151
|
López-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S. NKG2D signaling in cancer immunosurveillance. Int J Cancer 2014; 136:1741-50. [DOI: 10.1002/ijc.28775] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Alejandro López-Soto
- Departamento de Biología Funcional; Universidad de Oviedo; IUOPA, Asturias Spain
| | | | - Andrea Acebes-Huerta
- Departamento de Biología Funcional; Universidad de Oviedo; IUOPA, Asturias Spain
| | - Mónica Villa-Alvarez
- Departamento de Biología Funcional; Universidad de Oviedo; IUOPA, Asturias Spain
| | - Segundo Gonzalez
- Departamento de Biología Funcional; Universidad de Oviedo; IUOPA, Asturias Spain
| |
Collapse
|
152
|
Place RF, Noonan EJ. Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 2014; 19:159-72. [PMID: 24002685 PMCID: PMC3933615 DOI: 10.1007/s12192-013-0456-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023] Open
Abstract
The field of non-coding RNA (ncRNA) has expanded over the last decade following the discoveries of several new classes of regulatory ncRNA. A growing amount of evidence now indicates that ncRNAs are involved even in the most fundamental of cellular processes. The heat shock response is no exception as ncRNAs are being identified as integral components of this process. Although this area of research is only in its infancy, this article focuses on several classes of regulatory ncRNA (i.e., miRNA, lncRNA, and circRNA), while summarizing their activities in mammalian heat shock. We also present an updated model integrating the traditional heat shock response with the activities of regulatory ncRNA. Our model expands on the mechanisms for efficient execution of the stress response, while offering a more comprehensive summary of the major regulators and responders in heat shock signaling. It is our hope that much of what is discussed herein may help researchers in integrating the fields of heat shock and ncRNA in mammals.
Collapse
Affiliation(s)
- Robert F. Place
- />Anvil Biosciences, 3475 Edison Way, Ste J, Menlo Park, CA 94025 USA
| | - Emily J. Noonan
- />Division of Cancer Prevention, Cancer Prevention Fellowship Program, Rockville, MD USA
- />Laboratory of Human Carcinogenesis, Center for Cancer Research, 37 Convent Dr., Bldg. 37 Room 3060, Bethesda, MD 20892-4258 USA
| |
Collapse
|
153
|
MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 2014; 10:e1003963. [PMID: 24586166 PMCID: PMC3937316 DOI: 10.1371/journal.ppat.1003963] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/16/2014] [Indexed: 01/05/2023] Open
Abstract
The human cytomegalovirus (HCMV) is extremely prevalent in the human population. Infection by HCMV is life threatening in immune compromised individuals and in immune competent individuals it can cause severe birth defects, developmental retardation and is even associated with tumor development. While numerous mechanisms were developed by HCMV to interfere with immune cell activity, much less is known about cellular mechanisms that operate in response to HCMV infection. Here we demonstrate that in response to HCMV infection, the expression of the short form of the RNA editing enzyme ADAR1 (ADAR1-p110) is induced. We identified the specific promoter region responsible for this induction and we show that ADAR1-p110 can edit miR-376a. Accordingly, we demonstrate that the levels of the edited-miR-376a (miR-376a(e)) increase during HCMV infection. Importantly, we show that miR-376a(e) downregulates the immune modulating molecule HLA-E and that this consequently renders HCMV infected cells susceptible to elimination by NK cells.
Collapse
|
154
|
Paschen A, Baingo J, Schadendorf D. Expression of stress ligands of the immunoreceptor NKG2D in melanoma: regulation and clinical significance. Eur J Cell Biol 2014; 93:49-54. [PMID: 24629838 DOI: 10.1016/j.ejcb.2014.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022] Open
Abstract
Tumor cells, in particular melanoma cells, can be detected as abnormal self by cytotoxic lymphocytes of the innate and adaptive immune system. Of major importance in this process is the activating lymphocyte receptor NKG2D that in humans binds to MIC and ULBP surface molecules on tumor cells. Expression of NKG2D ligands (NKG2DL) is an early event in malignant transformation, induced by stress-associated and oncogene-driven pathways. Thus NKG2DL expression is considered as an innate barrier against tumor development. However, tumor cells can overcome this barrier by shedding of NKG2DL. Ligand shedding leads to elevated levels of soluble ligands in sera of tumor patients that in case of melanoma are of strong prognostic relevance. Here we review important aspects of NKG2DL expression and regulation in tumor cells with a focus on melanoma, and discuss their clinical relevance and potential in immunotherapy.
Collapse
Affiliation(s)
- Annette Paschen
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen and German Cancer Consortium (DKTK), Germany.
| | - Jolanthe Baingo
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen and German Cancer Consortium (DKTK), Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen and German Cancer Consortium (DKTK), Germany
| |
Collapse
|
155
|
Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol Cell Biol 2014; 92:230-6. [PMID: 24445601 DOI: 10.1038/icb.2013.111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
The natural killer (NK) group 2 member D (NKG2D) is an activating immune receptor expressed on NK cells, cytotoxic T cells and a subset of other T cells. It has an important role in the recognition and lysis of a variety of infected and tumor cells. Despite significant gains in our understanding of NKG2D, the relevance of NKG2D and its ligands in human diseases has only recently started to emerge. Here, we present an overview of the recent advances in NKG2D biology, discuss the expression of NKG2D ligands in cancer patients and evaluate the diagnostic and prognostic potential of NKG2D ligands.
Collapse
Affiliation(s)
- Nina Le Bert
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore
| | - Stephan Gasser
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
156
|
Cousins E, Nicholas J. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication. Recent Results Cancer Res 2014; 193:227-68. [PMID: 24008302 PMCID: PMC4124616 DOI: 10.1007/978-3-642-38965-8_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Emily Cousins
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
157
|
Baginska J, Viry E, Paggetti J, Medves S, Berchem G, Moussay E, Janji B. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol 2013; 4:490. [PMID: 24400010 PMCID: PMC3872331 DOI: 10.3389/fimmu.2013.00490] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/13/2013] [Indexed: 12/27/2022] Open
Abstract
Considerable evidence has been gathered over the last 10 years showing that the tumor microenvironment (TME) is not simply a passive recipient of immune cells, but an active participant in the establishment of immunosuppressive conditions. It is now well documented that hypoxia, within the TME, affects the functions of immune effectors including natural killer (NK) cells by multiple overlapping mechanisms. Indeed, each cell in the TME, irrespective of its transformation status, has the capacity to adapt to the hostile TME and produce immune modulatory signals or mediators affecting the function of immune cells either directly or through the stimulation of other cells present in the tumor site. This observation has led to intense research efforts focused mainly on tumor-derived factors. Notably, it has become increasingly clear that tumor cells secrete a number of environmental factors such as cytokines, growth factors, exosomes, and microRNAs impacting the immune cell response. Moreover, tumor cells in hostile microenvironments may activate their own intrinsic resistance mechanisms, such as autophagy, to escape the effective immune response. Such adaptive mechanisms may also include the ability of tumor cells to modify their metabolism and release several metabolites to impair the function of immune cells. In this review, we summarize the different mechanisms involved in the TME that affect the anti-tumor immune function of NK cells.
