151
|
Blary A, Jenczewski E. Manipulation of crossover frequency and distribution for plant breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:575-592. [PMID: 30483818 PMCID: PMC6439139 DOI: 10.1007/s00122-018-3240-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
The crossovers (COs) that occur during meiotic recombination lead to genetic diversity upon which natural and artificial selection can act. The potential of tinkering with the mechanisms of meiotic recombination to increase the amount of genetic diversity accessible for breeders has been under the research spotlight for years. A wide variety of approaches have been proposed to increase CO frequency, alter CO distribution and induce COs between non-homologous chromosomal regions. For most of these approaches, translational biology will be crucial for demonstrating how these strategies can be of practical use in plant breeding. In this review, we describe how tinkering with meiotic recombination could benefit plant breeding and give concrete examples of how these strategies could be implemented into breeding programs.
Collapse
Affiliation(s)
- A Blary
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - E Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
152
|
Lee K, Eggenberger AL, Banakar R, McCaw ME, Zhu H, Main M, Kang M, Gelvin SB, Wang K. CRISPR/Cas9-mediated targeted T-DNA integration in rice. PLANT MOLECULAR BIOLOGY 2019; 99:317-328. [PMID: 30645710 DOI: 10.1007/s11103-018-00819-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/27/2018] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Combining with a CRISPR/Cas9 system, Agrobacterium-mediated transformation can lead to precise targeted T-DNA integration in the rice genome. Agrobacterium-mediated T-DNA integration into the plant genomes is random, which often causes variable transgene expression and insertional mutagenesis. Because T-DNA preferentially integrates into double-strand DNA breaks, we adapted a CRISPR/Cas9 system to demonstrate that targeted T-DNA integration can be achieved in the rice genome. Using a standard Agrobacterium binary vector, we constructed a T-DNA that contains a CRISPR/Cas9 system using SpCas9 and a gRNA targeting the exon of the rice AP2 domain-containing protein gene Os01g04020. The T-DNA also carried a red fluorescent protein and a hygromycin resistance (hptII) gene. One version of the vector had hptII expression driven by an OsAct2 promoter. In an effort to detect targeted T-DNA insertion events, we built another T-DNA with a promoterless hptII gene adjacent to the T-DNA right border such that integration of T-DNA into the targeted exon sequence in-frame with the hptII gene would allow hptII expression. Our results showed that these constructs could produce targeted T-DNA insertions with frequencies ranging between 4 and 5.3% of transgenic callus events, in addition to generating a high frequency (50-80%) of targeted indel mutations. Sequencing analyses showed that four out of five sequenced T-DNA/gDNA junctions carry a single copy of full-length T-DNA at the target site. Our results indicate that Agrobacterium-mediated transformation combined with a CRISPR/Cas9 system can efficiently generate targeted T-DNA insertions.
Collapse
MESH Headings
- Agrobacterium/genetics
- Base Sequence
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems/genetics
- DNA, Bacterial/genetics
- Exons
- Gene Editing
- Gene Expression Regulation, Plant/genetics
- Gene Frequency
- Gene Targeting
- Genes, Plant/genetics
- Genetic Vectors/genetics
- Genome, Plant/genetics
- INDEL Mutation
- Luminescent Proteins/genetics
- Mutagenesis, Insertional/methods
- Oryza/genetics
- Oryza/metabolism
- Plant Proteins/genetics
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Sequence Analysis
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Keunsub Lee
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Alan L Eggenberger
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Raviraj Banakar
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Morgan E McCaw
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Huilan Zhu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Plant Transformation Facility, Iowa State University, Ames, IA, 50011, USA
| | - Marcy Main
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Plant Transformation Facility, Iowa State University, Ames, IA, 50011, USA
| | - Minjeong Kang
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA, 50011, USA
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kan Wang
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA.
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
153
|
Muthamilarasan M, Singh NK, Prasad M. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. ADVANCES IN GENETICS 2019; 103:1-38. [PMID: 30904092 DOI: 10.1016/bs.adgen.2019.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For several decades, researchers are working toward improving the "major" crops for better adaptability and tolerance to environmental stresses. However, little or no research attention is given toward neglected and underutilized crop species (NUCS) which hold the potential to ensure food and nutritional security among the ever-growing global population. NUCS are predominantly climate resilient, but their yield and quality are compromised due to selective breeding. In this context, the importance of omics technologies namely genomics, transcriptomics, proteomics, phenomics and ionomics in delineating the complex molecular machinery governing growth, development and stress responses of NUCS is underlined. However, gaining insights through individual omics approaches will not be sufficient to address the research questions, whereas integrating these technologies could be an effective strategy to decipher the gene function, genome structures, biological pathways, metabolic and regulatory networks underlying complex traits. Given this, the chapter enlists the importance of NUCS in food and nutritional security and provides an overview of deploying omics approaches to study the NUCS. Also, the chapter enumerates the status of crop improvement programs in NUCS and suggests implementing "integrating omics" for gaining a better understanding of crops' response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Mehanathan Muthamilarasan
- National Institute of Plant Genome Research, New Delhi, India; ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Nagendra Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
154
|
Sedeek KEM, Mahas A, Mahfouz M. Plant Genome Engineering for Targeted Improvement of Crop Traits. FRONTIERS IN PLANT SCIENCE 2019; 10:114. [PMID: 30809237 PMCID: PMC6379297 DOI: 10.3389/fpls.2019.00114] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/23/2019] [Indexed: 05/18/2023]
Abstract
To improve food security, plant biology research aims to improve crop yield and tolerance to biotic and abiotic stress, as well as increasing the nutrient contents of food. Conventional breeding systems have allowed breeders to produce improved varieties of many crops; for example, hybrid grain crops show dramatic improvements in yield. However, many challenges remain and emerging technologies have the potential to address many of these challenges. For example, site-specific nucleases such as TALENs and CRISPR/Cas systems, which enable high-efficiency genome engineering across eukaryotic species, have revolutionized biological research and its applications in crop plants. These nucleases have been used in diverse plant species to generate a wide variety of site-specific genome modifications through strategies that include targeted mutagenesis and editing for various agricultural biotechnology applications. Moreover, CRISPR/Cas genome-wide screens make it possible to discover novel traits, expand the range of traits, and accelerate trait development in target crops that are key for food security. Here, we discuss the development and use of various site-specific nuclease systems for different plant genome-engineering applications. We highlight the existing opportunities to harness these technologies for targeted improvement of traits to enhance crop productivity and resilience to climate change. These cutting-edge genome-editing technologies are thus poised to reshape the future of agriculture and food security.
