151
|
Abstract
Coenzyme Q(10) (CoQ(10)) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ(10) is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ(10) supplementation. CoQ(10) deficiency has been associated with five major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) nephrotic syndrome. In a few patients, pathogenic mutations have been identified in genes involved in the biosynthesis of CoQ(10) (primary CoQ(10) deficiencies) or in genes not directly related to CoQ(10) biosynthesis (secondary CoQ(10) deficiencies). Respiratory chain defects, ROS production, and apoptosis contribute to the pathogenesis of primary CoQ(10) deficiencies. In vitro and in vivo studies are necessary to further understand the pathogenesis of the disease and to develop more effective therapies.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
152
|
Wilson DM, Kim D, Berquist BR, Sigurdson AJ. Variation in base excision repair capacity. Mutat Res 2010; 711:100-12. [PMID: 21167187 DOI: 10.1016/j.mrfmmm.2010.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 01/20/2023]
Abstract
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| | | | | | | |
Collapse
|
153
|
Baltanás FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells. Brain Pathol 2010; 21:374-88. [PMID: 21054627 DOI: 10.1111/j.1750-3639.2010.00461.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage-dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre-mRNA and pre-rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage-induced neurodegeneration.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
154
|
Anheim M. [Autosomal recessive cerebellar ataxias]. Rev Neurol (Paris) 2010; 167:372-84. [PMID: 21087783 DOI: 10.1016/j.neurol.2010.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/13/2010] [Accepted: 07/20/2010] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Autosomal recessive cerebellar ataxias (ARCA) are heterogeneous and complex inherited neurodegenerative diseases that may affect the cerebellum and/or the spinocerebellar tract, the posterior column of the spinal cord and the peripheral nerves. Cerebellar ataxia is frequently proeminent and mostly associated with several neurological or extra-neurological signs, leading to a major disability before the age of 30. STATE OF ART Friedreich's ataxia (FRDA) is clearly the most frequent ARCA and several rarer entities have been described during the past fifteen years such as ataxia with oculomotor apraxia type 1 (AOA1) and type 2 (AOA2), ataxia with vitamin E deficiency (AVED) and autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). The ACAR are characterized by both allelic and non-allelic genetic heterogeneity. They may be divided into three groups: spino-cerebellar ataxia with pure sensory neuropathy; cerebellar ataxia with sensori-motor axonal neuropathy; pure cerebellar ataxia (i.e. ataxia of purely cerebellar origin that may be associated with other symptoms). Common physiological pathways are involved in several ARCA, such as DNA repair deficiency (AOA1, ataxia telangiectasia [AT]…), RNA termination disorder (AOA2), mitochondrial defect (FRDA, sensory ataxic neuropathy with dysarthria and ophthalmoplegia [Sando]…), lipoprotein assembly defects (AVED, abetalipoproteinemia [ABL]), chaperon protein disorders (ARSACS, Marinesco-Sjögren syndrome [MSS]) or peroxysomal diseases (Refsum disease [RD]). PERSPECTIVES New nanotechnology methods and high throughput gene analysis as well as bioinformatics should lead to the identification of several new ARCAs in the next few years despite the rarity of these entities. However, the challenge of the next decades will be the discovery of efficient treatments for these disabling neurodegenerative disorders. CONCLUSION Clinicians should be aware of the more frequent ARCAs, especially FRDA, in addition to ARCAs for which treatment is available (FRDA, AVED, ABL and RD for instance).
Collapse
Affiliation(s)
- M Anheim
- Service de neurogénétique, hôpital de la Pitié-Salpêtrière, 75651 Paris, France.
| |
Collapse
|
155
|
Huebner K, Saldivar JC, Sun J, Shibata H, Druck T. Hits, Fhits and Nits: beyond enzymatic function. ACTA ACUST UNITED AC 2010; 51:208-17. [PMID: 21035495 DOI: 10.1016/j.advenzreg.2010.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022]
Abstract
We have briefly summarized what is known about these proteins, but in closing wish to feature the outstanding questions. Hint1 was discovered mistakenly as an inhibitor of Protein Kinase C and designated Pkci, a designation that still confuses the literature. The other Hint family members were discovered by homology to Hint1. Aprataxin was discovered as a result of the hunt for a gene responsible for AOA1. Fhit was discovered through cloning of a familial chromosome translocation breakpoint on chromosome 3 that interrupts the large FHIT gene within an intron, in the FRA3B chromosome region (Ohta et al., 1996), now known to be the region of the human genome most susceptible to DNA damage due to replication stress (Durkin et al., 2008). The NitFhit fusion genewas discovered during searches for Fhit homologs in flies and worms because the fly/worm Nit polypeptide is fused to the 5'-end of the Fhit gene; the mammalian Nit gene family was discovered because of the NitFhit fusion gene, in searches for homologs to the Nit polypeptide of the NitFhit gene. Each of the Hit family member proteins is reported to have enzymatic activities toward putative substrates involving nucleosides or dinucleosides. Most surprisingly, each of the Hit family proteins discussed has been implicated in important DNA damage response pathways and/or tumor suppression pathways. And for each of them it has been difficult to assign definite substrates, to know if the substrates and catalytic products have biological functions, to know if that function is related to the DNA damage response and suppressor functions, and to precisely define the pathways through which tumor suppression occurs. When the fly Nit sequence was found at the 5'-end of the fly Fhit gene, this gene was hailed as a Rosetta stone gene/protein that would help in discovery of the function of Fhit, because the Nit protein should be in the same signal pathway (Pace et al., 2000). However, the mammalian Nit family proteins have turned out to be at least as mysterious as the Fhit proteins, with the Nit1 substrate still unknown and the surprising finding that Nit proteins also appear to behave as tumor suppressor proteins. Whether the predicted enzymatic functions of these proteins are relevant to the observed biological functions, remain among the outstanding unanswered puzzles and raise the question: have these mammalian proteins evolved beyond the putative original enzymatic purpose, such that the catalytic function is now vestigial and subservient to signal pathways that use the protein-substrate complexes in pathways that signal apoptosis or DNA damage response? Or can these proteins be fulfilling catalytic functions independently but in parallel with signal pathway functions, as perhaps observed for Aprataxin? Or is the catalytic function indeed part of the observed biological functions, such as apoptosis and tumor suppression? Perhaps the recent, post-genomic focus on metabolomics and genome-wide investigations of signal pathway networks will lead to answers to some of these outstanding questions.
Collapse
Affiliation(s)
- Kay Huebner
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210, United States.
| | | | | | | | | |
Collapse
|
156
|
Abstract
Recent advance of molecular biology reveals that quality control of intracellular environment takes an important role for maintaining the neuronal function. One is a quality control of protein and another is a quality control of nucleotide. Polyglutamine disease is a disease which caused by a failure of quality control of protein. Expanded polyglutamine repeats result in neurodegenerative disorders, but their cytotoxic structures remain to be elucidated. About the quality control of nucleotide in neuron, DNA single-strand breaks (SSBs) were continually produced by endogenous reactive oxygen species or exogenous genotoxic agents. These damaged ends posses damaged 3'-ends including 3'-phosphate, 3'-phosphoglycolate, or 3'-alpha, beta-unsaturated aldehyde ends, and should be restored to 3'-hydroxyl ends for subsequent repair processes. We have demonstrated by in vitro assay that aprataxin, the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ ataxia with oculomotor apraxia type 1 (EAOH/AOA1), specifically removes 3'-phosphoglycolate and 3'-phosphate ends at DNA 3'-ends, but not 3'-alpha, beta-unsaturated aldehyde ends. The findings indicate that aprataxin removes blocking molecules from 3'-ends, and that the accumulation of unrepaired SSBs with damaged 3'-ends underlies the pathogenesis of EAOH/AOA1. The findings will provide new insight into the mechanism underlying degeneration and DNA repair in neurons.
