151
|
Raja A, Son N, Kang M. Reduced graphene oxide decorated transition metal manganese vanadium oxide nanorods for electrochemical supercapacitors and photocatalytic degradation of pollutants in water. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
152
|
Sun Y, Luo J, Zhang M, Li J, Yu J, Lu S, Song W, Wei Y, Li Z, Liu J. Electron Delocalization of Au Nanoclusters Triggered by Fe Single Atoms Boosts Alkaline Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10696-10708. [PMID: 36791310 DOI: 10.1021/acsami.2c21390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rational design and in-depth understanding of the structure-activity relationship (SAR) of hydrogen and oxygen evolution reaction (HER and OER) bifunctional electrocatalysts are vital to decreasing the energy consumption of hydrogen production by electrochemical water splitting. Herein, we report an inducing electron delocalization method where Fe single atoms as inducers are used to regulate the electron structure of Au nanoclusters by the M-Nx-C substrate to acquire satisfactory intrinsic HER activity. Meanwhile, Fe single atoms also serve as efficient OER active sites to construct bifunctional electrocatalysts. On account of the strong synergistic effect between Au nanoclusters and Fe single atoms, the hybrid catalyst Au-Fe1NC/NF performs an outstanding alkaline HER and OER activity. Only 35.6 mV, 246 mV, and 1.52 V are needed to reach 10 mA cm-2 for alkaline HER, OER, and two-electrode electrolytic cells, respectively. In addition, the bifunctional electrocatalysts also display excellent electrochemical stability. DFT calculations demonstrate that the strong synergistic effect can enhance the O-H bond activation ability of Au nanoclusters and upshift the d-band center of the Fe single atom to promote alkaline electrocatalytic water splitting. The strong synergistic effect is proven to arise from the electron delocalization of Au nanoclusters triggered by Fe single atoms.
Collapse
Affiliation(s)
- Yuanqing Sun
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Jiaqing Luo
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Manxue Zhang
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingkun Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
- Laboratory of Heavy Oil at Karamay, China University of Petroleum─Beijing at Karamay, Karamay 834000, China
| |
Collapse
|
153
|
Hess F, Over H. Coordination Inversion of the Tetrahedrally Coordinated Ru 4f Surface Complex on RuO 2(100) and Its Decisive Role in the Anodic Corrosion Process. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Franziska Hess
- Institute for Chemistry, Technical University Berlin, Straße des 17. Juni 124, D-10623 Berlin, Germany
| | - Herbert Over
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| |
Collapse
|
154
|
Feng C, She X, Xiao Y, Li Y. Direct Detection of Fe VI Water Oxidation Intermediates in an Aqueous Solution. Angew Chem Int Ed Engl 2023; 62:e202218738. [PMID: 36583473 DOI: 10.1002/anie.202218738] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
In situ detection of highly-oxidized metal intermediates is the key to identifying the active center of an oxygen evolution reaction (OER) catalyst, but it remains challenging for NiFe-based catalysts in an aqueous solution under working conditions. Here, by utilizing the dynamic stability of the FeVI O4 2- intermediates in a self-healing water oxidation cycle of NiFe-based catalyst, the highly-oxidized FeVI intermediates leached into the electrolyte are directly detected by simple spectroelectrochemistry. Our results provide direct evidence that Fe is the active center in NiFe-based OER catalysts. Furthermore, it is revealed that the incorporation of Co into NiFe-based catalyst facilitates the formation of FeVI active species, thus enhancing the OER activity of NiCoFe-based catalyst. The insights into the mechanisms for the sustainable generation of FeVI active species in these NiFe-based catalysts lay the foundation for the design of more efficient and stable OER catalysts.
Collapse
Affiliation(s)
- Chao Feng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianghua She
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yequan Xiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanbo Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
155
|
Liang J, Zu H, Si H, Ma Y, Li M. Synthesis of ethane-disulfonate pillared layered cobalt hydroxide towards the electrocatalytic oxygen evolution reaction. Dalton Trans 2023; 52:2115-2123. [PMID: 36722796 DOI: 10.1039/d2dt03358e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the synthesis of a hybrid layered cobalt hydroxide sample and its redox behaviors in the electrochemical oxygen evolution reaction (OER). Compound Co7(OH)12(C2H4S2O6)·1.6H2O was synthesized via a homogeneous alkalization reaction using Co(SO3C2H4SO3) and hexamethylenetetramine. This compound comprises cationic host layers of {[Co7(OH)12]2+}∞, which comprise octahedrally (CoOh) and tetrahedrally (CoTd) coordinated Co cations at a CoOh : CoTd ratio of 5 : 2. The ethane-disulfonate ions are combined with the cationic host layers by electrostatic attractions and hydrogen bonding as a hybrid pillared layered framework. This hybrid sample can promote the OER in 1 M KOH with an overpotential as low as ∼410 mV (at a current density of 10 mA cm-2). In situ Raman spectroscopy showed that the sample first evolved into Co(III)-based phases comprising a mixture of layered CoOOH and spinel Co3O4, and the Co(III)-based compounds were converted into Co(IV)-O intermediates containing [CoO6] units at the onsite of the OER. The structural evolution behaviors suggest that the catalyst prefers a topotactic phase transition and the CoOh and CoTd units exhibit different activities in the electrochemical reaction. The electron transfer events involved in the electrochemical reaction were identified by Fourier-transformed alternating current voltammetry.
Collapse
Affiliation(s)
- Jianbo Liang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | - Hang Zu
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | - Huiling Si
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | - Yanhong Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | - Mengyao Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| |
Collapse
|
156
|
González J, Laborda E, Molina Á. Voltammetric Kinetic Studies of Electrode Reactions: Guidelines for Detailed Understanding of Their Fundamentals. JOURNAL OF CHEMICAL EDUCATION 2023; 100:697-706. [PMID: 36812115 PMCID: PMC9933535 DOI: 10.1021/acs.jchemed.2c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Theoretical and practical foundations of basic electrochemical concepts of heterogeneous charge transfer reactions that underline electrochemical processes are presented for their detailed study by undergraduate and postgraduate students. Several simple methods for calculating key variables, such as the half-wave potential, limiting current, and those implied in the kinetics of the process, are explained, discussed, and put in practice through simulations making use of an Excel document. The current-potential response of electron transfer processes of any kinetics (i.e., any degree of reversibility) are deduced and compared for electrodes of different size, geometry, and dynamics, namely: static macroelectrodes in chronoamperometry and normal pulse voltammetry, and static ultramicroelectrodes and rotating disc electrodes in steady state voltammetry. In all cases, a universal, normalized current-potential response is obtained in the case of reversible (fast) electrode reactions, whereas this is not possible for nonreversible processes. For this last situation, different widely used protocols for the determination of the kinetic parameters (the mass-transport corrected Tafel analysis and the Koutecký-Levich plot) are deduced, proposing learning activities that highlight the foundations and limitations of such protocols, as well as the influence of the mass transport conditions. Discussions on the implementation of this framework and on the benefits and difficulties found are also presented.