Collapse
Affiliation(s)
| | | | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
155
|
Dong Y, Ng E, Lu J, Fenwick T, Tao Y, Bertain S, Sandoval M, Bermudez E, Hou Z, Patten P, Lassner M, Siehl D. Desensitizing plant EPSP synthase to glyphosate: Optimized global sequence context accommodates a glycine-to-alanine change in the active site. J Biol Chem 2019; 294:716-725. [PMID: 30425098 PMCID: PMC6333898 DOI: 10.1074/jbc.ra118.006134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/08/2018] [Indexed: 12/25/2022] Open
Abstract
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the transfer of a carboxyvinyl group from phosphoenolpyruvate (PEP) to shikimate-3-phosphate and in plants is the target of the herbicide glyphosate. EPSPSs with high catalytic efficiency and insensitivity to glyphosate are of microbial origin, including the enzyme from Agrobacterium strain CP4, in which insensitivity is conferred by an active site alanine. In the sequence context of plant EPSPSs, alanine in place of glycine at the equivalent position interferes with the binding of both glyphosate and PEP. We show here that iterative optimization of maize EPSPS containing the G101A substitution yielded variants on par with CP4 in terms of catalytic activity in the presence of glyphosate. The improvement relative to G101A alone was entirely due to reduction in Km for PEP from 333 to 18 μm, versus 9.5 μm for native maize EPSPS. A large portion of the reduction in Km was conferred by two down-sizing substitutions (L97C and V332A) within 8 Å of glyphosate, which together reduced Km for PEP to 43 μm Although the original optimization was conducted with maize EPSPS, contextually homologous substitutions conferred similar properties to the EPSPSs of other crops. We also discovered a variant having the known glyphosate-desensitizing substitution P106L plus three additional ones that reduced the Km for PEP from 47 μm, observed with P106L alone, to 10.3 μm The improvements obtained with both Ala101 and Leu106 have implications regarding glyphosate-tolerant crops and weeds.
Collapse
Affiliation(s)
- Yuxia Dong
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Emily Ng
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Jian Lu
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Tamara Fenwick
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Yumin Tao
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Sean Bertain
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Marian Sandoval
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Ericka Bermudez
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Zhenglin Hou
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Phil Patten
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Michael Lassner
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Daniel Siehl
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| |
Collapse
|
156
|
Abstract
The CRISPR-Cas9 system has become the most widely adopted genome editing platform and is used in an expanding number of organisms, mainly by creating targeted knockouts through non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). It would also be highly desirable to be able to use homology-directed repair (HDR) to perform precise gene editing, for example, by replacing a small section of DNA to substitute one amino acid for another in a given gene product. However, this remains a serious challenge in plants. Here, we describe a recently developed intron-mediated site-specific gene replacement method acting through the NHEJ pathway in which Cas9 simultaneously introduces DSBs in adjacent introns and the donor template. This approach is of general use for replacing targeted gene fragments at specific genomic sites in plants.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
157
|
Schmidt C, Pacher M, Puchta H. DNA Break Repair in Plants and Its Application for Genome Engineering. Methods Mol Biol 2019; 1864:237-266. [PMID: 30415341 DOI: 10.1007/978-1-4939-8778-8_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome engineering is a biotechnological approach to precisely modify the genetic code of a given organism in order to change the context of an existing sequence or to create new genetic resources, e.g., for obtaining improved traits or performance. Efficient targeted genome alterations are mainly based on the induction of DNA double-strand breaks (DSBs) or adjacent single-strand breaks (SSBs). Naturally, all organisms continuously have to deal with DNA-damaging factors challenging the genetic integrity, and therefore a wide range of DNA repair mechanisms have evolved. A profound understanding of the different repair pathways is a prerequisite to control and enhance targeted gene modifications. DSB repair can take place by nonhomologous end joining (NHEJ) or homology-dependent repair (HDR). As the main outcome of NHEJ-mediated repair is accompanied by small insertions and deletions, it is applicable to specifically knock out genes or to rearrange linkage groups or whole chromosomes. The basic requirement for HDR is the presence of a homologous template; thus this process can be exploited for targeted integration of ectopic sequences into the plant genome. The development of different types of artificial site-specific nucleases allows for targeted DSB induction in the plant genome. Such synthetic nucleases have been used for both qualitatively studying DSB repair in vivo with respect to mechanistic differences and quantitatively in order to determine the role of key factors for NHEJ and HR, respectively. The conclusions drawn from these studies allow for a better understanding of genome evolution and help identifying synergistic or antagonistic genetic interactions while supporting biotechnological applications for transiently modifying the plant DNA repair machinery in favor of targeted genome engineering.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Pacher
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
158
|
Ran Y, Patron N, Kay P, Wong D, Buchanan M, Cao Y, Sawbridge T, Davies JP, Mason J, Webb SR, Spangenberg G, Ainley WM, Walsh TA, Hayden MJ. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2088-2101. [PMID: 29734518 PMCID: PMC6230953 DOI: 10.1111/pbi.12941] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 05/07/2023]
Abstract
Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation.
Collapse
Affiliation(s)
- Yidong Ran
- Genovo Biotechnology Co. LtdTianjinChina
| | | | - Pippa Kay
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
| | - Debbie Wong
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
| | - Margaret Buchanan
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
| | - Ying‐Ying Cao
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
| | - Tim Sawbridge
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
- School of Applied BiologyLa Trobe UniversityBundooraVic.Australia
| | | | - John Mason
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
- School of Applied BiologyLa Trobe UniversityBundooraVic.Australia
| | | | - German Spangenberg
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
- School of Applied BiologyLa Trobe UniversityBundooraVic.Australia
| | | | | | - Matthew J. Hayden
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
- School of Applied BiologyLa Trobe UniversityBundooraVic.Australia
| |
Collapse
|
159
|
Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1127-1153. [PMID: 30387552 DOI: 10.1111/jipb.12734] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/30/2018] [Indexed: 05/18/2023]
Abstract
Since the discovery that nucleases of the bacterial CRISPR (clustered regularly interspaced palindromic repeat)-associated (Cas) system can be used as easily programmable tools for genome engineering, their application massively transformed different areas of plant biology. In this review, we assess the current state of their use for crop breeding to incorporate attractive new agronomical traits into specific cultivars of various crop plants. This can be achieved by the use of Cas9/12 nucleases for double-strand break induction, resulting in mutations by non-homologous recombination. Strategies for performing such experiments - from the design of guide RNA to the use of different transformation technologies - are evaluated. Furthermore, we sum up recent developments regarding the use of nuclease-deficient Cas9/12 proteins, as DNA-binding moieties for targeting different kinds of enzyme activities to specific sites within the genome. Progress in base deamination, transcriptional induction and transcriptional repression, as well as in imaging in plants, is also discussed. As different Cas9/12 enzymes are at hand, the simultaneous application of various enzyme activities, to multiple genomic sites, is now in reach to redirect plant metabolism in a multifunctional manner and pave the way for a new level of plant synthetic biology.
