151
|
Uchiumi F, Enokida K, Shiraishi T, Masumi A, Tanuma SI. Characterization of the promoter region of the human IGHMBP2 (Smubp-2) gene and its response to TPA in HL-60 cells. Gene 2010; 463:8-17. [PMID: 20441787 DOI: 10.1016/j.gene.2010.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/13/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
Abstract
Immunoglobulin mu-binding protein 2 (IGHMBP2/Smubp-2) is a helicase motif-containing DNA-binding protein that has been suggested to regulate various nuclear functions. Recent studies indicated that mutations in the IGHMBP2 gene are responsible for spinal muscular atrophy with respiratory distress type I (SMARD1). However, the mechanism of regulation of IGHMBP2 gene expression remains unclear. In the present study, a 2.0-kb fragment of the 5'-flanking (promoter) region of the human IGHMBP2 gene was isolated from the HL-60 genome by PCR and ligated into a luciferase (Luc) expression vector, pGL3, to generate the pSmu-Luc plasmid. Deletion analyses revealed that a 108-bp region is essential for basal promoter activity with a response to TPA in HL-60 cells. TF-SEARCH analysis showed that overlapping ets (GGAA) motifs are located upstream of the transcription start sites. Chromatin immunoprecipitation (ChIP) assay, electropheretic mobility shift assay (EMSA) and competition analyses indicated that PU.1 (Spi-1) recognizes and binds to the duplicated ets motifs in this 108-bp region. Moreover, co-transfection of the PU.1 expression plasmid and pSmu-Luc into HL-60 cells revealed that PU.1 modulates TPA-induced IGHMBP2 promoter activity. Taken together, these observations suggest that the duplicated GGAA motifs are essential for the IGHMBP2 promoter activity and its positive response to TPA in HL-60 cells.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 270-8510 Japan.
| | | | | | | | | |
Collapse
|
152
|
RNA processing pathways in amyotrophic lateral sclerosis. Neurogenetics 2010; 11:275-90. [PMID: 20349096 DOI: 10.1007/s10048-010-0239-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/24/2010] [Indexed: 12/12/2022]
Abstract
RNA processing is a tightly regulated, highly complex pathway which includes RNA transcription, pre-mRNA splicing, editing, transportation, translation, and degradation of RNA. Over the past few years, several RNA processing genes have been shown to be mutated or genetically associated with amyotrophic lateral sclerosis (ALS), including the RNA-binding proteins TDP-43 and FUS/TLS. These findings suggest that RNA processing may represent a common pathogenic mechanism involved in development of ALS. In this review, we will discuss six ALS-related, RNA processing genes including their discovery, function, and commonalities.
Collapse
|
153
|
RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci 2010; 33:249-58. [PMID: 20227117 DOI: 10.1016/j.tins.2010.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 12/11/2022]
Abstract
The pathogenic mechanisms of degenerative diseases of the nervous system are not well understood. Recent evidence suggests that proteins with a role in RNA synthesis, processing, function and degradation play a role in the mechanism of degenerative disorders affecting the motor neuron. However, most of these proteins also affect cellular processes other than RNA processing. Furthermore, many of the familial diseases are inherited dominantly, suggesting a gain-of-function as their pathogenic mechanism. This newly gained function could be unrelated to their normal role in the cell. Therefore, here we review some of the recent data linking RNA metabolism and motor neuron disorders, but also critically assess their relevance for our understanding of the mechanism of neurodegeneration.
Collapse
|
154
|
Kolb SJ, Sutton S, Schoenberg DR. RNA processing defects associated with diseases of the motor neuron. Muscle Nerve 2010; 41:5-17. [PMID: 19697368 DOI: 10.1002/mus.21428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid progress in the discovery of motor neuron disease genes in amyotrophic lateral sclerosis, the spinal muscular atrophies, hereditary motor neuropathies, and lethal congenital contracture syndromes is providing new perspectives and insights into the molecular pathogenesis of the motor neuron. Motor neuron disease genes are often expressed throughout the body with essential functions in all cells. A survey of these functions indicates that motor neurons are uniquely sensitive to perturbations in RNA processing pathways dependent on the interaction of specific RNAs with specific RNA-binding proteins, which presumably result in aberrant formation and function of ribonucleoprotein complexes. This review provides a summary of currently recognized RNA processing defects linked to human motor neuron diseases.
Collapse
Affiliation(s)
- Stephen J Kolb
- Department of Neurology, Ohio State University Medical Center, Hamilton Hall, Room 337B, 1645 Neil Avenue, Columbus, Ohio 43210-1228, USA
| | | | | |
Collapse
|
155
|
Licatalosi DD, Darnell RB. RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 2010; 11:75-87. [PMID: 20019688 DOI: 10.1038/nrg2673] [Citation(s) in RCA: 549] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years views of eukaryotic gene expression have been transformed by the finding that enormous diversity can be generated at the RNA level. Advances in technologies for characterizing RNA populations are revealing increasingly complete descriptions of RNA regulation and complexity; for example, through alternative splicing, alternative polyadenylation and RNA editing. New biochemical strategies to map protein-RNA interactions in vivo are yielding transcriptome-wide insights into mechanisms of RNA processing. These advances, combined with bioinformatics and genetic validation, are leading to the generation of functional RNA maps that reveal the rules underlying RNA regulation and networks of biologically coherent transcripts. Together these are providing new insights into molecular cell biology and disease.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Howard Hughes Medical Institute, Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
156
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as amyotrophic lateral sclerosis, peripheral neuropathies, such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and the muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "quality-of-life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
|
157
|
Lou T, Zhang J, Gale DP, Rees AJ, Rhodes B, Feehally J, Li C, Li Y, Li R, Huang W, Hu B, Leung JC, Lam MF, Lai KN, Wang Y, Maxwell PH. Variation in IGHMBP2 is not associated with IgA nephropathy in independent studies of UK Caucasian and Chinese Han patients. Nephrol Dial Transplant 2009; 25:1547-54. [DOI: 10.1093/ndt/gfp661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
158
|
Hahn AF. PERIPHERAL NEUROPATHIES FROM INFANCY TO ADULTHOOD. Continuum (Minneap Minn) 2009. [DOI: 10.1212/01.con.0000348882.54811.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
159
|
Strong MJ. The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 2009; 288:1-12. [PMID: 19840884 DOI: 10.1016/j.jns.2009.09.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/27/2009] [Accepted: 09/25/2009] [Indexed: 12/11/2022]
Abstract
In this review, the role of aberrant RNA metabolism in ALS is examined, including the evidence that a majority of the genetic mutations observed in familial ALS (including mutations in TDP-43, FUS/TLS, SOD1, angiogenin (ANG) and senataxin (SETX)) can impact directly on either gene transcription, pre-mRNA splicing, ribonucleoprotein complex formation, transport, RNA translation or degradation. The evidence that perturbed expression or function of RNA binding proteins is causally related to the selective suppression of the low molecular weight subunit protein (NFL) steady state mRNA levels in degenerating motor neurons in ALS is examined. The discovery that mtSOD1, TDP-43 and 14-3-3 proteins, all of which form cytosolic aggregates in ALS, can each modulate the stability of NFL mRNA, suggests that a fundamental alteration in the interaction of mRNA species with key trans-acting binding factors has occurred in ALS. These observations lead directly to the hypothesis that ALS can be viewed as a disorder of RNA metabolism, thus providing a novel pathway for the development of molecular pharmacotherapies.