Collapse
Affiliation(s)
- Osamu Onodera
- Department of Molecular Neuroscience, Resource Branch for Brain Disease, Brain Research Institute, Niigata University
| |
Collapse
|
157
|
Abstract
Historically basic neuroscience research has made several important contributions to the cell biology of the nucleus, in particular the elucidation of nuclear structures and compartments. As research progressed towards elucidating the mechanism of neurological disease at the cellular and molecular levels, it is now providing insight into the importance and basis of coordination of nuclear pathways within the nucleus and with other cellular compartments. Ataxias, lethal neurodegenerative diseases that are distinguished by a progressive loss of motor coordination, stem from disruption of nuclear function.
Collapse
Affiliation(s)
- Harry T Orr
- Institute of Translational Neuroscience, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
158
|
Enokido Y, Tamura T, Ito H, Arumughan A, Komuro A, Shiwaku H, Sone M, Foulle R, Sawada H, Ishiguro H, Ono T, Murata M, Kanazawa I, Tomilin N, Tagawa K, Wanker EE, Okazawa H. Mutant huntingtin impairs Ku70-mediated DNA repair. ACTA ACUST UNITED AC 2010; 189:425-43. [PMID: 20439996 PMCID: PMC2867301 DOI: 10.1083/jcb.200905138] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutant huntingtin prevents interaction of the DNA damage repair complex component Ku70 with damaged DNA, blocking repair of double-strand breaks. DNA repair defends against naturally occurring or disease-associated DNA damage during the long lifespan of neurons and is implicated in polyglutamine disease pathology. In this study, we report that mutant huntingtin (Htt) expression in neurons causes double-strand breaks (DSBs) of genomic DNA, and Htt further promotes DSBs by impairing DNA repair. We identify Ku70, a component of the DNA damage repair complex, as a mediator of the DNA repair dysfunction in mutant Htt–expressing neurons. Mutant Htt interacts with Ku70, impairs DNA-dependent protein kinase function in nonhomologous end joining, and consequently increases DSB accumulation. Expression of exogenous Ku70 rescues abnormal behavior and pathological phenotypes in the R6/2 mouse model of Huntington’s disease (HD). These results collectively suggest that Ku70 is a critical regulator of DNA damage in HD pathology.
Collapse
Affiliation(s)
- Yasushi Enokido
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
CAMOS, a nonprogressive, autosomal recessive, congenital cerebellar ataxia, is caused by a mutant zinc-finger protein, ZNF592. Eur J Hum Genet 2010; 18:1107-13. [PMID: 20531441 DOI: 10.1038/ejhg.2010.82] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
CAMOS (Cerebellar Ataxia with Mental retardation, Optic atrophy and Skin abnormalities) is a rare autosomal recessive syndrome characterized by a nonprogressive congenital cerebellar ataxia associated with mental retardation, optic atrophy, and skin abnormalities. Using homozygosity mapping in a large inbred Lebanese Druze family, we previously reported the mapping of the disease gene at chromosome 15q24-q26 to a 3.6-cM interval between markers D15S206 and D15S199. Screening of candidate genes lying in this region led to the identification of a homozygous p.Gly1046Arg missense mutation in ZNF592, in all five affected individuals of the family. ZNF592 encodes a 1267-amino-acid zinc-finger (ZnF) protein, and the mutation, located within the eleventh ZnF, is predicted to affect the DNA-binding properties of ZNF592. Although the precise role of ZNF592 remains to be determined, our results suggest that ZNF592 is implicated in a complex developmental pathway, and that the mutation is likely to disturb the highly orchestrated regulation of genes during cerebellar development, by either disrupting interactions with target DNA or with a partner protein.
Collapse
|
160
|
Daiou C, Christodoulou K, Xiromerisiou G, Panas M, Dardiotis E, Kladi A, Speletas M, Ntaios G, Papadimitriou A, Germenis A, Hadjigeorgiou GM. Absence of aprataxin gene mutations in a Greek cohort with sporadic early onset ataxia and normal GAA triplets in frataxin gene. Neurol Sci 2010; 31:393-7. [PMID: 19953284 DOI: 10.1007/s10072-009-0201-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 11/17/2009] [Indexed: 12/19/2022]
Abstract
Phenotype of patients with the aprataxin gene mutation varies and according to previous studies, screening of aprataxin gene could be useful, once frataxin gene mutation is excluded in patients with normal GAA expansion in frataxin gene. In the present study, we sought to determine possible causative mutations in aprataxin gene (all exons and flanking intronic sequences) in 14 Greek patients with sporadic cerebellar ataxia all but one without GAA expansion in frataxin gene (1 patient was heterozygous). No detectable point mutation or deletion was found in the aprataxin gene of all the patients. Our results do not confirm the previous studies. This difference may be attributed to the different populations studied and possible different genetic background. It is still questionable whether the screening for aprataxin mutation in Greek patients' Friedreich ataxia phenotype is of clinical importance; larger, multicenter studies are necessary to clarify this issue.
Collapse
Affiliation(s)
- C Daiou
- Laboratory of Neurogenetics, Neuroscience Unit, Department of Neurology, Faculty of Medicine, University of Thessalia, Larissa, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Daley JM, Wilson TE, Ramotar D. Genetic interactions between HNT3/Aprataxin and RAD27/FEN1 suggest parallel pathways for 5' end processing during base excision repair. DNA Repair (Amst) 2010; 9:690-9. [PMID: 20399152 DOI: 10.1016/j.dnarep.2010.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/26/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
Mutations in Aprataxin cause the neurodegenerative syndrome ataxia oculomotor apraxia type 1. Aprataxin catalyzes removal of adenosine monophosphate (AMP) from the 5' end of a DNA strand, which results from an aborted attempt to ligate a strand break containing a damaged end. To gain insight into which DNA lesions are substrates for Aprataxin action in vivo, we deleted the Saccharomyces cerevisiae HNT3 gene, which encodes the Aprataxin homolog, in combination with known DNA repair genes. While hnt3Delta single mutants were not sensitive to DNA damaging agents, loss of HNT3 caused synergistic sensitivity to H(2)O(2) in backgrounds that accumulate strand breaks with blocked termini, including apn1Delta apn2Delta tpp1Delta and ntg1Delta ntg2Delta ogg1Delta. Loss of HNT3 in rad27Delta cells, which are deficient in long-patch base excision repair (LP-BER), resulted in synergistic sensitivity to H(2)O(2) and MMS, indicating that Hnt3 and LP-BER provide parallel pathways for processing 5' AMPs. Loss of HNT3 also increased the sister chromatid exchange frequency. Surprisingly, HNT3 deletion partially rescued H(2)O(2) sensitivity in recombination-deficient rad51Delta and rad52Delta cells, suggesting that Hnt3 promotes formation of a repair intermediate that is resolved by recombination.