Collapse
Affiliation(s)
- Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland OT Gatersleben, Germany
| | - Janine Pietralla
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Goetz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland OT Gatersleben, Germany
| | - Michael Pacher
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
160
|
Abstract
Genome-editing tools provide advanced biotechnological techniques that enable the precise and efficient targeted modification of an organism's genome. Genome-editing systems have been utilized in a wide variety of plant species to characterize gene functions and improve agricultural traits. We describe the current applications of genome editing in plants, focusing on its potential for crop improvement in terms of adaptation, resilience, and end-use. In addition, we review novel breakthroughs that are extending the potential of genome-edited crops and the possibilities of their commercialization. Future prospects for integrating this revolutionary technology with conventional and new-age crop breeding strategies are also discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Karen Massel
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Ian D Godwin
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Caixia Gao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
161
|
Zhang Y, Massel K, Godwin ID, Gao C. Applications and potential of genome editing in crop improvement. Genome Biol 2018. [PMID: 30501614 DOI: 10.1186/s13059-018-1586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Genome-editing tools provide advanced biotechnological techniques that enable the precise and efficient targeted modification of an organism's genome. Genome-editing systems have been utilized in a wide variety of plant species to characterize gene functions and improve agricultural traits. We describe the current applications of genome editing in plants, focusing on its potential for crop improvement in terms of adaptation, resilience, and end-use. In addition, we review novel breakthroughs that are extending the potential of genome-edited crops and the possibilities of their commercialization. Future prospects for integrating this revolutionary technology with conventional and new-age crop breeding strategies are also discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Karen Massel
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Ian D Godwin
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Caixia Gao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
162
|
Smith-Moore CM, Grunden AM. Bacteria and archaea as the sources of traits for enhanced plant phenotypes. Biotechnol Adv 2018; 36:1900-1916. [DOI: 10.1016/j.biotechadv.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
163
|
Langner T, Kamoun S, Belhaj K. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:479-512. [PMID: 29975607 DOI: 10.1146/annurev-phyto-080417-050158] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome editing by sequence-specific nucleases (SSNs) has revolutionized biology by enabling targeted modifications of genomes. Although routine plant genome editing emerged only a few years ago, we are already witnessing the first applications to improve disease resistance. In particular, CRISPR-Cas9 has democratized the use of genome editing in plants thanks to the ease and robustness of this method. Here, we review the recent developments in plant genome editing and its application to enhancing disease resistance against plant pathogens. In the future, bioedited disease resistant crops will become a standard tool in plant breeding.
Collapse
Affiliation(s)
- Thorsten Langner
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
164
|
Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1275-1282. [PMID: 29223136 PMCID: PMC5999311 DOI: 10.1111/pbi.12868] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/22/2017] [Accepted: 12/03/2017] [Indexed: 05/20/2023]
Abstract
Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava.
Collapse
Affiliation(s)
- Aaron W. Hummel
- Department of Genetics, Cell Biology, & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Present address:
KWS Gateway Research CenterSt. LouisMOUSA
| | | | - Tomas Cermak
- Department of Genetics, Cell Biology, & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Inari Agriculture Inc200 Sidney StSuite 340, CambridgeMA 02139USA
| | - Andrew M. Mutka
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Present address:
Elemental EnzymesSt. LouisMOUSA
| | - Anupama Vijayaraghavan
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Present address:
MonsantoSt. LouisMOUSA
| | - Adam Boyher
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Colby G. Starker
- Department of Genetics, Cell Biology, & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Rebecca Bart
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology, & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | | |
Collapse
|
165
|
Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A, Levy AA. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:5-16. [PMID: 29668111 DOI: 10.1111/tpj.13932] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 05/21/2023]
Abstract
Current breeding relies mostly on random mutagenesis and recombination to generate novel genetic variation. However, targeted genome editing is becoming an increasingly important tool for precise plant breeding. Using the CRISPR-Cas system combined with the bean yellow dwarf virus rolling circle replicon, we optimized a method for targeted mutagenesis and gene replacement in tomato. The carotenoid isomerase (CRTISO) and phytoene synthase 1 (PSY1) genes from the carotenoid biosynthesis pathway were chosen as targets due to their easily detectable change of phenotype. We took advantage of the geminiviral replicon amplification as a means to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double-strand break (DSB) in the target gene, via homologous recombination (HR). Mutagenesis experiments, performed in the Micro-Tom variety, achieved precise modification of the CRTISO and PSY1 loci at an efficiency of up to 90%. In the gene targeting (GT) experiments, our target was a fast-neutron-induced crtiso allele that contained a 281-bp deletion. This deletion was repaired with the wild-type sequence through HR between the CRISPR-Cas-induced DSB in the crtiso target and the amplified donor in 25% of the plants transformed. This shows that efficient GT can be achieved in the absence of selection markers or reporters using a single and modular construct that is adaptable to other tomato targets and other crops.