Collapse
|
157
|
Wu YH, Mehta H, Willinger E, Yuwono JA, Kumar PV, Abdala PM, Wach A, Kierzkowska A, Donat F, Kuznetsov DA, Müller CR. Altering Oxygen Binding by Redox-Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System. Angew Chem Int Ed Engl 2023; 62:e202217186. [PMID: 36538473 PMCID: PMC10108258 DOI: 10.1002/anie.202217186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal-substituted manganese oxide (spinel) nanoparticles, Mn3 O4 :M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn3 O4 :M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δf H°(MO), and the Lewis acidity of the M2+ substituent. Incorporation of elements M with low Δf H°(MO) enhances the oxygen binding strength in Mn3 O4 :M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox-inactive elements.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Harshit Mehta
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Jodie A Yuwono
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.,College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Anna Wach
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Agnieszka Kierzkowska
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
158
|
Petersen AS, Jensen KD, Wan H, Bagger A, Chorkendorff I, Stephens IEL, Rossmeisl J, Escudero-Escribano M. Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Amanda S. Petersen
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Kim D. Jensen
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Hao Wan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Alexander Bagger
- Department of Materials, Imperial College London, 2.03b, Royal School of Mines, Prince Consort Rd., London SW7 2AZ, England
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis, Technical University of Denmark, Fysikvej, Building 312, Kgs. Lyngby DK-2800, Denmark
| | - Ifan E. L. Stephens
- Department of Materials, Imperial College London, 2.03b, Royal School of Mines, Prince Consort Rd., London SW7 2AZ, England
| | - Jan Rossmeisl
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - María Escudero-Escribano
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, UAB Campus, Bellaterra, Barcelona 08193, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
159
|
Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
160
|
Liu Q, Wu Y, Li D, Peng YQ, Liu X, Li BQ, Huang JQ, Peng HJ. Dilute Alloying to Implant Activation Centers in Nitride Electrocatalysts for Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209233. [PMID: 36414611 DOI: 10.1002/adma.202209233] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium-sulfur (Li-S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li-S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm-2 . This work opens up new opportunities toward the rational design of Li-S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain-catalyzed reactions in energy applications.
Collapse
Affiliation(s)
- Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, Guangdong, 515200, China
| | - Yujie Wu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Dong Li
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan-Qi Peng
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinyan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| |
Collapse
|
161
|
Evaluating the Stability of Ir Single Atom and Ru Atomic Cluster Oxygen Evolution Reaction Electrocatalysts. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
162
|
Hu Y, Hu C, Du A, Xiao T, Yu L, Yang C, Xie W. Interfacial Evolution on Co-based Oxygen Evolution Reaction Electrocatalysts Probed by Using In Situ Surface-Enhanced Raman Spectroscopy. Anal Chem 2023; 95:1703-1709. [PMID: 36583685 DOI: 10.1021/acs.analchem.2c04931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Disclosing the roles of reactive sites at catalytic interfaces is of paramount importance for understanding the reaction mechanism. However, due to the difficulties in the detection of reaction intermediates in the complex heterophase reaction system, disentangling the highly convolved roles of different surface atoms remains challenging. Herein, we used CoOx as a model catalyst to study the synergy of CoTd2+ and CoOh3+ active sites in the electrocatalytic oxygen evolution reaction (OER). The formation and evolution of reaction intermediates on the catalyst surface during the OER process were investigated by in situ surface-enhanced Raman spectroscopy (SERS). According to the SERS results in ion-substitution experiments, CoOh3+ is the catalytic site for the conversion of OH- to O-O- intermediate species (1140-1180 cm-1). CoOOH (503 cm-1) and CoO2 (560 cm-1) active centers generated during the OER, at the original CoTd2+ sites of CoOx, eventually serve as the O2 release sites (conversion of O-O- intermediate to O2). The mechanism was further confirmed on Co2+-Co3+ layered double hydroxides (LDHs), where an optimal ratio of 1:1.2 (Co2+/Co3+) is required to balance O-O- generation and O2 release. This work highlights the synergistic role of metal atoms at different valence statuses in water oxidation and sheds light on surface component engineering for the rational design of high-performance heterogeneous catalysts.
Collapse
Affiliation(s)
- Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin300071, China
| | - Cejun Hu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, China
| | - Aoxuan Du
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin300071, China
| | - Tiantian Xiao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Linfeng Yu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin300071, China
| | - Chengkai Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin300071, China
| |
Collapse
|
163
|
Li WJ, Lou ZX, Zhao JY, Liu PF, Yuan HY, Yang HG. Positive Valent Metal Sites in Electrochemical CO 2 Reduction Reaction. Chemphyschem 2023; 24:e202200657. [PMID: 36646629 DOI: 10.1002/cphc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Indexed: 01/18/2023]
Abstract
The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction (CO2 RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2 RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2 ) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2 RR. Here, we present an introduction of some typical catalysts with PVMS in CO2 RR and give some understanding of the activity and stability for these related catalysts.
Collapse
Affiliation(s)
- Wen Jing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
164
|
Wang X, Li J, Xue Q, Han X, Xing C, Liang Z, Guardia P, Zuo Y, Du R, Balcells L, Arbiol J, Llorca J, Qi X, Cabot A. Sulfate-Decorated Amorphous-Crystalline Cobalt-Iron Oxide Nanosheets to Enhance O-O Coupling in the Oxygen Evolution Reaction. ACS NANO 2023; 17:825-836. [PMID: 36562698 DOI: 10.1021/acsnano.2c12029] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical oxygen evolution reaction (OER) plays a fundamental role in several energy technologies, which performance and cost-effectiveness are in large part related to the used OER electrocatalyst. Herein, we detail the synthesis of cobalt-iron oxide nanosheets containing controlled amounts of well-anchored SO42- anionic groups (CoFexOy-SO4). We use a cobalt-based zeolitic imidazolate framework (ZIF-67) as the structural template and a cobalt source and Mohr's salt ((NH4)2Fe(SO4)2·6H2O) as the source of iron and sulfate. When combining the ZIF-67 with ammonium iron sulfate, the protons produced by the ammonium ion hydrolysis (NH4+ + H2O = NH3·H2O + H+) etch the ZIF-67, dissociating its polyhedron structure, and form porous assemblies of two-dimensional nanostructures through a diffusion-controlled process. At the same time, iron ions partially replace cobalt within the structure, and SO42- ions are anchored on the material surface by exchange with organic ligands. As a result, ultrathin CoFexOy-SO4 nanosheets are obtained. The proposed synthetic procedure enables controlling the amount of Fe and SO4 ions and analyzing the effect of each element on the electrocatalytic activity. The optimized CoFexOy-SO4 material displays outstanding OER activity with a 10 mA cm-2 overpotential of 268 mV, a Tafel slope of 46.5 mV dec-1, and excellent stability during 62 h. This excellent performance is correlated to the material's structural and chemical parameters. The assembled nanosheet structure is characterized by a large electrochemically active surface area, a high density of reaction sites, and fast electron transportation. Meanwhile, the introduction of iron increases the electrical conductivity of the catalysts and provides fast reaction sites with optimum bond energy and spin state for the adsorption of OER intermediates. The presence of sulfate ions at the catalyst surface modifies the electronic energy level of active sites, regulates the adsorption of intermediates to reduce the OER overpotential, and promotes the surface charge transfer, which accelerates the formation of oxygenated intermediates. Overall, the present work details the synthesis of a high-efficiency OER electrocatalyst and demonstrates the introduction of nonmetallic anionic groups as an excellent strategy to promote electrocatalytic activity in energy conversion technologies.