Collapse
Affiliation(s)
- James M Daley
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
162
|
Dopeso H, Mateo-Lozano S, Elez E, Landolfi S, Ramos Pascual FJ, Hernández-Losa J, Mazzolini R, Rodrigues P, Bazzocco S, Carreras MJ, Espín E, Armengol M, Wilson AJ, Mariadason JM, Ramon Y Cajal S, Tabernero J, Schwartz S, Arango D. Aprataxin tumor levels predict response of colorectal cancer patients to irinotecan-based treatment. Clin Cancer Res 2010; 16:2375-82. [PMID: 20371676 DOI: 10.1158/1078-0432.ccr-09-3275] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Irinotecan (CPT11) treatment significantly improves the survival of colorectal cancer patients and is routinely used for the treatment of these patients, alone or in combination with other agents. However, only 20% to 30% of patients show an objective response to irinotecan, and there is great need for new molecular markers capable of identifying the subset of patients who are unlikely to respond. EXPERIMENTAL DESIGN Here we used microarray analysis of a panel of 30 colorectal cancer cell lines and immunohistochemistry to identify and validate a new biomarker of response to irinotecan. RESULTS A good correlation was observed between irinotecan sensitivity and the expression of aprataxin (APTX), a histidine triad domain superfamily protein involved in DNA repair. Moreover, using an isogenic in vitro system deficient in APTX, we show that aprataxin directly regulates the cellular sensitivity to camptothecin, suggesting that it could be used to predict patient response to irinotecan. We constructed a tissue microarray containing duplicate tumor samples from 135 patients that received irinotecan for the treatment of advanced colorectal cancer. Immunohistochemical assessment of the tumor levels of aprataxin showed a significant association with treatment response and patient survival. Patients with low aprataxin had longer progression-free (9.2 versus 5.5 months; P = 0.03) and overall survival (36.7 versus 19.0 months; P = 0.008) than patients with high tumor aprataxin. No associations were found between coding APTX variants and aprataxin levels or camptothecin sensitivity. CONCLUSIONS These results show that aprataxin tumor levels can be used to identify patients with low probability of response to irinotecan-based therapy who are ideal candidates to receive treatment with alternative agents in an attempt to improve patient survival.
Collapse
Affiliation(s)
- Higinio Dopeso
- Group of Molecular Oncology, Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol 2010; 8:41-61. [PMID: 20808545 PMCID: PMC2866461 DOI: 10.2174/157015910790909476] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023] Open
Abstract
Cerebellar ataxias are a group of disabling neurological disorders. Patients exhibit a cerebellar syndrome and can also present with extra-cerebellar deficits, namely pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. Recently, deficits in cognitive operations have been unraveled. Cerebellar ataxias are heterogeneous both at the phenotypic and genotypic point of view. Therapeutical trials performed during these last 4 decades have failed in most cases, in particular because drugs were not targeting a deleterious pathway, but were given to counteract putative defects in neurotransmission. The identification of the causative mutations of many hereditary ataxias, the development of relevant animal models and the recent identifications of the molecular mechanisms underlying ataxias are impacting on the development of new drugs. We provide an overview of the pharmacological treatments currently used in the clinical practice and we discuss the drugs under development.
Collapse
Affiliation(s)
- D Marmolino
- Laboratoire de Neurologie Expèrimentale ULB-Erasme, Brussels, Belgium.
| | | |
Collapse
|
164
|
Becherel OJ, Jakob B, Cherry AL, Gueven N, Fusser M, Kijas AW, Peng C, Katyal S, McKinnon PJ, Chen J, Epe B, Smerdon SJ, Taucher-Scholz G, Lavin MF. CK2 phosphorylation-dependent interaction between aprataxin and MDC1 in the DNA damage response. Nucleic Acids Res 2010; 38:1489-503. [PMID: 20008512 PMCID: PMC2836575 DOI: 10.1093/nar/gkp1149] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/26/2009] [Accepted: 11/20/2009] [Indexed: 11/13/2022] Open
Abstract
Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1, resolves abortive DNA ligation intermediates during DNA repair. Here, we demonstrate that aprataxin localizes at sites of DNA damage induced by high LET radiation and binds to mediator of DNA-damage checkpoint protein 1 (MDC1/NFBD1) through a phosphorylation-dependent interaction. This interaction is mediated via the aprataxin FHA domain and multiple casein kinase 2 di-phosphorylated S-D-T-D motifs in MDC1. X-ray structural and mutagenic analysis of aprataxin FHA domain, combined with modelling of the pSDpTD peptide interaction suggest an unusual FHA binding mechanism mediated by a cluster of basic residues at and around the canonical pT-docking site. Mutation of aprataxin FHA Arg29 prevented its interaction with MDC1 and recruitment to sites of DNA damage. These results indicate that aprataxin is involved not only in single strand break repair but also in the processing of a subset of double strand breaks presumably through its interaction with MDC1.
Collapse
Affiliation(s)
- Olivier J. Becherel
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Burkhard Jakob
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Amy L. Cherry
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Nuri Gueven
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Markus Fusser
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Amanda W. Kijas
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Cheng Peng
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Sachin Katyal
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Peter J. McKinnon
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Junjie Chen
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Bernd Epe
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Stephen J. Smerdon
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Gisela Taucher-Scholz
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia, GSI Helmholtzzentrum Schwerionenforschung GmBH, Planckstr. 1, 64291 Darmstadt, Germany, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK, Institute of Pharmacy, University of Mainz, Mainz, Germany, Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA and Central Clinical Division, University of Queensland, Brisbane, Australia
| |
Collapse
|
165
|
Wu L, Wu X, Deng H, Huang Y. First identification and functional analysis of a histidine triad nucleotide binding protein in an invertebrate species Haliotis diversicolor supertexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:76-83. [PMID: 19720079 DOI: 10.1016/j.dci.2009.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 05/28/2023]
Abstract
Histidine triad nucleotide binding protein (HINT) represents the most ancient and widespread branches in the histidine triad superfamily. HINT plays an important role in many biological processes especially in cell biology, and it has been found in a wide variety of species. However, the functional attributes of HINT homologues in invertebrates have not yet been reported. Here we identified a HINT homologue in abalone, which we named ab-HINT. The ab-HINT shows significant structural and functional similarities to mammalian HINT. RT-PCR and western blot analysis show that ab-HINT is ubiquitously expressed in abalone tissues and highly expressed in hemocyte and gills. In addition, significant up-regulation of ab-HINT was observed after LPS or Poly I:C challenge. Immunostainings suggest that ab-HINT is expressed predominantly in epithelial cells and mainly localized in the cytoplasmic compartment. Studies of the effect on cell apoptosis indicate that ab-HINT can trigger hemocytes apoptosis and p53 is involved in this process. These results conclude that ab-HINT is involved in the immune response of abalone and may be a potential pro-apoptotic factor. To the best of our knowledge, this is the first identification and characterization of a HINT homologue in invertebrates.