Collapse
Affiliation(s)
- Michael J Strong
- Molecular Brain Research Group, Robarts Research Institute, London, Ontario, Canada.
| |
Collapse
|
160
|
Motoneuron transplantation rescues the phenotype of SMARD1 (spinal muscular atrophy with respiratory distress type 1). J Neurosci 2009; 29:11761-71. [PMID: 19776263 DOI: 10.1523/jneurosci.2734-09.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal form of infantile motoneuron disease. There is currently no effective treatment, although motor neuron replacement is a possible therapeutic strategy. We transplanted purified motor neurons into the spinal cord of nmd mice, an animal model of SMARD1. We also administered pharmacological treatment targeting the induction of axonal growth toward skeletal muscle target. At the end stage of the disease, donor-derived motor neurons were detected in the nmd anterior horns, extended axons into the ventral roots, and formed new neuromuscular junctions. These data correlated with improved neuromuscular function and increased life spans. The neuroprotective effect was associated with a reduction in proinflammatory molecules in treated spinal cords. This is the first report that functional restoration of motor units with transplanted motoneurons is feasible in an animal model of a human motoneuron disease, opening up new possibilities for therapeutic intervention.
Collapse
|
161
|
Spinale Muskelatrophien. MED GENET-BERLIN 2009. [DOI: 10.1007/s11825-009-0172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zusammenfassung
Spinale Muskelatrophien (SMA) umfassen eine klinisch und genetisch heterogene Gruppe erblicher neuromuskulärer Erkrankungen, die durch einen progredienten Untergang von Vorderhornzellen im Rückenmark und z. T. auch der motorischen Hirnnervenkerne charakterisiert sind. Die autosomal-rezessive proximale SMA des Kindes- und Jugendalters (SMA 5q) stellt mit etwa 80–90% die große Mehrheit aller spinalen Muskelatrophien und wird in Abhängigkeit vom Schweregrad in die Typen I–III eingeteilt. Da mehr als 90% der Patienten eine homozygote Deletion des SMN1-Gens auf Chromosom 5q aufweisen, steht eine einfache molekulargenetische Diagnostik zur Verfügung. Inzwischen ist auch eine sichere Einordnung von heterozygoten Anlageträgern möglich, sodass Risikopersonen entsprechend genetisch beraten werden können. Mit der zunehmenden Aufklärung anderer SMA-Formen wächst das Verständnis für die Pathogenese und mögliche Therapieansätze von Vorderhornerkrankungen. Eine kausale Therapie der SMA steht bislang nicht zur Verfügung, wenngleich klinische und genetische Studien sowie Untersuchungen am Tiermodell neue Hoffnungen geweckt haben.
Collapse
|
162
|
Suraweera A, Lim Y, Woods R, Birrell GW, Nasim T, Becherel OJ, Lavin MF. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum Mol Genet 2009; 18:3384-96. [PMID: 19515850 DOI: 10.1093/hmg/ddp278] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ataxia oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin, a putative DNA/RNA helicase which shares high homology to the yeast Sen1p protein and has been shown to play a role in the response to oxidative stress. To investigate further the function of senataxin, we identified novel senataxin-interacting proteins, the majority of which are involved in transcription and RNA processing, including RNA polymerase II. Binding of RNA polymerase II to candidate genes was significantly reduced in senataxin deficient cells and this was accompanied by decreased transcription of these genes, suggesting a role for senataxin in the regulation/modulation of transcription. RNA polymerase II-dependent transcription termination was defective in cells depleted of senataxin in keeping with the observed interaction of senataxin with poly(A) binding proteins 1 and 2. Splicing efficiency of specific mRNAs and alternate splice-site selection of both endogenous genes and artificial minigenes were altered in senataxin depleted cells. These data suggest that senataxin, similar to its yeast homolog Sen1p, plays a role in coordinating transcriptional events, in addition to its role in DNA repair.
Collapse
Affiliation(s)
- Amila Suraweera
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
163
|
Saikrishnan K, Powell B, Cook NJ, Webb MR, Wigley DB. Mechanistic basis of 5'-3' translocation in SF1B helicases. Cell 2009; 137:849-59. [PMID: 19490894 DOI: 10.1016/j.cell.2009.03.036] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/27/2009] [Accepted: 03/19/2009] [Indexed: 02/04/2023]
Abstract
Superfamily 1B (SF1B) helicases translocate in a 5'-3' direction and are required for a range of cellular activities across all domains of life. However, structural analyses to date have focused on how SF1A helicases achieve 3'-5' movement along nucleic acids. We present crystal structures of the complex between the SF1B helicase RecD2 from Deinococcus radiodurans and ssDNA in the presence and absence of an ATP analog. These snapshots of the reaction pathway reveal a nucleotide binding-induced conformational change of the two motor domains that is broadly reminiscent of changes observed in other SF1 and SF2 helicases. Together with biochemical data, the structures point to a step size for translocation of one base per ATP hydrolyzed. Moreover, the structures also reveal a mechanism for nucleic acid translocation in the 5'-3' direction by SF1B helicases that is surprisingly different from that of 3'-5' translocation by SF1A enzymes, and explains the molecular basis of directionality.
Collapse
Affiliation(s)
- Kayarat Saikrishnan
- Cancer Research UK Clare Hall Laboratories, The London Research Institute, Blanche Lane, South Mimms, Potters Bar, Herts EN63LD, UK
| | | | | | | | | |
Collapse
|
164
|
de Planell-Saguer M, Schroeder DG, Rodicio MC, Cox GA, Mourelatos Z. Biochemical and genetic evidence for a role of IGHMBP2 in the translational machinery. Hum Mol Genet 2009; 18:2115-26. [PMID: 19299493 DOI: 10.1093/hmg/ddp134] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human motor neuron degenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) is caused by loss of function mutations of immunoglobulin mu-binding protein 2 (IGHMBP2), a protein of unknown function that contains DNA/RNA helicase and nucleic acid-binding domains. Reduced IGHMBP2 protein levels in neuromuscular degeneration (nmd) mice, the mouse model of SMARD1, lead to motor neuron degeneration. We report the biochemical characterization of IGHMBP2 and the isolation of a modifier locus that rescues the phenotype and motor neuron degeneration of nmd mice. We find that a 166 kb BAC transgene derived from CAST/EiJ mice and containing tRNA genes and activator of basal transcription 1 (Abt1), a protein-coding gene that is required for ribosome biogenesis, contains the genetic modifier responsible for motor neuron rescue. Our biochemical investigations show that IGHMBP2 associates physically with tRNAs and in particular with tRNA(Tyr), which are present in the modifier and with the ABT1 protein. We find that transcription factor IIIC-220 kDa (TFIIIC220), an essential factor required for tRNA transcription, and the helicases Reptin and Pontin, which function in transcription and in ribosome biogenesis, are also part of IGHMBP2-containing complexes. Our findings strongly suggest that IGHMBP2 is a component of the translational machinery and that these components can be manipulated genetically to suppress motor neuron degeneration.