Collapse
Affiliation(s)
- Xiang Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
| | - Junshan Li
- Institute of Advanced Study, Chengdu University, Chengdu 610106, China
| | - Qian Xue
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xu Han
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Congcong Xing
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Catalonia, Spain
| | - Zhifu Liang
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Pablo Guardia
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Yong Zuo
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
- Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Ruifeng Du
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
| | - Lluis Balcells
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA Pg. Lluis Companys, 08010 Barcelona, Catalonia, Spain
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Catalonia, Spain
| | - Xueqiang Qi
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
- ICREA Pg. Lluis Companys, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
165
|
Su L, Jin Y, Gong D, Ge X, Zhang W, Fan X, Luo W. The Role of Discrepant Reactive Intermediates on Ru-Ru 2 P Heterostructure for pH-Universal Hydrogen Oxidation Reaction. Angew Chem Int Ed Engl 2023; 62:e202215585. [PMID: 36354203 DOI: 10.1002/anie.202215585] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 11/11/2022]
Abstract
Developing highly efficient electrocatalysts for hydrogen oxidation reaction (HOR) under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cell (AEMFC). However, the kinetics of HOR in alkaline media is complicated, resulting in orders of magnitude slower than that in acid, even for the state-of-the-art Pt/C. Here, we find that Ru-Ru2 P/C heterostructure shows HOR performance with a non-monotonous variation in a whole pH region. Unexpectedly, an inflection point located at pH≈7 is observed, showing an anomalous behavior that HOR activity under alkaline media surpasses acidic media. Combining experimental results and theoretical calculations, we propose the roles of discrepant reactive intermediates for pH-universal HOR, while H* and H2 O* adsorption strengths are responsible for acidic HOR, and OH* adsorption strength is essential for alkaline HOR. This work not only sheds light on fundamentally understanding the mechanism of HOR but also provides new designing principles for pH-targeted electrocatalysts.
Collapse
Affiliation(s)
- Lixin Su
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yiming Jin
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Dan Gong
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Xin Ge
- Key Laboratory of Automobile Materials MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Jilin, Changchun, 130012, P.R. China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Jilin, Changchun, 130012, P.R. China
| | - Xinran Fan
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
166
|
Takimoto D, Toma S, Suda Y, Shirokura T, Tokura Y, Fukuda K, Matsumoto M, Imai H, Sugimoto W. Platinum nanosheets synthesized via topotactic reduction of single-layer platinum oxide nanosheets for electrocatalysis. Nat Commun 2023; 14:19. [PMID: 36624103 PMCID: PMC9829898 DOI: 10.1038/s41467-022-35616-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Increasing the performance of Pt-based electrocatalysts for the oxygen reduction reaction (ORR) is essential for the widespread commercialization of polymer electrolyte fuel cells. Here we show the synthesis of double-layer Pt nanosheets with a thickness of 0.5 nm via the topotactic reduction of 0.9 nm-thick single-layer PtOx nanosheets, which are exfoliated from a layered platinic acid (HyPtOx). The ORR activity of the Pt nanosheets is two times greater than that of conventionally used state-of-the-art 3 nm-sized Pt nanoparticles, which is attributed to their large electrochemically active surface area (124 m2 g-1). These Pt nanosheets show excellent potential in reducing the amount of Pt used by enhancing its ORR activity. Our results unveil strategies for designing advanced catalysts that are considerably superior to traditional nanoparticle systems, allowing Pt catalysts to operate at their full potential in areas such as fuel cells, rechargeable metal-air batteries, and fine chemical production.
Collapse
Affiliation(s)
- Daisuke Takimoto
- grid.263518.b0000 0001 1507 4692Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan ,grid.267625.20000 0001 0685 5104Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa, 903-0213 Japan
| | - Shino Toma
- grid.267625.20000 0001 0685 5104Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa, 903-0213 Japan
| | - Yuya Suda
- grid.263518.b0000 0001 1507 4692Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Tomoki Shirokura
- grid.263518.b0000 0001 1507 4692Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Yuki Tokura
- grid.263518.b0000 0001 1507 4692Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Katsutoshi Fukuda
- grid.258799.80000 0004 0372 2033Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Masashi Matsumoto
- Device-functional Analysis Department, NISSAN ARC LTD., 1 Natsushima, Yokosuka, Kanagawa 237-0061 Japan
| | - Hideto Imai
- Device-functional Analysis Department, NISSAN ARC LTD., 1 Natsushima, Yokosuka, Kanagawa 237-0061 Japan
| | - Wataru Sugimoto
- grid.263518.b0000 0001 1507 4692Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan ,grid.263518.b0000 0001 1507 4692Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| |
Collapse
|
167
|
Zhu J, Qian J, Peng X, Xia B, Gao D. Etching-Induced Surface Reconstruction of NiMoO 4 for Oxygen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:30. [PMID: 36624193 PMCID: PMC9829944 DOI: 10.1007/s40820-022-01011-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Rational reconstruction of oxygen evolution reaction (OER) pre-catalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis. Herein, we develop a double-cation etching strategy to tailor the electronic structure of NiMoO4, where the prepared NiMoO4 nanorods etched by H2O2 reconstruct their surface with abundant cation deficiencies and lattice distortion. Calculation results reveal that the double cation deficiencies can make the upshift of d-band center for Ni atoms and the active sites with better oxygen adsorption capacity. As a result, the optimized sample (NMO-30M) possesses an overpotential of 260 mV at 10 mA cm-2 and excellent long-term durability of 162 h. Importantly, in situ Raman test reveals the rapid formation of high-oxidation-state transition metal hydroxide species, which can further help to improve the catalytic activity of NiMoO4 in OER. This work highlights the influence of surface remodification and shed some light on activating catalysts.