Collapse
Affiliation(s)
- Joanna Baginska
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Elodie Viry
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Jérôme Paggetti
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Sandrine Medves
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Guy Berchem
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Etienne Moussay
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Bassam Janji
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| |
Collapse
|
158
|
Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol 2013; 10:41-62. [PMID: 24325346 DOI: 10.1586/1744666x.2014.865519] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immune escape is the final phase of cancer immunoediting process wherein cancer modulates our immune system to escape from being destroyed by it. Many cellular and molecular events govern the cancer's evasion of host immune response. The tumor undergoes continuous remodeling at the genetic, epigenetic and metabolic level to acquire resistance to apoptosis. At the same time, it effectively modifies all the components of the host's immunome so as to escape from its antitumor effects. Moreover, it induces accumulation of suppressive cells like Treg and myeloid derived suppressor cells and factors which also enable it to elude the immune system. Recent research in this area helps in defining the role of newer players like miRNAs and exosomes in immune escape. The immunotherapeutic approaches developed to target the escape phase appear quite promising; however, the quest for a perfect therapeutic agent that can achieve maximum cure with minimal toxicity continues.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh-160012, India
| | | |
Collapse
|
159
|
MiRNA-296-3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis 2013; 4:e928. [PMID: 24263102 PMCID: PMC3847334 DOI: 10.1038/cddis.2013.458] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/06/2013] [Accepted: 10/21/2013] [Indexed: 01/28/2023]
Abstract
Natural killer (NK) cells are important in host to eliminate circulating tumour cells (CTCs) in turn preventing the development of tumour cells into metastasis but the mechanisms are very poorly defined. Here we find that the expression level of miR-296-3p is much lower in the non-metastatic human prostate cancer (PCa) cell line P69 than that in the highly metastatic cell line M12, which is derived from P69. We demonstrate that miR-296-3p directly targets and inhibits the expression of intercellular adhesion molecule 1 (ICAM-1) in the malignant M12. The data from clinical tissue microarrays also show that miR-296-3p is frequently upregulated and ICAM-1 is reversely downregulated in PCa. Interestingly, ectopic expression of miR-296-3p in P69 increases the tolerance to NK cells whereas knockdown of miR-296-3p in M12 reduces the resistance to NK cells, which both phenotypes can be rescued by re-expression or silencing of ICAM-1 in P69 and M12, respectively. These results are also manifested in vivo by the decrease in the incidence of pulmonary tumour metastasis exhibited by knockdown of miR-296-3p in M12 when injected into athymic nude mice via tail vein, and consistently down-expression of ICAM-1 reverses this to increase extravasation of CTCs into lungs. Above results suggest that this newly identified miR-296-3p-ICAM-1 axis has a pivotal role in mediating PCa metastasis by possible enhancing survival of NK cell-resistant CTC. Our findings provide novel potential targets for PCa therapy and prognosis.
Collapse
|
160
|
Leung WH, Vong QP, Lin W, Janke L, Chen T, Leung W. Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via RXRγ activation. ACTA ACUST UNITED AC 2013; 210:2675-92. [PMID: 24190430 PMCID: PMC3832934 DOI: 10.1084/jem.20122292] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The diuretic drug spironolactone up-regulates NKG2D ligand expression in colon cancer cells via activation of the ATM–Chk2–mediated checkpoint pathway to enhance the antitumor function of NK cells. Tumor metastasis and lack of NKG2D ligand (NKG2DL) expression are associated with poor prognosis in patients with colon cancer. Here, we found that spironolactone (SPIR), an FDA-approved diuretic drug with a long-term safety profile, can up-regulate NKG2DL expression in multiple colon cancer cell lines by activating the ATM–Chk2-mediated checkpoint pathway, which in turn enhances tumor elimination by natural killer cells. SPIR can also up-regulate the expression of metastasis-suppressor genes TIMP2 and TIMP3, thereby reducing tumor cell invasiveness. Although SPIR is an aldosterone antagonist, its antitumor effects are independent of the mineralocorticoid receptor pathway. By screening the human nuclear hormone receptor siRNA library, we identified retinoid X receptor γ (RXRγ) instead as being indispensable for the antitumor functions of SPIR. Collectively, our results strongly support the use of SPIR or other RXRγ agonists with minimal side effects for colon cancer prevention and therapy.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Department of Bone Marrow Transplantation and Cellular Therapy; 2 Department of Chemical Biology & Therapeutics; and 3 Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | | | | | | | |
Collapse
|
161
|
Vassena L, Giuliani E, Matusali G, Cohen ÉA, Doria M. The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway. J Gen Virol 2013; 94:2664-2669. [PMID: 24045107 DOI: 10.1099/vir.0.055541-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viral infection may induce the cell-surface expression of PVR (CD155) that, upon recognition by its cognate activating DNAM-1 receptor present on cytotoxic lymphocytes, may promote antiviral immune responses. Here we show that expression of the human immunodeficiency virus type 1 (HIV-1) Vpr protein in Jurkat T cells increases cell-surface and total PVR levels. Analysis of mutated Vpr variants indicated that Vpr uses the same protein surfaces, and hence probably the same mechanisms, to upregulate PVR and arrest the cell cycle in the G2 phase. Moreover, we found that PVR upregulation by Vpr relied on the ability of the protein to activate the ATR kinase that triggers the DNA damage response pathway and G2 arrest. Finally, we showed that Vpr contributes to PVR up-modulation in HIV-infected CD4(+) T lymphocytes and inhibits the PVR downregulating activity of the viral Nef protein.
Collapse
Affiliation(s)
- Lia Vassena
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giulia Matusali
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Éric A Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| |
Collapse
|
162
|
Liu X, Luo HN, Tian WD, Lu J, Li G, Wang L, Zhang B, Liang BJ, Peng XH, Lin SX, Peng Y, Li XP. Diagnostic and prognostic value of plasma microRNA deregulation in nasopharyngeal carcinoma. Cancer Biol Ther 2013; 14:1133-42. [PMID: 24025417 DOI: 10.4161/cbt.26170] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is uncommon worldwide but often highly invasive in late stages. Due to its special location and lack of specific symptoms, NPC is hardly detected in regular medical examination at the beginning. Development of sensitive and specific biomarkers should help to save lives against this type of disease. In the present report, we investigated the value of plasma miRNAs for diagnosis and prognosis of NPC. Using candidate approach, we selected 21 miRNAs from literature to compare their expression levels in the plasma of NPC patients and controls. As a result, 5 miRNAs showed diagnostic potentials (P<0.01). Among them, miR-16, -21, -24, and -155 had increased levels in NPC patients, whereas the level of miR-378 was decreased. There was a negative correlation between plasma miRNA expression and cancer progression, where miR-21 was statistically significant in T and N staging and miR-16 and 24 were significant in N staging only. Combination of miR-16, -21, -24, -155, and -378 gives 87.7% of sensitivity and 82.0% of specificity for NPC diagnosis. Without miR-16, combination of the rest 4 miRNAs gives the same sensitivity but a slightly reduced specificity. After treatment, all 5 miRNAs were somewhat back to normal levels in patients without cancer recurrence but the prognostic value was not statistically significant. In conclusion, plasma miRNA expression is a useful biomarker for NPC diagnosis but not for its prognosis. More importantly, it is simple, effective, and non-invasive. Combination of several plasma miRNAs can increase both NPC diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Hua-Nan Luo
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Wen-Dong Tian
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Juan Lu
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Gang Li
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Lu Wang
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Bao Zhang
- School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou, Guangdong PR China
| | - Bi-Jun Liang
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Xiao-Hong Peng
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Shao-Xiong Lin
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| | - Ying Peng
- Department of Neurology; The Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou, Guangdong PR China
| | - Xiang-Ping Li
- Department of Otolaryngology, Head and Neck Surgery; Nanfang Hospital; Southern Medical University; Guangzhou, Guangdong PR China
| |
Collapse
|
163
|
Wu J, Zhang XJ, Shi KQ, Chen YP, Ren YF, Song YJ, Li G, Xue YF, Fang YX, Deng ZJ, Xu X, Gao J, Tang KF. Hepatitis B surface antigen inhibits MICA and MICB expression via induction of cellular miRNAs in hepatocellular carcinoma cells. Carcinogenesis 2013; 35:155-63. [PMID: 23917076 DOI: 10.1093/carcin/bgt268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B surface antigen (HBsAg) seropositivity is an important risk factor for hepatocellular carcinoma (HCC), and HBsAg-transgenic mice have been reported to spontaneously develop HCC. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, we found that HBsAg overexpression in HepG2 cells led to upregulation of 133 and downregulation of 9 microRNAs (miRNAs). Interestingly, several HBsAg-induced miRNAs repressed the expression of MICA and MICB via targeting their 3'-untranslated regions. In addition, the expression of MICA and MICB was significantly reduced upon HBsAg overexpression, which was partially restored by inhibiting the activities of HBsAg-induced miRNAs. Moreover, HBsAg-overexpressing HCC cells exhibited reduced sensitivity to natural killer cell-mediated cytolysis. Taken together, our data suggest that HBsAg supresses the expression of MICA and MICB via induction of cellular miRNAs, thereby preventing NKG2D-mediated elimination of HCC cells.
