Pt B:167-79. [PMID: 25132554 DOI: 10.1016/j.nbd.2014.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022] Open
Abstract
While epidemiological data suggest a female prevalence in human childhood- and adolescence-onset typical absence epilepsy syndromes, the sex difference is less clear in adult-onset syndromes. In addition, although there are more females than males diagnosed with typical absence epilepsy syndromes, there is a paucity of studies on sex differences in seizure frequency and semiology in patients diagnosed with any absence epilepsy syndrome. Moreover, it is unknown if there are sex differences in the prevalence or expression of atypical absence epilepsy syndromes. Surprisingly, most studies of animal models of absence epilepsy either did not investigate sex differences, or failed to find sex-dependent effects. However, various rodent models for atypical syndromes such as the AY9944 model (prepubertal females show a higher incidence than prepubertal males), BN model (also with a higher prevalence in males) and the Gabra1 deletion mouse in the C57BL/6J strain offer unique possibilities for the investigation of the mechanisms involved in sex differences. Although the mechanistic bases for the sex differences in humans or these three models are not yet known, studies of the effects of sex hormones on seizures have offered some possibilities. The sex hormones progesterone, estradiol and testosterone exert diametrically opposite effects in genetic absence epilepsy and pharmacologically-evoked convulsive types of epilepsy models. In addition, acute pharmacological effects of progesterone on absence seizures during proestrus are opposite to those seen during pregnancy. 17β-Estradiol has anti-absence seizure effects, but it is only active in atypical absence models. It is speculated that the pro-absence action of progesterone, and perhaps also the delayed pro-absence action of testosterone, are mediated through the neurosteroid allopregnanolone and its structural and functional homolog, androstanediol. These two steroids increase extrasynaptic thalamic tonic GABAergic inhibition by selectively targeting neurosteroid-selective subunits of GABAA receptors (GABAARs). Neurosteroids also modulate the expression of GABAAR containing the γ2, α4, and δ subunits. It is hypothesized that differences in subunit expression during pregnancy and ovarian cycle contribute to the opposite effects of progesterone in these two hormonal states.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre of Cognition, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Filiz Yilmaz Onat
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
157
|
Srivastava S, Cohen J, Pevsner J, Aradhya S, McKnight D, Butler E, Johnston M, Fatemi A. A novel variant in GABRB2 associated with intellectual disability and epilepsy. Am J Med Genet A 2014; 164A:2914-21. [PMID: 25124326 DOI: 10.1002/ajmg.a.36714] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/07/2014] [Indexed: 01/26/2023]
Abstract
The γ-aminobutyric acid type A (GABAA ) receptor is one of the three main classes of receptors activated by GABA, the principal inhibitory neurotransmitter in the central nervous system. Mutations in genes encoding various subunits of this receptor (GABRA1, GABRA2, GABRA4, GABRA5, GABRA6, GABRB1, GABRB3, GABRG1, GABRG2, GABRG3, and GABRD) are implicated in a number of neurological and developmental disorders, including epilepsy and autism. To date, no human genetics studies have implicated mutations in GABRB2, encoding the β2 subunit of the GABAA receptor, with neurodevelopmental disorders. Here we present a 12-year-old girl with intellectual disability and epilepsy, who was discovered by whole exome sequencing to have a de novo heterozygous missense variant in exon 4 of GABRB2 (c.236T>C; p.M79T). This variant is likely pathogenic, based on in silico analyses, as well as the fact that it results in the non-conservative substitution of a non-polar amino acid with a polar amino acid at a position that is evolutionarily conserved across multiple species. Our findings underscore the need for further investigation into the mechanisms by which mutations in GABRB2 contribute to neurological and developmental dysfunction.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland; Departments of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Huang X, Hernandez CC, Hu N, Macdonald RL. Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis 2014; 68:167-79. [PMID: 24798517 PMCID: PMC4169075 DOI: 10.1016/j.nbd.2014.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 11/23/2022] Open
Abstract
We compared the effects of three missense mutations in the GABAA receptor γ2 subunit on GABAA receptor assembly, trafficking and function in HEK293T cells cotransfected with α1, β2, and wildtype or mutant γ2 subunits. The mutations R82Q and P83S were identified in families with genetic epilepsy with febrile seizures plus (GEFS+), and N79S was found in a single patient with generalized tonic-clonic seizures (GTCS). Although all three mutations were located in an N-terminal loop that contributes to the γ+/β- subunit-subunit interface, we found that each mutation impaired GABAA receptor assembly to a different extent. The γ2(R82Q) and γ2(P83S) subunits had reduced α1β2γ2 receptor surface expression due to impaired assembly into pentamers, endoplasmic reticulum (ER) retention and degradation. In contrast, γ2(N79S) subunits were efficiently assembled into GABAA receptors with only minimally altered receptor trafficking, suggesting that N79S was a rare or susceptibility variant rather than an epilepsy mutation. Increased structural variability at assembly motifs was predicted by R82Q and P83S, but not N79S, substitution, suggesting that R82Q and P83S substitutions were less tolerated. Membrane proteins with missense mutations that impair folding and assembly often can be "rescued" by decreased temperatures. We coexpressed wildtype or mutant γ2 subunits with α1 and β2 subunits and found increased surface and total levels of both wildtype and mutant γ2 subunits after decreasing the incubation temperature to 30°C for 24h, suggesting that lower temperatures increased GABAA receptor stability. Thus epilepsy-associated mutations N79S, R82Q and P83S disrupted GABAA receptor assembly to different extents, an effect that could be potentially rescued by facilitating protein folding and assembly.
Collapse
Affiliation(s)
- Xuan Huang
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ciria C Hernandez
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ningning Hu
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Robert L Macdonald
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| |
Collapse
|
159
|
Christensen RK, Petersen AV, Schmitt N, Perrier JF. Fast detection of extrasynaptic GABA with a whole-cell sniffer. Front Cell Neurosci 2014; 8:133. [PMID: 24860433 PMCID: PMC4030185 DOI: 10.3389/fncel.2014.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/28/2014] [Indexed: 11/16/2022] Open
Abstract
Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.
Collapse
Affiliation(s)
- Rasmus K Christensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Anders V Petersen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
160
|
Millichap JG, Millichap JJ. Genetic Factor in Etiology of Febrile Seizures. Pediatr Neurol Briefs 2014. [DOI: 10.15844/pedneurbriefs-28-5-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
161
|
Guerrini R, Marini C, Mantegazza M. Genetic epilepsy syndromes without structural brain abnormalities: clinical features and experimental models. Neurotherapeutics 2014; 11:269-85. [PMID: 24664660 PMCID: PMC3996114 DOI: 10.1007/s13311-014-0267-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Research in genetics of epilepsy represents an area of great interest both for clinical purposes and for understanding the basic mechanisms of epilepsy. Most mutations in epilepsies without structural brain abnormalities have been identified in ion channel genes, but an increasing number of genes involved in a diversity of functional and developmental processes are being recognized through whole exome or genome sequencing. Targeted molecular diagnosis is now available for different forms of epilepsy. The identification of epileptogenic mutations in patients before epilepsy onset and the possibility of developing therapeutic strategies tested in experimental models may facilitate experimental approaches that prevent epilepsy or decrease its severity. Functional analysis is essential for better understanding pathogenic mechanisms and gene interactions. In vitro experimental systems are either cells that usually do not express the protein of interest or neurons in primary cultures. In vivo/ex vivo systems are organisms or preparations obtained from them (e.g., brain slices), which should better model the complexity of brain circuits and actual pathophysiological conditions. Neurons differentiated from induced pluripotent stem cells generated from the skin fibroblasts of patients have recently allowed the study of mutations in human neurons having the genetic background of a given patient. However, there is remarkable complexity underlying epileptogenesis in the clinical dimension, as reflected by the fact that experimental models have not provided yet results having clinical translation and that, with a few exceptions concerning rare conditions, no new curative treatment has emerged from any genetic finding in epilepsy.