Collapse
Affiliation(s)
- Jinli Zhu
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jinmei Qian
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xuebing Peng
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Baori Xia
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
168
|
Bukhari SNA, Ahmed N, Amjad MW, Hussain MA, Elsherif MA, Ejaz H, Alotaibi NH. Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers (Basel) 2023; 15:267. [PMID: 36679148 PMCID: PMC9866219 DOI: 10.3390/polym15020267] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Covalent organic frameworks (COFs), synthesized from organic monomers, are porous crystalline polymers. Monomers get attached through strong covalent bonds to form 2D and 3D structures. The adjustable pore size, high stability (chemical and thermal), and metal-free nature of COFs make their applications wider. This review article briefly elaborates the synthesis, types, and applications (catalysis, environmental Remediation, sensors) of COFs. Furthermore, the applications of COFs as biomaterials are comprehensively discussed. There are several reported COFs having good results in anti-cancer and anti-bacterial treatments. At the end, some newly reported COFs having anti-viral and wound healing properties are also discussed.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Naveed Ahmed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
169
|
Lin X, Li J. Applications of In Situ Raman Spectroscopy on Rechargeable Batteries and Hydrogen Energy Systems. ChemElectroChem 2023. [DOI: 10.1002/celc.202201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiu‐Mei Lin
- Department of Chemistry and Environment Science Minnan Normal University Zhangzhou 363000 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering College of Energy College of Materials Xiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering College of Energy College of Materials Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518000 China
| |
Collapse
|
170
|
Jeong KJ, Lee Y, Huynh TN, Nersisyan H, Suh H, Lee J. Liquid-Metal-Assisted Synthesis of Single-Crystalline TiC Nanocubes with Exposed {100} Facets for Enhanced Electrocatalytic Activity in the Hydrogen Evolution Reaction. SMALL METHODS 2023; 7:e2201076. [PMID: 36424172 DOI: 10.1002/smtd.202201076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Although TiC nanostructures show promise as non-noble-metal-based electrocatalysts, improved synthesis methods are required. Herein, single-crystalline TiC nanocubes with exposed {100} facets are grown by combusting TiO2 + kMg + C reactive mixtures (k = 4-6.5 mol) in argon. During the synthesis, the temperature increases to 1200-1550 °C and excess Mg (2-4.5 mol) forms a liquid pool. The obtained TiC nanocubes have edge lengths of 50-300 nm and surface areas of 12.2-30.05 m2 g-1 . Insights into the TiC nanocube formation mechanism are obtained using density functional theory modeling of the surface energies of TiC nanocrystals and shape visualization using the Wulff construction method. During TiC nucleation and growth within the Mg melt, liquid Mg likely acts as a capping agent for {111} facets, thus promoting the formation of {100} facets. The TiC nanocubes show high electrocatalytic activity for the hydrogen evolution reaction, with a lower overpotential (0.298 V at 10 mA cm-2 ) than other TiC nanostructures (0.400-0.815 V).
Collapse
Affiliation(s)
- Kyoung-Jin Jeong
- Graduate School of Materials Science & Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yohan Lee
- Department of Physics, Faculty of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Thanh-Nam Huynh
- Graduate School of Materials Science & Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hayk Nersisyan
- RASOM, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hoyoung Suh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 022792, Republic of Korea
| | - JongHyeon Lee
- Graduate School of Materials Science & Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
- RASOM, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
171
|
N-Doped Carbon-Coupled Nickel Nitride Species/Ni2P Heterostructure for Enhancing Electrochemical Overall Water Splitting Performance. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
172
|
Recent Advances in In Situ/Operando Surface/Interface Characterization Techniques for the Study of Artificial Photosynthesis. INORGANICS 2022. [DOI: 10.3390/inorganics11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
(Photo-)electrocatalytic artificial photosynthesis driven by electrical and/or solar energy that converts water (H2O) and carbon dioxide (CO2) into hydrogen (H2), carbohydrates and oxygen (O2), has proven to be a promising and effective route for producing clean alternatives to fossil fuels, as well as for storing intermittent renewable energy, and thus to solve the energy crisis and climate change issues that we are facing today. Basic (photo-)electrocatalysis consists of three main processes: (1) light absorption, (2) the separation and transport of photogenerated charge carriers, and (3) the transfer of photogenerated charge carriers at the interfaces. With further research, scientists have found that these three steps are significantly affected by surface and interface properties (e.g., defect, dangling bonds, adsorption/desorption, surface recombination, electric double layer (EDL), surface dipole). Therefore, the catalytic performance, which to a great extent is determined by the physicochemical properties of surfaces and interfaces between catalyst and reactant, can be changed dramatically under working conditions. Common approaches for investigating these phenomena include X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), scanning probe microscopy (SPM), wide angle X-ray diffraction (WAXRD), auger electron spectroscopy (AES), transmission electron microscope (TEM), etc. Generally, these techniques can only be applied under ex situ conditions and cannot fully recover the changes of catalysts in real chemical reactions. How to identify and track alterations of the catalysts, and thus provide further insight into the complex mechanisms behind them, has become a major research topic in this field. The application of in situ/operando characterization techniques enables real-time monitoring and analysis of dynamic changes. Therefore, researchers can obtain physical and/or chemical information during the reaction (e.g., morphology, chemical bonding, valence state, photocurrent distribution, surface potential variation, surface reconstruction), or even by the combination of these techniques as a suite (e.g., atomic force microscopy-based infrared spectroscopy (AFM-IR), or near-ambient-pressure STM/XPS combined system (NAP STM-XPS)) to correlate the various properties simultaneously, so as to further reveal the reaction mechanisms. In this review, we briefly describe the working principles of in situ/operando surface/interface characterization technologies (i.e., SPM and X-ray spectroscopy) and discuss the recent progress in monitoring relevant surface/interface changes during water splitting and CO2 reduction reactions (CO2RR). We hope that this review will provide our readers with some ideas and guidance about how these in situ/operando characterization techniques can help us investigate the changes in catalyst surfaces/interfaces, and further promote the development of (photo-)electrocatalytic surface and interface engineering.
Collapse
|
173
|
Retuerto M, Pascual L, Torrero J, Salam MA, Tolosana-Moranchel Á, Gianolio D, Ferrer P, Kayser P, Wilke V, Stiber S, Celorrio V, Mokthar M, Sanchez DG, Gago AS, Friedrich KA, Peña MA, Alonso JA, Rojas S. Highly active and stable OER electrocatalysts derived from Sr 2MIrO 6 for proton exchange membrane water electrolyzers. Nat Commun 2022; 13:7935. [PMID: 36566246 PMCID: PMC9789951 DOI: 10.1038/s41467-022-35631-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Proton exchange membrane water electrolysis is a promising technology to produce green hydrogen from renewables, as it can efficiently achieve high current densities. Lowering iridium amount in oxygen evolution reaction electrocatalysts is critical for achieving cost-effective production of green hydrogen. In this work, we develop catalysts from Ir double perovskites. Sr2CaIrO6 achieves 10 mA cm-2 at only 1.48 V. The surface of the perovskite reconstructs when immersed in an acidic electrolyte and during the first catalytic cycles, resulting in a stable surface conformed by short-range order edge-sharing IrO6 octahedra arranged in an open structure responsible for the high performance. A proton exchange membrane water electrolysis cell is developed with Sr2CaIrO6 as anode and low Ir loading (0.4 mgIr cm-2). The cell achieves 2.40 V at 6 A cm-2 (overload) and no loss in performance at a constant 2 A cm-2 (nominal load). Thus, reducing Ir use without compromising efficiency and lifetime.