Collapse
Affiliation(s)
- Liuji Wu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, PR China
| | | | | | | |
Collapse
|
166
|
Tada M, Yokoseki A, Sato T, Makifuchi T, Onodera O. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:21-33. [PMID: 20687492 DOI: 10.1007/978-1-4419-6448-9_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA single-strand breaks (SSBs) are non-overlapping discontinuities in strands ofa DNA duplex. Significant attention has been given on the DNA SSB repair (SSBR) system in neurons, because the impairment of the SSBR causes human neurodegenerative disorders, including early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH), also known as ataxia-oculomotor apraxia Type 1 (AOA1). EAOH/AOA1 is characterized by early-onset slowly progressive ataxia, ocular motor apraxia, peripheral neuropathy and hypoalbuminemia. Neuropathological examination reveals severe loss of Purkinje cells and moderate neuronal loss in the anterior horn and dorsal root ganglia. EAOH/AOA1 is caused by the mutation in the APTX gene encoding the aprataxin (APTX) protein. APTX interacts with X-ray repair cross-complementing group 1 protein, which is a scaffold protein in SSBR. In addition, APTX-defective cells show increased sensitivity to genotoxic agents, which result in SSBs. These results indicate an important role ofAPTX in SSBR. SSBs are usually accompanied by modified or damaged 5'- and 3'-ends at the break site. Because these modified or damaged ends are not suitable for DNA ligation, they need to be restored to conventional ends prior to subsequent repair processes. APTX restores the 5'-adenylate monophosphate, 3'-phosphates and 3'-phosphoglycolate ends. The loss of function of APTX results in the accumulation of SSBs, consequently leading to neuronal cell dysfunction and death.
Collapse
Affiliation(s)
- Masayoshi Tada
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Japan
| | | | | | | | | |
Collapse
|
167
|
Abstract
AOA1 (ataxia oculomotor apraxia-1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5'-termini. In the present article, we provide an overview of this disease and review recent experiments demonstrating that short-patch repair of oxidative single-strand breaks in AOA1 cell extracts bypasses the point of aprataxin action and stalls at the final step of DNA ligation, resulting in accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of non-adenylated DNA ligase and short-patch single-strand break repair can be restored in AOA1 extracts, independently of aprataxin, by addition of recombinant DNA ligase.
Collapse
|
168
|
Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, Delaunoy JP, Fritsch M, Arning L, Synofzik M, Schöls L, Sequeiros J, Goizet C, Marelli C, Le Ber I, Koht J, Gazulla J, De Bleecker J, Mukhtar M, Drouot N, Ali-Pacha L, Benhassine T, Chbicheb M, M'Zahem A, Hamri A, Chabrol B, Pouget J, Murphy R, Watanabe M, Coutinho P, Tazir M, Durr A, Brice A, Tranchant C, Koenig M. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. ACTA ACUST UNITED AC 2009; 132:2688-98. [PMID: 19696032 DOI: 10.1093/brain/awp211] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 microg/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 microg/l, P = 0.0004; itself higher than the normal level (3.4 microg/l, range from 0.5 to 17.2 microg/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level > or =7 microg/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia ataxic patient to be affected with AOA2 with AFP levels > or =7 microg/l is 46%. Therefore, selection of patients with an AFP level above 7 microg/l for senataxin gene sequencing is a good strategy for AOA2 diagnosis. Pyramidal signs and dystonia were more frequent and disease was less severe with missense mutations in the helicase domain of senataxin gene than with missense mutations out of helicase domain and deletion and nonsense mutations (P = 0.001, P = 0.008 and P = 0.01, respectively). The lack of pyramidal signs in most patients may be explained by masking due to severe motor neuropathy.
Collapse
Affiliation(s)
- M Anheim
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, Université de Strasbourg, INSERM, Illkirch, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Harris JL, Jakob B, Taucher-Scholz G, Dianov GL, Becherel OJ, Lavin MF. Aprataxin, poly-ADP ribose polymerase 1 (PARP-1) and apurinic endonuclease 1 (APE1) function together to protect the genome against oxidative damage. Hum Mol Genet 2009; 18:4102-17. [PMID: 19643912 DOI: 10.1093/hmg/ddp359] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1 (AOA1), is a DNA repair protein that processes the product of abortive ligations, 5' adenylated DNA. In addition to its interaction with the single-strand break repair protein XRCC1, aprataxin also interacts with poly-ADP ribose polymerase 1 (PARP-1), a key player in the detection of DNA single-strand breaks. Here, we reveal reduced expression of PARP-1, apurinic endonuclease 1 (APE1) and OGG1 in AOA1 cells and demonstrate a requirement for PARP-1 in the recruitment of aprataxin to sites of DNA breaks. While inhibition of PARP activity did not affect aprataxin activity in vitro, it retarded its recruitment to sites of DNA damage in vivo. We also demonstrate the presence of elevated levels of oxidative DNA damage in AOA1 cells coupled with reduced base excision and gap filling repair efficiencies indicative of a synergy between aprataxin, PARP-1, APE-1 and OGG1 in the DNA damage response. These data support both direct and indirect modulating functions for aprataxin on base excision repair.
Collapse
Affiliation(s)
- Janelle L Harris
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | |
Collapse
|
170
|
Airoldi G, Guidarelli A, Cantoni O, Panzeri C, Vantaggiato C, Bonato S, Grazia D’Angelo M, Falcone S, De Palma C, Tonelli A, Crimella C, Bondioni S, Bresolin N, Clementi E, Bassi MT. Characterization of two novel SETX mutations in AOA2 patients reveals aspects of the pathophysiological role of senataxin. Neurogenetics 2009; 11:91-100. [DOI: 10.1007/s10048-009-0206-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022]
|
171
|
Anheim M, Fleury M, Monga B, Laugel V, Chaigne D, Rodier G, Ginglinger E, Boulay C, Courtois S, Drouot N, Fritsch M, Delaunoy JP, Stoppa-Lyonnet D, Tranchant C, Koenig M. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 2009; 11:1-12. [PMID: 19440741 DOI: 10.1007/s10048-009-0196-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/27/2009] [Indexed: 01/25/2023]
Abstract
While Friedreich's ataxia (FRDA) and ataxia telangiectasia (AT) are known to be the two most frequent forms of autosomal recessive cerebellar ataxia (ARCA), knowledge on the other forms of ARCA has been obtained only recently, and they appear to be rarer. Little is known about the epidemiological features and the relative frequency of the ARCAs and only few data are available about the comparative features of ARCAs. We prospectively studied 102 suspected ARCA cases from Eastern France (including 95 from the Alsace region) between 2002 and 2008. The diagnostic procedure was based on a sequential strategic scheme. We examined the clinical, paraclinical and molecular features of the large cohort of patients and compared features and epidemiology according to molecular diagnosis. A molecular diagnosis could be established for 57 patients; 36 were affected with FRDA, seven with ataxia plus oculomotor apraxia type 2 (AOA2), four with AT, three with ataxia plus oculomotor apraxia type 1 (AOA1), three with Marinesco-Sjögren syndrome, two with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), one with ataxia with vitamin E deficiency (AVED) and one with autosomal recessive cerebellar ataxia type 2 (ARCA2). The group of patients with no identified mutation had a significantly lower spinocerebellar degeneration functional score corrected for disease duration (SDFS/DD ratio; p = 0.002) and comprised a significantly higher proportion of cases with onset after 20 years (p < 0.01). Extensor plantar reflexes were rarer and cerebellar atrophy was more frequent in the group of patients with a known non-Friedreich ARCA compared to all other patients (p < 0.0001 and p = 0.0003, respectively). Lower limb areflexia and electroneuromyographic evidences of peripheral neuropathy were more frequent in the Friedreich ataxia group than in the group with a known non-Friedreich ataxia and were more frequent in the later group than in the group with no identified mutation (p = 0.0001 and p = 0.01, respectively). The overall prevalence of ARCA in Alsace is 1/19,000. We can infer the prevalence of FRDA in Alsace to be 1/50,000 and infer that AT is approximately eight times less frequent than FRDA. MSS, AOA2 and ARSACS appear only slightly less frequent than AT. Despite the broad variability of severity, Friedreich ataxia patients are clinically distinct from the other forms of ARCA. Patients with no identified mutation have more often a pure cerebellar degenerative disease or a spastic ataxia phenotype. It appears that ARCA cases can be divided into two major groups of different prognosis, an early-onset group with a highly probable genetic cause and an adult-onset group with better prognosis for which a genetic cause is more difficult to prove but not excluded. ARCAs are rare, early-disabling and genetically heterogeneous diseases dominated by FRDA. Several of the recently identified ARCAs, such as AVED, ARSACS, AOA1, AOA2 and MSS, have a prevalence close to AT and should be searched for extensively irrespective of ethnic origins. The strategic scheme is a useful tool for the diagnosis of ARCAs in clinical practice.