Collapse
Affiliation(s)
- Mariàngels de Planell-Saguer
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | | | | | | | | |
Collapse
|
165
|
Joseph S, Robb SA, Mohammed S, Lillis S, Simonds A, Manzur AY, Walter S, Wraige E. Interfamilial phenotypic heterogeneity in SMARD1. Neuromuscul Disord 2009; 19:193-5. [PMID: 19157874 DOI: 10.1016/j.nmd.2008.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/10/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Spinal muscular atrophy with respiratory distress (SMARD1: mu-binding protein 2 gene mutation) is characterised by low birth weight, progressive distal limb weakness, diaphragmatic paralysis and subsequent respiratory failure manifesting before 13 months of age. Our case report illustrates marked phenotype variability in two siblings with an identical genetic mutation of SMARD1, one of whom died of fulminant respiratory failure aged 6 months, whereas the other shows limb weakness but, only mild sleep hypoventilation aged 12 years. This suggests other compensatory mechanisms may play a role in modifying SMARD1; broadening our perception of phenotype. Therefore, SMARD1 phenotype should be considered in cases of atypical spinal muscular atrophy even in the absence of overt diaphragmatic weakness.
Collapse
Affiliation(s)
- S Joseph
- Department of Neurology, Evelina Children's Hospital, Lambeth Palace Road, London SE1 7EH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Guenther UP, Handoko L, Laggerbauer B, Jablonka S, Chari A, Alzheimer M, Ohmer J, Plöttner O, Gehring N, Sickmann A, von Au K, Schuelke M, Fischer U. IGHMBP2 is a ribosome-associated helicase inactive in the neuromuscular disorder distal SMA type 1 (DSMA1). Hum Mol Genet 2009; 18:1288-300. [PMID: 19158098 DOI: 10.1093/hmg/ddp028] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Distal spinal muscular atrophy type 1 (DSMA1) is an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. In this disease, the degeneration of alpha-motoneurons is caused by mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2). This protein has been implicated in DNA replication, pre-mRNA splicing and transcription, but its precise function in all these processes has remained elusive. We have purified catalytically active recombinant IGHMBP2, which has enabled us to assess its enzymatic properties and to identify its cellular targets. Our data reveal that IGHMBP2 is an ATP-dependent 5' --> 3' helicase, which unwinds RNA and DNA duplices in vitro. Importantly, this helicase localizes predominantly to the cytoplasm of neuronal and non-neuronal cells and associates with ribosomes. DSMA1-causing amino acid substitutions in IGHMBP2 do not affect ribosome binding yet severely impair ATPase and helicase activity. We propose that IGHMBP2 is functionally linked to translation, and that mutations in its helicase domain interfere with this function in DSMA1 patients.
Collapse
Affiliation(s)
- Ulf-Peter Guenther
- Department of Neuropediatrics, Charité University Hospital, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Kaindl AM, Guenther UP, Rudnik-Schöneborn S, Varon R, Zerres K, Gressens P, Schuelke M, Hubner C, von Au K. [Distal spinal-muscular atrophy 1 (DSMA1 or SMARD1)]. Arch Pediatr 2008; 15:1568-72. [PMID: 18804971 DOI: 10.1016/j.arcped.2008.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 05/20/2008] [Accepted: 07/22/2008] [Indexed: 11/24/2022]
Abstract
In this article, we review the clinical, neuropathological and genetic aspects of distal spinal-muscular atrophy 1 (DSMA1; MIM#604320), formerly designated as autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) and also known as distal hereditary-motor neuropathy type 6 (dHMN6 or HMN6).
Collapse
Affiliation(s)
- A M Kaindl
- Charité, service de neuropédiatrie, hôpital universitaire, campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Allemagne.
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Guenther UP, Handoko L, Varon R, Stephani U, Tsao CY, Mendell JR, Lützkendorf S, Hübner C, von Au K, Jablonka S, Dittmar G, Heinemann U, Schuetz A, Schuelke M. Clinical variability in distal spinal muscular atrophy type 1 (DSMA1): determination of steady-state IGHMBP2 protein levels in five patients with infantile and juvenile disease. J Mol Med (Berl) 2008; 87:31-41. [DOI: 10.1007/s00109-008-0402-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 11/25/2022]
|
169
|
Gurnett CA, Boehm S, Connolly A, Reimschisel T, Dobbs MB. Impact of congenital talipes equinovarus etiology on treatment outcomes. Dev Med Child Neurol 2008; 50:498-502. [PMID: 18611198 DOI: 10.1111/j.1469-8749.2008.03016.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although congenital talipes equinovarus (CTEV) is often idiopathic, additional birth defects occur in some patients that may have an impact on the treatment of this disorder. The purpose of this study was to determine the prevalence of associated malformations, chromosomal abnormalities, or known genetic syndromes, and to compare treatment outcomes of children with idiopathic CTEV with children with non-idiopathic CTEV. Of 357 children evaluated, 273 (76%) had idiopathic CTEV (179 males, 94 females; mean age 2 y 1 mo [SD 1 y 2 mo], range 0-18 y) and 84 (24%) had non-idiopathic CETV (51 males, 33 females; mean age 2 y 5 mo [SD 2 y], range 0-16 y). Disorders affecting the nervous system were found in 46 (54%) children with non-idiopathic CTEV. In a subgroup of patients treated entirely at our institution (n=196), children with non-idiopathic CTEV (n=47) required more casts for correction than those with idiopathic CTEV (n=149; 5.3 vs 4.6; p=0.016). There was also a greater risk of recurrence in non-idiopathic CTEV (14.9% vs 4%; p=0.009), but no significant difference in the need for extensive surgery (2.7% vs 8.5%; p=0.096). Treatment was initiated at a mean age of 13 weeks (range 1 wk to 2 y 6 mo) for both idiopathic and non-idiopathic patients, and treatment was assessed during a minimum 2-year follow-up. Non-idiopathic CTEV can be successfully treated with the Ponseti method of serial casting, with low recurrence rates or need for surgery.
Collapse
Affiliation(s)
- Christina A Gurnett
- Department of Orthopedic Surgery, Washington University School of Medicine, One Children's Place, St Louis, MO 63110, U.S.A.
| | | | | | | | | |
Collapse
|
170
|
Basel-Vanagaite L, Taub E, Drasinover V, Magal N, Brudner A, Zlotogora J, Shohat M. Genetic carrier screening for spinal muscular atrophy and spinal muscular atrophy with respiratory distress 1 in an isolated population in Israel. ACTA ACUST UNITED AC 2008; 12:53-6. [PMID: 18298318 DOI: 10.1089/gte.2007.0030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by progressive muscle weakness. It is caused by a mutation in the survival motor neuron gene 1 (SMN1) gene. SMA with respiratory distress 1 (SMARD1), an uncommon variant of infantile SMA also inherited in an autosomal recessive manner, is caused by mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2) gene. We carried out genetic carrier screening among the residents of an isolated Israeli Arab village with a high frequency of SMA in order to identify carriers of SMA type I and SMARD1. During 2006, 168 women were tested for SMA, of whom 13.1% were found to be carriers. Of 111 women tested for SMARD1, 9.9% were found to be carriers. Prenatal diagnosis was performed in one couple where both spouses were carriers of SMARD1; the fetus was found to be affected, and the pregnancy was terminated. To the best of our knowledge, this is the first example of the establishment of a large-scale carrier-screening program for SMA and SMARD1 in an isolated population. SMA has a carrier frequency of 1:33-1:60 in most populations and should be considered for inclusion in a population-based genetic-screening program.