Collapse
Affiliation(s)
- María Retuerto
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| | - Laura Pascual
- Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Jorge Torrero
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Álvaro Tolosana-Moranchel
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Paula Kayser
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Vincent Wilke
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Svenja Stiber
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Verónica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mohamed Mokthar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Daniel García Sanchez
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Aldo Saul Gago
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Kaspar Andreas Friedrich
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Miguel Antonio Peña
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - José Antonio Alonso
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
174
|
Singh AN, Hajibabaei A, Ha M, Meena A, Kim HS, Bathula C, Nam KW. Reduced Potential Barrier of Sodium-Substituted Disordered Rocksalt Cathode for Oxygen Evolution Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:10. [PMID: 36615919 PMCID: PMC9824024 DOI: 10.3390/nano13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cation-disordered rocksalt (DRX) cathodes have been viewed as next-generation high-energy density materials surpassing conventional layered cathodes for lithium-ion battery (LIB) technology. Utilizing the opportunity of a better cation mixing facility in DRX, we synthesize Na-doped DRX as an efficient electrocatalyst toward oxygen evolution reaction (OER). This novel OER electrocatalyst generates a current density of 10 mA cm−2 at an overpotential (η) of 270 mV, Tafel slope of 67.5 mV dec−1, and long-term stability >5.5 days’ superior to benchmark IrO2 (η = 330 mV with Tafel slope = 74.8 mV dec−1). This superior electrochemical behavior is well supported by experiment and sparse Gaussian process potential (SGPP) machine learning-based search for minimum energy structure. Moreover, as oxygen binding energy (OBE) on the surface closely relates to OER activity, our density functional theory (DFT) calculations reveal that Na-doping assists in facile O2 evolution (OBE = 5.45 eV) compared with pristine-DRX (6.51 eV).
Collapse
Affiliation(s)
- Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University—Seoul, Seoul 04620, Republic of Korea
| | - Amir Hajibabaei
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Miran Ha
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Abhishek Meena
- Division of Physics and Semiconductor Science, Dongguk University—Seoul, Seoul 04620, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University—Seoul, Seoul 04620, Republic of Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University—Seoul, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University—Seoul, Seoul 04620, Republic of Korea
- Center for Next Generation Energy and Electronic Materials, Dongguk University—Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
175
|
Kim HY, Jun M, Lee K, Joo SH. Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ho Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
176
|
Abstract
Adsorption energy (AE) of reactive intermediate is currently the most important descriptor for electrochemical reactions (e.g., water electrolysis, hydrogen fuel cell, electrochemical nitrogen fixation, electrochemical carbon dioxide reduction, etc.), which can bridge the gap between catalyst's structure and activity. Tracing the history and evolution of AE can help to understand electrocatalysis and design optimal electrocatalysts. Focusing on oxygen electrocatalysis, this review aims to provide a comprehensive introduction on how AE is selected as the activity descriptor, the intrinsic and empirical relationships related to AE, how AE links the structure and electrocatalytic performance, the approaches to obtain AE, the strategies to improve catalytic activity by modulating AE, the extrinsic influences on AE from the environment, and the methods in circumventing linear scaling relations of AE. An outlook is provided at the end with emphasis on possible future investigation related to the obstacles existing between adsorption energy and electrocatalytic performance.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
177
|
She X, Wang Y, Xu H, Chi Edman Tsang S, Ping Lau S. Challenges and Opportunities in Electrocatalytic CO 2 Reduction to Chemicals and Fuels. Angew Chem Int Ed Engl 2022; 61:e202211396. [PMID: 35989680 PMCID: PMC10091971 DOI: 10.1002/anie.202211396] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Abstract
The global temperature increase must be limited to below 1.5 °C to alleviate the worst effects of climate change. Electrocatalytic CO2 reduction (ECO2 R) to generate chemicals and feedstocks is considered one of the most promising technologies to cut CO2 emission at an industrial level. However, despite decades of studies, advances at the laboratory scale have not yet led to high industrial deployment rates. This Review discusses practical challenges in the industrial chain that hamper the scaling-up deployment of the ECO2 R technology. Faradaic efficiencies (FEs) of about 100 % and current densities above 200 mA cm-2 have been achieved for the ECO2 R to CO/HCOOH, and the stability of the electrolysis system has been prolonged to 2000 h. For ECO2 R to C2 H4 , the maximum FE is over 80 %, and the highest current density has reached the A cm-2 level. Thus, it is believed that ECO2 R may have reached the stage for scale-up. We aim to provide insights that can accelerate the development of the ECO2 R technology.
Collapse
Affiliation(s)
- Xiaojie She
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| | - Yifei Wang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Hui Xu
- Institute for Energy ResearchSchool of the Environment and Safety EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Shu Ping Lau
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| |
Collapse
|
178
|
Electric Double Layer: The Good, the Bad, and the Beauty. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The electric double layer (EDL) is the most important region for electrochemical and heterogeneous catalysis. Because of it, its modeling and investigation are something that can be found in the literature for a long time. However, nowadays, it is still a hot topic of investigation, mainly because of the improvement in simulation and experimental techniques. The present review aims to present the classical models for the EDL, as well as presenting how this region affects electrochemical data in everyday experimentation, how to obtain and interpret information about EDL, and, finally, how to obtain some molecular point of view insights on it.
Collapse
|
179
|
Tian Y, Zeng C, Yang S, Luo Y, Ai L, Jiang J. Co-vacancy rich Co3O4 catalyst enables efficient hydrogen generation from the hydrolysis of ammonia borane. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
180
|
Du L, Xiong H, Lu H, Yang L, Liao R, Xia BY, You B. Electroshock synthesis of a bifunctional nonprecious multi-element alloy for alkaline hydrogen oxidation and evolution. EXPLORATION (BEIJING, CHINA) 2022; 2:20220024. [PMID: 37324802 PMCID: PMC10190983 DOI: 10.1002/exp.20220024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
The design and production of active, durable, and nonprecious electrocatalysts toward alkaline hydrogen oxidation and evolution reactions (HOR/HER) are extremely appealing for the implementation of hydrogen economy, but remain challenging. Here, we report a facile electric shock synthesis of an efficient, stable, and inexpensive NiCoCuMoW multi-element alloy on Ni foam (NiCoCuMoW) as a bifunctional electrocatalyst for both HOR and HER. For the HOR, the current density of NiCoCuMoW could reach ∼11.2 mA cm-2 when the overpotential is 100 mV, higher than that for commercial Pt/C (∼7.2 mA cm-2) and control alloy samples with less elements, along with superior CO tolerance. Moreover, for the HER, the overpotential at 10 mA cm-2 for NiCoCuMoW is only 21 mV, along with a Tafel slope of low to 63.7 mV dec-1, rivaling the commercial Pt/C as well (35 mV and 109.7 mV dec-1). Density functional theory calculations indicate that alloying Ni, Co, Cu, Mo, and W can tune the electronic structure of individual metals and provide multiple active sites to optimize the hydrogen and hydroxyl intermediates adsorption, collaboratively resulting in enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Lijie Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Hu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Li‐Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| |
Collapse
|
181
|
Han L, Zhang J, Zou M, Tong JJ. Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204784. [PMID: 36300911 DOI: 10.1002/smll.202204784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A significant issue that bedeviled the commercialization of renewable energy technologies, ranging from low-temperature water electrolyzers to high-temperature solid oxide cells, is the lack of high-performance catalysts. Among various candidates that could tackle such a challenge, perovskite oxides are rising-star materials because of their unique structural and compositional flexibility. However, single-phase perovskite oxides are challenging to satisfy all the requirements of electrocatalysts concurrently for practical applications, such as high catalytic activity, excellent stability, good ionic and electronic conductivities, and superior chemical/thermo-mechanical robustness. Impressively, perovskite oxides with coupled nanocomposites are emerging as a novel form offering multifunctionality due to their intrinsic features, including infinite interfaces with solid interaction, tunable compositions, flexible configurations, and maximum synergistic effects between assorted components. Considering this new configuration has attracted great attention owing to its promising performances in various energy-related applications, this review timely summarizes the leading-edge development of perovskite oxide-based coupled nanocomposites. Their state-of-art synthetic strategies are surveyed and highlighted, their unique structural advantages are highlighted and illustrated through the typical oxygen reduction reaction and oxygen evolution reactions in both high and low-temperature applications. Opinions on the current critical scientific issues and opportunities in this burgeoning research field are all provided.
