151
|
Barghout SH. Targeted Protein Degradation: An Emerging Therapeutic Strategy in Cancer. Anticancer Agents Med Chem 2021; 21:214-230. [PMID: 32275492 DOI: 10.2174/1871520620666200410082652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Drug discovery in the scope of cancer therapy has been focused on conventional agents that nonselectively induce DNA damage or selectively inhibit the activity of key oncogenic molecules without affecting their protein levels. An emerging therapeutic strategy that garnered attention in recent years is the induction of Targeted Protein Degradation (TPD) of cellular targets by hijacking the intracellular proteolysis machinery. This novel approach offers several advantages over conventional inhibitors and introduces a paradigm shift in several pharmacological aspects of drug therapy. While TPD has been found to be the major mode of action of clinically approved anticancer agents such as fulvestrant and thalidomide, recent years have witnessed systematic endeavors to expand the repertoire of proteins amenable to therapeutic ablation by TPD. Such endeavors have led to three major classes of agents that induce protein degradation, including molecular glues, Proteolysis Targeting Chimeras (PROTACs) and Hydrophobic Tag (HyT)-based degraders. Here, we briefly highlight agents in these classes and key advances made in the field with a focus on clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
152
|
Tryptophanemia is controlled by a tryptophan-sensing mechanism ubiquitinating tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2021; 118:2022447118. [PMID: 34074763 DOI: 10.1073/pnas.2022447118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maintaining stable tryptophan levels is required to control neuronal and immune activity. We report that tryptophan homeostasis is largely controlled by the stability of tryptophan 2,3-dioxygenase (TDO), the hepatic enzyme responsible for tryptophan catabolism. High tryptophan levels stabilize the active tetrameric conformation of TDO through binding noncatalytic exosites, resulting in rapid catabolism of tryptophan. In low tryptophan, the lack of tryptophan binding in the exosites destabilizes the tetramer into inactive monomers and dimers and unmasks a four-amino acid degron that triggers TDO polyubiquitination by SKP1-CUL1-F-box complexes, resulting in proteasome-mediated degradation of TDO and rapid interruption of tryptophan catabolism. The nonmetabolizable analog alpha-methyl-tryptophan stabilizes tetrameric TDO and thereby stably reduces tryptophanemia. Our results uncover a mechanism allowing a rapid adaptation of tryptophan catabolism to ensure quick degradation of excess tryptophan while preventing further catabolism below physiological levels. This ensures a tight control of tryptophanemia as required for both neurological and immune homeostasis.
Collapse
|
153
|
Abstract
Targeted protein degradation is a broad and expanding field aimed at the modulation of protein homeostasis. A focus of this field has been directed toward molecules that hijack the ubiquitin proteasome system with heterobifunctional ligands that recruit a target protein to an E3 ligase to facilitate polyubiquitination and subsequent degradation by the 26S proteasome. Despite the success of these chimeras toward a number of clinically relevant targets, the ultimate breadth and scope of this approach remains uncertain. Here we highlight recent advances in assays and tools available to evaluate targeted protein degradation, including and beyond the study of E3-targeted chimeric ligands. We note several challenges associated with degrader development and discuss various approaches to expanding the protein homeostasis toolbox.
Collapse
|
154
|
Murai Y, Jo U, Murai J, Jenkins LM, Huang SYN, Chakka S, Chen L, Cheng K, Fukuda S, Takebe N, Pommier Y. SLFN11 Inactivation Induces Proteotoxic Stress and Sensitizes Cancer Cells to Ubiquitin Activating Enzyme Inhibitor TAK-243. Cancer Res 2021; 81:3067-3078. [PMID: 33863777 DOI: 10.1158/0008-5472.can-20-2694] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Schlafen11 (SLFN11) inactivation occurs in approximately 50% of cancer cell lines and in a large fraction of patient tumor samples, which leads to chemoresistance. Therefore, new therapeutic approaches are needed to target SLFN11-deficient cancers. To that effect, we conducted a drug screen with the NCATS mechanistic drug library of 1,978 compounds in isogenic SLFN11-knockout (KO) and wild-type (WT) leukemia cell lines. Here we report that TAK-243, a first-in-class ubiquitin activating enzyme UBA1 inhibitor in clinical development, causes preferential cytotoxicity in SLFN11-KO cells; this effect is associated with claspin-mediated DNA replication inhibition by CHK1 independently of ATR. Additional analyses showed that SLFN11-KO cells exhibit consistently enhanced global protein ubiquitylation, endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and protein aggregation. TAK-243 suppressed global protein ubiquitylation and activated the UPR transducers PERK, phosphorylated eIF2α, phosphorylated IRE1, and ATF6 more effectively in SLFN11-KO cells than in WT cells. Proteomic analysis using biotinylated mass spectrometry and RNAi screening also showed physical and functional interactions of SLFN11 with translation initiation complexes and protein folding machinery. These findings uncover a previously unknown function of SLFN11 as a regulator of protein quality control and attenuator of ER stress and UPR. Moreover, they suggest the potential value of TAK-243 in SLFN11-deficient tumors. SIGNIFICANCE: This study uncovers that SLFN11 deficiency induces proteotoxic stress and sensitizes cancer cells to TAK-243, suggesting that profiling SLFN11 status can serve as a therapeutic biomarker for cancer therapy.
Collapse
Affiliation(s)
- Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.,Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Sirisha Chakka
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Lu Chen
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Ken Cheng
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoko Takebe
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.,Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
155
|
Xiong C, Zhou L, Tan J, Song S, Bao X, Zhang N, Ding H, Zhao J, He JX, Miao ZH, Zhang A. Development of Potent NEDD8-Activating Enzyme Inhibitors Bearing a Pyrimidotriazole Scaffold. J Med Chem 2021; 64:6161-6178. [PMID: 33857374 DOI: 10.1021/acs.jmedchem.1c00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ubiquitin-like protein NEDD8 is a critical signaling molecule implicated in the functional maintenance and homeostasis of cells. Dysregulation of this process is involved in a variety of human diseases, including cancer. Therefore, NEDD8-activating enzyme E1 (NAE), the only activation enzyme of the neddylation pathway, has been an emergent anticancer target. In view of the single-agent modest response of the clinical NAE inhibitor, pevonedistat (compound 1, MLN4924), efforts on development of new inhibitors with both high potency and better safety profiles are urgently needed. Here, we report a structural hopping strategy by optimizing the central deazapurine framework and the solvent interaction region of compound 1, leading to compound 26 bearing a pyrimidotriazole scaffold. Compound 26 not only has compatible potency in the biochemical and cell assays but also possesses improved pharmacokinetic (PK) properties than compound 1. In vivo, compound 26 showed significant antitumor efficacy and good safety in xenograft models.
Collapse
Affiliation(s)
- Chaodong Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xubin Bao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jin-Xue He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
156
|
Huang Q, Ford NC, Gao X, Chen Z, Guo R, Raja SN, Guan Y, He S. Ubiquitin-mediated receptor degradation contributes to development of tolerance to MrgC agonist-induced pain inhibition in neuropathic rats. Pain 2021; 162:1082-1094. [PMID: 33110031 PMCID: PMC7969388 DOI: 10.1097/j.pain.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Agonists to subtype C of the Mas-related G-protein-coupled receptors (MrgC) induce pain inhibition after intrathecal (i.t.) administration in rodent models of nerve injury. Here, we investigated whether tolerance develops after repeated MrgC agonist treatments and examined the underlying mechanisms. In animal behavior studies conducted in male rats at 4 to 5 weeks after an L5 spinal nerve ligation (SNL), the ability of dipeptide MrgC agonist JHU58 (0.1 mM, 10 μL, i.t.) to inhibit mechanical and heat hypersensitivity decreased after 3 days of treatment with a tolerance-inducing dose (0.5 mM, 10 μL, i.t., twice/day). In HEK293T cells, acute treatment with JHU58 or BAM8-22 (a large peptide MrgC agonist) led to MrgC endocytosis from the cell membrane and later sorting to the membrane for reinsertion. However, chronic exposure to JHU58 increased the coupling of MrgC to β-arrestin-2 and led to the ubiquitination and degradation of MrgC. Importantly, pretreatment with TAK-243 (0.2 mM, 5 μL, i.t.), a small-molecule inhibitor of the ubiquitin-activating enzyme, during tolerance induction attenuated the development of tolerance to JHU58-induced inhibition of mechanical and heat hypersensitivity in SNL rats. Interestingly, morphine analgesia was also decreased in SNL rats that had become tolerant to JHU58, suggesting a cross-tolerance. Furthermore, i.t. pretreatment with TAK-243, which reduced JHU58 tolerance, also attenuated the cross-tolerance to morphine analgesia. These findings suggest that tolerance can develop to MrgC agonist-induced pain inhibition after repeated i.t. administrations. This tolerance development to JHU58 may involve increased coupling of MrgC to β-arrestin-2 and ubiquitin-mediated receptor degradation.