Collapse
Affiliation(s)
- M Anheim
- Département de Neurologie, Hôpital Civil, Centre Hospitalier Universitaire de Strasbourg, 1, place de l'Hôpital, 67000, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Ye ZY, Hou QM, Li LF, Su XD. Crystallization and preliminary X-ray crystallographic analysis of SMU.412c protein from the caries pathogen Streptococcus mutans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:392-4. [PMID: 19342789 PMCID: PMC2664769 DOI: 10.1107/s1744309109009464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/14/2009] [Indexed: 11/10/2022]
Abstract
The smu.412c gene encodes a putative histidine triad-like protein (SMU.412c) with 139 residues that is involved in cell-cycle regulation in Streptococcus mutans. The gene was cloned into the expression vector pET28a and subsequently expressed in Escherichia coli strain BL21 (DE3) to give a substantially soluble form of SMU.412c with a His(6) tag at its N-terminus. The recombinant protein was purified to homogeneity in a two-step procedure involving Ni(2+)-chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction were obtained using the sitting-drop vapour-diffusion method and diffracted to 1.8 A resolution on beamline BL6A at Photon Factory, Tsukuba, Japan. The crystal belonged to space group P4(1)2(1)2, with unit-cell parameters a = b = 53.5, c = 141.1 A.
Collapse
Affiliation(s)
- Zhao-Yang Ye
- Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qiao-Ming Hou
- Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Lan-Fen Li
- Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Xiao-Dong Su
- Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
173
|
El-Khamisy SF, Katyal S, Patel P, Ju L, McKinnon PJ, Caldecott KW. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin. DNA Repair (Amst) 2009; 8:760-6. [PMID: 19303373 PMCID: PMC2693503 DOI: 10.1016/j.dnarep.2009.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 11/16/2022]
Abstract
Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5'-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5'-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5'-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3'-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5'-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3'-termini at a subset of single-strand breaks (SSBs), including those with 3'-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1(-/-)/Aptx(-/-) double knockout quiescent mouse astrocytes compared with Tdp1(-/-) or Aptx(-/-) single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1(-/-) and Tdp1(-/-)/Aptx(-/-) double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1(-/-), Aptx(-/-) or Tdp1(-/-)/Aptx(-/-) astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1.
Collapse
Affiliation(s)
- Sherif F El-Khamisy
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| | | | | | | | | | | |
Collapse
|
174
|
Onodera O. [Molecular mechanism for spinocerebellar ataxias]. Rinsho Shinkeigaku 2009; 49:1-8. [PMID: 19227889 DOI: 10.5692/clinicalneurol.49.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent advance of molecular biology reveals that quality control of intracellular environment takes an important role for maintaining the neuronal function. One is a quality control of protein and another is a quality control of nucleotide. Polyglutamine disease is a disease which caused by a failure of quality control of protein. Expanded polyglutamine repeats result in neurodegenerative disorders, but their cytotoxic structures remain to be elucidated. We have applied fluorescence resonance energy transfer analysis to clarify the cytotoxicity of soluble polyglutamine oligomers. By using this method we revealed that polyglutamine monomers assemble into oligomer in a parallel beta-sheet or a head-to-tail cylindrical beta-sheet manner. We distinguished oligomers from monomers and inclusion bodies in a single living cell. Survival assay of neuronally differentiated cells revealed that cells with soluble oligomers died faster than those with inclusion bodies or monomers. These results indicate that a formation of oligomers is an essential mechanism underlying neurodegeneration in polyglutamine-mediated disorders. About the quality control of nucleotide in neuron, DNA single-strand breaks were continually produced by endogenous reactive oxygen species or exogenous genotoxic agents. These damaged ends posses damaged 3'-ends including 3'-phosphate, 3'-phosphoglycolate, or 3'-alpha, beta-unsaturated aldehyde ends, and should be restored to 3'-hydroxyl ends for subsequent repair processes. We have demonstrated by in vitro assay that aprataxin, the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia type 1 (EAOH/AOA1), specifically removes 3'-phosphoglycolate and 3'-phosphate ends at DNA 3'-ends, but not 3'-alpha, beta-unsaturated aldehyde ends. The findings indicate that aprataxin removes blocking molecules from 3'-ends, and that the accumulation of unrepaired DNA single-strand breaks with damaged 3'-ends underlies the pathogenesis of EAOH/AOA1. The findings will provide new insight into the mechanism underlying degeneration and DNA repair in neurons. Taken together, these results indicate that the quality control of protein and nucleotide is crucial to understand the neurodegenerative disorder.
Collapse
Affiliation(s)
- Osamu Onodera
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, Niigata University
| |
Collapse
|
175
|
Abstract
The ability to respond to genotoxic stress is a prerequisite for the successful development of the nervous system. Mutations in various DNA repair factors can lead to human diseases that are characterized by pronounced neuropathology. In many of these syndromes the neurological component is among the most deleterious aspects of the disease. The nervous system poses a particular challenge in terms of clinical intervention, as the neuropathology associated with these diseases often arises during nervous system development and can be fully penetrant by childhood. Understanding how DNA repair deficiency affects the nervous system will provide a rational basis for therapies targeted at ameliorating the neurological problems in these syndromes.
Collapse
|
176
|
Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1. Mol Cell Biol 2008; 29:1354-62. [PMID: 19103743 DOI: 10.1128/mcb.01471-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ataxia oculomotor apraxia 1 (AOA1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5' termini. Despite this, global rates of chromosomal strand break repair are normal in a variety of AOA1 and other aprataxin-defective cells. Here we show that short-patch single-strand break repair (SSBR) in AOA1 cell extracts bypasses the point of aprataxin action at oxidative breaks and stalls at the final step of DNA ligation, resulting in the accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of nonadenylated DNA ligase, and short-patch SSBR can be restored in AOA1 extracts, independently of aprataxin, by the addition of recombinant DNA ligase. Since adenylated nicks are substrates for long-patch SSBR, we reasoned that this pathway might in part explain the apparent absence of a chromosomal SSBR defect in aprataxin-defective cells. Indeed, whereas chemical inhibition of long-patch repair did not affect SSBR rates in wild-type mouse neural astrocytes, it uncovered a significant defect in Aptx(-/-) neural astrocytes. These data demonstrate that aprataxin participates in chromosomal SSBR in vivo and suggest that short-patch SSBR arrests in AOA1 because of insufficient nonadenylated DNA ligase.