Collapse
|
171
|
Muglia M, Magariello A, Citrigno L, Passamonti L, Sprovieri T, Conforti FL, Mazzei R, Patitucci A, Gabriele AL, Ungaro C, Bellesi M, Quattrone A. A novel locus for dHMN with pyramidal features maps to chromosome 4q34.3-q35.2. Clin Genet 2008; 73:486-91. [PMID: 18336586 DOI: 10.1111/j.1399-0004.2008.00969.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distal hereditary motor neuropathy (dHMN) is a rare genetically and clinically heterogeneous disorder characterized by weakness and wasting of distal limb muscles in absence of overt sensory abnormalities. Recently, pyramidal signs have been also described in some patients with dominant or recessive dHMN, and two different loci have been identified in families affected by dHMN complicated with pyramidal dysfunction. We investigated an Italian family affected by an autosomal dominant dHMN complicated by pyramidal signs in order to map a new gene locus. The disease maps to a novel locus in a 26-cM region flanked by D4S1552 and D4S2930 on chromosome 4q34.3-35.2. Three candidate genes (SNX25, CASP3 and TUBB4Q) located in the critical region were screened for the presence of mutations by heteroduplex analysis. No mutations have been detected in the analyzed genes. In conclusion, the new private genetic locus we reported further confirms the wide heterogeneity of dHMN.
Collapse
Affiliation(s)
- M Muglia
- Institute of Neurological Sciences, National Research Council, Mangone, Cosenza, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Guillot N, Cuisset JM, Cuvellier JC, Hurtevent JF, Joriot S, Vallee L. Unusual clinical features in infantile Spinal Muscular Atrophies. Brain Dev 2008; 30:169-78. [PMID: 17804187 DOI: 10.1016/j.braindev.2007.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/03/2007] [Accepted: 07/16/2007] [Indexed: 11/25/2022]
Abstract
UNLABELLED Spinal Muscular Atrophies (SMA) are a group of degenerative diseases primarily affecting the anterior horn cells of the spinal cord and resulting in muscle weakness and atrophy. Diagnostic criteria were proposed by the International SMA Consortium (ISMAC) to differentiate"classical" proximal SMA caused by homozygous deletion or conversion of the SMN1 gene (5q13) from atypical SMA unlinked to chromosome 5q (non-5q-SMA entities). The aim of our study was to emphasize the unusual clinical features encountered in infantile SMA. PATIENTS AND METHODS We retrospectively analyzed 63 children with SMA hospitalized between 1985 and 2006. RESULTS Forty-eight children suffered from classical SMA and 15 from atypical SMA, including 4 distal SMA, 2 scapuloperoneal SMA, one pontocerebellar hypoplasia type I, 7 neurogenic arthrogryposis multiplex congenita (2 of them associated with a central nervous system (CNS) involvement) and one undetermined case. CONCLUSION This study confirmed the clinical variety of proximal SMA and put in perspective some exclusion criteria (CNS involvement, phrenic or facial palsy). Some symptoms allowed us to anticipate the normality of the SMN1 gene: improvement of motor condition, distal predominance and, more relatively, assymetry of motor weakness. Diagnosis difficulties were especially encountered in case of predominant distal deficit, arthrogryposis multiplex congenita and associated clinical abnormalities. Detailed phenotypical description and syndromic regrouping of cases of atypical SMA lead to a better understanding of underlying physiopathological processes and to the identification of other genes involved in infantile SMA.
Collapse
Affiliation(s)
- Nathalie Guillot
- Pediatric Neurology Department, Lille University Hospital, France
| | | | | | | | | | | |
Collapse
|
173
|
Génétique des maladies du motoneurone. Rev Neurol (Paris) 2008; 164:115-30. [DOI: 10.1016/j.neurol.2007.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/25/2007] [Accepted: 10/21/2007] [Indexed: 02/08/2023]
|
174
|
Kaindl AM, Guenther UP, Rudnik-Schöneborn S, Varon R, Zerres K, Schuelke M, Hübner C, von Au K. Spinal muscular atrophy with respiratory distress type 1 (SMARD1). J Child Neurol 2008; 23:199-204. [PMID: 18263757 DOI: 10.1177/0883073807310989] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1), recently referred to as distal spinal muscular atrophy 1 (DSMA1; MIM#604320) and also known as distal hereditary motor neuropathy type 6 (dHMN6 or HMN6), results from mutations in the IGHMBP2 gene on chromosome 11q13.3 encoding the immunoglobulin micro-binding protein 2. In contrast to the infantile spinal muscular atrophy type 1 (SMA1; Werdnig-Hoffmann disease) with weakness predominantly of proximal muscles and bell-shaped thorax deformities due to intercostal muscle atrophy, infants with distal spinal muscular atrophy 1 usually present with distal muscle weakness, foot deformities, and sudden respiratory failure due to diaphragmatic paralysis that often requires urgent intubation. In this article, the authors review the clinical, neuropathological, and genetic aspects of distal spinal muscular atrophy 1 and discuss differential diagnoses.
Collapse
Affiliation(s)
- Angela M Kaindl
- Department of Pediatric Neurology, Charité, University Medical Center, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Barisic N, Claeys KG, Sirotković-Skerlev M, Löfgren A, Nelis E, De Jonghe P, Timmerman V. Charcot-Marie-Tooth disease: a clinico-genetic confrontation. Ann Hum Genet 2008; 72:416-41. [PMID: 18215208 DOI: 10.1111/j.1469-1809.2007.00412.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common neuromuscular disorder. It represents a group of clinically and genetically heterogeneous inherited neuropathies. Here, we review the results of molecular genetic investigations and the clinical and neurophysiological features of the different CMT subtypes. The products of genes associated with CMT phenotypes are important for the neuronal structure maintenance, axonal transport, nerve signal transduction and functions related to the cellular integrity. Identifying the molecular basis of CMT and studying the relevant genes and their functions is important to understand the pathophysiological mechanisms of these neurodegenerative disorders, and the processes involved in the normal development and function of the peripheral nervous system. The results of molecular genetic investigations have impact on the appropriate diagnosis, genetic counselling and possible new therapeutic options for CMT patients.
Collapse
Affiliation(s)
- N Barisic
- Department of Pediatrics, Zagreb University Medical School, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
176
|
Renault F, Nicot F, Liptaï Z, Benharrats T, Fauroux B. Congenital diaphragm weakness without neuromuscular disease. Muscle Nerve 2007; 38:1201-5. [DOI: 10.1002/mus.20956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
177
|
Cañete-Soler R, Schlaepfer WW. The complex relation between genotype and phenotype in motor neuron disease. Ann Neurol 2007; 62:8-14. [PMID: 17469207 DOI: 10.1002/ana.21128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success in mapping genetic loci and identifying mutant genes in familial neurodegenerative disease has outpaced our ability to understand the linkage between genotype and phenotype of disease. The results have led to a backlog of genetic information with limited clarification of underlying disease mechanisms. A major dilemma is how mutations in widely expressed proteins lead to degeneration or dysfunction of small subsets of neurons. The problem raises fundamental questions as to the nature and interrelation of pathways that maintain the homeostasis of differentiated neurons. The issue also bears on the pathogenesis of sporadic forms of disease and prospective efficacy of therapeutic applications. This review examines the problem as it relates to motor neuron disease.