Collapse
Affiliation(s)
- Qian Huang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinyan Gao
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
157
|
Fhu CW, Ali A. Dysregulation of the Ubiquitin Proteasome System in Human Malignancies: A Window for Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13071513. [PMID: 33805973 PMCID: PMC8037609 DOI: 10.3390/cancers13071513] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The ubiquitin proteasome system (UPS) governs the non-lysosomal degradation of oxidized, damaged, or misfolded proteins in eukaryotic cells. Dysregulation of the UPS results in loss of ability to maintain protein quality through proteolysis, and is closely related to the development of various malignancies and tumorigenesis. Here, we provide a comprehensive general overview on the regulation and roles of UPS and discuss the mechanisms linking dysregulated UPS to human malignancies. Inhibitors developed against components of the UPS, which include U.S. Food and Drug Administration FDA-approved and those currently undergoing clinical trials, are also presented in this review. Abstract The ubiquitin proteasome system (UPS) governs the non-lysosomal degradation of oxidized, damaged, or misfolded proteins in eukaryotic cells. This process is tightly regulated through the activation and transfer of polyubiquitin chains to target proteins which are then recognized and degraded by the 26S proteasome complex. The role of UPS is crucial in regulating protein levels through degradation to maintain fundamental cellular processes such as growth, division, signal transduction, and stress response. Dysregulation of the UPS, resulting in loss of ability to maintain protein quality through proteolysis, is closely related to the development of various malignancies and tumorigenesis. Here, we provide a comprehensive general overview on the regulation and roles of UPS and discuss functional links of dysregulated UPS in human malignancies. Inhibitors developed against components of the UPS, which include U.S. Food and Drug Administration FDA-approved and those currently undergoing clinical trials, are also presented in this review.
Collapse
|
158
|
Bijlmakers MJ. Ubiquitination and the Proteasome as Drug Targets in Trypanosomatid Diseases. Front Chem 2021; 8:630888. [PMID: 33732684 PMCID: PMC7958763 DOI: 10.3389/fchem.2020.630888] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania are responsible for debilitating diseases that affect millions of people worldwide. The numbers of drugs available to treat these diseases, Human African Trypanosomiasis, Chagas' disease and Leishmaniasis are very limited and existing treatments have substantial shortcomings in delivery method, efficacy and safety. The identification and validation of novel drug targets opens up new opportunities for the discovery of therapeutic drugs with better efficacy and safety profiles. Here, the potential of targeting the ubiquitin-proteasome system in these parasites is reviewed. Ubiquitination is the posttranslational attachment of one or more ubiquitin proteins to substrates, an essential eukaryotic mechanism that regulates a wide variety of cellular processes in many different ways. The best studied of these is the delivery of ubiquitinated substrates for degradation to the proteasome, the major cellular protease. However, ubiquitination can also regulate substrates in proteasome-independent ways, and proteasomes can degrade proteins to some extent in ubiquitin-independent ways. Because of these widespread roles, both ubiquitination and proteasomal degradation are essential for the viability of eukaryotes and the proteins that mediate these processes are therefore attractive drug targets in trypanosomatids. Here, the current understanding of these processes in trypanosomatids is reviewed. Furthermore, significant recent progress in the development of trypanosomatid-selective proteasome inhibitors that cure mouse models of trypanosomatid infections is presented. In addition, the targeting of the key enzyme in ubiquitination, the ubiquitin E1 UBA1, is discussed as an alternative strategy. Important differences between human and trypanosomatid UBA1s in susceptibility to inhibitors predicts that the selective targeting of these enzymes in trypanosomatids may also be feasible. Finally, it is proposed that activating enzymes of the ubiquitin-like proteins SUMO and NEDD8 may represent drug targets in these trypanosomatids as well.
Collapse
|
159
|
Yu L, Feng L, Xiong L, Li S, Xu Q, Pan X, Xiao Y. Rational Design of Dual-Emission Lanthanide Metal-Organic Framework for Visual Alkaline Phosphatase Activity Assay. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11646-11656. [PMID: 33683106 DOI: 10.1021/acsami.1c00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The alkaline phosphatase (ALP) activity assay is very significant for disease diagnosis and biomedical research. Lanthanide metal-organic framework (Ln-MOF) based fluorescence sensors have great application potential in ALP activity assays. However, it is critical but challenging to investigate the emission law of Ln-MOFs for revealing rational design principles and selecting an appropriate MOF. Here, we describe a reasonable design strategy for dual-emission Ln-MOFs based on theoretical calculations. This strategy combines Reinhoudt empirical rule, intramolecular charge transfer theory, and aggregation/coordination-induced emission theory; reveals the luminescence law of Ln-MOFs; and provides theoretical guidance for the rational design of dual-emission Ln-MOFs. On the basis of this strategy, we create a dual-emission Tb-MOF fluorescent probe used for ALP activity assay and investigate the detection mechanism. The probe shows ultrasensitive (limit of detection 0.002 mU mL-1) and selective response to ALP, and it suits for point-of-care visual detection coupled with a self-designed portable enzyme activity assay kit and smartphone-assisted visual device. The kit-based visual assay method can accurately quantify the activity of ALP in real serum samples (recovery >93%, and relative error is less than 6.8% compared with the results of fluorescence spectrometer-based method) and consumes only 25 μL of serum. In addition, a logical decoder based on the "dual-key unlocking strategy" is designed, providing a feasible solution for the development of intelligent ALP activity detection equipment. As far as we know, this is the first report of a theoretical calculation-guided versatile design strategy for dual-emission Ln-MOFs and a portable enzyme activity assay kit for visual detection.
Collapse
Affiliation(s)
- Long Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Lixiang Feng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Li Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Shuo Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Qi Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xiangyu Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yuxiu Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
160
|
A novel protein ubiquitination-related five-gene signature predicts overall survival in patients with lung adenocarcinoma. Aging (Albany NY) 2021; 13:8510-8523. [PMID: 33714206 PMCID: PMC8034934 DOI: 10.18632/aging.202663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
Protein ubiquitination has been reported to be involved in many biological processes that affect cancer cell growth or death. In this study, we identified differentially expressed E3s/DUB-related genes associated with the prognosis of lung adenocarcinoma and then constructed an E3s/DUB enzyme signature prediction model for the training group and validated its accuracy for prognosis prediction in the validation group. According to our constructed model, all patients were divided into the high- or low-risk group, and a comparison of the two groups revealed that the high-risk group had poorer survival and higher mortality than the low-risk group. The calculated risk score was also an independent prognostic factor when analyzed together with other clinical factors. To explore the functions of the signature genes, we predicted the substrate proteins with which they interact and then performed enrichment analysis. Interestingly, we found that the signature genes were enriched in multiple treatment resistance and immune-related pathways. Therefore, we continued to analyze immune infiltration in the samples and found a variety of differences in immune cell infiltration. According to our constructed model, these differences in immune cell infiltration may predict different immune statuses after grouping and are associated with worse prognosis in high-risk patients.
Collapse
|
161
|
Barghout SH, Aman A, Nouri K, Blatman Z, Arevalo K, Thomas GE, MacLean N, Hurren R, Ketela T, Saini M, Abohawya M, Kiyota T, Al-Awar R, Schimmer AD. A genome-wide CRISPR/Cas9 screen in acute myeloid leukemia cells identifies regulators of TAK-243 sensitivity. JCI Insight 2021; 6:141518. [PMID: 33476303 PMCID: PMC8021101 DOI: 10.1172/jci.insight.141518] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
TAK-243 is a first-in-class inhibitor of ubiquitin-like modifier activating enzyme 1 that catalyzes ubiquitin activation, the first step in the ubiquitylation cascade. Based on its preclinical efficacy and tolerability, TAK-243 has been advanced to phase I clinical trials in advanced malignancies. Nonetheless, the determinants of TAK-243 sensitivity remain largely unknown. Here, we conducted a genome-wide CRISPR/Cas9 knockout screen in acute myeloid leukemia (AML) cells in the presence of TAK-243 to identify genes essential for TAK-243 action. We identified BEN domain-containing protein 3 (BEND3), a transcriptional repressor and a regulator of chromatin organization, as the top gene whose knockout confers resistance to TAK-243 in vitro and in vivo. Knockout of BEND3 dampened TAK-243 effects on ubiquitylation, proteotoxic stress, and DNA damage response. BEND3 knockout upregulated the ATP-binding cassette efflux transporter breast cancer resistance protein (BCRP; ABCG2) and reduced the intracellular levelsof TAK-243. TAK-243 sensitivity correlated with BCRP expression in cancer cell lines of different origins. Moreover, chemical inhibition and genetic knockdown of BCRP sensitized intrinsically resistant high-BCRP cells to TAK-243. Thus, our data demonstrate that BEND3 regulates the expression of BCRP for which TAK-243 is a substrate. Moreover, BCRP expression could serve as a predictor of TAK-243 sensitivity.