Collapse
Affiliation(s)
- Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical College, 268 Xueyuan Road, Wenzhou, Zhejiang Province 325000, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Fogel LA, Yokoyama WM, French AR. Natural killer cells in human autoimmune disorders. Arthritis Res Ther 2013; 15:216. [PMID: 23856014 PMCID: PMC3979027 DOI: 10.1186/ar4232] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play a critical role in early host defense against viruses. Through their cytolytic capacity and generation of cytokines and chemokines, NK cells modulate the activity of other components of the innate and adaptive immune systems and have been implicated in the initiation or maintenance of autoimmune responses. This review focuses on recent research elucidating a potential immunoregulatory role for NK cells in T-cell and B-cell-mediated autoimmune disorders in humans, with a particular focus on multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematous. A better understanding of the contributions of NK cells to the development of autoimmunity may lead to novel therapeutic targets in these diseases.
Collapse
|
165
|
Mishra R, Polic B, Welsh RM, Szomolanyi-Tsuda E. Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control. THE JOURNAL OF IMMUNOLOGY 2013; 191:961-70. [PMID: 23772039 DOI: 10.4049/jimmunol.1203328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell)-RAE-1 (target cell)-dependent manner; but in T cell-deficient mice, NK cells only delay but do not prevent the development of PyV-induced tumors. In this article, we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that downregulate RAE-1. These factors include the proinflammatory cytokines IL-1α, IL-1β, IL-33, and TNF. Each of these cytokines downregulates RAE-1 expression and susceptibility to NK cell-mediated cytotoxicity. CD11b(+)F4/80(+) macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1β and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors.
Collapse
Affiliation(s)
- Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
166
|
Lam RA, Chwee JY, Le Bert N, Sauer M, Pogge von Strandmann E, Gasser S. Regulation of self-ligands for activating natural killer cell receptors. Ann Med 2013; 45:384-94. [PMID: 23701136 DOI: 10.3109/07853890.2013.792495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are able to lyse infected and tumor cells while sparing healthy cells. Recognition of diseased cells by NK cells is governed by several activating and inhibitory receptors. We review numerous pathways that have been implicated in the regulation of self-ligands for activating receptors, including NKG2D, DNAM-1, LFA-1, NKp30, NKp44, NKp46, NKp65, and NKp80 found on NK cells and some T cells. Understanding how the regulation of self-encoded ligand expression is regulated may provide novel avenues for future therapeutic approaches to infections and cancer.
Collapse
Affiliation(s)
- Runyi A Lam
- Immunology Programme, Centre for Life Sciences, Department of Microbiology, National University of Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
167
|
Characterization of 3′untranslated region (3′UTR) of the MICB gene. Hum Immunol 2013; 74:746-50. [DOI: 10.1016/j.humimm.2013.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/28/2012] [Accepted: 01/24/2013] [Indexed: 01/27/2023]
|
168
|
Peinado C, Kang X, Hardamon C, Arora S, Mah S, Zhang H, Ngolab J, Bui JD. The nuclear factor-κB pathway down-regulates expression of the NKG2D ligand H60a in vitro: implications for use of nuclear factor-κB inhibitors in cancer therapy. Immunology 2013; 139:265-74. [PMID: 23350962 PMCID: PMC3647192 DOI: 10.1111/imm.12080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 12/31/2022] Open
Abstract
NKG2D ligands are cell surface proteins that activate NKG2D, a receptor used by natural killer (NK) cells to detect virus-infected and transformed cells. When tumour cells express high levels of NKG2D ligands, they are rejected by the immune system. Hence, reagents that increase NKG2D ligand expression on tumour cells can be important for tumour immunotherapy. To identify genes that regulate the NKG2D ligand H60a, we performed a microarray analysis of 3'-methylcholanthrene-induced sarcoma cell lines expressing high versus low H60a levels. A20, an inhibitor of nuclear factor-κB (NF-κB) activation, was differentially expressed in H60a-hi sarcoma cells. Correspondingly, treatment of tumour cells with inhibitors of NF-κB activation, such as sulfasalazine (slz), BAY-11-7085, or a non-phosphorylatable IκB, led to increased levels of H60a protein, whereas transduction of cells with an active form of IκB kinase-β (IKKβ) led to decreased levels of H60a. The regulation probably occurred at the transcriptional level, because NF-κB pathway inhibition led to increased H60a transcripts and promoter activity. Moreover, treatment of tumour cells with slz enhanced their killing by NK cells in vitro, suggesting that NF-κB inhibition can lead to tumour cell rejection. Indeed, when we blocked the NF-κB pathway specifically in tumour cells, there was decreased tumour growth in wild-type but not immune-deficient mice. Our results suggest that reagents that can block NF-κB activity specifically in the tumour and not the host immune cells would be efficacious for tumour therapy.
Collapse
Affiliation(s)
- Carlos Peinado
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ 2013; 21:5-14. [PMID: 23579243 DOI: 10.1038/cdd.2013.26] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 01/06/2023] Open
Abstract
Protection against cellular stress from various sources, such as nutritional, physical, pathogenic, or oncogenic, results in the induction of both intrinsic and extrinsic cellular protection mechanisms that collectively limit the damage these insults inflict on the host. The major extrinsic protection mechanism against cellular stress is the immune system. Indeed, it has been well described that cells that are stressed due to association with viral infection or early malignant transformation can be directly sensed by the immune system, particularly natural killer (NK) cells. Although the ability of NK cells to directly recognize and respond to stressed cells is well appreciated, the mechanisms and the breadth of cell-intrinsic responses that are intimately linked with their activation are only beginning to be uncovered. This review will provide a brief introduction to NK cells and the relevant receptors and ligands involved in direct responses to cellular stress. This will be followed by an in-depth discussion surrounding the various intrinsic responses to stress that can naturally engage NK cells, and how therapeutic agents may induce specific activation of NK cells and other innate immune cells by activating cellular responses to stress.