Collapse
Affiliation(s)
- Rafaela Cañete-Soler
- Division of Neuropathology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | |
Collapse
|
178
|
Lambrechts D, Robberecht W, Carmeliet P. Heterogeneity in motoneuron disease. Trends Neurosci 2007; 30:536-44. [PMID: 17825438 DOI: 10.1016/j.tins.2007.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 07/10/2007] [Accepted: 07/16/2007] [Indexed: 12/11/2022]
Abstract
Recently, mutations in several genes have been identified as primary causes for the degeneration of motoneurons and their axons. Strikingly, mutations in the same genes were associated with clinically different motoneuron syndromes. The identity of these genes also shed light on the mechanisms of motoneuron degeneration and revealed that overlapping motoneuron phenotypes might be caused by heterogeneous molecular mechanisms. Overall, these findings have challenged the diagnostic classification system set by clinical judgement and triggered the notion of heterogeneity in motoneuron disease. It will now be especially relevant to identify the mechanisms and principles that motoneuron diseases have in common, as this will allow us to identify the most relevant therapeutic targets. On the other hand, heterogeneity in motoneuron disease also implies that finding a monotherapy cure for motoneuron disease will be challenging and that pre-clinical testing of therapeutic targets should not be limited to a single animal model.
Collapse
Affiliation(s)
- Diether Lambrechts
- The Center for Transgene Technology and Gene Therapy, K.U. Leuven, B-3000, Leuven, Belgium
| | | | | |
Collapse
|
179
|
Hedlund E, Hefferan MP, Marsala M, Isacson O. REVIEW ARTILCE: Cell therapy and stem cells in animal models of motor neuron disorders. Eur J Neurosci 2007; 26:1721-37. [PMID: 17897390 DOI: 10.1111/j.1460-9568.2007.05780.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), spinal bulbar muscular atrophy (or Kennedy's disease), spinal muscular atrophy and spinal muscular atrophy with respiratory distress 1 are neurodegenerative disorders mainly affecting motor neurons and which currently lack effective therapies. Recent studies in animal models as well as primary and embryonic stem cell models of ALS, utilizing over-expression of mutated forms of Cu/Zn superoxide dismutase 1, have shown that motor neuron degeneration in these models is in part a non cell-autonomous event and that by providing genetically non-compromised supporting cells such as microglia or growth factor-excreting cells, onset can be delayed and survival increased. Using models of acute motor neuron injury it has been shown that embryonic stem cell-derived motor neurons implanted into the spinal cord can innervate muscle targets and improve functional recovery. Thus, a rationale exists for the development of cell therapies in motor neuron diseases aimed at either protecting and/or replacing lost motor neurons, interneurons as well as non-neuronal cells. This review evaluates approaches used in animal models of motor neuron disorders and their therapeutic relevance.
Collapse
Affiliation(s)
- Eva Hedlund
- Neuroregeneration Laboratory, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
180
|
Abstract
The clinical classification of spinal muscular atrophy, caused by deletion of the survival motor neuron 1 gene (SMN1), is based on age at onset and maximum function achieved. Evidence suggests that maximum function achieved is more closely related to life expectancy than age at onset. Therefore, it is important to wait for a period before assigning a patient to 1 of 5 classes of the disorder. Several diseases result from degeneration of the anterior horn cell but are not caused by SMN1. The classification for these conditions is evolving. This article offers an attempt at organizing one's thinking about this disease group.
Collapse
MESH Headings
- Adolescent
- Adult
- Age of Onset
- Child
- Child, Preschool
- Chromosomes, Human, Pair 5/genetics
- Cyclic AMP Response Element-Binding Protein/genetics
- Diagnosis, Differential
- Disease Progression
- Genetic Predisposition to Disease/genetics
- Humans
- Infant
- Infant, Newborn
- Life Expectancy
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Atrophy, Spinal/classification
- Muscular Atrophy, Spinal/diagnosis
- Muscular Atrophy, Spinal/genetics
- Nerve Tissue Proteins/genetics
- RNA-Binding Proteins/genetics
- SMN Complex Proteins
- Survival of Motor Neuron 1 Protein
Collapse
Affiliation(s)
- Barry S Russman
- Department of Neurology, Oregon Health and Science University, Shriners Hospital for Children-Portland, Portland, Oregon, USA.
| |
Collapse
|
181
|
Wang CH, Finkel RS, Bertini ES, Schroth M, Simonds A, Wong B, Aloysius A, Morrison L, Main M, Crawford TO, Trela A. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 2007; 22:1027-49. [PMID: 17761659 DOI: 10.1177/0883073807305788] [Citation(s) in RCA: 575] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal muscular atrophy is a neurodegenerative disease that requires multidisciplinary medical care. Recent progress in the understanding of molecular pathogenesis of spinal muscular atrophy and advances in medical technology have not been matched by similar developments in the care for spinal muscular atrophy patients. Variations in medical practice coupled with differences in family resources and values have resulted in variable clinical outcomes that are likely to compromise valid measure of treatment effects during clinical trials. The International Standard of Care Committee for Spinal Muscular Atrophy was formed in 2005, with a goal of establishing practice guidelines for clinical care of these patients. The 12 core committee members worked with more than 60 spinal muscular atrophy experts in the field through conference calls, e-mail communications, a Delphi survey, and 2 in-person meetings to achieve consensus on 5 care areas: diagnostic/new interventions, pulmonary, gastrointestinal/nutrition, orthopedics/rehabilitation, and palliative care. Consensus was achieved on several topics related to common medical problems in spinal muscular atrophy, diagnostic strategies, recommendations for assessment and monitoring, and therapeutic interventions in each care area. A consensus statement was drafted to address the 5 care areas according to 3 functional levels of the patients: nonsitter, sitter, and walker. The committee also identified several medical practices lacking consensus and warranting further investigation. It is the authors' intention that this document be used as a guideline, not as a practice standard for their care. A practice standard for spinal muscular atrophy is urgently needed to help with the multidisciplinary care of these patients.