Collapse
Affiliation(s)
- Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kazem Nouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zachary Blatman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen Arevalo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Geethu E Thomas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mehakpreet Saini
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Moustafa Abohawya
- Department of Biomedical Sciences, Zewail City of Science, Technology and Innovation, Giza, Egypt
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
162
|
Roverato ND, Sailer C, Catone N, Aichem A, Stengel F, Groettrup M. Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell Rep 2021; 34:108857. [PMID: 33730565 DOI: 10.1016/j.celrep.2021.108857] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase belonging to the RING-between-RING family. Mutations in the Parkin-encoding gene PARK2 are associated with familial Parkinson's disease. Here, we investigate the interplay between Parkin and the inflammatory cytokine-induced ubiquitin-like modifier FAT10. FAT10 targets hundreds of proteins for degradation by the 26S proteasome. We show that FAT10 gets conjugated to Parkin and mediates its degradation in a proteasome-dependent manner. Parkin binds to the E2 enzyme of FAT10 (USE1), auto-FAT10ylates itself, and facilitates FAT10ylation of the Parkin substrate Mitofusin2 in vitro and in cells, thus identifying Parkin as a FAT10 E3 ligase. On mitochondrial depolarization, FAT10ylation of Parkin inhibits its activation and ubiquitin-ligase activity causing impairment of mitophagy progression and aggravation of rotenone-mediated death of dopaminergic neuronal cells. In conclusion, FAT10ylation inhibits Parkin and mitophagy rendering FAT10 a likely inflammation-induced exacerbating factor and potential drug target for Parkinson's disease.
Collapse
Affiliation(s)
- Nicola D Roverato
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany
| | - Carolin Sailer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Annette Aichem
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Florian Stengel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marcus Groettrup
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| |
Collapse
|
163
|
Nakkas H, Ocal BG, Kipel S, Akcan G, Sahin C, Ardicoglu A, Cayli S. Ubiquitin proteasome system and autophagy associated proteins in human testicular tumors. Tissue Cell 2021; 71:101513. [PMID: 33677201 DOI: 10.1016/j.tice.2021.101513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Ubiquitin proteasome sytem (UPS) and autophagy govern protein quality control by degradation and clearance of damaged proteins. Many proteins working in these pathways such as p97/VCP, Ubiquitin (Ub), Jab1/CSN5, p62, LC3B and Beclin 1 are known to be essential for different pathological conditions, especially in cancer, but their expression in human testicular tumors has not been characterized yet. In the present study, we aimed to investigate the expression of UPS (p97/VCP, Ubiquitin, Jab1/CSN5) and autophagic (p62, LC3B, Beclin 1) proteins in human testicular tumors and cancer adjacent normal testicular tissues. We used an immunohistochemical staining technique. 120 cases of testicular germ and non-germ cell tumors, which are 42 seminomas, 31 embryonal carcinomas, 11 yolk sac tumors, 25 intratubular germ cell neoplasms, 6 Leydig cell tumors, 5 Sertoli cell tumors, were collected and evaluated on tissue microarray. For the first time, the expression of p97/VCP, Ub, Jab1/CSN5, p62, LC3B and Beclin 1 in different type of human testicular tumors has been confirmed. We found that p97/VCP, Ub and Jab1/CSN5 were frequently expressed at higher levels in testicular tumours. In contrast to UPS markers, p62, LC3B and Beclin 1 showed significantly diminished expressions in testicular tumors. Accordingly, a negative correlation between p97/VCP and autophagic markers (p62 and LC3B) was found, suggesting a relationship between UPS and autophagy in different type of testicular tumors. The current results displayed elevated level of p97/VCP, Ub and Jab1/CSN5 expressions in contrast to the diminished expression of p62, LC3B and Beclin 1 in human testicular tumors, thereby supporting a correlation between p97/VCP and autophagic markers in testicular tumors.
Collapse
Affiliation(s)
- Hilal Nakkas
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | | | - Seyma Kipel
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Gulben Akcan
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Cansu Sahin
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Arslan Ardicoglu
- Department of Urology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Sevil Cayli
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| |
Collapse
|
164
|
Langston SP, Grossman S, England D, Afroze R, Bence N, Bowman D, Bump N, Chau R, Chuang BC, Claiborne C, Cohen L, Connolly K, Duffey M, Durvasula N, Freeze S, Gallery M, Galvin K, Gaulin J, Gershman R, Greenspan P, Grieves J, Guo J, Gulavita N, Hailu S, He X, Hoar K, Hu Y, Hu Z, Ito M, Kim MS, Lane SW, Lok D, Lublinsky A, Mallender W, McIntyre C, Minissale J, Mizutani H, Mizutani M, Molchinova N, Ono K, Patil A, Qian M, Riceberg J, Shindi V, Sintchak MD, Song K, Soucy T, Wang Y, Xu H, Yang X, Zawadzka A, Zhang J, Pulukuri SM. Discovery of TAK-981, a First-in-Class Inhibitor of SUMO-Activating Enzyme for the Treatment of Cancer. J Med Chem 2021; 64:2501-2520. [PMID: 33631934 DOI: 10.1021/acs.jmedchem.0c01491] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMOylation is a reversible post-translational modification that regulates protein function through covalent attachment of small ubiquitin-like modifier (SUMO) proteins. The process of SUMOylating proteins involves an enzymatic cascade, the first step of which entails the activation of a SUMO protein through an ATP-dependent process catalyzed by SUMO-activating enzyme (SAE). Here, we describe the identification of TAK-981, a mechanism-based inhibitor of SAE which forms a SUMO-TAK-981 adduct as the inhibitory species within the enzyme catalytic site. Optimization of selectivity against related enzymes as well as enhancement of mean residence time of the adduct were critical to the identification of compounds with potent cellular pathway inhibition and ultimately a prolonged pharmacodynamic effect and efficacy in preclinical tumor models, culminating in the identification of the clinical molecule TAK-981.
Collapse
Affiliation(s)
- Steven P Langston
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Stephen Grossman
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Dylan England
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Roushan Afroze
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Neil Bence
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Douglas Bowman
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Nancy Bump
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Ryan Chau
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Bei-Ching Chuang
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Christopher Claiborne
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | | | - Kelly Connolly
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | | | | | | | | | - Katherine Galvin
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Jeffrey Gaulin
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Rachel Gershman
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Paul Greenspan
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Jessica Grieves
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Jianping Guo
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Nanda Gulavita
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Shumet Hailu
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Xingyue He
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Kara Hoar
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Yongbo Hu
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Zhigen Hu
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Mitsuhiro Ito
- Takeda Pharmaceuticals, Fujisawa, Kanagawa 251-0012, Japan
| | - Mi-Sook Kim
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Scott Weston Lane
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - David Lok
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Anya Lublinsky
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - William Mallender
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Charles McIntyre
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - James Minissale
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Hirotake Mizutani
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Miho Mizutani
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Nina Molchinova
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Koji Ono
- Takeda Pharmaceuticals, Fujisawa, Kanagawa 251-0012, Japan
| | - Ashok Patil
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Mark Qian
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Jessica Riceberg
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Vaishali Shindi
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Michael D Sintchak
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Keli Song
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Teresa Soucy
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Yana Wang
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - He Xu
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Xiaofeng Yang
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Agatha Zawadzka
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Ji Zhang
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| | - Sai M Pulukuri
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals Company Ltd., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
165
|
Gaur P, Fenteany G, Tyagi C. Mode of inhibitory binding of epigallocatechin gallate to the ubiquitin-activating enzyme Uba1 via accelerated molecular dynamics. RSC Adv 2021; 11:8264-8276. [PMID: 35423322 PMCID: PMC8695214 DOI: 10.1039/d0ra09847g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
The green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) and some of its analogs potently inhibit the ubiquitin-activating enzyme Uba1. In an effort to understand the possible molecular basis of inhibitory activity of EGCG, we conducted a molecular docking and molecular dynamics simulation study. We found that EGCG and its two selected analogs, (−)-epicatechin-3-gallate (ECG) and (−)-epigallocatechin (EGC), bind favorably at two likely hot spots for small-molecule ligand binding on human Uba1. The compounds bind with energetics that mirror their experimental potency for inhibition of Uba1∼ubiquitin thioester formation. The binding of EGCG, ECG, and EGC at one of the hot spots, in particular, recapitulates the rank order of potency determined experimentally and suggests a possible mechanism for inhibition. A hinge-like conformational change of the second catalytic cysteine domain and the opposing ubiquitin-fold domain observed during accelerated molecular dynamics simulations of the EGCG-bound Uba1 complex that results in disruption of the ubiquitin-binding interfaces could explain the compounds' inhibitory activity. These results shed light on the possible molecular mechanism of EGCG and related catechins in the inhibition of Uba1. The hinge-like movement of the SCCH domain upon ligand binding closes the ubiquitin binding site and disrupts the interfaces crucial for thioester bond formation.![]()
Collapse
Affiliation(s)
- Paras Gaur
- Institute of Genetics, Biological Research Centre Temesvári krt. 62 6726 Szeged Hungary.,Doctoral School of Biology, Faculty of Sciences and Informatics, University of Szeged Közép fasor 52 Szeged 6726 Hungary
| | - Gabriel Fenteany
- Institute of Genetics, Biological Research Centre Temesvári krt. 62 6726 Szeged Hungary
| | - Chetna Tyagi
- Doctoral School of Biology, Faculty of Sciences and Informatics, University of Szeged Közép fasor 52 Szeged 6726 Hungary .,Department of Microbiology, Faculty of Science and Informatics, University of Szeged Közép fasor 52 6726 Szeged Hungary
| |
Collapse
|
166
|
Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q, Wang P. Ubiquitination of Nonhistone Proteins in Cancer Development and Treatment. Front Oncol 2021; 10:621294. [PMID: 33643919 PMCID: PMC7905169 DOI: 10.3389/fonc.2020.621294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination, a crucial post-translation modification, regulates the localization and stability of the substrate proteins including nonhistone proteins. The ubiquitin-proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular processes such as DNA repair, transcription, signal transduction, and apoptosis. Its dysregulation induces various diseases including cancer, and the identification of this process may provide potential therapeutic targets for cancer treatment. In this review, we summarize the regulatory roles of key UPS members on major nonhistone substrates in cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in modulating protein target levels with the aid of UPS.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ling Feng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ping Wang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
167
|
Zellner S, Schifferer M, Behrends C. Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling. Mol Cell 2021; 81:1337-1354.e8. [PMID: 33545068 DOI: 10.1016/j.molcel.2021.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022]
Abstract
Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.