Collapse
Affiliation(s)
- Liang Han
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jiawei Zhang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Minda Zou
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jianhua Joshua Tong
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
182
|
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2022; 5:13. [PMID: 36212026 PMCID: PMC9536324 DOI: 10.1007/s41918-022-00173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2022]
Abstract
AbstractProton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans. However, their performance, cost, and durability are significantly related to Pt-based electrocatalysts, hampering their large-scale commercial application. Hence, considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use, and consequently, the cost. Therefore, this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts, which significantly affect the nanoparticle size, shape, and dispersion on supports and thus the activity and durability of the prepared electrocatalysts. The reviewed processes include (i) the functionalization of a commercial carbon support for enhanced catalyst–support interaction and additional catalytic effects, (ii) the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts, (iii) the preparation of spherical and nonspherical Pt-based electrocatalysts (polyhedrons, nanocages, nanoframes, one- and two-dimensional nanostructures), and (iv) the postsynthesis treatments of supported electrocatalysts. The influences of the supports, key experimental parameters, and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail. Future research directions are outlined, including (i) the full exploitation of the potential functionalization of commercial carbon supports, (ii) scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts, and (iii) simplification of postsynthesis treatments. One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts.
Graphical Abstract
This review focuses on the synthesis process of Pt-based electrocatalysts/C to develop aqueous one-pot synthesis at large-scale production for PEMFC stack application.
Collapse
|
183
|
Engineering Gas–Solid–Liquid Triple-Phase Interfaces for Electrochemical Energy Conversion Reactions. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
184
|
Zhang T, Jin J, Chen J, Fang Y, Han X, Chen J, Li Y, Wang Y, Liu J, Wang L. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat Commun 2022; 13:6875. [PMID: 36371427 PMCID: PMC9653394 DOI: 10.1038/s41467-022-34619-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (−F, −Cl, −Br, −I, −OH) are employed via a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt−1 and turnover frequency of 30.3 H2 s−1 at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions. Establishing robust structure/performance correlations is critical for the development of single-atom-catalysts with improved activity. Here, the axial ligand on Pt single-atom-catalyst is precisely adjusted and studied, showing that the ligand’s first electron affinity is crucial for the catalysis.
Collapse
|
185
|
Salazar‐Gastélum LJ, Beltrán‐Gastélum M, Calva‐Yañez JC, Lin SW, Chávez‐Velasco D, Salazar‐Gastélum MI, Pérez‐Sicairos S. Synthesis and ex‐situ evaluation of quaternized polysulfone as an anion exchange ionomer for AEM technologies. J Appl Polym Sci 2022. [DOI: 10.1002/app.53359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Luis J. Salazar‐Gastélum
- Tecnológico Nacional de México/IT de Tijuana/Centro de Graduados e Investigación en Química Tijuana Mexico
| | - Mara Beltrán‐Gastélum
- Tecnológico Nacional de México/IT de Tijuana/Centro de Graduados e Investigación en Química Tijuana Mexico
| | - Julio C. Calva‐Yañez
- CONACyT‐Tecnológico Nacional de México/IT de Tijuana/Centro de Graduados e Investigación en Química Tijuana Mexico
| | - Shui Wai Lin
- Tecnológico Nacional de México/IT de Tijuana/Centro de Graduados e Investigación en Química Tijuana Mexico
| | - Daniel Chávez‐Velasco
- Tecnológico Nacional de México/IT de Tijuana/Centro de Graduados e Investigación en Química Tijuana Mexico
| | - Moisés I. Salazar‐Gastélum
- Tecnológico Nacional de México/IT de Tijuana/Centro de Graduados e Investigación en Química Tijuana Mexico
- Tecnológico Nacional de México/IT de Tijuana/Posgrado en Ciencias de la Ingeniería Tijuana Mexico
| | - Sergio Pérez‐Sicairos
- Tecnológico Nacional de México/IT de Tijuana/Centro de Graduados e Investigación en Química Tijuana Mexico
| |
Collapse
|
186
|
Electronic interactions and stability issues at the copper-graphene interface in air and in alkaline solution under electrochemical control. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
187
|
Kim J, Park A, Kim J, Kwak SJ, Lee JY, Lee D, Kim S, Choi BK, Kim S, Kwag J, Kim Y, Jeon S, Lee WC, Hyeon T, Lee CH, Lee WB, Park J. Observation of H 2 Evolution and Electrolyte Diffusion on MoS 2 Monolayer by In Situ Liquid-Phase Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206066. [PMID: 36120806 DOI: 10.1002/adma.202206066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Unit-cell-thick MoS2 is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its tunable catalytic activity, which is determined based on the energetics and molecular interactions of different types of HER active sites. Kinetic responses of MoS2 active sites, including the reaction onset, diffusion of the electrolyte and H2 bubbles, and continuation of these processes, are important factors affecting the catalytic activity of MoS2 . Investigating these factors requires a direct real-time analysis of the HER occurring on spatially independent active sites. Herein, the H2 evolution and electrolyte diffusion on the surface of MoS2 are observed in real time by in situ electrochemical liquid-phase transmission electron microscopy (LPTEM). Time-dependent LPTEM observations reveal that different types of active sites are sequentially activated under the same conditions. Furthermore, the electrolyte flow to these sites is influenced by the reduction potential and site geometry, which affects the bubble detachment and overall HER activity of MoS2 .