Collapse
Affiliation(s)
- Ching H Wang
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, California 94305-5235, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Martin LJ. Transgenic mice with human mutant genes causing Parkinson's disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration. Rev Neurosci 2007; 18:115-36. [PMID: 17593875 DOI: 10.1515/revneuro.2007.18.2.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A variety of gene mutations can cause familial forms of Parkinson's disease (PD) or amyotrophic lateral sclerosis (ALS). Mutations in the synaptic protein alpha-synuclein (alpha-Syn) cause PD. Mutations in the antioxidant enzyme superoxide dismutase-1 (SOD1) cause ALS. The mechanisms of human mutant a-Syn and SOD1 toxicity to neurons are not known. Transgenic (tg) mice expressing human mutant alpha-Syn or SOD1 develop profound fatal neurologic disease characterized by progressive motor deficits, paralysis, and neurodegeneration. Ala-53-->Thr (A53T)-mutant alpha-Syn and Gly-93-->Ala (G93A)-mutant SOD1 tg mice develop prominent mitochondrial abnormalities. Interestingly, although nigral neurons in A53T mice are relatively preserved, spinal motor neurons (MNs) undergo profound degeneration. In A53T mice, mitochondria degenerate in neurons, and complex IV activity is reduced. Furthermore, mitochondria in neurons develop DNA breaks and have p53 targeted to the outer membrane. Nitrated a-Syn accumulates in degenerating MNs in A53T mice. mSOD1 mouse MNs accumulate mitochondria from the axon terminals and generate higher levels of reactive oxygen/nitrogen species than MNs in control mice. mSOD1 mouse MNs accumulate DNA single-strand breaks prior to double-strand breaks occurring in nuclear and mitochondrial DNA. Nitrated and aggregated cytochrome c oxidase subunit-I and nitrated SOD2 accumulate in mSOD1 mouse spinal cord. Mitochondria in mSOD1 mouse MNs accumulate NADPH diaphorase and inducible NOS (iNOS)-like immunoreactivity, and iNOS gene deletion significantly extends the lifespan of G93A-mSOD1 mice. Mitochondrial changes develop long before symptoms emerge. These experiments reveal that mitochondrial nitrative stress and perturbations in mitochondrial trafficking may be antecedents of neuronal cell death in animal models of PD and ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Department of Neuroscience, Johns Hopkins University School ofMedicine, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
183
|
Maystadt I, Rezsöhazy R, Barkats M, Duque S, Vannuffel P, Remacle S, Lambert B, Najimi M, Sokal E, Munnich A, Viollet L, Verellen-Dumoulin C. The nuclear factor kappaB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset. Am J Hum Genet 2007; 81:67-76. [PMID: 17564964 PMCID: PMC1950913 DOI: 10.1086/518900] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/05/2007] [Indexed: 12/11/2022] Open
Abstract
Lower motor neuron diseases (LMNDs) include a large spectrum of clinically and genetically heterogeneous disorders. Studying a large inbred African family, we recently described a novel autosomal recessive LMND variant characterized by childhood onset, generalized muscle involvement, and severe outcome, and we mapped the disease gene to a 3.9-cM interval on chromosome 1p36. We identified a homozygous missense mutation (c.1940 T-->C [p.647 Phe-->Ser]) of the Pleckstrin homology domain-containing, family G member 5 gene, PLEKHG5. In transiently transfected HEK293 and MCF10A cell lines, we found that wild-type PLEKHG5 activated the nuclear factor kappa B (NF kappa B) signaling pathway and that both the stability and the intracellular location of mutant PLEKHG5 protein were altered, severely impairing the NF kappa B transduction pathway. Moreover, aggregates were observed in transiently transfected NSC34 murine motor neurons overexpressing the mutant PLEKHG5 protein. Both loss of PLEKHG5 function and aggregate formation may contribute to neurotoxicity in this novel form of LMND.
Collapse
Affiliation(s)
- Isabelle Maystadt
- Centre de Génétique Humaine et Unité de Génétique Médicale, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Suraweera A, Becherel OJ, Chen P, Rundle N, Woods R, Nakamura J, Gatei M, Criscuolo C, Filla A, Chessa L, Fusser M, Epe B, Gueven N, Lavin MF. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. ACTA ACUST UNITED AC 2007; 177:969-79. [PMID: 17562789 PMCID: PMC2064358 DOI: 10.1083/jcb.200701042] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adefective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA. AOA2 cells exhibited constitutive oxidative DNA damage and enhanced chromosomal instability in response to H2O2. Rejoining of H2O2-induced DNA double-strand breaks (DSBs) was significantly reduced in AOA2 cells compared to controls, and there was no evidence for a defect in DNA single-strand break repair. This defect in DSB repair was corrected by full-length SETX cDNA. These results provide evidence that an additional member of the autosomal recessive AOA is also characterized by a defective response to DNA damage, which may contribute to the neurodegeneration seen in this syndrome.
Collapse
Affiliation(s)
- Amila Suraweera
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Hartley L, Kinali M, Knight R, Mercuri E, Hubner C, Bertini E, Manzur AY, Jimenez-Mallebrera C, Sewry CA, Muntoni F. A congenital myopathy with diaphragmatic weakness not linked to the SMARD1 locus. Neuromuscul Disord 2007; 17:174-9. [PMID: 17236770 DOI: 10.1016/j.nmd.2006.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/16/2006] [Accepted: 11/21/2006] [Indexed: 11/26/2022]
Abstract
Severe diaphragmatic weakness in infancy is rare. Common causes include structural myopathies, neuromuscular transmission defects, or anterior horn cell dysfunction (spinal muscular atrophy with respiratory distress, SMARD1). We describe a form of infantile diaphragmatic weakness without mutations in the SMARD1 gene, in which pathological and clinical features differ from known conditions, and investigations suggest a myopathy. We identified seven cases in four families. All presented soon after birth with feeding and breathing difficulties, marked head lag, facial weakness, and preserved antigravity movements in the limbs, with arms weaker than legs. All had paradoxical breathing and paralysis of at least one hemi-diaphragm. All required gastrostomy feeding, and all became ventilator-dependent. Investigations included myopathic EMG, muscle biopsy showing myopathic changes, normal electrophysiology and no mutations in SMN1 or IGHMBP2. These seven infants are affected by a myopathic condition clinically resembling SMARD1. However, its pathogenesis appears to be a myopathy affecting predominantly the diaphragm.
Collapse
Affiliation(s)
- L Hartley
- Dubowitz Neuromuscular Centre, Department of Pediatrics, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Shaw CE, Arechavala-Gomeza V, Al-Chalabi A. Chapter 14 Familial amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:279-300. [PMID: 18808899 DOI: 10.1016/s0072-9752(07)80017-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
187
|
Ouvrier R, Geevasingha N, Ryan MM. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood. Muscle Nerve 2007; 36:131-43. [PMID: 17410579 DOI: 10.1002/mus.20776] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.
Collapse
Affiliation(s)
- Robert Ouvrier
- TY Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia.
| | | | | |
Collapse
|
188
|
|
189
|
Guenther UP, Varon R, Schlicke M, Dutrannoy V, Volk A, Hübner C, von Au K, Schuelke M. Clinical and mutational profile in spinal muscular atrophy with respiratory distress (SMARD): defining novel phenotypes through hierarchical cluster analysis. Hum Mutat 2007; 28:808-15. [PMID: 17431882 DOI: 10.1002/humu.20525] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Autosomal recessive spinal muscular atrophy with respiratory distress (SMARD) is a heterogeneous disorder. Mutations in the immunoglobulin micro-binding protein gene (IGHMBP2) lead to SMARD1, but clinical criteria that delineate SMARD1 from other SMARD syndromes are not well established. Here we present a retrospective clinical and genetic study to determine the criteria that would predict the presence or absence of IGHMBP2 mutations. From 141 patients with respiratory distress and a spinal muscular atrophy phenotype we recorded the clinical features through a questionnaire and sequenced the entire coding region of IGHMBP2. In 47 (33%) patients we identified IGHMBP2 mutations, 14 of which were not described before. Clinical features and combinations thereof associated with the presence of IGHMBP2 mutations were discovered through hierarchical cluster analysis. This method detects common traits not evident at first sight by grouping items according to their similarity. The combination of "manifestation of respiratory failure between 6 weeks and 6 months" AND ("presence of diaphragmatic eventration" OR "preterm birth") predicted the presence of IGHMBP2 mutations with 98% sensitivity and 92% specificity. Non-SMARD1 patients fell into two different symptom clusters, mainly separated by the age at respiratory failure and the presence of multiple congenital contractures. The 14 novel IGHMBP2 mutations comprised missense, frameshift, splice-site, and nonsense mutations. All missense mutations altered conserved residues within or adjacent to the putative DNA helicase domain. The c.1235+3A>G splice-site mutation did not entirely suppress correct splicing and we found a residual wild-type IGHMBP2 mRNA steady-state level of 24.4+/-6.9%, which was, however, not sufficient to avert SMARD1 in this patient.