Collapse
|
170
|
Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 2013; 73:1777-86. [PMID: 23302231 DOI: 10.1158/0008-5472.can-12-3558] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells rely on surface receptors to distinguish healthy cells from cancer cells. We designed a receptor termed NKG2D-DAP10-CD3ζ that is composed of the NK cell activating molecule NKG2D plus 2 key signaling molecules, DAP10 and CD3ζ, and evaluated its capacity to promote cancer cell killing. Retroviral transduction of NKG2D-DAP10-CD3ζ markedly increased NKG2D surface expression in NK cells, which became consistently more cytotoxic than mock-transduced cells against leukemia and solid tumor cell lines. In contrast, there was no increase in cytotoxicity against nontransformed blood and mesenchymal cells. NKG2D blockade abrogated gains in cytotoxicity to cancer cells. Receptor stimulation triggered signal transduction, secretion of IFN-γ, GM-CSF, IL-13, MIP-1α, MIP-1β, CCL5, and TNF-α, and massive release of cytotoxic granules, which persisted after 48 hours of continuous stimulation. NKG2D-DAP10-CD3ζ-expressing NK cells had considerable antitumor activity in a mouse model of osteosarcoma, whereas activated NK cells were ineffective. Thus, the cytotoxic potential of NK cells against a wide spectrum of tumor subtypes could be markedly enhanced by expression of NKG2D-DAP10-CD3ζ receptors. The development of an electroporation method that permits rapid expression of the receptor in a large number of human NK cells facilitates clinical translation of this NK-based strategy for a generalized cellular therapy that may be useful to treat a wide range of cancers.
Collapse
Affiliation(s)
- Yu-Hsiang Chang
- Department of Pediatrics, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
171
|
Abstract
NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection.
Collapse
Affiliation(s)
- David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720-3200, USA.
| | | | | | | | | |
Collapse
|
172
|
Tsukerman P, Mandelboim O. Lung Clearance Assay. Bio Protoc 2013. [DOI: 10.21769/bioprotoc.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
173
|
Stojanovic A, Correia MP, Cerwenka A. Shaping of NK cell responses by the tumor microenvironment. CANCER MICROENVIRONMENT 2012; 6:135-46. [PMID: 23242671 DOI: 10.1007/s12307-012-0125-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells belong to the innate immune system and are potent cytolytic and cytokine-producing effector cells in response to tumor targets. NK cell based anti-tumor immunotherapy was so far mainly successful in patients with different types of leukemia. For instance, acute myeloid leukemia (AML) patients displayed a prolonged survival if transplanted with haploidentical stem cells giving rise to NK cells with a mismatch in inhibitory killer immunoglobulin receptors (KIRs) and recipients' HLA class I. Although promising results have been achieved with hematological tumors, solid tumors are in most cases poorly controlled by NK cells. Therapeutic protocols that aimed at improving NK cell responses in patients with solid malignancies succeeded in increasing NK cell numbers and functional responses of NK cells isolated from the patients' peripheral blood. However, in the majority of cases tumor progression and overall survival of patients were not significantly improved. There is increasing evidence that tumor-associated NK cells become gradually impaired during tumor progression compared to NK cells from peripheral blood and healthy tissues. Future protocols of NK cell based immunotherapy should integrate three important aspects to improve NK cell anti-tumor activity: facilitating NK cell migration to the tumor site, enhancing their infiltration into the tumor tissue and ensuring subsequent efficient activation in the tumor. This review summarizes the current knowledge of tumor-infiltrating NK cells and the influence of the tumor microenvironment on their phenotype and function.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
174
|
Natural killer cell regulation by microRNAs in health and disease. J Biomed Biotechnol 2012; 2012:632329. [PMID: 23226942 PMCID: PMC3514007 DOI: 10.1155/2012/632329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that are critical for normal host defense against infections and mediate antitumor immune responses. MicroRNAs (miRNAs) are a family of small, noncoding RNAs that posttranscriptionally regulate the majority of cellular processes and pathways. Our understanding of how miRNAs regulate NK cells biology is limited, but recent studies have provided novel insight into their expression by NK cells, and how they contribute to the regulation of NK cell development, maturation, survival, and effector function. Here, we review the expression of miRNAs by NK cells, their contribution to cell intrinsic and extrinsic control of NK cell development and effector response, and their dysregulation in NK cell malignancies.
Collapse
|
175
|
Tsukerman P, Stern-Ginossar N, Gur C, Glasner A, Nachmani D, Bauman Y, Yamin R, Vitenshtein A, Stanietsky N, Bar-Mag T, Lankry D, Mandelboim O. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res 2012; 72:5463-72. [PMID: 22915757 DOI: 10.1158/0008-5472.can-11-2671] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural killer cells (NK) are a component of innate immunity well known for their potent ability to kill virus-infected or neoplastically transformed cells following stimulation of the NK cell receptor NKG2D. One of the various ligands of NKG2D is MICB, a stress-induced ligand that has been found to be upregulated on the surface of tumor cells. However, there is little knowledge about how this upregulation may occur or how it may be selected against in tumors as a mechanism of immune escape. Here, we report that the metastasis-associated microRNA (metastamir) miR-10b directly binds to the 3' untranslated region of MICB and downregulates its expression. Notably, antagonizing miR-10b action enhanced NKG2D-mediated killing of tumor cells in vitro and enhanced clearance of tumors in vivo. Conversely, overexpression of miR-10b downregulated MICB and impaired elimination of tumor cells. Together, our results define MICB as a novel immune target of miR-10b, implying a direct link between metastasis capability and immune escape from NK cells.
Collapse
Affiliation(s)
- Pinchas Tsukerman
- Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Fernández-Messina L, Reyburn HT, Valés-Gómez M. Human NKG2D-ligands: cell biology strategies to ensure immune recognition. Front Immunol 2012; 3:299. [PMID: 23056001 PMCID: PMC3457034 DOI: 10.3389/fimmu.2012.00299] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/07/2012] [Indexed: 02/05/2023] Open
Abstract
Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumors and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, major histocompatibility complex class I-related chain (MIC) A/B and UL16 binding proteins (ULBPs), are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarize the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease.
Collapse
Affiliation(s)
- Lola Fernández-Messina
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | |
Collapse
|
177
|
Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B, Mami-Chouaib F, Chouaib S. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res 2012; 72:4629-41. [PMID: 22962263 DOI: 10.1158/0008-5472.can-12-1383] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia in the tumor microenvironment plays a central role in the evolution of immune escape mechanisms by tumor cells. In this study, we report the definition of miR-210 as a miRNA regulated by hypoxia in lung cancer and melanoma, documenting its involvement in blunting the susceptibility of tumor cells to lysis by antigen-specific cytotoxic T lymphocytes (CTL). miR-210 was induced in hypoxic zones of human tumor tissues. Its attenuation in hypoxic cells significantly restored susceptibility to autologous CTL-mediated lysis, independent of tumor cell recognition and CTL reactivity. A comprehensive approach using transcriptome analysis, argonaute protein immunoprecipitation, and luciferase reporter assay revealed that the genes PTPN1, HOXA1, and TP53I11 were miR-210 target genes regulated in hypoxic cells. In support of their primary importance in mediating the immunosuppressive effects of miR-210, coordinate silencing of PTPN1, HOXA1, and TP53I11 dramatically decreased tumor cell susceptibility to CTL-mediated lysis. Our findings show how miR-210 induction links hypoxia to immune escape from CTL-mediated lysis, by providing a mechanistic understanding of how this miRNA mediates immunosuppression in oxygen-deprived regions of tumors where cancer stem-like cells and metastatic cellular behaviors are known to evolve.