Collapse
Affiliation(s)
- Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Viale Pieraccini 24, 50139, Florence, Italy,
| | | | | |
Collapse
|
162
|
Hancili S, Önal ZE, Ata P, Karatoprak EY, Gürbüz T, Bostancı M, Paçal Y, Nuhoğlu Ç, Ceran Ö. The GABAA receptor γ2 subunit (R43Q) mutation in febrile seizures. Pediatr Neurol 2014; 50:353-6. [PMID: 24630281 DOI: 10.1016/j.pediatrneurol.2014.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/28/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Febrile seizure is the most common form of childhood seizure. Although its exact cause is unclear, many researchers emphasize the importance of its genetic predisposition. Recent genetic studies revealed the importance of the mutations of the gamma-aminobutyric acid A receptor as the etiology of the febrile seizures. R43Q mutation affecting the γ2-subunit N-terminal domain has been related to childhood absence epilepsy and febrile seizure. METHODS We investigated R43Q mutations of the GABRG2 gene, located on the long arm of chromosome 5 encoding the γ2-subunit of the gamma-aminobutyric acid A receptor. We studied 44 patients with febrile seizure and 49 children without any febrile seizure who were admitted to our clinic. RESULTS We found that 36% of our patient group, the children who experienced febrile convulsions, had heterozygous R43Q mutation. Statistical studies revealed that heterozygous R43Q mutation of gamma-aminobutyric acid A receptor γ2 subunit was higher in the study group than in the control group (P < 0.01). CONCLUSIONS Heterozygous gamma-aminobutyric acid A receptor γ2 subunit (R43Q) mutation may have an effect in the development of febrile seizures.
Collapse
Affiliation(s)
- Suna Hancili
- Pediatric Endocrinology Clinic, Göztepe Education and Research Hospital, Medeniyet University, Istanbul, Turkey.
| | - Zehra Esra Önal
- Department of Pediatrics, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Pınar Ata
- Departments of Genetics and Medical Genetics, Faculty of Medicine, Pendik Training and Research Hospital, Marmara University, Istanbul, Turkey
| | - Elif Yüksel Karatoprak
- Pediatric Neurology Clinic, Göztepe Education and Research Hospital, Medeniyet University, Istanbul, Turkey
| | - Tamay Gürbüz
- Department of Pediatrics, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Muharrem Bostancı
- Department of Pediatrics, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Yakup Paçal
- Department of Pediatrics, Medipol University, Istanbul, Turkey
| | - Çağatay Nuhoğlu
- Department of Pediatrics, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Ömer Ceran
- Department of Pediatrics, Medipol University, Istanbul, Turkey
| |
Collapse
|
163
|
Tzadok M, Nissenkorn A, Porper K, Matot I, Marcu S, Anikster Y, Menascu S, Bercovich D, Ben Zeev B. The many faces of Glut1 deficiency syndrome. J Child Neurol 2014; 29:349-59. [PMID: 23340081 DOI: 10.1177/0883073812471718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucose transporter protein type 1 deficiency syndrome is a metabolic disorder manifesting as cognitive impairment, acquired microcephaly, epilepsy, and/or movement disorder caused by mutations in the SLC2A1 gene. We describe a cohort of isolated and familial cases of glucose transporter protein type 1 deficiency syndrome, emphasizing seizure semiology, electroencephalographic (EEG) features, treatment response and mutation pathogenicity. SLC2A1 mutations were detected in 3 sporadic and 4 familial cases. In addition, mutations were identified in 9 clinically unaffected family members in 2 families. The phenotypic spectrum of glucose transporter protein type 1 deficiency is wider than previously recognized, with considerable intra-familial variation. Diagnosis requires either hypoglycorrachia followed by SLC2A1 sequencing or direct gene sequencing. A ketogenic diet should be the first line of treatment, but more flexible diets, like the Atkins modified diet, can also be followed. Carbonic anhydrase inhibitors, such as acetazolamide or zonisamide, can be effective for seizure control.
Collapse
Affiliation(s)
- Michal Tzadok
- 1Pediatric Neurology Unit, Edmond and Lily Safra Childern's Hospital, Sheba Medical Center, Tel Hashomer, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Garret M, Boué-Grabot E, Taly A. Long distance effect on ligand-gated ion channels extracellular domain may affect interactions with the intracellular machinery. Commun Integr Biol 2014; 7:e27984. [PMID: 25254078 PMCID: PMC4167410 DOI: 10.4161/cib.27984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
Modulation of receptor trafficking is critical for controlling neurotransmission. A γ2(R43Q) point mutation on GABAA receptor subunit is linked to epilepsy in human. We recently analyzed the effect of this amino-acid substitution on GABAA receptor trafficking and showed that this mutation as well as agonist application, both affecting GABAA receptor extracellular domain, have an effect on receptor endocytosis. By comparing homology models based on ligand gated ion channels in their active and resting states, we reveal that the γ2R43 domain is located in a loop that is affected by motion resulting from receptor activation. Taken together, these results suggest that endocytosis of GABAA receptors is linked to agonist induced conformational changes. We propose that ligand or modulator binding is followed by a whole chain of interconnections, including the intracellular domain, that may influence ligand-gated channel trafficking.
Collapse
Affiliation(s)
- Maurice Garret
- Univ. Bordeaux; INCIA; UMR 5287; Bordeaux, France ; CNRS; INCIA; UMR 5287; Bordeaux, France
| | - Eric Boué-Grabot
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France ; CNRS; Institut des Maladies Neurodégénératives; UMR 5293; Bordeaux, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique (CNRS-Université Paris Diderot); Paris, France
| |
Collapse
|
165
|
Seo S, Leitch B. Altered thalamic GABAA-receptor subunit expression in the stargazer mouse model of absence epilepsy. Epilepsia 2014; 55:224-232. [PMID: 24417662 DOI: 10.1111/epi.12500] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2013] [Indexed: 01/11/2023]
Abstract
PURPOSE Absence seizures, also known as petit mal seizures, arise from disruptions within the cortico-thalamocortical network. Interconnected circuits within the thalamus consisting of inhibitory neurons of the reticular thalamic nucleus (RTN) and excitatory relay neurons of the ventral posterior (VP) complex, generate normal intrathalamic oscillatory activity. The degree of synchrony in this network determines whether normal (spindle) or pathologic (spike wave) oscillations occur; however, the cellular and molecular mechanisms underlying absence seizures are complex and multifactorial and currently are not fully understood. Recent experimental evidence from rodent models suggests that regional alterations in γ-aminobutyric acid (GABA)ergic inhibition may underlie hypersynchronous oscillations featured in absence seizures. The aim of the current study was to investigate whether region-specific differences in GABAA receptor (GABAAR) subunit expression occur in the VP and RTN thalamic regions in the stargazer mouse model of absence epilepsy where the primary deficit is in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) expression. METHODS Immunofluorescence confocal microscopy and semiquantitative Western blot analysis were used to investigate region-specific changes in GABAAR subunits in the thalamus of the stargazer mouse model of absence epilepsy to determine whether changes in GABAergic inhibition could contribute to the mechanisms underlying seizures in this model of absence epilepsy. KEY FINDINGS Immunofluorescence confocal microscopy revealed that GABAAR α1 and β2 subunits are predominantly expressed in the VP, whereas α3 and β3 subunits are localized primarily in the RTN. Semiquantitative Western blot analysis of VP and RTN samples from epileptic stargazers and their nonepileptic littermates showed that GABAAR α1 and β2 subunit expression levels in the VP were significantly increased (α1: 33%, β2: 96%) in epileptic stargazers, whereas α3 and β3 subunits in the RTN were unchanged in the epileptic mice compared to nonepileptic control littermates. SIGNIFICANCE These findings suggest that region-specific differences in GABAAR subunits in the thalamus of epileptic mice, specifically up-regulation of GABAARs in the thalamic relay neurons of the VP, may contribute to generation of hypersynchronous thalamocortical activity in absence seizures. Understanding region-specific differences in GABAAR subunit expression could help elucidate some of the cellular and molecular mechanisms underlying absence seizures and thereby identify targets by which drugs can modulate the frequency and severity of epileptic seizures. Ultimately, this information could be crucial for the development of more specific and effective therapeutic drugs for treatment of this form of epilepsy.