Collapse
Affiliation(s)
- Susanne Zellner
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Martina Schifferer
- Munich Cluster for Systems Neurology (SyNergy), German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Feodor-Lynen Strasse 17, 81377 Munich, Germany.
| |
Collapse
|
168
|
Hendriks IA, Akimov V, Blagoev B, Nielsen ML. MaxQuant.Live Enables Enhanced Selectivity and Identification of Peptides Modified by Endogenous SUMO and Ubiquitin. J Proteome Res 2021; 20:2042-2055. [PMID: 33539096 DOI: 10.1021/acs.jproteome.0c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small ubiquitin-like modifiers (SUMO) and ubiquitin are frequent post-translational modifications of proteins that play pivotal roles in all cellular processes. We previously reported mass spectrometry-based proteomics methods that enable profiling of lysines modified by endogenous SUMO or ubiquitin in an unbiased manner, without the need for genetic engineering. Here we investigated the applicability of precursor mass filtering enabled by MaxQuant.Live to our SUMO and ubiquitin proteomics workflows, which efficiently avoided sequencing of precursors too small to be modified but otherwise indistinguishable by mass-to-charge ratio. Using precursor mass filtering, we achieved a much higher selectivity of modified peptides, ultimately resulting in up to 30% more SUMO and ubiquitin sites identified from replicate samples. Real-time exclusion of unmodified peptides by MQL resulted in 90% SUMO-modified precursor selectivity from a 25% pure sample, demonstrating great applicability for digging deeper into ubiquitin-like modificomes. We adapted the precursor mass filtering strategy to the new Exploris 480 mass spectrometer, achieving comparable gains in SUMO precursor selectivity and identification rates. Collectively, precursor mass filtering via MQL significantly increased identification rates of SUMO- and ubiquitin-modified peptides from the exact same samples, without the requirement for prior knowledge or spectral libraries.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Vyacheslav Akimov
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Blagoy Blagoev
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
169
|
Zhao S, Kieser A, Li HY, Reinking HK, Weickert P, Euteneuer S, Yaneva D, Acampora AC, Götz MJ, Feederle R, Stingele J. A ubiquitin switch controls autocatalytic inactivation of the DNA-protein crosslink repair protease SPRTN. Nucleic Acids Res 2021; 49:902-915. [PMID: 33348378 PMCID: PMC7826251 DOI: 10.1093/nar/gkaa1224] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Repair of covalent DNA–protein crosslinks (DPCs) by the metalloprotease SPRTN prevents genome instability, premature aging and carcinogenesis. SPRTN is specifically activated by DNA structures containing single- and double-stranded features, but degrades the protein components of DPCs promiscuously and independent of amino acid sequence. This lack of specificity is useful to target diverse protein adducts, however, it requires tight control in return, in order to prohibit uncontrolled proteolysis of chromatin proteins. Here, we discover the components and principles of a ubiquitin switch, which negatively regulates SPRTN. We demonstrate that monoubiquitylation is induced in an E3 ligase-independent manner and, in contrast to previous assumptions, does not control chromatin access of the enzyme. Data obtained in cells and in vitro reveal that monoubiquitylation induces inactivation of the enzyme by triggering autocatalytic cleavage in trans while also priming SPRTN for proteasomal degradation in cis. Finally, we show that the deubiquitylating enzyme USP7 antagonizes this negative control of SPRTN in the presence of DPCs.
Collapse
Affiliation(s)
- Shubo Zhao
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Anja Kieser
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Hannah K Reinking
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Pedro Weickert
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Simon Euteneuer
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Denitsa Yaneva
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Aleida C Acampora
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Maximilian J Götz
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julian Stingele
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| |
Collapse
|
170
|
Zhao CX, Zeng CM, Wang K, He QJ, Yang B, Zhou FF, Zhu H. Ubiquitin-proteasome system-targeted therapy for uveal melanoma: what is the evidence? Acta Pharmacol Sin 2021; 42:179-188. [PMID: 32601365 DOI: 10.1038/s41401-020-0441-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Uveal melanoma (UM) is a rare ocular tumor. The loss of BRCA1-associated protein 1 (BAP1) and the aberrant activation of G protein subunit alpha q (GNAQ)/G protein subunit alpha 11 (GNA11) contribute to the frequent metastasis of UM. Thus far, limited molecular-targeted therapies have been developed for the clinical treatment of UM. However, an increasing number of studies have revealed the close relationship between the ubiquitin proteasome system (UPS) and the malignancy of UM. UPS consists of a three-enzyme cascade, i.e. ubiquitin-activating enzymes (E1s); ubiquitin-conjugating enzymes (E2s); and ubiquitin-protein ligases (E3s), as well as 26S proteasome and deubiquitinases (DUBs), which work coordinately to dictate the fate of intracellular proteins through regulating ubiquitination, thus influencing cell viability. Due to the critical role of UPS in tumors, we here provide an overview of the crosstalk between UPS and the malignancy of UM, discuss the current UPS-targeted therapies in UM and highlight its potential in developing novel regimens for UM.
Collapse
|
171
|
Parkhitko AA, Singh A, Hsieh S, Hu Y, Binari R, Lord CJ, Hannenhalli S, Ryan CJ, Perrimon N. Cross-species identification of PIP5K1-, splicing- and ubiquitin-related pathways as potential targets for RB1-deficient cells. PLoS Genet 2021; 17:e1009354. [PMID: 33591981 PMCID: PMC7909629 DOI: 10.1371/journal.pgen.1009354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/26/2021] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The RB1 tumor suppressor is recurrently mutated in a variety of cancers including retinoblastomas, small cell lung cancers, triple-negative breast cancers, prostate cancers, and osteosarcomas. Finding new synthetic lethal (SL) interactions with RB1 could lead to new approaches to treating cancers with inactivated RB1. We identified 95 SL partners of RB1 based on a Drosophila screen for genetic modifiers of the eye phenotype caused by defects in the RB1 ortholog, Rbf1. We validated 38 mammalian orthologs of Rbf1 modifiers as RB1 SL partners in human cancer cell lines with defective RB1 alleles. We further show that for many of the RB1 SL genes validated in human cancer cell lines, low activity of the SL gene in human tumors, when concurrent with low levels of RB1 was associated with improved patient survival. We investigated higher order combinatorial gene interactions by creating a novel Drosophila cancer model with co-occurring Rbf1, Pten and Ras mutations, and found that targeting RB1 SL genes in this background suppressed the dramatic tumor growth and rescued fly survival whilst having minimal effects on wild-type cells. Finally, we found that drugs targeting the identified RB1 interacting genes/pathways, such as UNC3230, PYR-41, TAK-243, isoginkgetin, madrasin, and celastrol also elicit SL in human cancer cell lines. In summary, we identified several high confidence, evolutionarily conserved, novel targets for RB1-deficient cells that may be further adapted for the treatment of human cancer.