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Unité INSERM U753, Institut de Cancérologie Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Jenny MJ, Aluru N, Hahn ME. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos. Toxicol Appl Pharmacol 2012; 264:262-73. [PMID: 22921993 DOI: 10.1016/j.taap.2012.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 12/26/2022]
Abstract
Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ~22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5nM) for 1h at 30hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60hpf. TCDD caused strong induction of CYP1A at 36hpf (62-fold) and 60hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular development.
Collapse
Affiliation(s)
- Matthew J Jenny
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
179
|
D'Agostino DM, Zanovello P, Watanabe T, Ciminale V. The microRNA regulatory network in normal- and HTLV-1-transformed T cells. Adv Cancer Res 2012; 113:45-83. [PMID: 22429852 DOI: 10.1016/b978-0-12-394280-7.00002-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent efforts to understand the molecular networks governing normal T cell development and driving the neoplastic transformation of T cells have brought to light the involvement of microRNAs (miRNAs), a class of noncoding RNAs of approximately 22 nucleotides that regulate gene expression at the posttranscriptional level. In the present review, we compare the expression profiles of miRNAs in normal T cell development to that of transformed T cells using as a model adult T cell leukemia/lymphoma, an aggressive malignancy of mature CD4+ T cells that is caused by infection with human T cell leukemia virus type 1.
Collapse
Affiliation(s)
- Donna M D'Agostino
- Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
180
|
Hilpert J, Grosse-Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, Steinle A, Salih HR. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:1360-71. [PMID: 22730533 DOI: 10.4049/jimmunol.1200796] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ligands of the prototypical activating NK receptor NKG2D render cancer cells susceptible to NK cell-mediated cytolysis if expressed at sufficiently high levels. However, malignant cells employ mechanisms to evade NKG2D-mediated immunosurveillance, such as NKG2D ligand (NKG2DL) shedding resulting in reduced surface expression levels. In addition, systemic downregulation of NKG2D on NK cells of cancer patients has been observed in many studies and was attributed to soluble NKG2DL (sNKG2DL), although there also are conflicting data. Likewise, relevant expression of NKG2DL in leukemia has been reported by some, but not all studies. Hence, we comprehensively studied expression, release, and function of the NKG2D ligands MHC class I chain-related molecules A and B and UL16-binding proteins 1-3 in 205 leukemia patients. Leukemia cells of most patients (75%) expressed at least one NKG2DL at the surface, and all investigated patient sera contained elevated sNKG2DL levels. Besides correlating NKG2DL levels with clinical data and outcome, we demonstrate that sNKG2DL in patient sera reduce NKG2D expression on NK cells, resulting in impaired antileukemia reactivity, which also critically depends on number and levels of surface-expressed NKG2DL. Together, we provide comprehensive data on the relevance of NKG2D/NKG2DL expression, release, and function for NK reactivity in leukemia, which exemplifies the mechanisms underlying NKG2D-mediated tumor immunosurveillance and escape.
Collapse
Affiliation(s)
- Julia Hilpert
- Department of Hematology and Oncology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Ibana JA, Aiyar A, Quayle AJ, Schust DJ. Modulation of MICA on the surface of Chlamydia trachomatis-infected endocervical epithelial cells promotes NK cell-mediated killing. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2012; 65:32-42. [PMID: 22251247 PMCID: PMC5029121 DOI: 10.1111/j.1574-695x.2012.00930.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/24/2022]
Abstract
Chlamydia trachomatis serovars D-K are obligate intracellular bacteria that have tropism for the columnar epithelial cells of the genital tract. Chlamydia trachomatis infection has been reported to induce modifications in immune cell ligand expression on epithelial host cells. In this study, we used an in vitro infection model that resulted in a partial infection of C. trachomatis-exposed primary-like immortalized endocervical epithelial cells (A2EN). Using this model, we demonstrated that expression of the natural killer (NK) cell activating ligand, MHC class I-related protein A (MICA), was upregulated on C. trachomatis-infected, but not on noninfected bystander cells. MICA upregulation was concomitant with MHC class I downregulation and impacted the susceptibility of C. trachomatis-infected cells to NK cell activity. The specificity of MICA upregulation was reflected by a higher cytolytic activity of an NK cell line (NK92MI) against C. trachomatis-infected cells compared with uninfected control cells. Significantly, data also indicated that NK cells exerted a partial, but incomplete sterilizing effect on C. trachomatis as shown by the reduction in recoverable inclusion forming units (IFU) when cocultured with C. trachomatis-infected cells. Taken together, our data suggest that NK cells may play a significant role in the ability of the host to counter C. trachomatis infection.
Collapse
Affiliation(s)
- Joyce Altamarino Ibana
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Alison Jane Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Danny Joseph Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
182
|
Abstract
Natural killer (NK) cells play an important role in the direct killing of cancerous and virus-infected cells. One of the important activating receptors which mediates this killing is NKG2D. This receptor recognizes various stress-induced ligands including the major histocompatibility complex class I-related chain A and B (MICA and MICB respectively). The mechanisms controlling the expression of the NKG2D ligands are not completely understood, yet various studies have demonstrated that the expression of the NKG2D ligands is manipulated by viruses and by tumor cells in order to escape the NKG2D detection. Cumulative data have emphasized that various microRNAs (miRNAs) of both human and viral origin control the expression of NKG2D ligands, particularly MICB. Herein we review recent findings regarding the miRNA regulation of the NKG2D ligands. We propose that these miRNAs generate a complex network of interactions that control the expression of the NKG2D ligands under normal conditions and during disease development.
Collapse
Affiliation(s)
- Shlomo Elias
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem Israel
| | | |
Collapse
|
183
|
Nagai Y, Tanaka Y, Kuroishi T, Sato R, Endo Y, Sugawara S. Histamine reduces susceptibility to natural killer cells via down-regulation of NKG2D ligands on human monocytic leukaemia THP-1 cells. Immunology 2012; 136:103-14. [PMID: 22304689 DOI: 10.1111/j.1365-2567.2012.03565.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) group 2D (NKG2D) is a key activating receptor expressed on NK cells, whose interaction with ligands on target cells plays an important role in tumorigenesis. However, the effect of histamine on NKG2D ligands on tumour cells is unclear. Here we showed that human monocytic leukaemia THP-1 cells constitutively express MHC class I-related chain A (MICA) and UL16-binding protein 1 on their surface, and incubation with histamine reduced the expression in a dose-dependent and time-dependent manner as assessed by flow cytometry. Interferon-γ augmented the surface expression of the NKG2D ligands, and this augmentation was significantly attenuated by histamine. The histamine H1 receptor (H1R) agonist 2-pyridylethylamine and H2R agonist dimaprit down-regulated the expression of NKG2D ligands, and activation of H1R and H2R signalling by A23187 and forskolin, respectively, had the same effect, indicating that the histamine-induced down-regulation of NKG2D ligands is mediated by H1R and H2R. Quantitative reverse transcription-PCR showed that mRNA levels of the NKG2D ligands and relevant microRNAs were not significantly changed by histamine. Histamine down-regulated the surface expression of endoplasmic reticulum protein 5, and inhibition of matrix metalloproteinases did not impair this down-regulation, indicating that proteolytic shedding was not involved. Instead, pharmacological inhibition of protein transport and proteasome abrogated it, and histamine enhanced ubiquitination of MICA. Furthermore, histamine treatment significantly reduced susceptibility to NK cell-mediated cytotoxicity. These results suggest that histamine down-regulates NKG2D ligands through the activation of an H1R- and H2R-mediated ubiquitin-proteasome pathway and consequently reduces susceptibility to NK cells.