Collapse
Affiliation(s)
- Steve Seo
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
166
|
Kaneko S, Yoshida S, Kanai K, Yasui-Furukori N, Iwasa H. Development of individualized medicine for epilepsy based on genetic information. Expert Rev Clin Pharmacol 2014; 1:661-81. [DOI: 10.1586/17512433.1.5.661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
167
|
A novel GABRG2 mutation, p.R136*, in a family with GEFS+ and extended phenotypes. Neurobiol Dis 2014; 64:131-141. [PMID: 24407264 DOI: 10.1016/j.nbd.2013.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/19/2013] [Accepted: 12/26/2013] [Indexed: 01/06/2023] Open
Abstract
Genetic mutations in voltage-gated and ligand-gated ion channel genes have been identified in a small number of Mendelian families with genetic generalised epilepsies (GGEs). They are commonly associated with febrile seizures (FS), childhood absence epilepsy (CAE) and particularly with generalised or genetic epilepsy with febrile seizures plus (GEFS+). In clinical practice, despite efforts to categorise epilepsy and epilepsy families into syndromic diagnoses, many generalised epilepsies remain unclassified with a presumed genetic basis. During the systematic collection of epilepsy families, we assembled a cohort of families with evidence of GEFS+ and screened for variations in the γ2 subunit of the γ-aminobutyric acid (GABA) type A receptor gene (GABRG2). We detected a novel GABRG2(p.R136*) premature translation termination codon in one index-case from a two-generation nuclear family, presenting with an unclassified GGE, a borderline GEFS+ phenotype with learning difficulties and extended behavioural presentation. The GABRG2(p.R136*) mutation segregates with the febrile seizure component of this family's GGE and is absent in 190 healthy control samples. In vitro expression assays demonstrated that γ2(p.R136*) subunits were produced, but had reduced cell-surface and total expression. When γ2(p.R136*) subunits were co-expressed with α1 and β2 subunits in HEK 293T cells, GABA-evoked currents were reduced. Furthermore, γ2(p.R136*) subunits were highly-expressed in intracellular aggregations surrounding the nucleus and endoplasmic reticulum (ER), suggesting compromised receptor trafficking. A novel GABRG2(p.R136*) mutation extends the spectrum of GABRG2 mutations identified in GEFS+ and GGE phenotypes, causes GABAA receptor dysfunction, and represents a putative epilepsy mechanism.
Collapse
|
168
|
Ishii A, Kanaumi T, Sohda M, Misumi Y, Zhang B, Kakinuma N, Haga Y, Watanabe K, Takeda S, Okada M, Ueno S, Kaneko S, Takashima S, Hirose S. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res 2014; 108:420-32. [PMID: 24480790 DOI: 10.1016/j.eplepsyres.2013.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 12/07/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022]
Abstract
Mutations in GABRG2, which encodes the γ2 subunit of GABAA receptors, can cause both genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. Most GABRG2 truncating mutations associated with Dravet syndrome result in premature termination codons (PTCs) and are stably translated into mutant proteins with potential dominant-negative effects. This study involved search for mutations in candidate genes for Dravet syndrome, namely SCN1A, 2A, 1B, 2B, GABRA1, B2, and G2. A heterozygous nonsense mutation (c.118C>T, p.Q40X) in GABRG2 was identified in dizygotic twin girls with Dravet syndrome and their apparently healthy father. Electrophysiological studies with the reconstituted GABAA receptors in HEK cells showed reduced GABA-induced currents when mutated γ2 DNA was cotransfected with wild-type α1 and β2 subunits. In this case, immunohistochemistry using antibodies to the α1 and γ2 subunits of GABAA receptor showed granular staining in the soma. In addition, microinjection of mutated γ2 subunit cDNA into HEK cells severely inhibited intracellular trafficking of GABAA receptor subunits α1 and β2, and retention of these proteins in the endoplasmic reticulum. The mutated γ2 subunit-expressing neurons also showed impaired axonal transport of the α1 and β2 subunits. Our findings suggested that different phenotypes of epilepsy, e.g., GEFS+ and Dravet syndrome (which share similar abnormalities in causative genes) are likely due to impaired axonal transport associated with the dominant-negative effects of GABRG2.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Takeshi Kanaumi
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Miwa Sohda
- Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshio Misumi
- Department of Cell Biology, Fukuoka University, Fukuoka, Japan
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University, Fukuoka, Japan
| | - Naoto Kakinuma
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Yoshiko Haga
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyoshi Watanabe
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Motohiro Okada
- Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Shinya Ueno
- Rehabilitation Medicine, Institute of Brain Science, Japan
| | - Sunao Kaneko
- Department of Neuropsychiatry, Hirosaki University, Hirosaki, Japan; North Tohoku Epilepsy Center, Minato Hospital, Hachinohe, Japan
| | - Sachio Takashima
- Yanagawa Institute for Developmental Disabilities, Child Neurology, International University of Health and Welfare, Yanagawa, Japan
| | - Shinichi Hirose
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
169
|
Abstract
The γ-aminobutyric acid receptor type A (GABAA receptor) is a ligand-gated chloride channel that mediates major inhibitory functions in the central nervous system. GABAA receptors function mainly as pentamers containing α, β, and either γ or δ subunits. A number of antiepileptic drugs have agonistic effects on GABAA receptors. Hence, dysfunctions of GABAA receptors have been postulated to play important roles in the etiology of epilepsy. In fact, mutations or genetic variations of the genes encoding the α1, α6, β2, β3, γ2, or δ subunits (GABRA1, GABRA6, GABRB2, GABRB3, GABRG2, and GABRD, respectively) have been associated with human epilepsy, both with and without febrile seizures. Epilepsy resulting from mutations is commonly one of following, genetic (idiopathic) generalized epilepsy (e.g., juvenile myoclonic epilepsy), childhood absence epilepsy, genetic epilepsy with febrile seizures, or Dravet syndrome. Recently, mutations of GABRA1, GABRB2, and GABRB3 were associated with infantile spasms and Lennox-Gastaut syndrome. These mutations compromise hyperpolarization through GABAA receptors, which is believed to cause seizures. Interestingly, most of the insufficiencies are not caused by receptor gating abnormalities, but by complex mechanisms, including endoplasmic reticulum (ER)-associated degradation, nonsense-mediated mRNA decay, intracellular trafficking defects, and ER stress. Thus, GABAA receptor subunit mutations are now thought to participate in the pathomechanisms of epilepsy, and an improved understanding of these mutations should facilitate our understanding of epilepsy and the development of new therapies.