Collapse
Affiliation(s)
- Tal Dahan-Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shdema Filler-Hayut
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel Bocobza
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Henryk Czosnek
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
166
|
Xie K, Wu S, Li Z, Zhou Y, Zhang D, Dong Z, An X, Zhu T, Zhang S, Liu S, Li J, Wan X. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1363-1378. [PMID: 29546443 PMCID: PMC5945757 DOI: 10.1007/s00122-018-3083-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/06/2018] [Indexed: 05/05/2023]
Abstract
Map-based cloning of maize ms33 gene showed that ZmMs33 encodes a sn-2 glycerol-3-phosphate acyltransferase, the ortholog of rice OsGPAT3, and it is essential for male fertility in maize. Genetic male sterility has been widely studied for its biological significance and commercial value in hybrid seed production. Although many male-sterile mutants have been identified in maize (Zea mays L.), it is likely that most genes that cause male sterility are unknown. Here, we report a recessive genetic male-sterile mutant, male sterility33 (ms33), which displays small, pale yellow anthers, and complete male sterility. Using a map-based cloning approach, maize GRMZM2G070304 was identified as the ms33 gene (ZmMs33). ZmMs33 encodes a novel sn-2 glycerol-3-phosphate acyltransferase (GPAT) in maize. A functional complementation experiment showed that GRMZM2G070304 can rescue the male-sterile phenotype of the ms33-6029 mutant. GRMZM2G070304 was further confirmed to be the ms33 gene via targeted knockouts induced by the clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system. ZmMs33 is preferentially expressed in the immature anther from the quartet to early-vacuolate microspore stages and in root tissues at the fifth leaf growth stage. Phylogenetic analysis indicated that ZmMs33 and OsGPAT3 are evolutionarily conserved for anther and pollen development in monocot species. This study reveals that the monocot-specific GPAT3 protein plays an important role in male fertility in maize, and ZmMs33 and mutants in this gene may have value in maize male-sterile line breeding and hybrid seed production.
Collapse
Affiliation(s)
- Ke Xie
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Suowei Wu
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Ziwen Li
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Yan Zhou
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Zhenying Dong
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Xueli An
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Taotao Zhu
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Simiao Zhang
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shuangshuang Liu
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Xiangyuan Wan
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China.
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China.
| |
Collapse
|
167
|
Miki D, Zhang W, Zeng W, Feng Z, Zhu JK. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 2018; 9:1967. [PMID: 29773790 PMCID: PMC5958078 DOI: 10.1038/s41467-018-04416-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.
Collapse
Affiliation(s)
- Daisuke Miki
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Wenxin Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhengyan Feng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
168
|
Schindele P, Wolter F, Puchta H. Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 2018; 592:1954-1967. [PMID: 29710373 DOI: 10.1002/1873-3468.13073] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022]
Abstract
Currently, biology is revolutionized by ever growing applications of the CRISPR/Cas system. As discussed in this Review, new avenues have opened up for plant research and breeding by the use of the sequence-specific DNases Cas9 and Cas12 (formerly named Cpf1) and, more recently, the RNase Cas13 (formerly named C2c2). Although double strand break-induced gene editing based on error-prone nonhomologous end joining has been applied to obtain new traits, such as powdery mildew resistance in wheat or improved pathogen resistance and increased yield in tomato, improved technologies based on CRISPR/Cas for programmed change in plant genomes via homologous recombination have recently been developed. Cas9- and Cas12- mediated DNA binding is used to develop tools for many useful applications, such as transcriptional regulation or fluorescence-based imaging of specific chromosomal loci in plant genomes. Cas13 has recently been applied to degrade mRNAs and combat viral RNA replication. By the possibility to address multiple sequences with different guide RNAs and by the simultaneous use of different Cas proteins in a single cell, we should soon be able to achieve complex changes of plant metabolism in a controlled way.
Collapse
Affiliation(s)
| | - Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| |
Collapse
|
169
|
Zhang Q, Xing HL, Wang ZP, Zhang HY, Yang F, Wang XC, Chen QJ. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. PLANT MOLECULAR BIOLOGY 2018; 96:445-456. [PMID: 29476306 PMCID: PMC5978904 DOI: 10.1007/s11103-018-0709-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE We present novel observations of high-specificity SpCas9 variants, sgRNA expression strategies based on mutant sgRNA scaffold and tRNA processing system, and CRISPR/Cas9-mediated T-DNA integrations. Specificity of CRISPR/Cas9 tools has been a major concern along with the reports of their successful applications. We report unexpected observations of high frequency off-target mutagenesis induced by CRISPR/Cas9 in T1 Arabidopsis mutants although the sgRNA was predicted to have a high specificity score. We also present evidence that the off-target effects were further exacerbated in the T2 progeny. To prevent the off-target effects, we tested and optimized two strategies in Arabidopsis, including introduction of a mCherry cassette for a simple and reliable isolation of Cas9-free mutants and the use of highly specific mutant SpCas9 variants. Optimization of the mCherry vectors and subsequent validation found that fusion of tRNA with the mutant rather than the original sgRNA scaffold significantly improves editing efficiency. We then examined the editing efficiency of eight high-specificity SpCas9 variants in combination with the improved tRNA-sgRNA fusion strategy. Our results suggest that highly specific SpCas9 variants require a higher level of expression than their wild-type counterpart to maintain high editing efficiency. Additionally, we demonstrate that T-DNA can be inserted into the cleavage sites of CRISPR/Cas9 targets with high frequency. Altogether, our results suggest that in plants, continuous attention should be paid to off-target effects induced by CRISPR/Cas9 in current and subsequent generations, and that the tools optimized in this report will be useful in improving genome editing efficiency and specificity in plants and other organisms.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hui-Li Xing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi-Ping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hai-Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue-Chen Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
170
|
Liu C, Moschou PN. Phenotypic novelty by CRISPR in plants. Dev Biol 2018; 435:170-175. [DOI: 10.1016/j.ydbio.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
|
171
|
Liang Y, Zeng X, Peng X, Hou X. Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics. Transgenic Res 2018; 27:61-74. [DOI: 10.1007/s11248-017-0052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
172
|
Ferreira R, David F, Nielsen J. Advancing biotechnology with CRISPR/Cas9: recent applications and patent landscape. J Ind Microbiol Biotechnol 2018; 45:467-480. [PMID: 29362972 DOI: 10.1007/s10295-017-2000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is poised to become one of the key scientific discoveries of the twenty-first century. Originating from prokaryotic and archaeal immune systems to counter phage invasions, CRISPR-based applications have been tailored for manipulating a broad range of living organisms. From the different elucidated types of CRISPR mechanisms, the type II system adapted from Streptococcus pyogenes has been the most exploited as a tool for genome engineering and gene regulation. In this review, we describe the different applications of CRISPR/Cas9 technology in the industrial biotechnology field. Next, we detail the current status of the patent landscape, highlighting its exploitation through different companies, and conclude with future perspectives of this technology.