Collapse
Affiliation(s)
- Yasuhiro Nagai
- Division of Oral Immunology, Department of Oral Biology Division of Oral Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
184
|
Slavuljica I, Krmpotić A, Jonjić S. Manipulation of NKG2D ligands by cytomegaloviruses: impact on innate and adaptive immune response. Front Immunol 2011; 2:85. [PMID: 22566874 PMCID: PMC3342069 DOI: 10.3389/fimmu.2011.00085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/12/2011] [Indexed: 01/20/2023] Open
Abstract
NKG2D is a potent activating receptor expressed on NK cells, NKT cells, γδ T cells, and CD8 T cells. NKG2D recognizes cell surface molecules structurally related to MHC class I proteins induced by infection or other type of cellular stress. The engagement of NKG2D leads to NK cell cytotoxicity and cytokine secretion or to a co-stimulation of CD8 T cells. Both human and mouse cytomegalovirus (CMV) have evolved numerous mechanisms to evade NKG2D-mediated immune response. This review describes the mechanisms used by CMV to inhibit NKG2D ligand expression and the recent advances in exploiting the NKG2D recognition pathway for mounting efficient and long-lasting immune response.
Collapse
Affiliation(s)
- Irena Slavuljica
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka Rijeka, Croatia
| | | | | |
Collapse
|
185
|
Heinemann A, Zhao F, Pechlivanis S, Eberle J, Steinle A, Diederichs S, Schadendorf D, Paschen A. Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res 2011; 72:460-71. [PMID: 22102694 DOI: 10.1158/0008-5472.can-11-1977] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant cells express ligands for the natural killer cell immunoreceptor NKG2D, which sensitizes to early recognition and elimination by cytotoxic lymphocytes and provides an innate barrier against tumor development. However, the mechanisms that control NKG2D ligand (NKG2DL) expression in tumor cells remain unknown. We recently identified the NKG2DL ULBP2 as strong prognostic marker in human malignant melanoma. Here, we provide evidence that the tumor-suppressive microRNAs (miRNA) miR-34a and miR-34c control ULBP2 expression. Reporter gene analyses revealed that both miRNAs directly targeted the 3'-untranslated region of ULBP2 mRNA and that levels of miR-34a inversely correlated with expression of ULBP2 surface molecules. Accordingly, treatment of cancer cells with miRNA inhibitors led to upregulation of ULBP2, whereas miR-34 mimics led to downregulation of ULBP2, diminishing tumor cell recognition by NK cells. Treatment with the small molecule inhibitor Nutlin-3a also decreased ULBP2 levels in a p53-dependent manner, which was due to a p53-mediated increase in cellular miR-34 levels. Taken together, our study shows that tumor-suppressive miR-34a and miR-34c act as ULBP2 repressors. These findings also implicate p53 in ULBP2 regulation, emphasizing the role of the specific NKG2DL in tumor immune surveillance.
Collapse
Affiliation(s)
- Anja Heinemann
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Kaifu T, Escalière B, Gastinel LN, Vivier E, Baratin M. B7-H6/NKp30 interaction: a mechanism of alerting NK cells against tumors. Cell Mol Life Sci 2011; 68:3531-9. [PMID: 21877119 PMCID: PMC11114815 DOI: 10.1007/s00018-011-0802-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 01/24/2023]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that sense target cells through a panel of activating and inhibitory receptors. Together with NKG2D, the natural cytotoxicity receptors (NCRs) are major activating receptors involved in tumor cell detection. Although numerous NKG2D ligands have been identified, characterization of the molecules interacting with the NCRs is still incomplete. The identification of B7-H6 as a counter structure of the NCR NKp30 shed light on the molecular basis of NK cell immunosurveillance. We review here the current knowledge on NKp30 and B7-H6, and we discuss their potential role in anti-tumor immunity.
Collapse
Affiliation(s)
- Tomonori Kaifu
- Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo, Japan
| | - Bertrand Escalière
- Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Campus de Luminy, 13288 Marseille, France
- INSERM U631, Case 906, Campus de Luminy, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, Case 906, Campus de Luminy, 13288 Marseille, France
| | - Louis N. Gastinel
- INSERM UMR-S850, Laboratoire de Pharmacologie des Immunosuppresseurs en Transplantation, Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Eric Vivier
- Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Campus de Luminy, 13288 Marseille, France
- INSERM U631, Case 906, Campus de Luminy, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, Case 906, Campus de Luminy, 13288 Marseille, France
- Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 147 Boulevard Baille, 13385 Marseille, France
| | - Myriam Baratin
- Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Campus de Luminy, 13288 Marseille, France
- INSERM U631, Case 906, Campus de Luminy, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, Case 906, Campus de Luminy, 13288 Marseille, France
| |
Collapse
|
187
|
Tuddenham L, Pfeffer S. Roles and regulation of microRNAs in cytomegalovirus infection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:613-22. [DOI: 10.1016/j.bbagrm.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022]
|
188
|
Abstract
Perforin (Prf1) and granzyme B (GzmB) are essential effector molecules for natural killer (NK)-cell cytotoxicity, but how Prf1 and GzmB expression is regulated during arming of NK cells is poorly defined. We show that human microRNA (miR)-27a* is a negative regulator of NK-cell cytotoxicity by silencing Prf1 and GzmB expression. Human miR-27a* specifically bound to the 3' untranslated regions of Prf1 and GzmB, down-regulating expression in both resting and activated NK cells, and it functioned as a fine-tuner for homeostasis of the net amount of the effector proteins. Consistent with miR-27a* having an inhibitory role, knockdown of miR-27a* in NK cells dramatically increased cytotoxicity in vitro and decreased tumor growth in a human tumor xenograft model. Thus, NK-cell cytotoxicity is regulated, in part, by microRNA, and modulating endogenous miR-27a* levels in NK cells represents a potential immunotherapeutic strategy.
Collapse
|
189
|
Elefant N, Altuvia Y, Margalit H. A wide repertoire of miRNA binding sites: prediction and functional implications. ACTA ACUST UNITED AC 2011; 27:3093-101. [PMID: 21953484 DOI: 10.1093/bioinformatics/btr534] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MOTIVATION Over the past decade, deciphering the roles of microRNAs (miRNAs) has relied heavily upon the identification of their targets. Most of the targets that were computationally and experimentally characterized were evolutionarily conserved 'seed' targets, containing a perfect 6-8 nt match between the miRNA 5(')-region and the messenger RNA (mRNA). Gradually, it has become evident that other types of miRNA binding can confer target regulation, but their characterization has been lagging behind. RESULTS Here, we complement the putative evolutionarily-conserved seed-containing targets by a wide repertoire of putative targets exhibiting a variety of miRNA binding patterns, predicted by our algorithm RepTar. These include non-conserved sites, 'seed' binding sites with G:U-wobbles within the seed, '3(') compensatory' sites and 'centered' sites. Apart from the centered sites, we demonstrate the functionality of these sites and characterize the target profile of a miRNA by the types of binding sites predicted in its target 3(') UTRs. We find that different miRNAs have individual target profiles, with some more inclined to seed binding and others more inclined to binding through 3(') compensatory sites. This diversity in targeting patterns is also evident within several miRNA families (defined by common seed sequences), leading to divergence in the target sets of members of the same family. The prediction of non-conventional miRNA targets is also beneficial in the search for targets of the non-conserved viral miRNAs. Analyzing the cellular targets of viral miRNAs, we show that viral miRNAs use various binding patterns to exploit cellular miRNA binding sites and suggest roles for these targets in virus-host interactions.