Collapse
|
170
|
Maheshwari A, Noebels JL. Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. PROGRESS IN BRAIN RESEARCH 2014; 213:223-52. [PMID: 25194492 DOI: 10.1016/b978-0-444-63326-2.00012-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Absence epilepsy is a common disorder that arises in childhood and can be refractory to medical treatment. Single genetic mutations in mice, at times found in patients with absence epilepsy, provide the unique opportunity to bridge the gap between dysfunction at the genetic level and pathological oscillations within the thalamocortical circuit. Interestingly, unlike other forms of epilepsy, only genes related to ion channels have so far been linked to absence phenotypes. Here, we delineate a paradigm which attempts to unify the various monogenic models based on decades of research. While reviewing the particular impact of these individual mutations, we posit a framework involving fast feedforward disinhibition as one common mechanism that can lead to increased tonic inhibition in the cortex and/or thalamus. Enhanced tonic inhibition hyperpolarizes principal cells, deinactivates T-type calcium channels, and leads to reciprocal burst firing within the thalamocortical loop. We also review data from pharmacologic and polygenic models in light of this paradigm. Ultimately, many questions remain unanswered regarding the pathogenesis of absence epilepsy.
Collapse
Affiliation(s)
- Atul Maheshwari
- Department of Neurology, Developmental Neurogenetics Laboratory, Baylor College of Medicine Houston, TX, USA.
| | - Jeffrey L Noebels
- Department of Neurology, Developmental Neurogenetics Laboratory, Baylor College of Medicine Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
171
|
Hernan AE, Alexander A, Jenks KR, Barry J, Lenck-Santini PP, Isaeva E, Holmes GL, Scott RC. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol Dis 2013; 63:25-34. [PMID: 24269731 DOI: 10.1016/j.nbd.2013.11.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/10/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022] Open
Abstract
There is a well-described association between childhood epilepsy and pervasive cognitive and behavioral deficits. Often these children not only have ictal EEG events, but also frequent interictal abnormalities. The precise role of these interictal discharges in cognition remains unclear. In order to understand the relationship between frequent epileptiform discharges during neurodevelopment and cognition later in life, we developed a model of frequent focal interictal spikes (IIS). Postnatal day (p) 21 rats received injections of bicuculline methiodine into the prefrontal cortex (PFC). Injections were repeated in order to achieve 5 consecutive days of transient inhibitory/excitatory imbalance resulting in IIS. Short-term plasticity (STP) and behavioral outcomes were studied in adulthood. IIS is associated with a significant increase in STP bilaterally in the PFC. IIS rats did not show working memory deficits, but rather showed marked inattentiveness without significant alterations in motivation, anxiety or hyperactivity. Rats also demonstrated significant deficits in social behavior. We conclude that GABAergic blockade during early-life and resultant focal IIS in the PFC disrupt neural networks and are associated with long-term consequences for behavior at a time when IIS are no longer present, and thus may have important implications for ADHD and autism spectrum disorder associated with childhood epilepsy.
Collapse
Affiliation(s)
- Amanda E Hernan
- Department of Neurology, Program in Experimental and Molecular Medicine Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405.
| | - Abigail Alexander
- Department of Neurology, Program in Experimental and Molecular Medicine Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kyle R Jenks
- Department of Neurology, Program in Experimental and Molecular Medicine Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jeremy Barry
- Department of Neurology, Program in Experimental and Molecular Medicine Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405
| | | | - Elena Isaeva
- State Key Laboratory for Molecular and Cellular Biology, Kiev 01601, Ukraine; Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405
| | - Rod C Scott
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405; University College London, Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
172
|
Greenfield LJ. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 2013; 22:589-600. [PMID: 23683707 PMCID: PMC3766376 DOI: 10.1016/j.seizure.2013.04.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 02/09/2023] Open
Abstract
The GABAA receptor (GABAAR) is a major target of antiseizure drugs (ASDs). A variety of agents that act at GABAARs s are used to terminate or prevent seizures. Many act at distinct receptor sites determined by the subunit composition of the holoreceptor. For the benzodiazepines, barbiturates, and loreclezole, actions at the GABAAR are the primary or only known mechanism of antiseizure action. For topiramate, felbamate, retigabine, losigamone and stiripentol, GABAAR modulation is one of several possible antiseizure mechanisms. Allopregnanolone, a progesterone metabolite that enhances GABAAR function, led to the development of ganaxolone. Other agents modulate GABAergic "tone" by regulating the synthesis, transport or breakdown of GABA. GABAAR efficacy is also affected by the transmembrane chloride gradient, which changes during development and in chronic epilepsy. This may provide an additional target for "GABAergic" ASDs. GABAAR subunit changes occur both acutely during status epilepticus and in chronic epilepsy, which alter both intrinsic GABAAR function and the response to GABAAR-acting ASDs. Manipulation of subunit expression patterns or novel ASDs targeting the altered receptors may provide a novel approach for seizure prevention.
Collapse
Affiliation(s)
- L John Greenfield
- Dept. of Neurology, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 500, Little Rock, AR 72205, United States.
| |
Collapse
|
173
|
Kang JQ, Shen W, Macdonald RL. Trafficking-deficient mutant GABRG2 subunit amount may modify epilepsy phenotype. Ann Neurol 2013; 74:547-59. [PMID: 23720301 DOI: 10.1002/ana.23947] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/27/2013] [Accepted: 05/17/2013] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Genetic epilepsies and many other human genetic diseases display phenotypic heterogeneity, often for unknown reasons. Disease severity associated with nonsense mutations is dependent partially on mutation gene location and resulting efficiency of nonsense-mediated mRNA decay (NMD) to eliminate potentially toxic proteins. Nonsense mutations in the last exon do not activate NMD, thus producing truncated proteins. We compared the protein metabolism and the impact on channel biogenesis, function, and cellular homeostasis of truncated γ2 subunits produced by GABRG2 nonsense mutations associated with epilepsy of different severities and by a nonsense mutation in the last exon unassociated with epilepsy. METHODS γ-Aminobutyric acid type A receptor subunits were coexpressed in non-neuronal cells and neurons. NMD was studied using minigenes that support NMD. Protein degradation rates were determined using (35) S radiolabeling pulse chase. Channel function was determined by whole cell recordings, and subunits trafficking and cellular toxicity were determined using flow cytometry, immunoblotting, and immunohistochemistry. RESULTS Although all GABRG2 nonsense mutations resulted in loss of γ2 subunit surface expression, the truncated subunits had different degradation rates and stabilities, suppression of wild-type subunit biogenesis and function, amounts of conjugation with polyubiquitin, and endoplasmic reticulum stress levels. INTERPRETATION We compared molecular phenotypes of GABRG2 nonsense mutations. The findings suggest that despite the common loss of mutant allele function, each mutation produced different intracellular levels of trafficking-deficient subunits. The concentration-dependent suppression of wild-type channel function and cellular disturbance resulting from differences in mutant subunit metabolism may contribute to associated epilepsy severities and by implication to phenotypic heterogeneity in many inherited human diseases.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | | | | |
Collapse
|
174
|
Abstract
PURPOSE OF REVIEW We aim to review the most recent advances in the field of epilepsy genetics with particular focus on the progress in gene discovery in monogenic epilepsies, identification of risk genes in complex genetic epilepsies and recent findings in the field of epilepsy pharmacogenomics. RECENT FINDINGS During the last 12 months, the use of massive parallel sequencing technologies has allowed for the discovery of several genes for monogenic epilepsies. Most importantly, PRRT2 was identified as the long-sought gene for benign familial infantile seizures. Mutations in KCNT1 were found in two seemingly unrelated monogenic epilepsies including malignant migrating partial seizures of infancy and severe autosomal dominant nocturnal frontal lobe epilepsy. A genome-wide association study in idiopathic generalized epilepsy revealed the first common risk variants for human seizure disorders including variants in VRK2, PNPO and SCN1A. Furthermore, a landmark study provided evidence that screening for the HLA-B1502 variant may prevent carbamazepine CBZ-induced side effects in the Taiwanese population. Also, HLA-A3101 variants were identified as a risk factor for carbamazepine side effects in Europeans. SUMMARY Novel technologies and an unprecedented level of international collaboration have resulted in identification of novel genes for monogenic and complex genetic epilepsies as well as risk factors for side effects of antiepileptic drugs. This review provides an overview of the most relevant studies in the last year and highlights the future direction of the field.