Collapse
Affiliation(s)
- Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Florian David
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
173
|
Development of versatile non-homologous end joining-based knock-in module for genome editing. Sci Rep 2018; 8:593. [PMID: 29330493 PMCID: PMC5766535 DOI: 10.1038/s41598-017-18911-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 02/02/2023] Open
Abstract
CRISPR/Cas9-based genome editing has dramatically accelerated genome engineering. An important aspect of genome engineering is efficient knock-in technology. For improved knock-in efficiency, the non-homologous end joining (NHEJ) repair pathway has been used over the homology-dependent repair pathway, but there remains a need to reduce the complexity of the preparation of donor vectors. We developed the versatile NHEJ-based knock-in module for genome editing (VIKING). Using the consensus sequence of the time-honored pUC vector to cut donor vectors, any vector with a pUC backbone could be used as the donor vector without customization. Conditions required to minimize random integration rates of the donor vector were also investigated. We attempted to isolate null lines of the VDR gene in human HaCaT keratinocytes using knock-in/knock-out with a selection marker cassette, and found 75% of clones isolated were successfully knocked-in. Although HaCaT cells have hypotetraploid genome composition, the results suggest multiple clones have VDR null phenotypes. VIKING modules enabled highly efficient knock-in of any vectors harboring pUC vectors. Users now can insert various existing vectors into an arbitrary locus in the genome. VIKING will contribute to low-cost genome engineering.
Collapse
|
174
|
Blary A, Gonzalo A, Eber F, Bérard A, Bergès H, Bessoltane N, Charif D, Charpentier C, Cromer L, Fourment J, Genevriez C, Le Paslier MC, Lodé M, Lucas MO, Nesi N, Lloyd A, Chèvre AM, Jenczewski E. FANCM Limits Meiotic Crossovers in Brassica Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:368. [PMID: 29628933 PMCID: PMC5876677 DOI: 10.3389/fpls.2018.00368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
Meiotic crossovers (COs) are essential for proper chromosome segregation and the reshuffling of alleles during meiosis. In WT plants, the number of COs is usually small, which limits the genetic variation that can be captured by plant breeding programs. Part of this limitation is imposed by proteins like FANCM, the inactivation of which results in a 3-fold increase in COs in Arabidopsis thaliana. Whether the same holds true in crops needed to be established. In this study, we identified EMS induced mutations in FANCM in two species of economic relevance within the genus Brassica. We showed that CO frequencies were increased in fancm mutants in both diploid and tetraploid Brassicas, Brassica rapa and Brassica napus respectively. In B. rapa, we observed a 3-fold increase in the number of COs, equal to the increase observed previously in Arabidopsis. In B. napus we observed a lesser but consistent increase (1.3-fold) in both euploid (AACC) and allohaploid (AC) plants. Complementation tests in A. thaliana suggest that the smaller increase in crossover frequency observed in B. napus reflects residual activity of the mutant C copy of FANCM. Altogether our results indicate that the anti-CO activity of FANCM is conserved across the Brassica, opening new avenues to make a wider range of genetic diversity accessible to crop improvement.
Collapse
Affiliation(s)
- Aurélien Blary
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Adrián Gonzalo
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Frédérique Eber
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Aurélie Bérard
- EPGV US 1279, Institut National de la Recherche Agronomique, CEA-IG-CNG, Université Paris-Saclay, Evry, France
| | - Hélène Bergès
- Institut National de la Recherche Agronomique UPR 1258, Centre National des Ressources Génomiques Végétales, Castanet-Tolosan, France
| | - Nadia Bessoltane
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Joelle Fourment
- Institut National de la Recherche Agronomique UPR 1258, Centre National des Ressources Génomiques Végétales, Castanet-Tolosan, France
| | - Camille Genevriez
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Marie-Christine Le Paslier
- EPGV US 1279, Institut National de la Recherche Agronomique, CEA-IG-CNG, Université Paris-Saclay, Evry, France
| | - Maryse Lodé
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie-Odile Lucas
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Nathalie Nesi
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Anne-Marie Chèvre
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
- *Correspondence: Eric Jenczewski
| |
Collapse
|
175
|
Mishra R, Joshi RK, Zhao K. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. FRONTIERS IN PLANT SCIENCE 2018; 9:1361. [PMID: 30283477 PMCID: PMC6156261 DOI: 10.3389/fpls.2018.01361] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/28/2018] [Indexed: 05/03/2023]
Abstract
Rice (Oryza sativa L.) is the major food source for more than three billion people of the world. In the last few decades, the classical, mutational, and molecular breeding approaches have brought about tremendous increase in rice productivity with the development of novel rice varieties. However, stagnation in rice yield has been reported in recent decade owing to several factors including the emergence of pests and phyto pathogens, climate change, and other environmental issues posing great threat to global food security. There is an urgent need to produce more rice and associated cereals to satisfy the mammoth task of feeding a still growing population expected to reach 9.7 billion by 2050. Advances in genomics and emergence of multiple genome-editing technologies through use of engineered site-specific nucleases (SSNs) have revolutionized the field of plant science and agriculture. Among them, the CRISPR/Cas9 system is the most advanced and widely accepted because of its simplicity, robustness, and high efficiency. The availability of huge genomic resources together with a small genome size makes rice more suitable and feasible for genetic manipulation. As such, rice has been increasingly used to test the efficiency of different types of genome editing technologies to study the functions of various genes and demonstrate their potential in genetic improvement. Recently developed approaches including CRISPR/Cpf1 system and base editors have evolved as more efficient and accurate genome editing tools which might accelerate the pace of crop improvement. In the present review, we focus on the genome editing strategies for rice improvement, thereby highlighting the applications and advancements of CRISPR/Cas9 system. This review also sheds light on the role of CRISPR/Cpf1 and base editors in the field of genome editing highlighting major challenges and future implications of these tools in rice improvement.
Collapse
Affiliation(s)
- Rukmini Mishra
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar, India
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Kaijun Zhao,
| |
Collapse
|
176
|
Mishra R, Joshi RK, Zhao K. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. FRONTIERS IN PLANT SCIENCE 2018; 9:1361. [PMID: 30283477 DOI: 10.33389/fpls.2018.01361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/28/2018] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa L.) is the major food source for more than three billion people of the world. In the last few decades, the classical, mutational, and molecular breeding approaches have brought about tremendous increase in rice productivity with the development of novel rice varieties. However, stagnation in rice yield has been reported in recent decade owing to several factors including the emergence of pests and phyto pathogens, climate change, and other environmental issues posing great threat to global food security. There is an urgent need to produce more rice and associated cereals to satisfy the mammoth task of feeding a still growing population expected to reach 9.7 billion by 2050. Advances in genomics and emergence of multiple genome-editing technologies through use of engineered site-specific nucleases (SSNs) have revolutionized the field of plant science and agriculture. Among them, the CRISPR/Cas9 system is the most advanced and widely accepted because of its simplicity, robustness, and high efficiency. The availability of huge genomic resources together with a small genome size makes rice more suitable and feasible for genetic manipulation. As such, rice has been increasingly used to test the efficiency of different types of genome editing technologies to study the functions of various genes and demonstrate their potential in genetic improvement. Recently developed approaches including CRISPR/Cpf1 system and base editors have evolved as more efficient and accurate genome editing tools which might accelerate the pace of crop improvement. In the present review, we focus on the genome editing strategies for rice improvement, thereby highlighting the applications and advancements of CRISPR/Cas9 system. This review also sheds light on the role of CRISPR/Cpf1 and base editors in the field of genome editing highlighting major challenges and future implications of these tools in rice improvement.