Collapse
Affiliation(s)
- Andrey A. Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon Hsieh
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Christopher J. Lord
- CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Colm J. Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- School of Computer Science, University College Dublin, Dublin, Ireland
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
172
|
Zhou C, Li H, Han X, Pang H, Wu M, Tang Y, Luo X. Prognostic Value and Molecular Mechanisms of Proteasome 26S Subunit, Non-ATPase Family Genes for Pancreatic Ductal Adenocarcinoma Patients after Pancreaticoduodenectomy. J INVEST SURG 2021; 35:330-346. [PMID: 33525943 DOI: 10.1080/08941939.2020.1863527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Pancreatic cancer (PC) is an extremely malignant tumor with similar morbidity and mortality and lack of an effective treatment. This study explored the prognostic value and molecular mechanisms of proteasome 26S subunit, non-ATPase (PSMD) family genes in pancreatic ductal adenocarcinoma (PDAC).Methods: Survival analyses were performed to elucidate the relationship between prognosis and the level of PSMD expression. ROC curves and nomograms were constructed to predict the prognosis. A bioinformatics analysis was used to explore the co-expression and complex interaction networks of PSMDs. The potential mechanisms were further explored via gene set enrichment analysis (GSEA).Results: We find high levels of PSMD6, PSMD9, PSMD11, and PSMD14 expression were significantly associated with a poorer OS. High PSMD6 and PSMD11 expression was associated with a poorer relapse-free survival (RFS). A risk score model was constructed based on prognosis-related genes. The area under ROC curves (AUC) was 53.3%, 59.3%, and 62.9% for 1-, 2-, 3 years, respectively.Conclusion: GSEA revealed that PSMD6 and PSMD11 play a role in PDAC through various biological processes and signaling pathways, including TP53, CDKN2A, MYC pathway, DNA repair, KRAS, cell cycle checkpoint, NIK, NF-κB signaling pathway, and proteasomes. This study demonstrated that PSMD6 and PSMD11 could serve as a potential prognostic and diagnostic biomarkers for patients with early-stage PDAC after pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Caifu Zhou
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haixia Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao Han
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hongbing Pang
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Manya Wu
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yanping Tang
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoling Luo
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
173
|
Mistrik M, Skrott Z, Muller P, Panacek A, Hochvaldova L, Chroma K, Buchtova T, Vandova V, Kvitek L, Bartek J. Microthermal-induced subcellular-targeted protein damage in cells on plasmonic nanosilver-modified surfaces evokes a two-phase HSP-p97/VCP response. Nat Commun 2021; 12:713. [PMID: 33514738 PMCID: PMC7846584 DOI: 10.1038/s41467-021-20989-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Despite proteotoxic stress and heat shock being implicated in diverse pathologies, currently no methodology to inflict defined, subcellular thermal damage exists. Here, we present such a single-cell method compatible with laser-scanning microscopes, adopting the plasmon resonance principle. Dose-defined heat causes protein damage in subcellular compartments, rapid heat-shock chaperone recruitment, and ensuing engagement of the ubiquitin-proteasome system, providing unprecedented insights into the spatiotemporal response to thermal damage relevant for degenerative diseases, with broad applicability in biomedicine. Using this versatile method, we discover that HSP70 chaperone and its interactors are recruited to sites of thermally damaged proteins within seconds, and we report here mechanistically important determinants of such HSP70 recruitment. Finally, we demonstrate a so-far unsuspected involvement of p97(VCP) translocase in the processing of heat-damaged proteins. Overall, we report an approach to inflict targeted thermal protein damage and its application to elucidate cellular stress-response pathways that are emerging as promising therapeutic targets.
Collapse
Affiliation(s)
- Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ales Panacek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Lucie Hochvaldova
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Katarina Chroma
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tereza Buchtova
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Veronika Vandova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Libor Kvitek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- Danish Cancer Society Research Center, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
174
|
Lobato-Gil S, Heidelberger JB, Maghames C, Bailly A, Brunello L, Rodriguez MS, Beli P, Xirodimas DP. Proteome-wide identification of NEDD8 modification sites reveals distinct proteomes for canonical and atypical NEDDylation. Cell Rep 2021; 34:108635. [PMID: 33472076 DOI: 10.1016/j.celrep.2020.108635] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin-like molecule NEDD8 controls several biological processes and is a promising target for therapeutic intervention. NEDDylation occurs through specific NEDD8 enzymes (canonical) or enzymes of the ubiquitin system (atypical). Identification of NEDD8 sites on substrates is critical for delineating the processes controlled by NEDDylation. By combining the use of the NEDD8 R74K mutant with anti-di-glycine (anti-diGly) antibodies, we identified 1,101 unique NEDDylation sites in 620 proteins. Bioinformatics analysis reveals that canonical and atypical NEDDylation have distinct proteomes; the spliceosome/mRNA surveillance/DNA replication and ribosome/proteasome, respectively. The data also reveal the formation of poly-NEDD8, hybrid NEDD8-ubiquitin, and NEDD8-SUMO-2 chains as potential molecular signals. In particular, NEDD8-SUMO-2 chains are induced upon proteotoxic stress (atypical) through NEDDylation of K11 in SUMO-2, and conjugates accumulate in previously described nucleolus-related inclusions. The study uncovers a diverse proteome for NEDDylation and is consistent with the concept of extensive cross-talk between ubiquitin and Ubls under proteotoxic stress conditions.
Collapse
Affiliation(s)
| | | | | | - Aymeric Bailly
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | | | - Manuel S Rodriguez
- Laboratoire de Chimie de Coordination (LCC), UPR 8241, CNRS, Toulouse, France; IPBS-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany.
| | | |
Collapse
|
175
|
Saha S, Sun Y, Huang SYN, Baechler SA, Pongor LS, Agama K, Jo U, Zhang H, Tse-Dinh YC, Pommier Y. DNA and RNA Cleavage Complexes and Repair Pathway for TOP3B RNA- and DNA-Protein Crosslinks. Cell Rep 2020; 33:108569. [PMID: 33378676 PMCID: PMC7859927 DOI: 10.1016/j.celrep.2020.108569] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The present study demonstrates that topoisomerase 3B (TOP3B) forms both RNA and DNA cleavage complexes (TOP3Bccs) in vivo and reveals a pathway for repairing TOP3Bccs. For inducing and detecting cellular TOP3Bccs, we engineer a “self-trapping” mutant of TOP3B (R338W-TOP3B). Transfection with R338W-TOP3B induces R-loops, genomic damage, and growth defect, which highlights the importance of TOP3Bcc repair mechanisms. To determine how cells repair TOP3Bccs, we deplete tyrosyl-DNA phosphodiesterases (TDP1 and TDP2). TDP2-deficient cells show elevated TOP3Bccs both in DNA and RNA. Conversely, overexpression of TDP2 lowers cellular TOP3Bccs. Using recombinant human TDP2, we demonstrate that TDP2 can process both denatured and proteolyzed TOP3Bccs. We also show that cellular TOP3Bccs are ubiquitinated by the E3 ligase TRIM41 before undergoing proteasomal processing and excision by TDP2. Saha et al. introduce an approach to generate and detect the catalytic intermediates of TOP3B in DNA and RNA by engineering a self-poisoning enzyme, R338W-TOP3B. They reveal the cellular consequences of abortive TOP3Bcc formation and a repair pathway involving TRIM41, the proteasome, and TDP2 for processing of TOP3Bcc.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorinc Sandor Pongor
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
176
|
Kroonen JS, Vertegaal ACO. Targeting SUMO Signaling to Wrestle Cancer. Trends Cancer 2020; 7:496-510. [PMID: 33353838 DOI: 10.1016/j.trecan.2020.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/16/2023]
Abstract
The small ubiquitin-like modifier (SUMO) signaling cascade is critical for gene expression, genome integrity, and cell cycle progression. In this review, we discuss the important role SUMO may play in cancer and how to target SUMO signaling. Recently developed small molecule inhibitors enable therapeutic targeting of the SUMOylation pathway. Blocking SUMOylation not only leads to reduced cancer cell proliferation but also to an increased antitumor immune response by stimulating interferon (IFN) signaling, indicating that SUMOylation inhibitors have a dual mode of action that can be employed in the fight against cancer. The search for tumor types that can be treated with SUMOylation inhibitors is ongoing. Employing SUMO conjugation inhibitory drugs in the years to come has potential as a new therapeutic strategy.
Collapse
Affiliation(s)
- Jessie S Kroonen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
177
|
Vaughan RM, Kupai A, Rothbart SB. Chromatin Regulation through Ubiquitin and Ubiquitin-like Histone Modifications. Trends Biochem Sci 2020; 46:258-269. [PMID: 33308996 DOI: 10.1016/j.tibs.2020.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chromatin functions are influenced by the addition, removal, and recognition of histone post-translational modifications (PTMs). Ubiquitin and ubiquitin-like (UBL) PTMs on histone proteins can function as signaling molecules by mediating protein-protein interactions. Fueled by the identification of novel ubiquitin and UBL sites and the characterization of the writers, erasers, and readers, the breadth of chromatin functions associated with ubiquitin signaling is emerging. Here, we highlight recently appreciated roles for histone ubiquitination in DNA methylation control, PTM crosstalk, nucleosome structure, and phase separation. We also discuss the expanding diversity and functions associated with histone UBL modifications. We conclude with a look toward the future and pose key questions that will drive continued discovery at the interface of epigenetics and ubiquitin signaling.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ariana Kupai
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
178
|
Get rid of pancreatic cancer by inhibiting garbage disposal?: Comment on "UAE1 Inhibition mediates the unfolded protein response, DNA damage and caspase-dependent cell death in pancreatic cancer" by Rehemtulla et al. Transl Oncol 2020; 14:100968. [PMID: 33285366 PMCID: PMC7720072 DOI: 10.1016/j.tranon.2020.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
stress pathways including the ER stress, the proteasome and the unfolded protein response (UPR) are increasingly reported to be suitable targets in PDAC UAE1 is the most abundant of two ubiquitin activating enzymes (UAE) regulating the initial step of the ER stress associated protein degradation (ERAD) pathway The group of Rehemtulla elegantly showed that TAK-243, a small molecule inhibitor of Ubiquitin activating enzyme 1 (UAE1) nduced apoptosis in PDAC cells and a subcutaneous mouse model of the disease In other preclinical models of cancer, especially in lymphatic malignancies, this compound showed promising results in directly inducing apoptosis but also in increasing the response to other conventional cytotoxic therapeutic approaches Strikingly, these effects were also reported in cells resistant to drugs that target other protein degradation pathways, like proteasome inhibitors, indicating divergent molecular mechanisms.