Collapse
|
175
|
Deng H, Xiu X, Song Z. The molecular biology of genetic-based epilepsies. Mol Neurobiol 2013; 49:352-67. [PMID: 23934645 DOI: 10.1007/s12035-013-8523-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023]
Abstract
Epilepsy is one of the most common neurological disorders characterized by abnormal electrical activity in the central nervous system. The clinical features of this disorder are recurrent seizures, difference in age onset, type, and frequency, leading to motor, sensory, cognitive, psychic, or autonomic disturbances. Since the discovery of the first monogenic gene mutation in 1995, it is proposed that genetic factor plays an important role in the mechanism of epilepsy. Genes discovered in idiopathic epilepsies encode for ion channel or neurotransmitter receptor proteins, whereas syndromes with epilepsy as a main feature are caused by genes that are involved in functions such as cortical development, mitochondrial function, and cell metabolism. The identification of these monogenic epilepsy-causing genes provides new insight into the pathogenesis of epilepsies. Although most of the identified gene mutations present a monogenic inheritance, most of idiopathic epilepsies are complex genetic diseases exhibiting a polygenic or oligogenic inheritance. This article reviews recent genetic and molecular progresses in exploring the pathogenesis of epilepsy, with special emphasis on monogenic epilepsy-causing genes, including voltage-gated channels (Na(+), K(+), Ca(2+), Cl(-), and HCN), ligand-gated channels (nicotinic acetylcholine and GABAA receptors), non-ion channel genes as well as the mitochondrial DNA genes. These progresses have improved our understanding of the complex neurological disorder.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan, 410013, People's Republic of China,
| | | | | |
Collapse
|
176
|
Chaumont S, André C, Perrais D, Boué-Grabot E, Taly A, Garret M. Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation. J Biol Chem 2013; 288:28254-65. [PMID: 23935098 DOI: 10.1074/jbc.m113.470807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.
Collapse
Affiliation(s)
- Severine Chaumont
- From the Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, F-33000 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
177
|
Rossignol E, Kruglikov I, van den Maagdenberg AMJM, Rudy B, Fishell G. CaV 2.1 ablation in cortical interneurons selectively impairs fast-spiking basket cells and causes generalized seizures. Ann Neurol 2013; 74:209-22. [PMID: 23595603 DOI: 10.1002/ana.23913] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Both the neuronal populations and mechanisms responsible for generalized spike-wave absence seizures are poorly understood. In mutant mice carrying loss-of-function (LOF) mutations in Cacna1a, which encodes the α1 pore-forming subunit of CaV 2.1 (P/Q-type) voltage-gated Ca(2+) channels, generalized spike-wave seizures have been suggested to result from excessive bursting of thalamocortical cells. However, other cellular populations including cortical inhibitory interneurons may contribute to this phenotype. We investigated how different cortical interneuron subtypes are affected by the loss of CaV 2.1 channel function and how this contributes to the onset of generalized epilepsy. METHODS We designed genetic strategies to induce a selective Cacna1a LOF mutation in different cortical γ-aminobutyric acidergic (GABAergic) and/or glutamatergic neuronal populations in mice. We assessed the cellular and network consequences of these mutations by combining immunohistochemical assays, in vitro physiology, optogenetics, and in vivo video electroencephalographic recordings. RESULTS We demonstrate that selective Cacna1a LOF from a subset of cortical interneurons, including parvalbumin (PV)(+) and somatostatin (SST)(+) interneurons, results in severe generalized epilepsy. Loss of CaV 2.1 channel function compromises GABA release from PV(+) but not SST(+) interneurons. Moreover, thalamocortical projection neurons do not show enhanced bursting in these mutants, suggesting that this feature is not essential for the development of generalized spike-wave seizures. Notably, the concurrent removal of CaV 2.1 channels in cortical pyramidal cells and interneurons considerably lessens seizure severity by decreasing cortical excitability. INTERPRETATION Our findings demonstrate that conditional ablation of CaV 2.1 channel function from cortical PV(+) interneurons alters GABA release from these cells, impairs their ability to constrain cortical pyramidal cell excitability, and is sufficient to cause generalized seizures.
Collapse
Affiliation(s)
- Elsa Rossignol
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY; Pediatric Neurology Department of Neuroscience, Saint Justine University Hospital Center, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
178
|
Abstract
In this issue of Neuron, Christian et al. (2013) provide functional evidence for positive endozepines (positive allosteric modulators of GABAARs) within the thalamic reticular nucleus. These molecules are encoded by the Dbi gene and modulate thalamocortical oscillations.
Collapse
Affiliation(s)
- Stephen C Harward
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
179
|
Lin WD, Chang KP, Wang CH, Chen SJ, Fan PC, Weng WC, Lin WC, Tsai Y, Tsai CH, Chou IC, Tsai FJ. Molecular aspects of Dravet syndrome patients in Taiwan. Clin Chim Acta 2013; 421:34-40. [DOI: 10.1016/j.cca.2013.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 01/08/2023]
|
180
|
Christian CA, Herbert AG, Holt RL, Peng K, Sherwood KD, Pangratz-Fuehrer S, Rudolph U, Huguenard JR. Endogenous positive allosteric modulation of GABA(A) receptors by diazepam binding inhibitor. Neuron 2013; 78:1063-74. [PMID: 23727119 DOI: 10.1016/j.neuron.2013.04.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/30/2022]
Abstract
Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together, these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking ("endozepine") roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a therapy for epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Neurodevelopmental disorders among individuals with duplication of 4p13 to 4p12 containing a GABAA receptor subunit gene cluster. Eur J Hum Genet 2013; 22:105-9. [PMID: 23695283 DOI: 10.1038/ejhg.2013.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/26/2013] [Accepted: 04/16/2013] [Indexed: 02/06/2023] Open
Abstract
Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders.