Collapse
Affiliation(s)
- Rukmini Mishra
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, India
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
177
|
Li C, Liu C, Qi X, Wu Y, Fei X, Mao L, Cheng B, Li X, Xie C. RNA-guided Cas9 as an in vivo desired-target mutator in maize. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1566-1576. [PMID: 28379609 PMCID: PMC5698053 DOI: 10.1111/pbi.12739] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 05/20/2023]
Abstract
The RNA-guided Cas9 system is a versatile tool for genome editing. Here, we established a RNA-guided endonuclease (RGEN) system as an in vivo desired-target mutator (DTM) in maize to reduce the linkage drag during breeding procedure, using the LIGULELESS1 (LG1) locus as a proof-of-concept. Our system showed 51.5%-91.2% mutation frequency in T0 transgenic plants. We then crossed the T1 plants stably expressing DTM with six diverse recipient maize lines and found that 11.79%-28.71% of the plants tested were mutants induced by the DTM effect. Analysis of successive F2 plants indicated that the mutations induced by the DTM effect were largely heritable. Moreover, DTM-generated hybrids had significantly smaller leaf angles that were reduced more than 50% when compared with that of the wild type. Planting experiments showed that DTM-generated maize plants can be grown with significantly higher density and hence greater yield potential. Our work demonstrate that stably expressed RGEN could be implemented as an in vivoDTM to rapidly generate and spread desired mutations in maize through hybridization and subsequent backcrossing, and hence bypassing the linkage drag effect in convention introgression methodology. This proof-of-concept experiment can be a potentially much more efficient breeding strategy in crops employing the RNA-guided Cas9 genome editing.
Collapse
Affiliation(s)
- Chuxi Li
- Institute of Crop ScienceChinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Changlin Liu
- Institute of Crop ScienceChinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Xiantao Qi
- Institute of Crop ScienceChinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
- Anhui Agricultural UniversityHefeiAnhui ProvinceChina
| | - Yongchun Wu
- AgGene Bio‐tech Seed Industry GroupShenzhenChina
| | - Xiaohong Fei
- AgGene Bio‐tech Seed Industry GroupShenzhenChina
| | - Long Mao
- Institute of Crop ScienceChinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Beijiu Cheng
- Anhui Agricultural UniversityHefeiAnhui ProvinceChina
| | - Xinhai Li
- Institute of Crop ScienceChinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Chuanxiao Xie
- Institute of Crop ScienceChinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| |
Collapse
|
178
|
Han H, Vila-Aiub MM, Jalaludin A, Yu Q, Powles SB. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost. PLANT, CELL & ENVIRONMENT 2017; 40:3031-3042. [PMID: 28910491 DOI: 10.1111/pce.13067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 05/12/2023]
Abstract
A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost.
Collapse
Affiliation(s)
- Heping Han
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Martin M Vila-Aiub
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
- IFEVA-CONICET-Faculty of Agronomy, Department of Ecology, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Adam Jalaludin
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| |
Collapse
|
179
|
Trait stacking in modern agriculture: application of genome editing tools. Emerg Top Life Sci 2017; 1:151-160. [PMID: 33525762 DOI: 10.1042/etls20170012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022]
Abstract
Advances in plant transgenic technology in the 20th century overcame the major hurdle for transfer of genetic material between species. This not only enabled fundamental insights into plant biology, but also revolutionized commercial agriculture. Adoption of transgenic plants in industrial agriculture has reduced pesticide application, while bringing significant increase in crop yields and farmers' profits. The progress made in transgenic technology over the last three decades paved the way mainly for simple single-gene insect and herbicide tolerance (HT) trait products. Modern agriculture demands stacking and pyramiding of complex traits that provide broad-spectrum insect and HT with other agronomic traits. In addition, more recent developments in genome editing provide unique opportunities to create precise on-demand genome modifications to enhance crop productivity. The major challenge for the plant biotech industry therefore remains to combine multiple forms of traits needed to create commercially viable stacked product. This review provides a historical perspective of conventional breeding stacks, current status of molecular stacks and future developments needed to enable genome-editing technology for trait stacking.
Collapse
|
180
|
Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 2017; 1:169-182. [PMID: 33525765 PMCID: PMC7288993 DOI: 10.1042/etls20170085] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
Initially discovered in bacteria and archaea, CRISPR–Cas9 is an adaptive immune system found in prokaryotes. In 2012, scientists found a way to use it as a genome editing tool. In 2013, its application in plants was successfully achieved. This breakthrough has opened up many new opportunities for researchers, including the opportunity to gain a better understanding of plant biological systems more quickly. The present study reviews agricultural applications related to the use of CRISPR systems in plants from 52 peer-reviewed articles published since 2014. Based on this literature review, the main use of CRISPR systems is to achieve improved yield performance, biofortification, biotic and abiotic stress tolerance, with rice (Oryza sativa) being the most studied crop.
Collapse
|
181
|
Recent advances in DNA-free editing and precise base editing in plants. Emerg Top Life Sci 2017; 1:161-168. [PMID: 33525763 DOI: 10.1042/etls20170021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
Genome-editing technologies based on the CRISPR (clustered regularly interspaced short palindromic repeat) system have been widely used in plants to investigate gene function and improve crop traits. The recently developed DNA-free delivery methods and precise base-editing systems provide new opportunities for plant genome engineering. In this review, we describe the novel DNA-free genome-editing methods in plants. These methods reduce off-target effects and may alleviate regulatory concern about genetically modified plants. We also review applications of base-editing systems, which are highly effective in generating point mutations and are of great value for introducing agronomically valuable traits. Future perspectives for DNA-free editing and base editing are also discussed.