Collapse
|
177
|
Abstract
Ataxia-telangiectasia (AT) belongs to a group of recessively inherited disorders characterized by progressive ataxia and oculomotor apraxia. Included in this group are AT, ataxia-telangiectasia-like disorder (ATLD), ataxia with oculomotor apraxia type 1 (AOA 1), ataxia with oculomotor apraxia type 2 (AOA 2), and the recently described AOA3. Common to this group is the underlying cellular defect in the recognition and repair of double-strand or single-strand DNA breaks. Clinical and laboratory features allow one to distinguish between these various disorders. In this report, we describe a child with early onset progressive ataxia, oculomotor apraxia, ocular telangiectasia, and white-matter changes by magnetic resonance imaging, which appears to be yet another novel form of AOA. We designate this condition as AOA-WM to call attention to the central demyelination seen in this variety of ataxia with oculomotor apraxia.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurology, Children's Health Center, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | | |
Collapse
|
178
|
|
179
|
Rass U, Ahel I, West SC. Molecular mechanism of DNA deadenylation by the neurological disease protein aprataxin. J Biol Chem 2008; 283:33994-4001. [PMID: 18836178 DOI: 10.1074/jbc.m807124200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human neurological disease known as ataxia with oculomotor apraxia 1 is caused by mutations in the APTX gene that encodes Aprataxin (APTX) protein. APTX is a member of the histidine triad superfamily of nucleotide hydrolases and transferases but is distinct from other family members in that it acts upon DNA. The target of APTX is 5'-adenylates at DNA nicks or breaks that result from abortive DNA ligation reactions. In this work, we show that APTX acts as a nick sensor, which provides a mechanism to assess the adenylation status of unsealed nicks. When an adenylated nick is encountered by APTX, base pairing at the 5' terminus of the nick is disrupted as the adenylate is accepted into the active site of the enzyme. Adenylate removal occurs by a two-step process that proceeds through a transient AMP-APTX covalent intermediate. These results pinpoint APTX as the first protein to adopt canonical histidine triad-type reaction chemistry for the repair of DNA.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Clare Hall Laboratories, Cancer Research UK, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
180
|
Abstract
DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encircles nicked DNA with each of the domains contacting the DNA duplex. The unique segments adjacent to the catalytic region of eukaryotic DNA ligases are involved in specific protein-protein interactions with a growing number of DNA replication and repair proteins. These interactions determine the specific cellular functions of the DNA ligase isozymes. In mammals, defects in DNA ligation have been linked with an increased incidence of cancer and neurodegeneration.
Collapse
Affiliation(s)
- Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
181
|
Abstract
Hereditary defects in the repair of DNA damage are implicated in a variety of diseases, many of which are typified by neurological dysfunction and/or increased genetic instability and cancer. Of the different types of DNA damage that arise in cells, single-strand breaks (SSBs) are the most common, arising at a frequency of tens of thousands per cell per day from direct attack by intracellular metabolites and from spontaneous DNA decay. Here, the molecular mechanisms and organization of the DNA-repair pathways that remove SSBs are reviewed and the connection between defects in these pathways and hereditary neurodegenerative disease are discussed.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
182
|
Barzilai A, Biton S, Shiloh Y. The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 2008; 7:1010-27. [DOI: 10.1016/j.dnarep.2008.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
183
|
Marlin S, Lacombe D, Jonard L, Leboulanger N, Bonneau D, Goizet C, de Villemeur TB, Cabrol S, Houang M, Moatti L, Feldmann D, Denoyelle F. Perrault syndrome: report of four new cases, review and exclusion of candidate genes. Am J Med Genet A 2008; 146A:661-4. [PMID: 18241061 DOI: 10.1002/ajmg.a.32180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report on two sporadic and two familial new cases with sensorineural hearing impairment and ovarian dysgenesis which are the cardinal signs of Perrault syndrome in females. Only one of them has a nervous system defect. We reviewed all the published cases of Perrault syndrome in order to define the clinical variability and to evaluate the frequency of the neurological anomalies in this clinical entity. Moreover we excluded GJB2, POLG, and FOXL2 as candidate genes in Perrault syndrome.
Collapse
Affiliation(s)
- Sandrine Marlin
- Hôpital Trousseau, Service de Génétique, APHP, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Lavin MF, Gueven N, Grattan-Smith P. Defective responses to DNA single- and double-strand breaks in spinocerebellar ataxia. DNA Repair (Amst) 2008; 7:1061-76. [PMID: 18467193 DOI: 10.1016/j.dnarep.2008.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Failure to maintain the integrity of DNA/chromatin can result in genome instability and an increased risk of cancer. The description of a number of human genetic disorders characterised not only by cancer predisposition but by a broader phenotype including neurodegeneration suggests that maintaining genome stability is also important for preserving post-mitotic neurons. The identification of genes associated with other neurodegenerative disorders provides further evidence for the importance of DNA damage response and DNA repair genes in protecting against neurodegeneration. This theme is further developed in this review.
Collapse
Affiliation(s)
- Martin F Lavin
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | |
Collapse
|
185
|
Abstract
DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling nonneuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| |
Collapse
|
186
|
Katyal S, McKinnon PJ. DNA strand breaks, neurodegeneration and aging in the brain. Mech Ageing Dev 2008; 129:483-91. [PMID: 18455751 DOI: 10.1016/j.mad.2008.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/08/2008] [Accepted: 03/16/2008] [Indexed: 12/01/2022]
Abstract
Defective responses to DNA single- or double-strand breaks can result in neurological disease, underscoring the critical importance of DNA repair for neural homeostasis. Human DNA repair-deficient syndromes are generally congenital, in which brain pathology reflects the consequences of developmentally incurred DNA damage. Although, it is unclear to what degree DNA strand-break repair defects in mature neural cells contributes to disease pathology. However, DNA single-strand breaks are a relatively common lesion which if not repaired can impact cells via interference with transcription. Thus, this lesion, and probably to a lesser extent DNA double-strand breaks, may be particularly relevant to aging in the neural cell population. In this review we will examine the consequences of defective DNA strand-break repair towards homeostasis in the brain. Further, we also consider the utility of mouse models as reagents to understand the connection between DNA strand breaks and aging in the brain.
Collapse
Affiliation(s)
- Sachin Katyal
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
187
|
Kulkarni A, Wilson DM. The involvement of DNA-damage and -repair defects in neurological dysfunction. Am J Hum Genet 2008; 82:539-66. [PMID: 18319069 PMCID: PMC2427185 DOI: 10.1016/j.ajhg.2008.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/17/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022] Open
Abstract
A genetic link between defects in DNA repair and neurological abnormalities has been well established through studies of inherited disorders such as ataxia telangiectasia and xeroderma pigmentosum. In this review, we present a comprehensive summary of the major types of DNA damage, the molecular pathways that function in their repair, and the connection between defective DNA-repair responses and specific neurological disease. Particular attention is given to describing the nature of the repair defect and its relationship to the manifestation of the associated neurological dysfunction. Finally, the review touches upon the role of oxidative stress, a leading precursor to DNA damage, in the development of certain neurodegenerative pathologies, such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Avanti Kulkarni
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
188
|
Cotner-Gohara E, Kim IK, Tomkinson AE, Ellenberger T. Two DNA-binding and nick recognition modules in human DNA ligase III. J Biol Chem 2008; 283:10764-72. [PMID: 18238776 DOI: 10.1074/jbc.m708175200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bind specifically to nicked DNA over intact duplex DNA. One of these modules comprises the zinc finger domain and DNA-binding domain, which function together as a single DNA binding unit. The catalytic core of ligase III is the second DNA nick-binding module. Both binding modules are required for ligation of blunt ended DNA substrates. Although the zinc finger increases the catalytic efficiency of nick ligation, it appears to occupy the same binding site as the DNA ligase III catalytic core. We present a jackknife model for ligase III that posits conformational changes during nick sensing and ligation to extend the versatility of the enzyme.