Collapse
Affiliation(s)
- Naama Elefant
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | |
Collapse
|
190
|
Tokuyama M, Lorin C, Delebecque F, Jung H, Raulet DH, Coscoy L. Expression of the RAE-1 family of stimulatory NK-cell ligands requires activation of the PI3K pathway during viral infection and transformation. PLoS Pathog 2011; 7:e1002265. [PMID: 21966273 PMCID: PMC3178570 DOI: 10.1371/journal.ppat.1002265] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/28/2011] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes that play a major role in the elimination of virally-infected cells and tumor cells. NK cells recognize and target abnormal cells through activation of stimulatory receptors such as NKG2D. NKG2D ligands are self-proteins, which are absent or expressed at low levels on healthy cells but are induced upon cellular stress, transformation, or viral infection. The exact molecular mechanisms driving expression of these ligands remain poorly understood. Here we show that murine cytomegalovirus (MCMV) infection activates the phosphatidylinositol-3-kinase (PI3K) pathway and that this activation is required for the induction of the RAE-1 family of mouse NKG2D ligands. Among the multiple PI3K catalytic subunits, inhibition of the p110α catalytic subunit blocks this induction. Similarly, inhibition of p110α PI3K reduces cell surface expression of RAE-1 on transformed cells. Many viruses manipulate the PI3K pathway, and tumors frequently mutate the p110α oncogene. Thus, our findings suggest that dysregulation of the PI3K pathway is an important signal to induce expression of RAE-1, and this may represent a commonality among various types of cellular stresses that result in the induction of NKG2D ligands. Human and mouse cytomegaloviruses (HCMV and MCMV) are members of the Herpesvirus family. Both viruses cause disease in individuals with a compromised immune system, such as transplant patients and AIDS patients. Natural killer (NK) cells are essential players in the immune response against these viruses. NK cells recognize self-proteins, such as NKG2D ligands, that are poorly expressed on healthy cells but are upregulated on cells that are undergoing stress, such as infection and tumor development. The biological processes associated with NKG2D ligand expression in infected cells are unknown. The PI3K pathway, which controls many cellular processes, is activated by a variety of viruses to prime cells for efficient viral replication. We observed that MCMV activates the PI3K pathway and that this activation is required for NKG2D ligand expression. We also found that the expression of NKG2D ligands on cancer cell lines is dependent on this pathway. Our data suggest that NKG2D ligand expression, and thus recognition of infected and cancer cells by NK cells, is associated with a dysregulation in the PI3K pathway.
Collapse
Affiliation(s)
- Maria Tokuyama
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Clarisse Lorin
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Frederic Delebecque
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Heiyoun Jung
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - David H. Raulet
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Laurent Coscoy
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
191
|
Zafirova B, Wensveen FM, Gulin M, Polić B. Regulation of immune cell function and differentiation by the NKG2D receptor. Cell Mol Life Sci 2011; 68:3519-29. [PMID: 21898152 PMCID: PMC3192283 DOI: 10.1007/s00018-011-0797-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/18/2022]
Abstract
NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation.
Collapse
Affiliation(s)
- Biljana Zafirova
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia
| | | | | | | |
Collapse
|
192
|
O'Sullivan T, Dunn GP, Lacoursiere DY, Schreiber RD, Bui JD. Cancer immunoediting of the NK group 2D ligand H60a. THE JOURNAL OF IMMUNOLOGY 2011; 187:3538-45. [PMID: 21876033 DOI: 10.4049/jimmunol.1100413] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer immunoediting describes the process whereby highly immunogenic tumor cells are removed, or edited, from the primary tumor repertoire by the immune system. In immunodeficient mice, the editing process is hampered, and "unedited" tumor cells can be recovered and studied. In this study, we compared unedited and edited tumors for their expression of NK group 2D (NKG2D) ligands, a family of surface proteins expressed on tumor cells that can activate NK cell cytotoxic activity. We found that the expression of the NKG2D ligand H60a was more heterogeneous in groups of unedited 3'-methylcholanthrene sarcoma cell lines compared with that in edited 3'-methylcholanthrene sarcoma cell lines (i.e., some unedited cell lines expressed very high levels of H60a, whereas other unedited and edited cell lines expressed very low levels). We also found that some highly immunogenic cell lines displayed a bimodal distribution consisting of H60a-hi and H60a-lo cells. In one of these cell lines, the H60a-hi cells could be removed by passaging the cells through RAG2(-/-) mice, resulting in edited cell lines that were poor targets for NK cells and that displayed progressive tumor growth. This editing of H60a-hi cells required NK cells and NKG2D. Our studies show that the expression of H60a on tumors cells can be actively modulated by the immune system, thereby implicating this NKG2D ligand in tumor immunosurveillance.
Collapse
Affiliation(s)
- Timothy O'Sullivan
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
193
|
All is fair in virus-host interactions: NK cells and cytomegalovirus. Trends Mol Med 2011; 17:677-85. [PMID: 21852192 DOI: 10.1016/j.molmed.2011.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022]
Abstract
The infection of mice with mouse cytomegalovirus (MCMV) as a model of human cytomegalovirus (HCMV) infection has been particularly informative in elucidating the role of innate and adaptive immune response mechanisms during infection. Millions of years of co-evolution between cytomegaloviruses (CMV) and their hosts has resulted in numerous attempts to overwhelm each other. CMVs devote many genes to modulating the host natural killer (NK) cell response and NK cells employ many strategies to cope with CMV infection. While focusing on these attack-counterattack measures, this review will discuss several novel mechanisms of immune evasion by MCMV, the role of Ly49 receptors in mediating resistance to MCMV, and the impact of the initial NK cell response on the shaping of adaptive immunity.
Collapse
|
194
|
Nachmani D, Mandelboim O. Human cytomegalovirus miRNAs. Future Virol 2011. [DOI: 10.2217/fvl.11.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
miRNAs are expressed by many organisms including viruses. The human cytomegalovirus (HCMV), which is a highly prevalent human herpesvirus, also expresses several miRNAs. Although HCMV-encoded miRNAs were discovered several years ago, only little was revealed with regard to their function and their contribution to the HCMV life cycle and viral pathogenicity. Here, we will review what is known about the HCMV-encoded miRNAs functions with a special emphasis on immune evasion. We discuss the immune evasion strategies of HCMV and compare the immune evasion properties of viral proteins and miRNAs. In addition, we discuss the relationships formed between viral and cellular miRNAs and finally we emphasize important issues that require future investigation.