Collapse
|
182
|
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G. From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends Biotechnol 2017; 36:160-172. [PMID: 29102241 DOI: 10.1016/j.tibtech.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
Bread wheat (Triticum aestivum) ranks as one of our most important staple crops. However, its hexaploid nature has complicated our understanding of the genetic bases underlying many of its traits. Historically, functional genetic studies in wheat have focused on identifying natural variations and have contributed to assembling and enriching its genetic stock. Recently, mold-breaking advances in whole genome sequencing, exome-capture based mutant libraries, and genome editing have revolutionized strategies for genetic research in wheat. We review new trends in wheat functional genetic studies along with germplasm conservation and innovation, including the relevance of genetic stocks, and the application of sequencing-based mutagenesis and genome editing. We also highlight the potential of multiplex genome editing toolkits in addressing species-specific challenges in wheat.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; These authors contributed equally to this work
| | - Shubin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; These authors contributed equally to this work
| | - Zhen Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
183
|
Scheben A, Wolter F, Batley J, Puchta H, Edwards D. Towards CRISPR/Cas crops - bringing together genomics and genome editing. THE NEW PHYTOLOGIST 2017; 216:682-698. [PMID: 28762506 DOI: 10.1111/nph.14702] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 05/19/2023]
Abstract
Contents 682 I. 682 II. 683 III. 684 IV. 685 V. 685 VI. 688 VII. 690 VIII. 694 694 References 694 SUMMARY: With the rapid increase in the global population and the impact of climate change on agriculture, there is a need for crops with higher yields and greater tolerance to abiotic stress. However, traditional crop improvement via genetic recombination or random mutagenesis is a laborious process and cannot keep pace with increasing crop demand. Genome editing technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) allow targeted modification of almost any crop genome sequence to generate novel variation and accelerate breeding efforts. We expect a gradual shift in crop improvement away from traditional breeding towards cycles of targeted genome editing. Crop improvement using genome editing is not constrained by limited existing variation or the requirement to select alleles over multiple breeding generations. However, current applications of crop genome editing are limited by the lack of complete reference genomes, the sparse knowledge of potential modification targets, and the unclear legal status of edited crops. We argue that overcoming technical and social barriers to the application of genome editing will allow this technology to produce a new generation of high-yielding, climate ready crops.
Collapse
Affiliation(s)
- Armin Scheben
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Felix Wolter
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
184
|
Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 2017; 7:11606. [PMID: 28912524 PMCID: PMC5599503 DOI: 10.1038/s41598-017-11760-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022] Open
Abstract
Precise genome editing of plants has the potential to reshape global agriculture through the targeted engineering of endogenous pathways or the introduction of new traits. To develop a CRISPR nuclease-based platform that would enable higher efficiencies of precise gene insertion or replacement, we screened the Cpf1 nucleases from Francisella novicida and Lachnospiraceae bacterium ND2006 for their capability to induce targeted gene insertion via homology directed repair. Both nucleases, in the presence of a guide RNA and repairing DNA template flanked by homology DNA fragments to the target site, were demonstrated to generate precise gene insertions as well as indel mutations at the target site in the rice genome. The frequency of targeted insertion for these Cpf1 nucleases, up to 8%, is higher than most other genome editing nucleases, indicative of its effective enzymatic chemistry. Further refinements and broad adoption of the Cpf1 genome editing technology have the potential to make a dramatic impact on plant biotechnology.
Collapse
Affiliation(s)
- Matthew B Begemann
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA.
| | - Benjamin N Gray
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Emma January
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Gina C Gordon
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Yonghua He
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Haijun Liu
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Xingrong Wu
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Thomas P Brutnell
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975N, Warson Road, St. Louis, MO, 63132, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, 975N, Warson Road, St. Louis, MO, 63132, USA
| | - Mohammed Oufattole
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| |
Collapse
|
185
|
Wang Y, Geng L, Yuan M, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin H, Wang E, Chai Z, Fu X, Li X. Deletion of a target gene in Indica rice via CRISPR/Cas9. PLANT CELL REPORTS 2017; 36:1333-1343. [PMID: 28584922 DOI: 10.1007/s00299-017-2158-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/19/2017] [Indexed: 05/22/2023]
Abstract
Using CRISPR/Cas9, we successfully deleted large fragments of the yield-related gene DENSE AND ERECT PANICLE1 in Indica rice at relatively high frequency and generated gain-of-function dep1 mutants. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a rapidly developing technology used to produce gene-specific modifications in both mammalian and plant systems. Most CRISPR-induced modifications in plants reported to date have been small insertions or deletions. Few large target gene deletions have thus far been reported, especially for Indica rice. In this study, we designed multiple CRISPR sgRNAs and successfully deleted DNA fragments in the gene DENSE AND ERECT PANICLE1 (DEP1) in the elite Indica rice line IR58025B. We achieved deletion frequencies of up to 21% for a 430 bp target and 9% for a 10 kb target among T0 events. Constructs with four sgRNAs did not generate higher full-length deletion frequencies than constructs with two sgRNAs. The multiple mutagenesis frequency reached 93% for four targets, and the homozygous mutation frequency reached 21% at the T0 stage. Important yield-related trait characteristics, such as dense and erect panicles and reduced plant height, were observed in dep1 homozygous T0 mutant plants produced by CRISPR/Cas9. Therefore, we successfully obtained deletions in DEP1 in the Indica background using the CRISPR/Cas9 editing tool at relatively high frequency.
Collapse
Affiliation(s)
- Ying Wang
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Lizhao Geng
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Menglong Yuan
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Juan Wei
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Chen Jin
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Min Li
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Kun Yu
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Ya Zhang
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Huaibing Jin
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Eric Wang
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Zhijian Chai
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xiangdong Fu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianggan Li
- Syngenta Biotechnology China, No. 25, Life Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| |
Collapse
|
186
|
Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:714-724. [PMID: 28502081 DOI: 10.1111/tpj.13599] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/23/2017] [Accepted: 05/03/2017] [Indexed: 05/18/2023]
Abstract
Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome-editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock-down of TaEDR1 by virus-induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off-target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew-induced cell death. Our study represents the successful generation of a potentially valuable trait using genome-editing technology in wheat and provides germplasm for disease resistance breeding.