Collapse
Affiliation(s)
- Elizabeth Cotner-Gohara
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
189
|
Gatti RA, Boder E, Good RA. Immunodeficiency, radiosensitivity, and the XCIND syndrome. Immunol Res 2008; 38:87-101. [PMID: 17917014 DOI: 10.1007/s12026-007-0018-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/11/2022]
Abstract
Through the analysis of a rare disorder called ataxia-telangiectasia (A-T), many important biological lessons have been gleaned. Today, it is clear that the underlying defect of A-T lies in the nucleus, as an inability to repair or process double strand breaks. More important, by the A-T phenotype now allows us to appreciate a much more general distinction between immunodeficiencies that are radiosensitive and those that are not.
Collapse
Affiliation(s)
- Richard A Gatti
- Department of Pathology & Laboratory Medicine, UCLA David Geffin School of Medicine, Los Angeles, CA 90095-1732, USA.
| | | | | |
Collapse
|
190
|
Abstract
Each day tens of thousands of DNA single-strand breaks (SSBs) arise in every cell from the attack of deoxyribose and DNA bases by reactive oxygen species and other electrophilic molecules. DNA double-strand breaks (DSBs) also arise, albeit at a much lower frequency, from similar attacks and from the encounter of unrepaired SSBs and possibly other DNA structures by DNA replication forks. DSBs are also created during normal development of the immune system. Defects in the cellular response to DNA strand breaks underpin many human diseases, including disorders associated with cancer predisposition, immune dysfunction, radiosensitivity, and neurodegeneration. Here we provide an overview of the genetic diseases associated with defects in the repair/response to DNA strand breaks.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
191
|
Nigrostriatal involvement in ataxia with oculomotor apraxia type 1. J Neurol 2007; 255:45-8. [PMID: 18004640 DOI: 10.1007/s00415-007-0657-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 04/07/2007] [Accepted: 05/04/2007] [Indexed: 10/22/2022]
Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is a rare autosomal recessive neurodegenerative disease, recently associated with mutations in the aprataxin gene. Main features are early onset cerebellar ataxia, oculomotor apraxia and peripheral neuropathy. The presence of choreoathetosis or dystonia in some patients suggests basal ganglia involvement, but these structures appear preserved in a single case in which neuropathological examination was performed. To evaluate in vivo the nigrostriatal function we studied dopamine transporter (DAT) density with [(123)I] 2beta-carbometoxy-3beta-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (FPCIT)-SPECT in four AOA1 patients and eight healthy volunteers. All patients showed ataxia and neuropathy; only one had chorea and none had dystonia. Comparing with controls, AOA1 patients showed a slight reduction of the average striatal DAT density, which was bilateral and uniform in caudate and putamen. Nigrostriatal impairment occurred even in the absence of extrapyramidal features. Our data suggest subclinical involvement of basal ganglia in AOA1.
Collapse
|
192
|
Sugawara M, Wada C, Okawa S, Kobayashi M, Sageshima M, Imota T, Toyoshima I. Purkinje Cell Loss in the Cerebellar Flocculus in Patients with Ataxia with Ocular Motor Apraxia Type 1/Early-Onset Ataxia with Ocular Motor Apraxia and Hypoalbuminemia. Eur Neurol 2007; 59:18-23. [DOI: 10.1159/000109256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 03/22/2007] [Indexed: 11/19/2022]
|
193
|
Abstract
Defects in cellular DNA repair processes have been linked to genome instability, heritable cancers, and premature aging syndromes. Yet defects in some repair processes manifest themselves primarily in neuronal tissues. This review focuses on studies defining the molecular defects associated with several human neurological disorders, particularly ataxia with oculomotor apraxia 1 (AOA1) and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). A picture is emerging to suggest that brain cells, due to their nonproliferative nature, may be particularly prone to the progressive accumulation of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | |
Collapse
|
194
|
Ferrarini M, Squintani G, Cavallaro T, Ferrari S, Rizzuto N, Fabrizi GM. A novel mutation of aprataxin associated with ataxia ocular apraxia type 1: Phenotypical and genotypical characterization. J Neurol Sci 2007; 260:219-24. [PMID: 17572444 DOI: 10.1016/j.jns.2007.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 04/20/2007] [Accepted: 05/10/2007] [Indexed: 11/27/2022]
Abstract
Ataxia oculomotor apraxia type 1 (AOA1) is the most common form of autosomal recessive ataxia in Japan, and the second in Portugal after Friedreich ataxia. AOA1 is typically characterized by early-onset cerebellar ataxia, oculomotor apraxia, hypoalbuminemia, hypercholesterolemia and late axonal sensori-motor neuropathy. AOA1 is associated with the aprataxin gene (APTX) encoding a protein involved in DNA repair. We characterized a novel homozygous missense mutation of APTX in a 34 year-old female patient born from consanguineous parents. The mutation, a Val230Gly caused by a c.689 T>G substitution, involved the histidine-triad (HIT) domain of the protein, affected a phylogenetically conserved amino acid and was absent in the control population. We described the clinical and neurophysiological features, the findings at structural and functional brain imaging, and the pathological picture of the sural nerve biopsy. The report emphasized the genetical and phenotypical heterogeneity of AOA1 by demonstrating atypical features such as absence of oculomotor apraxia and signs of pyramidal involvement. Expression studies by Western blotting on fibroblasts demonstrated that the homozygous Val230Gly mutation was associated with decreased levels of APTX indicating a loss-of-function mechanism.
Collapse
Affiliation(s)
- Moreno Ferrarini
- Section of Clinical Neurology, Department of Neurological and Visual Sciences, University of Verona, Italy
| | | | | | | | | | | |
Collapse
|
195
|
Suraweera A, Becherel OJ, Chen P, Rundle N, Woods R, Nakamura J, Gatei M, Criscuolo C, Filla A, Chessa L, Fusser M, Epe B, Gueven N, Lavin MF. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. ACTA ACUST UNITED AC 2007; 177:969-79. [PMID: 17562789 PMCID: PMC2064358 DOI: 10.1083/jcb.200701042] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adefective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA. AOA2 cells exhibited constitutive oxidative DNA damage and enhanced chromosomal instability in response to H2O2. Rejoining of H2O2-induced DNA double-strand breaks (DSBs) was significantly reduced in AOA2 cells compared to controls, and there was no evidence for a defect in DNA single-strand break repair. This defect in DSB repair was corrected by full-length SETX cDNA. These results provide evidence that an additional member of the autosomal recessive AOA is also characterized by a defective response to DNA damage, which may contribute to the neurodegeneration seen in this syndrome.