Collapse
|
182
|
Bazyan AS, van Luijtelaar G. Neurochemical and behavioral features in genetic absence epilepsy and in acutely induced absence seizures. ISRN NEUROLOGY 2013; 2013:875834. [PMID: 23738145 PMCID: PMC3664506 DOI: 10.1155/2013/875834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/08/2023]
Abstract
The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be due to an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic I h pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes. It also enhances GABAA receptor activity in the striatum, globus pallidus, and reticular thalamic nucleus, causing a rise of SWD activity in the cortico-thalamo-cortical networks. One of the reasons for the occurrence of absences is that several genes coding of GABAA receptors are mutated. The question arises: what the role of DA receptors is. Two mechanisms that cause an infringement of the function of DA receptors in this genetic absence epilepsy model are proposed.
Collapse
Affiliation(s)
- A. S. Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia
| | - G. van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
183
|
Axon initial segment structural plasticity in animal models of genetic and acquired epilepsy. Epilepsy Res 2013; 105:272-9. [PMID: 23602553 DOI: 10.1016/j.eplepsyres.2013.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 01/24/2013] [Accepted: 03/15/2013] [Indexed: 11/21/2022]
Abstract
A novel form of neuronal plasticity, occurring at the axon initial segment (AIS), has recently been described. Lengthening of the AIS and movement away from the soma are consequences of changes in neuronal input and result in alterations in neuronal excitability. We hypothesised that AIS plasticity may play a role in epilepsy, due to chronic changes in neuronal activity. Immunohistochemistry and confocal microscopy were used to analyse AIS length and position in pyramidal neurons in deep layer 5 of the somatosensory cortex from 5 mice with genetic epilepsy and 4 controls, and from 3 rats subjected to amygdala kindling and 3 controls. The effect of a subtle alteration of AIS position was modelled computationally. We identified a difference in the position of the AIS in animals with seizures: in mice the AIS was positioned 0.2 μm further away from the soma, and in rats the AIS was positioned 0.6 μm closer to the soma compared with controls. Computational modelling indicated that a subtle alteration in AIS position could result in a change in action potential firing threshold. The identification of AIS plasticity in animal models of epilepsy is significant in furthering our understanding of the pathophysiological mechanisms involved in this disorder.
Collapse
|
184
|
Lee BH, Kim HJ, Chung L, Nah SY. Ginsenoside Rg₃ regulates GABAA receptor channel activity: involvement of interaction with the γ₂ subunit. Eur J Pharmacol 2013; 705:119-25. [PMID: 23499684 DOI: 10.1016/j.ejphar.2013.02.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 02/02/2023]
Abstract
Ginseng exhibits beneficial effects on GABAA receptor-related anxiety and sleep disorders. However, little is known regarding the cellular and molecular bases of the ginseng action on GABAA receptor. The present study was performed to elucidate the molecular mechanism of the ginseng effect on GABAA receptor. The effect of ginsenoside Rg₃ (Rg₃), one of the active ingredients of ginseng, on γ-aminobutyric acid (GABA)A receptor channel activity was examined in Xenopus oocytes using two-electrode voltage-clamp technique. Rg₃ itself evoked an inward current in Xenopus oocytes expressing GABAA receptor subunits (α₁β₁γ₂) and the Rg₃ itself-elicited inward current was only selective to γ₂ subunit expression ratio, since Rg₃ alone had no effects in oocytes expressing other subunits such as γ₁, γ₃, δ, or ε. Co-treatment of Rg₃ with GABA enhanced GABA receptor (α₁β₁γ₂)-mediated inward currents (IGABA) but Rg₃-mediated IGABA enhancement was independent on γ₂. Rg₃ itself-elicited inward current was blocked by GABAA receptor antagonist. The present results indicate that Rg₃-induced GABAA receptor activation via the γ₂ subunit and IGABA enhancement by Rg₃ might be one of the molecular bases of ginseng effects on GABAA receptor.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | |
Collapse
|
185
|
Abstract
In the International League Against Epilepsy's most recent revision of classification and terminology, the term idiopathic epilepsy, previously used to describe those epilepsies whose cause was unknown, but presumed genetic, has been removed. It has been replaced by the term genetic epilepsy, only to be used to describe epilepsy in which the etiology has a known or presumed genetic defect in which seizures are the core symptom of the disorder. The purpose of this article was to review the electroclinical spectrum of those epilepsies that would fall under this new designation of genetic epilepsies in the context of specific generalized epilepsy syndromes providing an update in the clinical, electroencephalographic, and genetic findings in these syndromes.
Collapse
|
186
|
Reid CA, Kim T, Phillips AM, Low J, Berkovic SF, Luscher B, Petrou S. Multiple molecular mechanisms for a single GABAA mutation in epilepsy. Neurology 2013; 80:1003-8. [PMID: 23408872 DOI: 10.1212/wnl.0b013e3182872867] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To understand the molecular basis and differential penetrance of febrile seizures and absence seizures in patients with the γ2(R43Q) GABA receptor mutation. METHODS Spike-and-wave discharges and thermal seizure susceptibility were measured in heterozygous GABA γ2 knock-out and GABA γ2(R43Q) knock-in mice models crossed to different mouse strains. RESULTS By comparing the GABA γ2 knock-out with the GABA γ2(R43Q) knock-in mouse model we show that haploinsufficiency underlies the genesis of absence seizures but cannot account for the thermal seizure susceptibility. Additionally, while the expression of the absence seizure phenotype was very sensitive to mouse background genetics, the thermal seizure phenotype was not. CONCLUSIONS Our results show that a single gene mutation can cause distinct seizure phenotypes through independent molecular mechanisms. A lack of effect of genetic background on thermal seizure susceptibility is consistent with the higher penetrance of febrile seizures compared to absence seizures seen in family members with the mutation. These mouse studies help to provide a conceptual framework within which clinical heterogeneity seen in genetic epilepsy can be explained.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
187
|
Macdonald RL, Kang JQ. mRNA surveillance and endoplasmic reticulum quality control processes alter biogenesis of mutant GABAA receptor subunits associated with genetic epilepsies. Epilepsia 2013; 53 Suppl 9:59-70. [PMID: 23216579 DOI: 10.1111/epi.12035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies from our and other groups have demonstrated that the majority of γ-aminobutyric acid (GABA)(A) receptor subunit mutations produce mutant subunits with impaired biogenesis and trafficking. These GABA(A) receptor mutations include missense, nonsense, deletion, or insertion mutations that result in a frameshift with premature translation-termination codons (PTCs) and splice-site mutations. Frameshift or splice-site mutations produce mutant proteins with PTCs, thus generating nonfunctional truncated proteins. All of these mutant GABA(A) receptor subunits are subject to cellular quality control at the messenger RNA (mRNA) or protein level. These quality-control checkpoints shape the cell's response to the presence of the mutant subunits and attempt to reduce the impact of the mutant subunit on GABA(A) receptor expression and function. The check points prevent nonfunctioning or malfunctioning GABA(A) receptor subunits from trafficking to the cell surface or to synapses, and help to ensure that the receptor channels trafficked to the membrane and synapses are indeed functional. However, if and how these quality control or check points impact the posttranslational modifications of functional GABA(A) receptor channels such as receptor phosphorylation and ubiquitination and their involvement in mediating GABAergic inhibitory synaptic strength needs to be investigated in the near future.