Collapse
Affiliation(s)
- Daphna Nachmani
- The Lautenberg Center for General & Tumor Immunology, The BioMedical Research Institute Israel–Canada, Faculty of Medicine Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
195
|
Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A. Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res 2011; 71:5998-6009. [PMID: 21764762 DOI: 10.1158/0008-5472.can-10-3211] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells are immune cells sensing and eliminating foreign, stressed, transformed, and senescent cells through specialized surface receptors, such as NKG2D, that interacts with several virus- or stress-inducible ligands, including ULBP1 and -2, which are expressed on target cell surfaces. For example, induction of DNA damage or cellular senescence pathways in tumor cells led to upregulation of NKG2D ligands that activate NK cells. Although, both pathways activate p53, the relationship of p53 activation to upregulation of NKG2D ligands has not been addressed. In this study, we report that induction of wild-type p53, but not mutant p53, strongly upregulated mRNA and cell surface expression of ULBP1 and -2, whereas expression of other NK cell ligands was not affected. We defined intronic p53-responsive elements in these two novel p53 target genes. Coculture of wild-type p53-induced human tumor cells with primary human NK cells enhanced NKG2D-dependent degranulation and IFN-γ production by NK cells. Accordingly, treatment of certain wild-type p53-expressing tumor cell lines with the p53-reactivating small molecular compound RITA resulted in upregulation of ULBP2 mRNA and cell surface protein expression. Taken together, our findings define the involvement of p53 in the regulation of specific NKG2D ligands that enhance NK cell-mediated target recognition. One implication of our work is that activating p53 after adoptive transfer of NK cells might constitute an effective combinatorial strategy of NK cell-based immunochemotherapy in cancers in which wild-type p53 function is preserved.
Collapse
Affiliation(s)
- Sonja Textor
- Innate Immunity Group, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
196
|
Liang R, Bates DJ, Wang E. Epigenetic Control of MicroRNA Expression and Aging. Curr Genomics 2011; 10:184-93. [PMID: 19881911 PMCID: PMC2705851 DOI: 10.2174/138920209788185225] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/27/2009] [Accepted: 03/14/2009] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs are a major category among the noncoding RNA fraction that negatively regulate gene expression at the post-transcriptional level, by either degrading the target messages or inhibiting their translation. MicroRNAs may be referred to as ‘dimmer switches’ of gene expression, because of their ability to repress gene expression without completely silencing it. Whether through up-regulating specific groups of microRNAs to suppress unwanted gene expressions, or by down-regulating other microRNAs whose target genes’ expression is necessary for cellular function, such as cell proliferation, apoptosis, or differentiation, these regulatory RNAs play pivotal roles in a wide variety of cellular processes. The equilibrium between these two groups of microRNA expressions largely determines the function of particular cell types. Our recent results with several model systems show that upon aging, there is a trend of up-regulation of microRNA expression, with concomitant inverse down-regulation of target genes. This review addresses molecular mechanisms that may provide the underlying control for this up-regulating trend, focusing on activation by various microRNAs’ own promoters, through binding with pivotal transcription factors, stress response, methylation of clustered DNA domains, etc. Thus, epigenomic control of aging may be due in part to heightened promoter activation of unwanted microRNA expressions, which in turn down-regulate their target gene products. Overriding and dampening the activation of these noncoding RNAs may prove to be a new frontier for future research, to delay aging and extend healthy life-span.
Collapse
Affiliation(s)
- Ruqiang Liang
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | |
Collapse
|
197
|
Yue D, Liu H, Huang Y. Survey of Computational Algorithms for MicroRNA Target Prediction. Curr Genomics 2011; 10:478-92. [PMID: 20436875 PMCID: PMC2808675 DOI: 10.2174/138920209789208219] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 04/20/2009] [Accepted: 05/11/2009] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are 19 to 25 nucleotides non-coding RNAs known to possess important post-transcriptional regulatory functions. Identifying targeting genes that miRNAs regulate are important for understanding their specific biological functions. Usually, miRNAs down-regulate target genes through binding to the complementary sites in the 3' untranslated region (UTR) of the targets. In part, due to the large number of miRNAs and potential targets, an experimental based prediction design would be extremely laborious and economically unfavorable. However, since the bindings of the animal miRNAs are not a perfect one-to-one match with the complementary sites of their targets, it is difficult to predict targets of animal miRNAs by accessing their alignment to the 3' UTRs of potential targets. Consequently, sophisticated computational approaches for miRNA target prediction are being considered as essential methods in miRNA research. We surveyed most of the current computational miRNA target prediction algorithms in this paper. Particularly, we provided a mathematical definition and formulated the problem of target prediction under the framework of statistical classification. Moreover, we summarized the features of miRNA-target pairs in target prediction approaches and discussed these approaches according to two categories, which are the rule-based and the data-driven approaches. The rule-based approach derives the classifier mainly on biological prior knowledge and important observations from biological experiments, whereas the data driven approach builds statistic models using the training data and makes predictions based on the models. Finally, we tested a few different algorithms on a set of experimentally validated true miRNA-target pairs [1] and a set of false miRNA-target pairs, derived from miRNA overexpression experiment [2]. Receiver Operating Characteristic (ROC) curves were drawn to show the performances of these algorithms.
Collapse
Affiliation(s)
- Dong Yue
- Department of Electrical and Computer Engineering, University of Texas at San Antonio (UTSA), San Antonio, TX 78249-0669, USA
| | | | | |
Collapse
|
198
|
Lieber D, Haas J. Viruses and microRNAs: a toolbox for systematic analysis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:787-801. [DOI: 10.1002/wrna.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
199
|
Abstract
The immune system can identify and destroy nascent tumor cells in a process termed cancer immunosurveillance, which functions as an important defense against cancer. Recently, data obtained from numerous investigations in mouse models of cancer and in humans with cancer offer compelling evidence that particular innate and adaptive immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor-suppressor mechanisms. However, the immune system can also promote tumor progression. Together, the dual host-protective and tumor-promoting actions of immunity are referred to as cancer immunoediting. In this review, we discuss the current experimental and human clinical data supporting a cancer immunoediting process that provide the fundamental basis for further study of immunity to cancer and for the rational design of immunotherapies against cancer.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
200
|
Lepiller Q, Aziz Khan K, Di Martino V, Herbein G. Cytomegalovirus and tumors: two players for one goal-immune escape. Open Virol J 2011; 5:60-9. [PMID: 21760870 PMCID: PMC3134960 DOI: 10.2174/1874357901105010060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/10/2011] [Accepted: 04/12/2011] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) and the human tumor cell share the same objectives: escape the recognition and destruction by the immune system and establish a state of immune tolerance conducive for their development. For early tumor development, the escape of the first lines of defense of the immune surveillance is a critical step which determines survival or destruction. The presence of CMV on the tumor site and its involvement in carcinogenesis as initiator or promoter is increasingly documented. In this article, we highlight the similarity between mechanisms used by tumors and CMV to circumvent the immune defenses and evade from immune surveillance. We suggest that CMV and tumors help one another for their common objective. CMV gets shelter in immunologically poor environment of the tumor cells. In return CMV, by acting directly on the cancer cell and/or on the tumor microenvironment, provides the tumor cell the ways to promote its immune escape and development of immune tolerance.
Collapse
Affiliation(s)
- Quentin Lepiller
- Department of Virology, University of Franche-Comte, UPRES EA 4266, IFR 133, CHU Besancon, F-25030 Besanon, France
| | | | | | | |
Collapse
|