Collapse
Affiliation(s)
- Jihoon Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Anseong Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Seung Jae Kwak
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Yoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Donghoon Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sebin Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Back Kyu Choi
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Sungin Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jimin Kwag
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Younhwa Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungho Jeon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Won Chul Lee
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Chul-Ho Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
188
|
In-situ electrochemical surface-enhanced Raman spectroscopy in metal/polyelectrolyte interfaces. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
189
|
Kim H, Yoo JM, Chung DY, Kim Y, Jung M, Bootharaju MS, Kim J, Koo S, Shin H, Na G, Mun BS, Kwak JH, Sung YE, Hyeon T. Design of a Metal/Oxide/Carbon Interface for Highly Active and Selective Electrocatalysis. ACS NANO 2022; 16:16529-16538. [PMID: 36153951 DOI: 10.1021/acsnano.2c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sustainable energy-conversion and chemical-production require catalysts with high activity, durability, and product-selectivity. Metal/oxide hybrid structure has been intensively investigated to achieve promising catalytic performance, especially in neutral or alkaline electrocatalysis where water dissociation is promoted near the oxide surface for (de)protonation of intermediates. Although catalytic promise of the hybrid structure is demonstrated, it is still challenging to precisely modulate metal/oxide interfacial interactions on the nanoscale. Herein, we report an effective strategy to construct rich metal/oxide nano-interfaces on conductive carbon supports in a surfactant-free and self-terminated way. When compared to the physically mixed Pd/CeO2 system, a much higher degree of interface formation was identified with largely improved hydrogen oxidation reaction (HOR) kinetics. The benefits of the rich metal-CeO2 interface were further generalized to Pd alloys for optimized adsorption energy, where the Pd3Ni/CeO2/C catalyst shows superior performance with HOR selectivity against CO poisoning and shows long-term stability. We believe this work highlights the importance of controlling the interfacial junctions of the electrocatalyst in simultaneously achieving enhanced activity, selectivity, and stability.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongseon Kim
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Moonjung Jung
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiheon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejong Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Geumbi Na
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongjin Simon Mun
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hun Kwak
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
190
|
Shin H, Yoo JM, Sung YE, Chung DY. Dynamic Electrochemical Interfaces for Energy Conversion and Storage. JACS AU 2022; 2:2222-2234. [PMID: 36311833 PMCID: PMC9597595 DOI: 10.1021/jacsau.2c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical energy conversion and storage are central to developing future renewable energy systems. For efficient energy utilization, both the performance and stability of electrochemical systems should be optimized in terms of the electrochemical interface. To achieve this goal, it is imperative to understand how a tailored electrode structure and electrolyte speciation can modify the electrochemical interface structure to improve its properties. However, most approaches describe the electrochemical interface in a static or frozen state. Although a simple static model has long been adopted to describe the electrochemical interface, atomic and molecular level pictures of the interface structure should be represented more dynamically to understand the key interactions. From this perspective, we highlight the importance of understanding the dynamics within an electrochemical interface in the process of designing highly functional and robust energy conversion and storage systems. For this purpose, we explore three unique classes of dynamic electrochemical interfaces: self-healing, active-site-hosted, and redox-mediated interfaces. These three cases of dynamic electrochemical interfaces focusing on active site regeneration collectively suggest that our understanding of electrochemical systems should not be limited to static models but instead expanded toward dynamic ones with close interactions between the electrode surface, dissolved active sites, soluble species, and reactants in the electrolyte. Only when we begin to comprehend the fundamentals of these dynamics through operando analyses can electrochemical conversion and storage systems be advanced to their full potential.
Collapse
Affiliation(s)
- Heejong Shin
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic
of Korea
| | - Ji Mun Yoo
- Department
of Mechanical and Process Engineering, ETH
Zurich, 8092 Zurich, Switzerland
| | - Yung-Eun Sung
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic
of Korea
| | - Dong Young Chung
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
191
|
Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance. Nat Commun 2022; 13:6157. [PMID: 36257992 PMCID: PMC9579166 DOI: 10.1038/s41467-022-33892-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
The development of low-Platinum content polymer electrolyte fuel cells (PEFCs) has been hindered by inexplicable reduction of oxygen reduction reaction (ORR) activity and unexpected O2 mass transport resistance when catalysts have been interfaced with ionomer in a cathode catalyst layer. In this study, we introduce a bottom-up designed spherical carbon support with intrinsic Nitrogen-doping that permits uniform dispersion of Pt catalyst, which reproducibly exhibits high ORR mass activity of 638 ± 68 mA mgPt−1 at 0.9 V and 100% relative humidity (RH) in a membrane electrode assembly. The uniformly distributed Nitrogen-functional surface groups on the carbon support surface promote high ionomer coverage directly evidenced by high-resolution electron microscopy and nearly humidity-independent double layer capacitance. The hydrophilic nature of the carbon surface appears to ensure high activity and performance for operation over a broad range of RH. The paradigm challenging large carbon support (~135 nm) combined with favourable ionomer film structure, hypothesized recently to arise from the interactions of an ionic moiety of the ionomer and Nitrogen-functional group of the catalyst support, results in an unprecedented low local oxygen transport resistance (5.0 s cm−1) for ultra-low Pt loading (34 ± 2 μgPt cm−2) catalyst layer. Development of high-performance polymer electrolyte fuel cells has historically focused on designing new catalysts and ionomers. Here, the authors present a bottom-up approach for designing catalyst support that achieves superior oxygen reduction activity and low local oxygen transport resistance in a membrane electrode assembly.
Collapse
|
192
|
Panse KS, Wu H, Zhou S, Zhao F, Aluru NR, Zhang Y. Innermost Ion Association Configuration Is a Key Structural Descriptor of Ionic Liquids at Electrified Interfaces. J Phys Chem Lett 2022; 13:9464-9472. [PMID: 36198103 DOI: 10.1021/acs.jpclett.2c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The structure of electric double layers (EDLs) is crucial for all types of electrochemical processes. While in dilute solutions EDL structure can be approximately treated within the Gouy-Chapman-Stern regime, in highly ionic electrolytes the description of EDL has been largely elusive. Here we study the EDL structure of an ionic liquid on a series of crystalline electrodes. Through molecular dynamics (MD) simulations, we observe strong intermolecular interaction among cations and anions and propose that the cation-anion association structure at the innermost layer is a key descriptor of the EDL. Using our recently developed electrochemical 3D atomic force microscopy (EC-3D-AFM) technique, we confirm the theoretical prediction and further find that the width of the first EDL is an experimental gauge of the ion association structure in that layer. We expect such ion association descriptors to be broadly applicable to a large range of highly ionic electrolytes on various electrode surfaces.
Collapse
Affiliation(s)
- Kaustubh S Panse
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| | - Haiyi Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Shan Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| | - Fujia Zhao
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Yingjie Zhang
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| |
Collapse
|
193
|
Xu W, Yoon D, Yang Y, Xiong Y, Li H, Zeng R, Muller DA, Abruña HD. MOF-Derived Bimetallic Pd-Co Alkaline ORR Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44735-44744. [PMID: 36153946 DOI: 10.1021/acsami.2c10074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of highly active, durable, and low-cost electrocatalysts for the oxygen reduction reaction (ORR) has been of paramount importance for advancing and commercializing fuel cell technologies. Here, we report on a novel family of Pd-Co binary alloys (PdxCo, x = 1-6) embedded in bimetallic organic framework (BMOF)-derived polyhedral carbon supports. BMOF-derived Pd3Co, annealed at 300-400 °C, exhibited the most promising ORR activity among the family of materials studied, with a half-wave potential (E1/2) of 0.977 V vs RHE and a mass activity of 0.86 mA/μgPd in 1 M KOH, both values being superior to those of commercial Pd/C electrocatalysts. Moreover, it maintained robust durability after 20,000 potential cycles with a minimal degradation in E1/2 of 10 mV. The enhanced performance and stability are ascribed to the uniform elemental distribution of Pd and Co and the Co-containing N-doped carbon (Co-N-C) structures. In anion exchange membrane fuel cell (AEMFC) tests, the peak power density of the cell employing a BMOF-derived Pd3Co cathode reached 1.1 W/cm2 at an ultralow Pd loading of 0.04 mgPd/cm2. Strategies developed herein provide promising insights into the rational design and synthesis of highly active and durable ORR electrocatalysts for alkaline fuel cells.