Collapse
Affiliation(s)
- Robert L Macdonald
- Department of Neurology Molecular Physiology and Biophysics Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-8552, USA.
| | | |
Collapse
|
188
|
Guinamard R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator. Pharmacol Ther 2013; 138:272-84. [PMID: 23356979 DOI: 10.1016/j.pharmthera.2013.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
Abstract
Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10(-6)M in TRPM4 channel inhibition to 10(-3)M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.
Collapse
|
189
|
Abstract
One of the most exciting areas in epilepsy has been the explosion in our understanding of the genetics of the epilepsies over the last decade. Built on a long history of careful clinical genetic studies of the epilepsies, the relatively recent discovery of epilepsy genes has enabled insights into pathways causing seizure disorders. A variety of mutational mechanisms can cause epilepsy resulting from different, and sometimes surprising, molecular processes such as copy number variation within the genome. The majority of known epilepsy genes encode ion channel subunits leading many of the genetic epilepsies to be regarded as channelopathies. Understanding how dysfunction of a mutant protein leads to hyperexcitability is key to understanding the pathophysiology of this group of serious and common childhood disorders. The architecture of the common genetic epilepsies following complex inheritance, where multiple genes are involved, is also beginning to be unraveled. The clinical approach to understanding the genetics of the epilepsies has matured and requires a detailed family history of seizures together with delineation of the child's epilepsy syndrome. Recognition of specific genetic epilepsy syndromes enables optimal treatment and prognostic and genetic counseling.
Collapse
Affiliation(s)
- Rima Nabbout
- Department of Pediatric Neurology, Hôpital Necker-Enfants Malades; Centre de référence épilepsies rares; INSERM U663, Paris, France.
| | | |
Collapse
|
190
|
Tsuda Y, Oguni H, Sakauchi M, Osawa M. An electroclinical study of absence seizures in Dravet syndrome. Epilepsy Res 2013; 103:88-96. [DOI: 10.1016/j.eplepsyres.2012.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/19/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
191
|
GABRG2 rs211037 polymorphism and epilepsy: A systematic review and meta-analysis. Seizure 2013; 22:53-8. [DOI: 10.1016/j.seizure.2012.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 11/20/2022] Open
|
192
|
Kim YO, Kim MK, Nam TS, Jang SY, Park KW, Kim EY, Rho YI, Woo YJ. Mutation Screening of the γ-Aminobutyric Acid Type-A Receptor Subunit γ2 Gene in Korean Patients with Childhood Absence Epilepsy. J Clin Neurol 2012; 8:271-5. [PMID: 23323135 PMCID: PMC3540286 DOI: 10.3988/jcn.2012.8.4.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose Since the γ-aminobutyric acid type-A receptor subunit γ2 gene (GABRG2) mutation was discovered in an Australian family with childhood absence epilepsy (CAE) and febrile convulsions, a few screening studies for the GABRG2 mutation have been conducted in sporadic individuals with CAE from other ethnic groups. The aim of this study was to determine whether or not the previously reported genetic mutations and single-nucleotide polymorphisms (SNPs) of GABRG2 can be reproduced in sporadic Korean individuals with CAE, compared to healthy Korean individuals. Methods Thirty-five children with CAE in Chonnam National University Hospital and healthy controls (n=207) were enrolled, and the medical records of patients with CAE were reviewed. CAE was diagnosed according to the Classification and Terminology of the International League Against Epilepsy. All nine exons of GABRG2 were directly sequenced. In addition, the two SNPs found in our CAE patients were analyzed: C315T in exon 3 (E3) and C588T in exon 5 (E5). The frequencies of the two SNPs in the CAE patients were compared with data from healthy controls (for E3 and E5) and from previously reported Korean population data (only for E3). Results No mutation of GABRG2 was found in our CAE patients. In addition, the allele and genotype frequencies of the two polymorphisms did not differ significantly between CAE patients, healthy controls, and the Korean general population (p>0.05). Conclusions Our study of sporadic Korean individuals with CAE found no evidence that GABRG2 contributes to the genetic basis of CAE.
Collapse
Affiliation(s)
- Young Ok Kim
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Crunelli V, Carmignoto G. New vistas on astroglia in convulsive and non-convulsive epilepsy highlight novel astrocytic targets for treatment. J Physiol 2012; 591:775-85. [PMID: 23230232 DOI: 10.1113/jphysiol.2012.243378] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our current knowledge of the role of astrocytes in health and disease states supports the view that many physiological brain functions and neurological diseases are finely tuned, and in certain cases fully determined, by the continuous cross-talk between astrocytes and neurons. This novel way of interpreting brain activity as a dynamic and reciprocal interplay between astrocytic and neuronal networks has also influenced our understanding of epilepsy, not only forcing a reinterpretation of old findings, but also being a catalyst for novel experimentation. In this review, we summarize some of the recent studies that highlight these novel distinct contributions of astrocytes to the expression of convulsive and non-convulsive epileptiform discharges and seizures. The emerging picture suggests a general framework based on bilateral signalling between astrocytes and neurons for a fuller understanding of epileptogenic and epileptic mechanisms in the brain network. Astrocytes potentially represent targets for the development of those novel chemical entities with improved efficacy for the treatment of convulsive and non-convulsive epilepsy that expert groups have recognized as one of the key priorities for the management of epilepsy.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | |
Collapse
|
194
|
Abstract
Triheptanoin is a triglyceride containing heptanoate, an odd-chained medium fatty acid that is metabolized to produce propionyl-CoA and subsequently C4 intermediates of the citric acid cycle and therefore capable of anaplerosis. These metabolic products are believed to underlie triheptanoin's anticonvulsant effects in rodent seizure models. Here we investigate the anticonvulsive effects of oral triheptanoin in a syndrome-specific genetic mouse model of generalized epilepsy based on the GABA(A)γ2(R43Q) mutation. Mice were fed a diet supplemented with triheptanoin from weaning for three weeks prior to electrocortical recordings. Occurrence and durations of spike and wave discharges (SWDs) were measured. Triheptanoin did not alter body weight or basal blood glucose levels suggesting that it was well tolerated. Triheptanoin supplementation halved the time spent in seizures due to a reduction in both SWD occurrence and duration. An injection of insulin was used to reduce blood glucose, a metabolic stress known to precipitate seizures in the GABA(A)γ2(R43Q) mouse. The reduction in seizure count was also evident following insulin induced hypoglycemia with the triheptanoin treated group having significantly less SWDs than control animals under similar low blood glucose conditions. In summary, triheptanoin may be an effective and well tolerated dietary therapy for generalized epilepsy.
Collapse
|
195
|
Salam SMA, Rahman HMA, Karam RA. GABRG2 gene polymorphisms in Egyptian children with simple febrile seizures. Indian J Pediatr 2012; 79:1514-6. [PMID: 21983990 DOI: 10.1007/s12098-011-0564-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
Mutations in the gamma-aminobutyric acid type A receptor (GABRG2) gene have been associated with generalized epilepsy, childhood absence epilepsy and febrile seizures. In the present study the authors investigated the association of polymorphism of the GABRG2 with simple febrile seizures (FS) in Egyptian children. Polymorphism at GABRG2 (SNP211037, Asn196Asn), on chromosome 5q33 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 100 Egyptian children with simple FS, and 120 healthy controls. The frequency of CC genotype of GABRG2 gene was significantly higher in children with simple FS compared to healthy children (p ≤ 0.0001). The C allele of GABRG2 was associated with increased risk for developing simple FS (OR: 2.15. 95% CI, 1.4-3.2. p ≤ 0.0001). The present findings suggested that the GABRG2 (SNP211037)-C allele could be a suitable genetic marker for prediction of susceptibility to simple FS in Egyptian children.