Collapse
|
179
|
Shan Y, Yang G, Huang H, Zhou Y, Hu X, Lu Q, Guo P, Hou J, Cao L, Tian F, Pan Q. Ubiquitin-Like Modifier Activating Enzyme 1 as a Novel Diagnostic and Prognostic Indicator That Correlates With Ferroptosis and the Malignant Phenotypes of Liver Cancer Cells. Front Oncol 2020; 10:592413. [PMID: 33344241 PMCID: PMC7744729 DOI: 10.3389/fonc.2020.592413] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Ferroptosis is a type of cell death that is iron dependent, a characteristic that distinguishes it from necrosis, apoptosis, and autophagy. However, the ferroptotic mechanisms for hepatitis B virus-associated hepatocellular carcinoma (HCC) remain incompletely described. METHODS Two hepatitis B virus-associated HCC public datasets, GSE22058 (n=192) and GSE54238 (n=23), were obtained from the NCBI Gene Expression Omnibus (GEO) database. Bioinformatics methods, including weighted gene coexpression network analysis (WGCNA), Cox regression, and LASSO analysis, were used to identify signature markers for diagnosis and prognosis. CCK8, wound healing, Transwell migration/invasion, and ferroptosis assays were employed to explore the biological function of novel candidate markers weight gene coexpression network analysis. RESULTS In total, 926 differentially expressed genes (DEGs) were common between the GSE22058 and GSE54238 datasets. Following WGCNA, 515 DEGs derived from the MEturquoise gene module were employed to establish diagnosis and prognosis models in The Cancer Genome Atlas (TCGA) HCC RNA-Seq cohort (n=423). The score of the diagnostic model was strikingly upregulated in the TCGA HCC group (p<2.2e-16). The prognostic model exhibited high specificity and sensitivity in both training and validation (AUC=0.835 and 0.626, respectively), and the high-risk group showed dismal prognostic outcomes compared with the low-risk group (training: p=1.416e-10; validation: p=4.495e-02). Ubiquitin-like modifier activating enzyme 1 (UBA1) was identified among both diagnosis and prognosis signature genes, and its overexpression was associated with poor survival. We validated the expression level of UBA1 in eight pairs of HCC patient tissues and liver cancer cell lines. UBA1 silencing decreased proliferation, migration, and invasion in Huh7 cells while elevating the Fe2+ and malondialdehyde (MDA) levels. Additionally, these biological effects were recovered by oltipraz (an Nrf2 activator). Furthermore, blocking UBA1 strikingly repressed the protein expression levels of Nrf2, HO-1, NQO1, and FTH1 in the Nrf2 signal transduction pathway. CONCLUSION Our findings demonstrated that UBA1 participates in the development of HCC by modulating Huh7 phenotypes and ferroptosis via the Nrf2 signal transduction pathway and might be a promising diagnostic and prognostic indicator for HCC.
Collapse
Affiliation(s)
- Yiru Shan
- Department of Oncology, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haixia Huang
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China international Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangyu Hu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qiuhong Lu
- Department of Orthopaedics, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Peng Guo
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Hou
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Cao
- Department of Patient Service Center, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Fuhua Tian
- Department of Oncology, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Qi Pan
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- College of Bioengineering, “111 Project” Laboratory of Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| |
Collapse
|
180
|
Osborne HC, Irving E, Schmidt CK. The Ubiquitin/UBL Drug Target Repertoire. Trends Mol Med 2020; 26:1133-1134. [DOI: 10.1016/j.molmed.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023]
|
181
|
Nguyen KM, Busino L. Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Semin Cancer Biol 2020; 67:53-60. [DOI: 10.1016/j.semcancer.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
|
182
|
Shi CY, Kingston ER, Kleaveland B, Lin DH, Stubna MW, Bartel DP. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 2020; 370:science.abc9359. [PMID: 33184237 DOI: 10.1126/science.abc9359] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to direct widespread posttranscriptional gene repression. Although association with AGO typically protects miRNAs from nucleases, extensive pairing to some unusual target RNAs can trigger miRNA degradation. We found that this target-directed miRNA degradation (TDMD) required the ZSWIM8 Cullin-RING E3 ubiquitin ligase. This and other findings support a mechanistic model of TDMD in which target-directed proteolysis of AGO by the ubiquitin-proteasome pathway exposes the miRNA for degradation. Moreover, loss-of-function studies indicated that the ZSWIM8 Cullin-RING ligase accelerates degradation of numerous miRNAs in cells of mammals, flies, and nematodes, thereby specifying the half-lives of most short-lived miRNAs. These results elucidate the mechanism of TDMD and expand its inferred role in shaping miRNA levels in bilaterian animals.
Collapse
Affiliation(s)
- Charlie Y Shi
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elena R Kingston
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Kleaveland
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel H Lin
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael W Stubna
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. .,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
183
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
184
|
Ubiquitin Homeostasis Is Disrupted in TDP-43 and FUS Cell Models of ALS. iScience 2020; 23:101700. [PMID: 33196025 PMCID: PMC7644588 DOI: 10.1016/j.isci.2020.101700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
A major feature of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitin (Ub) into intracellular inclusions. This sequestration of Ub may reduce the availability of free Ub, disrupting Ub homeostasis and ultimately compromising cellular function and survival. We previously reported significant disturbance of Ub homeostasis in neuronal-like cells expressing mutant SOD1. Here, we show that Ub homeostasis is also perturbed in neuronal-like cells expressing either TDP-43 or FUS. The expression of mutant TDP-43 and mutant FUS led to UPS dysfunction, which was associated with a redistribution of Ub and depletion of the free Ub pool. Redistribution of Ub is also a feature of sporadic ALS, with an increase in Ub signal associated with inclusions and no compensatory increase in Ub expression. Together, these findings suggest that alterations to Ub homeostasis caused by the misfolding and aggregation of ALS-associated proteins play an important role in the pathogenesis of ALS.
Collapse
|
185
|
Swan RL, Poh LLK, Cowell IG, Austin CA. Small Molecule Inhibitors Confirm Ubiquitin-Dependent Removal of TOP2-DNA Covalent Complexes. Mol Pharmacol 2020; 98:222-233. [PMID: 32587095 PMCID: PMC7416847 DOI: 10.1124/mol.119.118893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
DNA topoisomerase II (TOP2) is required for the unwinding and decatenation of DNA through the induction of an enzyme-linked double-strand break (DSB) in one DNA molecule and passage of another intact DNA duplex through the break. Anticancer drugs targeting TOP2 (TOP2 poisons) prevent religation of the DSB and stabilize a normally transient intermediate of the TOP2 reaction mechanism called the TOP2-DNA covalent complex. Subsequently, TOP2 remains covalently bound to each end of the enzyme-bridged DSB, which cannot be repaired until TOP2 is removed from the DNA. One removal mechanism involves the proteasomal degradation of the TOP2 protein, leading to the liberation of a protein-free DSB. Proteasomal degradation is often regulated by protein ubiquitination, and here we show that inhibition of ubiquitin-activating enzymes reduces the processing of TOP2A- and TOP2B-DNA complexes. Depletion or inhibition of ubiquitin-activating enzymes indicated that ubiquitination was required for the liberation of etoposide-induced protein-free DSBs and is therefore an important layer of regulation in the repair of TOP2 poison-induced DNA damage. TOP2-DNA complexes stabilized by etoposide were shown to be conjugated to ubiquitin, and this was reduced by inhibition or depletion of ubiquitin-activating enzymes. SIGNIFICANCE STATEMENT: There is currently great clinical interest in the ubiquitin-proteasome system and ongoing development of specific inhibitors. The results in this paper show that the therapeutic cytotoxicity of DNA topoisomerase II (TOP2) poisons can be enhanced through combination therapy with ubiquitin-activating enzyme inhibitors or by specific inhibition of the BMI/RING1A ubiquitin ligase, which would lead to increased cellular accumulation or persistence of TOP2-DNA complexes.