Collapse
Affiliation(s)
- Ulf-Peter Guenther
- Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Talbot K, Davies KE. Chapter 7 Spinal muscular atrophies and hereditary motor neuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:141-153. [PMID: 18808892 DOI: 10.1016/s0072-9752(07)80010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Kevin Talbot
- Department of Human Anatomy and Genetics, University of Oxford, UK; Department of Clinical Neurology, University of Oxford, UK
| | | |
Collapse
|
191
|
Abstract
A major question in the pathogenesis of motor neuron disease is why motor neurons are selectively susceptible to mutations in widely expressed gene products. Reexamination of motor neuron degeneration due to alterations of neurofilament (NF) expression suggests that disruption of assembly with aggregation of the light neurofilament (NFL) protein may be an upstream event and contributing factor leading to the preferential degeneration of motor neurons. The implications of these findings are that aggregation of NFL is not only a triggering mechanism to account for the hallmark aggregates of NF protein in sporadic and familial forms of amyotrophic lateral sclerosis, but that aggregates of NFL may also promote aggregation of wildly expressed proteins that are destabilized by missense mutations, such as by mutations in superoxide dismutase-1 protein. This review examines the potential role of NFs in determining and promoting the preferential degeneration of motor neurons in motor neuron disease. The underlying premise is that motor neurons are selectively susceptible to alterations in NF expression, that alterations in NF expression lead to NF aggregates in motor neurons, and that elevated levels of NF aggregates provide a favorable microenvironment for the formation of neurotoxic aggregation and degeneration of motor neurons.
Collapse
Affiliation(s)
- Hong Lin
- Division of Neuropathology, University of Pennsylvania Medical School, Philadelphia, PA 19104-6100, USA
| | | |
Collapse
|
192
|
Tsirikos AI, Baker AD. Spinal muscular atrophy: Classification, aetiology, and treatment of spinal deformity in children and adolescents. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cuor.2006.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
193
|
Abstract
The number of genes associated with motor neuron degeneration has increased considerably over the past few years. As more gene mutations are identified, the hope arises that certain common themes and/or pathways become clear. In this overview, we focus on recent discoveries related to amyotrophic lateral sclerosis (ALS), spinal muscular atrophies (SMA), and distal hereditary motor neuropathies (dHMN). It is striking that many of the mutated genes that were linked to these diseases encode proteins that are either directly or indirectly involved in axonal transport or play a role in RNA metabolism. We hypothesize that both phenomena are not only crucial for the normal functioning of motor neurons, but that they could also be interconnected. In analogy with the situation after acute stress, axonal mRNA translation followed by retrograde transport of the signal back to the nucleus could play an important role in chronic motor neuron diseases. We hope that information on the genetic causes of these diseases and the insight into the pathologic processes involved could ultimately lead to therapeutic strategies that prevent or at least slow this degenerative process.
Collapse
Affiliation(s)
- Ludo Van Den Bosch
- Neurobiology, Campus Gasthuisberg O&N2 PB1022,Herestraat 49, B-3000 Leuven, Belgium.
| | | |
Collapse
|
194
|
Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 2006; 7:710-23. [PMID: 16924260 DOI: 10.1038/nrn1971] [Citation(s) in RCA: 852] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a paralytic disorder caused by motor neuron degeneration. Mutations in more than 50 human genes cause diverse types of motor neuron pathology. Moreover, defects in five Mendelian genes lead to motor neuron disease, with two mutations reproducing the ALS phenotype. Analyses of these genetic effects have generated new insights into the diverse molecular pathways involved in ALS pathogenesis. Here, we present an overview of the mechanisms for motor neuron death and of the role of non-neuronal cells in ALS.
Collapse
Affiliation(s)
- Piera Pasinelli
- Day Neuromuscular Research Laboratory, Massachusetts General Hospital, Room 3125, Building 114, 16th Street, Navy Yard, Charlestown, Massachusetts 02429, USA
| | | |
Collapse
|
195
|
Giannini A, Pinto AM, Rossetti G, Prandi E, Tiziano D, Brahe C, Nardocci N. Respiratory failure in infants due to spinal muscular atrophy with respiratory distress type 1. Intensive Care Med 2006; 32:1851-5. [PMID: 16964485 DOI: 10.1007/s00134-006-0346-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 07/24/2006] [Indexed: 02/05/2023]
Abstract
BACKGROUND Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive neuromuscular disease of unknown prevalence characterized by degeneration of anterior horn alpha-motoneurons and manifesting in the first 6months of life as life-threatening irreversible diaphragmatic paralysis associated with progressive symmetrical muscular weakness (distal lower limbs mainly involved), muscle atrophy, and peripheral sensory neuropathy. SETTING Pediatric intensive care unit of tertiary care hospital. PATIENTS We present two new cases of SMARD1 and report two new mutations in the gene IGHMBP2 which encodes immunoglobulin mu-binding protein 2 on chromosome 11q13. CONCLUSIONS SMARD1 is a poor-prognosis disease that should be considered when acute respiratory insufficiency, of suspected neuromuscular or unclear cause, develops during the first 6months of life. Diaphragmatic paralysis, manifesting as dyspnea and paradoxical respiration, is the most prominent presenting sign and diaphragmatic motility should be investigated early by fluoroscopy or ultrasound. Electromyography and nerve conduction studies revealing peripheral motor and sensory neuropathy then suggest the diagnosis which should be confirmed by genetic analysis.
Collapse
Affiliation(s)
- Alberto Giannini
- Pediatric Intensive Care Unit, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Via della Commenda 9, 20122, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
196
|
Chen YZ, Hashemi SH, Anderson SK, Huang Y, Moreira MC, Lynch DR, Glass IA, Chance PF, Bennett CL. Senataxin, the yeast Sen1p orthologue: Characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol Dis 2006; 23:97-108. [PMID: 16644229 DOI: 10.1016/j.nbd.2006.02.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/04/2006] [Accepted: 02/12/2006] [Indexed: 11/17/2022] Open
Abstract
A severe recessive cerebellar ataxia, Ataxia-Oculomotor Apraxia 2 (AOA2) and a juvenile onset form of dominant amyotrophic lateral sclerosis (ALS4) result from mutations of the Senataxin (SETX) gene. To begin characterization this disease protein, we developed a specific antibody to the DNA/RNA helicase domain of SETX. In murine brain, SETX concentrates in several regions, including cerebellum, hippocampus and olfactory bulb with a general neuronal expression profile, colocalizing with NeuN. In cultured cells, we found that SETX was cytoplasmically diffuse, but in the nucleus, SETX was punctate, colocalizing with fibrillarin, a marker of the nucleolus. In differentiated non-cycling cells, nuclear SETX was not restricted to the nucleolus but was diffuse within the nucleoplasm, suggesting cell-cycle-dependent localization. SETX missense mutations cluster within the N-terminus and helicase domains. Flag tagging at the N-terminus caused protein mislocation to the nucleoplasm and failure to export to the cytoplasm, suggesting that the N-terminus may be essential for correct SETX localization. We report here the first characterization of SETX protein, which may provide future insights into a new mechanism leading to neuron death.