Collapse
Affiliation(s)
- Sanaa M Abdel Salam
- Department of Pediatrics, Faculty of medicine, Zagazig University, Zagazig, Egypt.
| | | | | |
Collapse
|
196
|
Tian M, Mei D, Freri E, Hernandez CC, Granata T, Shen W, Macdonald RL, Guerrini R. Impaired surface αβγ GABA(A) receptor expression in familial epilepsy due to a GABRG2 frameshift mutation. Neurobiol Dis 2012; 50:135-41. [PMID: 23069679 DOI: 10.1016/j.nbd.2012.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
The purpose of the study was to explore the pathogenic mechanisms underlying generalized epilepsy and febrile seizures plus (GEFS+) in a family with a novel γ2 subunit gene (GABRG2) frameshift mutation. Four affected and one unaffected individuals carried a c.1329delC GABRG2 mutation resulting in a subunit [γ2S(S443delC)] with a modified and elongated carboxy-terminus that is different from that of the wildtype γ2S subunit. We expressed the wildtype γ2S subunit and the predicted mutant γ2S(S443delC) subunit cDNAs in HEK293T cells and performed immunoblotting, flow cytometry and electrophysiology studies. The mutant subunit was translated as a stable protein that was larger than the wildtype γ2S subunit and was retained in the ER and not expressed on the cell surface membrane, suggesting GABRG2 haploinsufficiency. Peak GABA-evoked currents recorded from cells cotransfected with wildtype α1 and β2 subunits and mutant γ2S subunits were significantly decreased and were comparable to α1β2 receptor currents. S443delC is the first GABR epilepsy mutation predicted to abolish the natural stop codon and produce a stop codon in the 3' UTR that leads to translation of an extended peptide. The GEFS+ phenotype observed in this family is likely caused by γ2S subunit loss-of-function and possibly to dominant-negative suppression of α1β2γ2 receptors. Many GABRG2 truncation mutations result in GEFS+, but the spectrum of phenotypic severity is wider, ranging from asymptomatic individuals to the Dravet syndrome. Mechanisms influencing the severity of the phenotype are therefore complex and difficult to correlate with its demonstrable functional effects.
Collapse
Affiliation(s)
- Mengnan Tian
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Aslan M, Orhan DD, Orhan N. Effect of Gentiana olivieri on experimental epilepsy models. Pharmacogn Mag 2012; 7:344-9. [PMID: 22262939 PMCID: PMC3261070 DOI: 10.4103/0973-1296.90419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/18/2010] [Accepted: 11/30/2011] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Flowering herbs of Gentiana olivieri Griseb. (Gentianaceae) are widely used as bitter tonic, stomachic, stimulant of appetite, antipyretic, anticonvulsant, antidiabetic and for mental problems in the different regions of Turkey. OBJECTIVE To establish the anticonvulsant activity potential of G. olivieri. MATERIALS AND METHODS In this work, the ethanol extract of G. olivieri was tested in three doses (200, 750 and 1000 mg/kg) for anticonvulsant activity against seizures produced in mice by pentylenetetrazole (PTZ), picrotoxin (PIC) and maximal electroshock (MES). Neurotoxicity of the ethanol extract was also determined by the Rota rod test to evaluate the safety. Ethosuximide (150 mg/kg), diazepam (0.5 mg/kg) and carbamazepine (30 mg/kg) were used as reference drugs. RESULTS Intraperitonally, injection of the extract significantly prolonged the onset of seizures at doses of 200 and 750 mg/kg, but did not alter the incidence of PTZ-induced seizures. Onset of PIC-induced seizures was delayed by the injection of the extract (1000 mg/kg). Moreover, only 750 mg/kg of the extract protected 25% of the mice against PIC-induced seizures. On the other hand, G. olivieri extract (200, 750 and 1000 mg/kg) showed a significant protective effect against MES-induced seizures. In the Rota rod test, the ethanol extract (200 mg/kg, ip) induced disturbance in motor coordination. CONCLUSION The results indicate that G. olivieri has possessed anticonvulsant activity against MES-induced seizures in mice.
Collapse
Affiliation(s)
- Mustafa Aslan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler/Ankara, Turkey
| | | | | |
Collapse
|
198
|
Vargas E, Petrou S, Reid CA. Genetic and pharmacological modulation of giant depolarizing potentials in the neonatal hippocampus associates with increased seizure susceptibility. J Physiol 2012; 591:57-65. [PMID: 23006485 DOI: 10.1113/jphysiol.2012.234674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The expression of Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is responsible for high intracellular Cl(-) resulting in the excitatory action of GABA(A) receptor activation in the developing brain. Giant depolarizing potentials (GDPs) are spontaneous network oscillations that involve GABA(A) receptors and are thought to be important in establishing neuronal circuit wiring. Earlier work established that seizure susceptibility in the GABA(A) γ2(R43Q) epilepsy mouse is impacted by developmental consequences of impaired GABA(A) receptor function. We investigated the potential mechanism of the developmental influence by recording GDPs in the CA3 pyramidal neurons from brain slices of the neonatal GABA(A) γ2(R43Q) mouse. Interestingly, the number of GPDs was significantly lower in slices from mutant mouse compared with wild-type control, suggesting an involvement in setting seizure susceptibility. To test this idea we blocked NKCC1 with bumetanide in neonatal mice and reduced the number of GDPs to a level similar to that seen in the mutant mice. We found that neonatal treatment with bumetanide resulted in a similar level of susceptibility to thermally induced seizures as described for the GABA(A) γ2(R43Q) mouse. These results provide evidence that a human GABA(A) receptor epilepsy mutation exerts a developmental influence by modulating the number of GDPs. It also draws attention to the potential risk of early treatment with bumetanide.
Collapse
Affiliation(s)
- Ernesto Vargas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
199
|
Möhler H. Pathophysiological aspects of diversity in neuronal inhibition: a new benzodiazepine pharmacology. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034214 PMCID: PMC3181687 DOI: 10.31887/dcns.2002.4.3/hmoehler] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibitory interneurons in the brain provide the balance to excitatory signaling. On the basis of brain imaging and human genetics, a deficit in GABAergic inhibition (GABA, γ-aminobuiyric acid) has been identified as contributing to the pathophysiology of anxiety disorders, epilepsy, and schizophrenia. Therapeutically, GABAA receptors play a major role as targets for benzodiazepine drugs. The therapeutic relevance of the multitude of structurally diverse GABAA receptor subtypes has only recently been identified. α1-GABAA receptors were found to mediate sedation, anterograde amnesia, and part of the seizure protection of these drugs, whereas α2-GABAA receptors, but not α3-GABAA receptors, mediate anxiolysis. Rational drug targeting to specific receptor subtypes has now become possible. Only restricted neuronal networks will be modulated by the upcoming subtype-selective drugs. For instance, anxiolytics devoid of drowsiness and sedation promise more sophisticated interventions in anxiety disorders. A new pharmacology of the benzodiazepine site is on the horizon.
Collapse
Affiliation(s)
- Hanns Möhler
- Institute of Pharmacology and Toxicology, University of Zurich and Department of Applied Biosciences, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
200
|
|