Collapse
Affiliation(s)
- Rebecca L Swan
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luke L K Poh
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian G Cowell
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline A Austin
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
186
|
Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092385. [PMID: 32842524 PMCID: PMC7563887 DOI: 10.3390/cancers12092385] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Collapse
|
187
|
Wang ZA, Cole PA. The Chemical Biology of Reversible Lysine Post-translational Modifications. Cell Chem Biol 2020; 27:953-969. [PMID: 32698016 PMCID: PMC7487139 DOI: 10.1016/j.chembiol.2020.07.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022]
Abstract
Lysine (Lys) residues in proteins undergo a wide range of reversible post-translational modifications (PTMs), which can regulate enzyme activities, chromatin structure, protein-protein interactions, protein stability, and cellular localization. Here we discuss the "writers," "erasers," and "readers" of some of the common protein Lys PTMs and summarize examples of their major biological impacts. We also review chemical biology approaches, from small-molecule probes to protein chemistry technologies, that have helped to delineate Lys PTM functions and show promise for a diverse set of biomedical applications.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Avenue Louis Pasteur NRB, Boston, MA 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Avenue Louis Pasteur NRB, Boston, MA 02115, USA.
| |
Collapse
|
188
|
Multiple myeloma cells are exceptionally sensitive to heat shock, which overwhelms their proteostasis network and induces apoptosis. Proc Natl Acad Sci U S A 2020; 117:21588-21597. [PMID: 32817432 DOI: 10.1073/pnas.2001323117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteasome inhibitors, such as bortezomib (BTZ), are highly effective and widely used treatments for multiple myeloma. One proposed reason for myeloma cells' exceptional sensitivity to proteasome inhibition is that they produce and continually degrade unusually large amounts of abnormal immunoglobulins. We, therefore, hypothesized that, heat shock may also be especially toxic to myeloma cells by causing protein unfolding, increasing further the substrate load on proteasomes, and, thus, putting further stress on their capacity for protein homeostasis. After a shift from 37 to 43 °C, all four myeloma lines studied underwent extensive apoptosis in 4 h, unlike 13 nonmyeloma cell lines, even though the myeloma cells induced heat-shock proteins and increased protein degradation similar to other cells. Furthermore, two myeloma lines resistant to proteasome inhibitors were also more resistant to 43 °C. Shifting myeloma cells to 43, 41, or 39 °C (which was not cytotoxic) dramatically increased their killing by proteasome inhibitors and inhibitors of ubiquitination or p97/VCP. Combining increased temperature with BTZ increased the accumulation of misfolded proteins and substrate load on the 26S proteasome. The apoptosis seen at 43 °C and at 39 °C with BTZ was mediated by caspase-9 and was linked to an accumulation of the proapoptotic Bcl-2-family member Noxa. Thus, myeloma cells are exceptionally sensitive to increased temperatures, which greatly increase substrate load on the ubiquitin-proteasome system and eventually activate the intrinsic apoptotic pathway. Consequently, for myeloma, mild hyperthermia may be a beneficial approach to enhance the therapeutic efficacy of proteasome inhibitors.
Collapse
|
189
|
Targeting a helix-in-groove interaction between E1 and E2 blocks ubiquitin transfer. Nat Chem Biol 2020; 16:1218-1226. [PMID: 32807965 PMCID: PMC7904387 DOI: 10.1038/s41589-020-0625-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/20/2020] [Accepted: 07/12/2020] [Indexed: 01/04/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a highly regulated protein disposal process critical to cell survival. Inhibiting the pathway induces proteotoxic stress and can be an effective cancer treatment. The therapeutic window observed upon proteasomal blockade has motivated multiple UPS-targeting strategies, including preventing ubiquitination altogether. E1 initiates the cascade by transferring ubiquitin to E2 enzymes. A small molecule that engages the E1 ATP-binding site and derivatizes ubiquitin disrupts enzymatic activity and kills cancer cells. However, binding-site mutations cause resistance, motivating alternative approaches to block this promising target. We identified an interaction between the E2 N-terminal alpha-1 helix and a pocket within the E1 ubiquitin-fold domain as a potentially druggable site. Stapled peptides modeled after the E2 alpha-1 helix bound to the E1 groove, induced a consequential conformational change and inhibited E1 ubiquitin thiotransfer, disrupting E2 ubiquitin charging and ubiquitination of cellular proteins. Thus, we provide a blueprint for a distinct E1-targeting strategy to treat cancer.
Collapse
|
190
|
Liu Y, Awadia S, Delaney A, Sitto M, Engelke CG, Patel H, Calcaterra A, Zelenka-Wang S, Lee H, Contessa J, Neamati N, Ljungman M, Lawrence TS, Morgan MA, Rehemtulla A. UAE1 inhibition mediates the unfolded protein response, DNA damage and caspase-dependent cell death in pancreatic cancer. Transl Oncol 2020; 13:100834. [PMID: 32688248 PMCID: PMC7369648 DOI: 10.1016/j.tranon.2020.100834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
The Unfolded Protein Response (UPR) plays a key role in the adaptive response to loss of protein homeostasis within the endoplasmic reticulum (ER). The UPR has an adaptive function in protein homeostasis, however, sustained activation of the UPR due to hypoxia, nutrient deprivation, and increased demand for protein synthesis, alters the UPR program such that additional perturbation of ER homeostasis activates a pro-apoptotic program. Since ubiquitination followed by proteasomal degradation of misfolded proteins within the ER is a central mechanism for restoration of ER homeostasis, inhibitors of this pathway have proven to be valuable anti-cancer therapeutics. Ubiquitin activating enzyme 1(UAE1), activates ubiquitin for transfer to target proteins for proteasomal degradation in conjunction with E2 and E3 enzymes. Inhibition of UAE1 activity in response to TAK-243, leads to an accumulation of misfolded proteins within the ER, thereby aggravating ER stress, leading to DNA damage and arrest of cells in the G2/M phase of the cell cycle. Persistent drug treatment mediates a robust induction of apoptosis following a transient cell cycle arrest. These biological effects of TAK-243 were recapitulated in mouse models of PDAC demonstrating antitumor activity at a dose and schedule that did not exhibit obvious normal tissue toxicity. In vitro as well as studies in mouse models failed to show enhanced efficacy when TAK-243 was combined with ionizing radiation or gemcitabine, providing an impetus for future studies to identify agents that synergize with this class of agents for improved tumor control in PDAC. Significance The UAE1 inhibitor TAK-243, mediates activation of the unfolded protein response, accumulation of DNA breaks and apoptosis, providing a rationale for the use as a safe and efficacious anti-cancer therapeutic for PDAC. Inhibition of Ubiquitin activating enzyme 1(UAE1) leads to an accumulation of misfolded proteins within the ER. Persistent drug treatment mediates a robust induction of apoptosis in mouse models of Pancreatic Cancer demonstrating antitumor activity at a dose and schedule that did not exhibit obvious normal tissue toxicity.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sahezeel Awadia
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Amy Delaney
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Merna Sitto
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Carl G Engelke
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Heli Patel
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Andrew Calcaterra
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Hojin Lee
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
191
|
The Ubiquitin Proteasome System in Hematological Malignancies: New Insight into Its Functional Role and Therapeutic Options. Cancers (Basel) 2020; 12:cancers12071898. [PMID: 32674429 PMCID: PMC7409207 DOI: 10.3390/cancers12071898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is the main cellular degradation machinery designed for controlling turnover of critical proteins involved in cancer pathogenesis, including hematological malignancies. UPS plays a functional role in regulating turnover of key proteins involved in cell cycle arrest, apoptosis and terminal differentiation. When deregulated, it leads to several disorders, including cancer. Several studies indicate that, in some subtypes of human hematological neoplasms such as multiple myeloma and Burkitt’s lymphoma, abnormalities in the UPS made it an attractive therapeutic target due to pro-cancer activity. In this review, we discuss the aberrant role of UPS evaluating its impact in hematological malignancies. Finally, we also review the most promising therapeutic approaches to target UPS as powerful strategies to improve treatment of blood cancers.
Collapse
|
192
|
Hu X, Wang L, Wang Y, Ji J, Li J, Wang Z, Li C, Zhang Y, Zhang ZR. RNF126-Mediated Reubiquitination Is Required for Proteasomal Degradation of p97-Extracted Membrane Proteins. Mol Cell 2020; 79:320-331.e9. [DOI: 10.1016/j.molcel.2020.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
|
193
|
Wu T, Yoon H, Xiong Y, Dixon-Clarke SE, Nowak RP, Fischer ES. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat Struct Mol Biol 2020; 27:605-614. [PMID: 32541897 PMCID: PMC7923177 DOI: 10.1038/s41594-020-0438-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Controlled perturbation of protein activity is essential to study protein function in cells and living organisms. Small molecules that hijack the cellular protein ubiquitination machinery to selectively degrade proteins of interest, so-called degraders, have recently emerged as alternatives to selective chemical inhibitors, both as therapeutic modalities and as powerful research tools. These systems offer unprecedented temporal and spatial control over protein function. Here, we review recent developments in this field, with a particular focus on the use of degraders as research tools to interrogate complex biological problems.
Collapse
Affiliation(s)
- Tao Wu
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah E Dixon-Clarke
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
194
|
Green JL, Wu Y, Encheva V, Lasonder E, Prommaban A, Kunzelmann S, Christodoulou E, Grainger M, Truongvan N, Bothe S, Sharma V, Song W, Pinzuti I, Uthaipibull C, Srichairatanakool S, Birault V, Langsley G, Schindelin H, Stieglitz B, Snijders AP, Holder AA. Ubiquitin activation is essential for schizont maturation in Plasmodium falciparum blood-stage development. PLoS Pathog 2020; 16:e1008640. [PMID: 32569299 PMCID: PMC7332102 DOI: 10.1371/journal.ppat.1008640] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/02/2020] [Accepted: 05/17/2020] [Indexed: 11/19/2022] Open
Abstract
Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites.