Collapse
Affiliation(s)
- Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Dasol Yoon
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
194
|
Che X, Wu Q, Hu S, Wang G, Pang H, Sun W, Ma H, Wang X, Tan L, Yang G. Directed synthesis of an unusual uniform trimetallic hydrogen evolution catalyst by a predesigned cobalt-bipy modified bivanadyl capped polymolybdate. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
195
|
Oxygen promoted hydrogen production from formaldehyde reforming with oxide-derived Cu nanowires at room temperature. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
196
|
Engineering functional mesoporous materials from plant polyphenol based coordination polymers. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
197
|
Wang X, Wang J, Wang P, Li L, Zhang X, Sun D, Li Y, Tang Y, Wang Y, Fu G. Engineering 3d-2p-4f Gradient Orbital Coupling to Enhance Electrocatalytic Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206540. [PMID: 36085436 DOI: 10.1002/adma.202206540] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The development of highly efficient and economical materials for the oxygen reduction reaction (ORR) plays a key role in practical energy conversion technologies. However, the intrinsic scaling relations exert thermodynamic inhibition on realizing highly active ORR electrocatalysts. Herein, a novel and feasible gradient orbital coupling strategy for tuning the ORR performance through the construction of Co 3d-O 2p-Eu 4f unit sites on the Eu2 O3 -Co model is proposed. Through the gradient orbital coupling, the pristine ionic property between Eu and O atoms is assigned with increased covalency, which optimizes the eg occupancy of Co sites, and weakens the OO bond, thus ultimately breaking the scaling relation between *OOH and *OH at Co-O-Eu unit sites. The optimized model catalyst displays onset and half-wave potential of 1.007 and 0.887 V versus reversible hydrogen electrode, respectively, which are higher than those of commercial Pt/C and most Co-based catalysts ever reported. In addition, the catalyst is found to possess superior selectivity and durability. It also reveals better cell performance than commercial noble-metal catalysts in Zn-air batteries in terms of high power/energy densities and long cycle life. This study provides a new perspective for electronic modulation strategy by the construction of gradient 3d-2p-4f orbital coupling.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jingwen Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Pu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liangcheng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
198
|
Chen W, Qin Z, Wang ZM. Heterometal doping on nickel selenide corrugations for solar-assisted electrocatalytic hydrogen evolution. Dalton Trans 2022; 51:15507-15514. [PMID: 36165211 DOI: 10.1039/d2dt02617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since nickel exhibits good binding energy and is inexpensive, it is widely applied as a hydrogen evolution reaction (HER) electrocatalyst. Among all Ni-based materials, nickel selenide (NiSe) shows a unique electronic structure as a semiconductor with good electrocatalytic activity. Herein, we prepare Co-doped NiSe (Ni1-xCoxSe) with a structure of uniform corrugations by one-step chemical vapor deposition. For comparison, Fe-doped NiSe (Ni1-xFexSe) and NiSe are also prepared using the same method. In alkaline electrolyte, Ni1-xCoxSe shows great HER performance in terms of low overpotential (93 mV@10 mA cm-2 and 140 mV@50 mA cm-2) and long-term stability. Moreover, with the assistance of solar energy, the overpotential needed for Ni1-xCoxSe is reduced, making Ni1-xCoxSe better than most reported NiSe-based HER catalysts. On the other hand, the current density of Ni1-xCoxSe is 13 mA cm-2@93 mV and 63 mA cm-2@140 mV with illumination, which is 30% and 26% higher than that without solar illumination assistance, respectively. Therefore, we believe that inducing sunlight to electrocatalytic hydrogen evolution in water splitting could be a supplementary footprint toward the utilization of solar energy.
Collapse
Affiliation(s)
- Weiwu Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Zhaojun Qin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Zhiming M Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China. .,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
199
|
Cerium-Doped CoMn2O4 Spinels as Highly Efficient Bifunctional Electrocatalysts for ORR/OER Reactions. Catalysts 2022. [DOI: 10.3390/catal12101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Low-cost and highly efficient electrocatalysts for oxygen reactions are highly important for oxygen-related energy storage/conversion devices (e.g., solar fuels, fuel cells, and rechargeable metal-air batteries). In this work, a range of compositionally-tuned cerium-doped CoMn2O4 (Ce-CMO-X) spinels were prepared via oxidizing precipitation and subsequent crystallization method and evaluated as electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Ce modification into the CMO spinels lead to the changes of surface electronic structure. And Ce-CMO-X catalysts display better electrochemical performance than that of pristine CMO spinel. Among them, Ce-CMO-18% shows the best activity. The Ce-CMO-18% processes a higher ratio of Co3+/Co2+, Mn4+/Mn3+, which is beneficial to ORR performance, while the higher content of oxygen vacancies in Ce-CMO-18% make for better OER performance. Thus, the Ce-doped CMO spinels are potential candidates as bifunctional electrocatalysts for both ORR and OER in alkaline environments. Then, the hybrid Ce-CMO-18%/MWCNTs catalyst was also synthesized, which shows further enhanced ORR and OER activities. It displays an ORR onset potential of 0.93 V and potential of 0.84 V at density of 3 mA cm−2 (at 1600 rpm), which is comparable to commercial Pt/C. The OER onset potential and potential at a current density 10 mA cm-2 are 183 mV and 341 mV. The superior electrical conductivity and oxygen functional groups at the surface of MWCNTs can facilitate the interaction between metal oxides and carbon, which promoted the OER and ORR performances significantly.
Collapse
|
200
|
Zhong G, Cheng T, Shah AH, Wan C, Huang Z, Wang S, Leng T, Huang Y, Goddard WA, Duan X. Determining the hydronium pK[Formula: see text] at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics. Proc Natl Acad Sci U S A 2022; 119:e2208187119. [PMID: 36122216 PMCID: PMC9522355 DOI: 10.1073/pnas.2208187119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is critical for green hydrogen generation and exhibits distinct pH-dependent kinetics that have been elusive to understand. A molecular-level understanding of the electrochemical interfaces is essential for developing more efficient electrochemical processes. Here we exploit an exclusively surface-specific electrical transport spectroscopy (ETS) approach to probe the Pt-surface water protonation status and experimentally determine the surface hydronium pKa [Formula: see text] 4.3. Quantum mechanics (QM) and reactive dynamics using a reactive force field (ReaxFF) molecular dynamics (RMD) calculations confirm the enrichment of hydroniums (H3O[Formula: see text]) near Pt surface and predict a surface hydronium pKa of 2.5 to 4.4, corroborating the experimental results. Importantly, the observed Pt-surface hydronium pKa correlates well with the pH-dependent HER kinetics, with the protonated surface state at lower pH favoring fast Tafel kinetics with a Tafel slope of 30 mV per decade and the deprotonated surface state at higher pH following Volmer-step limited kinetics with a much higher Tafel slope of 120 mV per decade, offering a robust and precise interpretation of the pH-dependent HER kinetics. These insights may help design improved electrocatalysts for renewable energy conversion.
Collapse
Affiliation(s)
- Guangyan Zhong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Aamir Hassan Shah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Chengzhang Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Zhihong Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tianle Leng
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
- Liquid Sunlight Alliance, California Institute of Technology, Pasadena, CA 91125
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|