Collapse
Affiliation(s)
- Amila Suraweera
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Takahashi T, Tada M, Igarashi S, Koyama A, Date H, Yokoseki A, Shiga A, Yoshida Y, Tsuji S, Nishizawa M, Onodera O. Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3'-phosphate and 3'-phosphoglycolate ends. Nucleic Acids Res 2007; 35:3797-809. [PMID: 17519253 PMCID: PMC1920238 DOI: 10.1093/nar/gkm158] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aprataxin is the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia type 1 (EAOH/AOA1), the clinical symptoms of which are predominantly neurological. Although aprataxin has been suggested to be related to DNA single-strand break repair (SSBR), the physiological function of aprataxin remains to be elucidated. DNA single-strand breaks (SSBs) continually produced by endogenous reactive oxygen species or exogenous genotoxic agents, typically possess damaged 3′-ends including 3′-phosphate, 3′-phosphoglycolate, or 3′-α, β-unsaturated aldehyde ends. These damaged 3′-ends should be restored to 3′-hydroxyl ends for subsequent repair processes. Here we demonstrate by in vitro assay that recombinant human aprataxin specifically removes 3′-phosphoglycolate and 3′-phosphate ends at DNA 3′-ends, but not 3′-α, β-unsaturated aldehyde ends, and can act with DNA polymerase β and DNA ligase III to repair SSBs with these damaged 3′-ends. Furthermore, disease-associated mutant forms of aprataxin lack this removal activity. The findings indicate that aprataxin has an important role in SSBR, that is, it removes blocking molecules from 3′-ends, and that the accumulation of unrepaired SSBs with damaged 3′-ends underlies the pathogenesis of EAOH/AOA1. The findings will provide new insight into the mechanism underlying degeneration and DNA repair in neurons.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Masayoshi Tada
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Shuichi Igarashi
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Akihide Koyama
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Hidetoshi Date
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Akio Yokoseki
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Atsushi Shiga
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Yutaka Yoshida
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
- *To whom correspondence should be addressed. 81 25 227 066581 25 223 6646
| |
Collapse
|
197
|
Hirano M, Asai H, Kiriyama T, Furiya Y, Iwamoto T, Nishiwaki T, Yamamoto A, Mori T, Ueno S. Short half-lives of ataxia-associated aprataxin proteins in neuronal cells. Neurosci Lett 2007; 419:184-7. [PMID: 17485165 DOI: 10.1016/j.neulet.2007.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/17/2007] [Accepted: 04/22/2007] [Indexed: 11/28/2022]
Abstract
Early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH)/ataxia with oculomotor apraxia type 1 (AOA1) is caused by mutations in the gene encoding aprataxin (APTX). Although several in vitro findings proposed that impaired enzymatic activities of APTX are responsible for EAOH/AOA1, potential instability of mutant proteins has also been suggested as the pathogenesis based on in vivo finding that mutant proteins are almost undetectable in EAOH/AOA1 tissues or cells. The present study aimed to experimentally prove instability of mutant proteins in neuronal cells, the cell type preferentially affected by this disease. Results of pulse-chase experiments demonstrated that all of the disease-associated mutants had extremely shorter half-lives than the WT. We further found that mutants were targeted for rapid proteasome-mediated degradation. These results help establish pathogenic and physiological protein characteristics of APTX in neuronal cells.
Collapse
Affiliation(s)
- Makito Hirano
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Iles N, Rulten S, El-Khamisy SF, Caldecott KW. APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol Cell Biol 2007; 27:3793-803. [PMID: 17353262 PMCID: PMC1900005 DOI: 10.1128/mcb.02269-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/04/2007] [Accepted: 03/05/2007] [Indexed: 11/20/2022] Open
Abstract
Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phosphorylated by casein kinase 2 (CK2). Here, we identify the product of the uncharacterized open reading frame C2orf13 as a novel member of this FHA domain family of proteins and we denote this protein APLF (aprataxin- and PNK-like factor). We show that APLF interacts with XRCC1 in vivo and in vitro in a manner that is stimulated by CK2. Yeast two-hybrid analyses suggest that APLF also interacts with the double-strand break repair proteins XRCC4 and XRCC5 (Ku86). We also show that endogenous and yellow fluorescent protein-tagged APLF accumulates at sites of H(2)O(2) or UVA laser-induced chromosomal DNA damage and that this is achieved through at least two mechanisms: one that requires the FHA domain-mediated interaction with XRCC1 and a second that is independent of XRCC1 but requires a novel type of zinc finger motif located at the C terminus of APLF. Finally, we demonstrate that APLF is phosphorylated in a DNA damage- and ATM-dependent manner and that the depletion of APLF from noncycling human SH-SY5Y neuroblastoma cells reduces rates of chromosomal DNA strand break repair following ionizing radiation. These data identify APLF as a novel component of the cellular response to DNA strand breaks in human cells.
Collapse
Affiliation(s)
- Natasha Iles
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, Sussex, United Kingdom
| | | | | | | |
Collapse
|
199
|
Gueven N, Chen P, Nakamura J, Becherel OJ, Kijas AW, Grattan-Smith P, Lavin MF. A subgroup of spinocerebellar ataxias defective in DNA damage responses. Neuroscience 2007; 145:1418-25. [PMID: 17224243 DOI: 10.1016/j.neuroscience.2006.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 01/16/2023]
Abstract
A subgroup of human autosomal recessive ataxias is also characterized by disturbances of eye movement or oculomotor apraxia. These include ataxia telangiectasia (A-T); ataxia telangiectasia like disorder (ATLD); ataxia oculomotor apraxia type 1 (AOA1) and ataxia oculomotor apraxia type 2 (AOA2). What appears to be emerging is that all of these have in common some form of defect in DNA damage response which could account for the neurodegenerative changes seen in these disorders. We describe here sensitivity to DNA damaging agents in AOA1 and evidence that these cells have a defect in single strand break repair. Comparison is made with what appears to be a novel form of AOA (AOA3) which also shows sensitivity to agents that lead to single strand breaks in DNA as well as a reduced capacity to repair these breaks. AOA3 cells are defective in the DNA damage-induced p53 response. This defect can be overcome by incubation with the mdm2 antagonists, nutlins, but combined treatment with nutlins and DNA damage does not enhance the response. We also show that AOA3 cells are deficient in p73 activation after DNA damage. These data provide further evidence that different forms of AOA have in common a reduced capacity to cope with damage to DNA, which may account for the neurodegeneration observed in these syndromes.
Collapse
Affiliation(s)
- N Gueven
- Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
200
|
Baba Y, Uitti RJ, Boylan KB, Uehara Y, Yamada T, Farrer MJ, Couchon E, Batish SD, Wszolek ZK. Aprataxin (APTX) gene mutations resembling multiple system atrophy. Parkinsonism Relat Disord 2007; 13:139-42. [PMID: 17049295 DOI: 10.1016/j.parkreldis.2006.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 08/03/2006] [Accepted: 08/18/2006] [Indexed: 11/28/2022]
Abstract
Mutations of the aprataxin (APTX) gene cause early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH), also called ataxia with oculomotor apraxia type 1. Recent studies showed clinical heterogeneity in patients with EAOH. We describe 2 patients whose clinical features resembled those of multiple system atrophy of the cerebellar subtype (MSA-C) but without ocular motor apraxia and hypoalbuminemia. Each had a different nucleotide transition in the APTX gene (725G-->A and 457A-->G). These variants on the APTX gene exhibit phenotypic variability.
Collapse
Affiliation(s)
- Yasuhiko Baba
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|