Collapse
Affiliation(s)
- Judith L. Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Yang Wu
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Vesela Encheva
- Mass Spectrometry Proteomics, The Francis Crick Institute, London, United Kingdom
| | - Edwin Lasonder
- School of Biomedical Science, University of Plymouth, Plymouth, United Kingdom
| | - Adchara Prommaban
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Biochemistry, Chiang Mai University, Chiang Mai, Thailand
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Munira Grainger
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ngoc Truongvan
- Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany
| | - Sebastian Bothe
- Department of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Vikram Sharma
- School of Biomedical Science, University of Plymouth, Plymouth, United Kingdom
| | - Wei Song
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Irene Pinzuti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology, Khlong Luang, Thailand
| | | | | | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Université Paris Descartes, Paris, France
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany
| | - Benjamin Stieglitz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
195
|
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers (Basel) 2020; 12:E1579. [PMID: 32549302 PMCID: PMC7352412 DOI: 10.3390/cancers12061579] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
196
|
Sharp MF, Murphy VJ, Twest SV, Tan W, Lui J, Simpson KJ, Deans AJ, Crismani W. Methodology for the identification of small molecule inhibitors of the Fanconi Anaemia ubiquitin E3 ligase complex. Sci Rep 2020; 10:7959. [PMID: 32409752 PMCID: PMC7224301 DOI: 10.1038/s41598-020-64868-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
DNA inter-strand crosslinks (ICLs) threaten genomic stability by creating a physical barrier to DNA replication and transcription. ICLs can be caused by endogenous reactive metabolites or from chemotherapeutics. ICL repair in humans depends heavily on the Fanconi Anaemia (FA) pathway. A key signalling step of the FA pathway is the mono-ubiquitination of Fanconi Anaemia Complementation Group D2 (FANCD2), which is achieved by the multi-subunit E3 ligase complex. FANCD2 mono-ubiquitination leads to the recruitment of DNA repair proteins to the site of the ICL. The loss of FANCD2 mono-ubiquitination is a common clinical feature of FA patient cells. Therefore, molecules that restore FANCD2 mono-ubiquitination could lead to a potential drug for the management of FA. On the other hand, in some cancers, FANCD2 mono-ubiquitination has been shown to be essential for cell survival. Therefore, inhibition of FANCD2 mono-ubiquitination represents a possible therapeutic strategy for cancer specific killing. We transferred an 11-protein FANCD2 mono-ubiquitination assay to a high-throughput format. We screened 9,067 compounds for both activation and inhibition of the E3 ligase complex. The use of orthogonal assays revealed that candidate compounds acted via non-specific mechanisms. However, our high-throughput biochemical assays demonstrate the feasibility of using sophisticated and robust biochemistry to screen for small molecules that modulate a key step in the FA pathway. The future identification of FA pathway modulators is anticipated to guide future medicinal chemistry projects with drug leads for human disease.
Collapse
Affiliation(s)
- Michael F Sharp
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Vince J Murphy
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Sylvie Van Twest
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Winnie Tan
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia.,Department of Medicine (St. Vincent's Health), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jennii Lui
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew J Deans
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia.,Department of Medicine (St. Vincent's Health), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wayne Crismani
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia. .,Department of Medicine (St. Vincent's Health), The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
197
|
Shytaj IL, Lucic B, Forcato M, Penzo C, Billingsley J, Laketa V, Bosinger S, Stanic M, Gregoretti F, Antonelli L, Oliva G, Frese CK, Trifunovic A, Galy B, Eibl C, Silvestri G, Bicciato S, Savarino A, Lusic M. Alterations of redox and iron metabolism accompany the development of HIV latency. EMBO J 2020; 39:e102209. [PMID: 32157726 PMCID: PMC7196916 DOI: 10.15252/embj.2019102209] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
HIV-1 persists in a latent form during antiretroviral therapy, mainly in CD4+ T cells, thus hampering efforts for a cure. HIV-1 infection is accompanied by metabolic alterations, such as oxidative stress, but the effect of cellular antioxidant responses on viral replication and latency is unknown. Here, we show that cells survive retroviral replication, both in vitro and in vivo in SIVmac-infected macaques, by upregulating antioxidant pathways and the intertwined iron import pathway. These changes are associated with remodeling of promyelocytic leukemia protein nuclear bodies (PML NBs), an important constituent of nuclear architecture and a marker of HIV-1 latency. We found that PML NBs are hyper-SUMOylated and that PML protein is degraded via the ubiquitin-proteasome pathway in productively infected cells, before latency establishment and after reactivation. Conversely, normal numbers of PML NBs were restored upon transition to latency or by decreasing oxidative stress or iron content. Our results highlight antioxidant and iron import pathways as determinants of HIV-1 latency and support their pharmacologic inhibition as tools to regulate PML stability and impair latency establishment.
Collapse
Affiliation(s)
- Iart Luca Shytaj
- Heidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Bojana Lucic
- Heidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Mattia Forcato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - James Billingsley
- Division of Microbiology and ImmunologyYerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
| | - Vibor Laketa
- Heidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Steven Bosinger
- Division of Microbiology and ImmunologyYerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGAUSA
| | - Mia Stanic
- Heidelberg University HospitalHeidelbergGermany
| | | | - Laura Antonelli
- Institute for High Performance Computing and NetworkingICAR‐CNRNaplesItaly
| | - Gennaro Oliva
- Institute for High Performance Computing and NetworkingICAR‐CNRNaplesItaly
| | | | | | - Bruno Galy
- Division of Virus‐Associated CarcinogenesisGerman Cancer Research CentreHeidelbergGermany
| | - Clarissa Eibl
- Leibniz‐Forschungsinstitut für Molekulare PharmakologieBerlinGermany
- Institute of BiologyCellular BiophysicsHumboldt Universität zu BerlinBerlinGermany
| | - Guido Silvestri
- Division of Microbiology and ImmunologyYerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGAUSA
| | - Silvio Bicciato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Marina Lusic
- Heidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| |
Collapse
|
198
|
Yu Q, Jiang Y, Sun Y. Anticancer drug discovery by targeting cullin neddylation. Acta Pharm Sin B 2020; 10:746-765. [PMID: 32528826 PMCID: PMC7276695 DOI: 10.1016/j.apsb.2019.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Protein neddylation is a post-translational modification which transfers the ubiquitin-like protein NEDD8 to a lysine residue of the target substrate through a three-step enzymatic cascade. The best-known substrates of neddylation are cullin family proteins, which are the core component of Cullin–RING E3 ubiquitin ligases (CRLs). Given that cullin neddylation is required for CRL activity, and CRLs control the turn-over of a variety of key signal proteins and are often abnormally activated in cancers, targeting neddylation becomes a promising approach for discovery of novel anti-cancer therapeutics. In the past decade, we have witnessed significant progress in the field of protein neddylation from preclinical target validation, to drug screening, then to the clinical trials of neddylation inhibitors. In this review, we first briefly introduced the nature of protein neddylation and the regulation of neddylation cascade, followed by a summary of all reported chemical inhibitors of neddylation enzymes. We then discussed the structure-based targeting of protein–protein interaction in neddylation cascade, and finally the available approaches for the discovery of new neddylation inhibitors. This review will provide a focused, up-to-date and yet comprehensive overview on the discovery effort of neddylation inhibitors.
Collapse
Key Words
- AMP, adenosine 5′-monophosphate
- Anticancer
- BLI, biolayer interferometry
- CETSA, cellular thermal shift assay
- Drug discovery
- FH, frequent hitters
- HTS, high-throughput screen
- High-throughput screening
- IP, immunoprecipitation
- ITC, isothermal titration calorimetry
- NAE, NEDD8 activating enzyme
- Neddylation
- PAINS, pan-assay interference compounds
- SAR, structure–activity relationship
- Small molecule inhibitors
- UBL, ubiquitin-like protein
- Ubiquitin–proteasome system
- Virtual screen
Collapse
|
199
|
Hanan EJ, Liang J, Wang X, Blake RA, Blaquiere N, Staben ST. Monomeric Targeted Protein Degraders. J Med Chem 2020; 63:11330-11361. [DOI: 10.1021/acs.jmedchem.0c00093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
200
|
Wu HQ, Baker D, Ovaa H. Small molecules that target the ubiquitin system. Biochem Soc Trans 2020; 48:479-497. [PMID: 32196552 PMCID: PMC7200645 DOI: 10.1042/bst20190535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Eukaryotic life depends upon the interplay between vast networks of signaling pathways composed of upwards of 109-1010 proteins per cell. The integrity and normal operation of the cell requires that these proteins act in a precise spatial and temporal manner. The ubiquitin system is absolutely central to this process and perturbation of its function contributes directly to the onset and progression of a wide variety of diseases, including cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infectious diseases, and muscle dystrophies. Whilst the individual components and the overall architecture of the ubiquitin system have been delineated in some detail, how ubiquitination might be successfully targeted, or harnessed, to develop novel therapeutic approaches to the treatment of disease, currently remains relatively poorly understood. In this review, we will provide an overview of the current status of selected small molecule ubiquitin system inhibitors. We will further discuss the unique challenges of targeting this ubiquitous and highly complex machinery, and explore and highlight potential ways in which these challenges might be met.
Collapse
Affiliation(s)
- Hai Qiu Wu
- Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - David Baker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Huib Ovaa
- Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|