Collapse
Affiliation(s)
- Ying-Zhang Chen
- Department of Pediatrics, Division of Genetics and Developmental Medicine, University of Washington School of Medicine, Seattle, WA 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Shen J, Terry MB, Gammon MD, Gaudet MM, Teitelbaum SL, Eng SM, Sagiv SK, Neugut AI, Santella RM. IGHMBP2 Thr671Ala polymorphism might be a modifier for the effects of cigarette smoking and PAH–DNA adducts to breast cancer risk. Breast Cancer Res Treat 2006; 99:1-7. [PMID: 16752224 DOI: 10.1007/s10549-006-9174-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/16/2006] [Indexed: 01/25/2023]
Abstract
Laboratory and bioinformatics studies have suggested that immunoglobulin mu-binding protein 2 (IGHMBP2) is involved in DNA repair, replication and recombination. Using 1067 cases and 1110 controls from a population-based case-control study, we sought to clarify the potential role of the IGHMBP2 Thr671Ala polymorphism (A to G substitution) alone and as a modifier of the effects for cigarette smoking and PAH-DNA adducts on breast cancer risk. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Overall, there was no significant association between the IGHMBP2 variant-G allele and breast cancer risk (OR = 1.1, 95% CI = 0.9-1.3). Increased risk was found among women who had detectable PAH-DNA adducts and carried at least one variant-G allele (OR = 1.4, 95% CI = 1.0-1.8, p for trend = 0.01) compared to women carrying the wild-type AA genotype and with non-detectable adducts. Smokers carrying the IGHMBP2 variant-G allele had no significant increased breast cancer risk compared with non-smoking women with the AA genotype. Heavy smokers (>31 pack years) had a statistically significant association with breast cancer risk (OR=2.0, 95% CI=1.2-3.3) relative to nonsmokers with the AA genotype though the magnitude of association was not different than heavy smokers (> 31 pack years) with the AA genotype (OR=1.6, 95% CI=0.9-2.6). Overall our study observes only modestly higher effect estimates for PAH-DNA adduct exposure and cigarette smoking among those with the high-risk genotype, but these differences are not statistically significant. Additional studies focused on the biological function of the variant-G allele and interactions with other genetic polymorphisms are necessary to confirm our findings.
Collapse
Affiliation(s)
- Jing Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Wong VCN, Chung BHY, Li S, Goh W, Lee SL. Mutation of gene in spinal muscular atrophy respiratory distress type I. Pediatr Neurol 2006; 34:474-7. [PMID: 16765827 DOI: 10.1016/j.pediatrneurol.2005.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 09/01/2005] [Accepted: 10/31/2005] [Indexed: 11/15/2022]
Abstract
Spinal muscular atrophy with respiratory distress type I (SMARD1, MIM #604 320) is an uncommon variant of infantile spinal muscular atrophy type I. Distinguishing features include diaphragmatic palsy, early-onset distal limb wasting, and contracture. This report describes a Chinese male with typical features of spinal muscular atrophy with respiratory distress type I. Direct sequencing of the causative gene, the immunoglobulin mu-binding protein 2 (IGHMBP2) gene, revealed the presence of a novel frameshift mutation caused by deletion of G in exon 13 and a single base pair substitution of G to A in exon 12 resulting in substitution of isoleucine for valine.
Collapse
Affiliation(s)
- Virginia C N Wong
- Division of Neurodevelopmental Paediatrics, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| | | | | | | | | |
Collapse
|
199
|
James PA, Talbot K. The molecular genetics of non-ALS motor neuron diseases. Biochim Biophys Acta Mol Basis Dis 2006; 1762:986-1000. [PMID: 16765570 DOI: 10.1016/j.bbadis.2006.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/23/2006] [Accepted: 04/11/2006] [Indexed: 12/11/2022]
Abstract
Hereditary disorders of voluntary motor neurons are individually relatively uncommon, but have the potential to provide significant insights into motor neuron function in general and into the mechanisms underlying the more common form of sporadic Amyotrophic Lateral Sclerosis. Recently, mutations in a number of novel genes have been associated with Lower Motor Neuron (HSPB1, HSPB8, GARS, Dynactin), Upper Motor Neuron (Spastin, Atlastin, Paraplegin, HSP60, KIF5A, NIPA1) or mixed ALS-like phenotypes (Alsin, Senataxin, VAPB, BSCL2). In comparison to sporadic ALS these conditions are usually associated with slow progression, but as experience increases, a wide variation in clinical phenotype has become apparent. At the molecular level common themes are emerging that point to areas of specific vulnerability for motor neurons such as axonal transport, endosomal trafficking and RNA processing. We review the clinical and molecular features of this diverse group of genetically determined conditions and consider the implications for the broad group of motor neuron diseases in general.
Collapse
Affiliation(s)
- Paul A James
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | | |
Collapse
|
200
|
Irobi J, Dierick I, Jordanova A, Claeys KG, De Jonghe P, Timmerman V. Unraveling the genetics of distal hereditary motor neuronopathies. Neuromolecular Med 2006; 8:131-46. [PMID: 16775372 DOI: 10.1385/nmm:8:1-2:131] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/02/2023]
Abstract
The hereditary motor neuronopathies (HMN [MIM 158590]) are a heterogeneous group of disorders characterized by an exclusive involvement of the motor part of the peripheral nervous system. They are usually subdivided in proximal HMN, i.e., the classical spinal muscular atrophy syndromes and distal hereditary motor neuronopathies (distal HMN) that clinically resemble Charcot-Marie-Tooth syndromes. In this review, we concentrate on distal HMN. The distal HMN are clinically and genetically heterogeneous and were initially subdivided in seven subtypes according to mode of inheritance, age at onset, and clinical evolution. Recent studies have shown that these subtypes are still heterogeneous at the molecular genetic level and novel clinical and genetic entities have been delineated. Since the introduction of positional cloning, 13 chromosomal loci and seven disease-associated genes have been identified for autosomal-dominant, autosomal-recessive, and X-linked recessive distal HMN. Most of the genes involved encode protein with housekeeping functions, such as RNA processing, translation synthesis, stress response, apoptosis, and others code for proteins involved in retrograde survival. Motor neurons of the anterior horn of the spinal cord seems to be vulnerable to defects in these housekeeping proteins, likely because their large axons have higher metabolic requirements for maintenance, transport over long distances and precise connectivity. Understanding the molecular pathomechanisms for mutations in these genes that are ubiquitous expressed will help unravel the neuronal mechanisms that underlie motor neuropathies leading to denervation of distal limb muscles, and might generate new insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Joy Irobi
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|