Collapse
Affiliation(s)
- Yunwei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangheng Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, Fujian, China
| | - Shenghao Zou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongfang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
187
|
Yin K, Gao C, Qiu JL. Progress and prospects in plant genome editing. NATURE PLANTS 2017; 3:17107. [PMID: 28758991 DOI: 10.1038/nplants.2017.107] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 06/16/2017] [Indexed: 05/18/2023]
Abstract
The emergence of sequence-specific nucleases that enable genome editing is revolutionizing basic and applied biology. Since the introduction of CRISPR-Cas9, genome editing has become widely used in transformable plants for characterizing gene function and improving traits, mainly by inducing mutations through non-homologous end joining of double-stranded breaks generated by CRISPR-Cas9. However, it would be highly desirable to perform precision gene editing in plants, especially in transformation-recalcitrant species. Recently developed Cas9 variants, novel RNA-guided nucleases and base-editing systems, and DNA-free CRISPR-Cas9 delivery methods now provide great opportunities for plant genome engineering. In this Review Article, we describe the current status of plant genome editing, focusing on newly developed genome editing tools and methods and their potential applications in plants. We also discuss the specific challenges facing plant genome editing, and future prospects.
Collapse
Affiliation(s)
- Kangquan Yin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
188
|
Tang J, Chu C. MicroRNAs in crop improvement: fine-tuners for complex traits. NATURE PLANTS 2017; 3:17077. [PMID: 28665396 DOI: 10.1038/nplants.2017.77] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/28/2017] [Indexed: 05/20/2023]
Abstract
One of the most common challenges for both conventional and modern crop improvement is that the appearance of one desirable trait in a new crop variety is always balanced by the impairment of one or more other beneficial characteristics. The best way to overcome this problem is the flexible utilization of regulatory genes, especially genes that provide more efficient and precise regulation in a targeted manner. MicroRNAs (miRNAs), a type of short non-coding RNA, are promising candidates in this area due to their role as master modulators of gene expression at the post-transcriptional level, targeting messenger RNAs for cleavage or directing translational inhibition in eukaryotes. We herein highlight the current understanding of the biological role of miRNAs in orchestrating distinct agriculturally important traits by summarizing recent functional analyses of 65 miRNAs in 9 major crops worldwide. The integration of current miRNA knowledge with conventional and modern crop improvement strategies is also discussed.
Collapse
Affiliation(s)
- Jiuyou Tang
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
189
|
Minkenberg B, Wheatley M, Yang Y. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:111-132. [PMID: 28712493 DOI: 10.1016/bs.pmbts.2017.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The CRISPR/Cas9 system is a prevalent and versatile genome-editing tool of choice for basic and applied biological research. An exchange of a 20-bp spacer sequence in the gRNA can easily reprogram Cas9 to target a different DNA site. By expressing or providing multiple gRNAs, the system also enables multiplex genome editing at high efficiencies. Current approaches for providing multiple gRNAs in vivo include the use of multigene cassettes to express several gRNAs, Csy4-based excision, arrays of crRNAs, ribozyme-flanked gRNAs, tRNA-dependent cleavage of gRNAs, and direct introduction of Cas9 proteins preloaded with different gRNAs. By simultaneously targeting multiple DNA sequences, multiplex genome editing can be used to knockout multiple genes or delete chromosomal fragments. Off-target risk can also be reduced by Cas9-dimers that require the simultaneous expression of two gRNAs. With multiple gRNAs, specific gene expression or methylation status can be efficiently controlled by dCas9 fused to activators, repressors, methyltransferase, demethylase, or other functional domains. As a result, multiplex genome editing is expected to accelerate functional discovery of plant genes as well as genetic improvement of agricultural crops.
Collapse
Affiliation(s)
| | - Matthew Wheatley
- The Pennsylvania State University, University Park, PA, United States
| | - Yinong Yang
- The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
190
|
Demirci Y, Zhang B, Unver T. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing. J Cell Physiol 2017; 233:1844-1859. [PMID: 28430356 DOI: 10.1002/jcp.25970] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
CRISPR/Cas9 is a newly developed and naturally occurred genome editing tool, which is originally used by bacteria for immune defence. In the past years, it has been quickly employed and modified to precisely edit genome sequences in both plants and animals. Compared with the well-developed zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 has lots of advantages, including easier to design and implement, higher targeting efficiency, and less expensive. Thus, it is becoming one of the most powerful tools for knockout of an individual gene as well as insertion of one gene and/or control of gene transcription. Studies have shown that CRISPR/Cas9 is a great tool to edit many genes in a variety of plant species, including the model plant species as well as agriculturally important crops, such as cotton, maize, wheat, and rice. CRISPR/Cas9-based genome editing can be used for plant functional studies and plant improvement to yield, quality, and tolerance to environmental stress.
Collapse
Affiliation(s)
- Yeliz Demirci
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Izmir, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Turgay Unver
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
191
|
Wang J, Tian D, Gu K, Yang X, Wang L, Zeng X, Yin Z. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:466-477. [PMID: 28304228 DOI: 10.1094/mpmi-11-16-0229-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane, show self-interaction, and induce ER Ca2+ depletion in leaf cells of N. benthamiana. The results indicate that Xa10-Ni and Xa23-Ni in Nipponbare encode functional executor R proteins, which induce cell death in both monocotyledonous and dicotyledonous plants and have the potential of being engineered to provide broad-spectrum disease resistance to plant-pathogenic Xanthomonas spp.
Collapse
Affiliation(s)
- Jun Wang
- 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; and
- 2 Department of Biological Sciences, 14 Science Drive, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Dongsheng Tian
- 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; and
| | - Keyu Gu
- 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; and
| | - Xiaobei Yang
- 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; and
| | - Lanlan Wang
- 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; and
| | - Xuan Zeng
- 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; and
| | - Zhongchao Yin
- 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; and
- 2 Department of Biological Sciences, 14 Science Drive, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
192
|
Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J. Generation of targeted mutant rice using a CRISPR-Cpf1 system. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:713-717. [PMID: 27875019 PMCID: PMC5425385 DOI: 10.1111/pbi.12669] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 05/03/2023]
Abstract
CRISPR-Cpf1 is a newly identified CRISPR-Cas system, and Cpf1 was recently engineered as a molecular tool for targeted genome editing in mammalian cells. To test whether the engineered CRISPR-Cpf1 system could induce the production of rice mutants, we selected two genome targets in the OsPDS and OsBEL genes. Our results show that both targets could be efficiently mutated in transgenic rice plants using CRISPR-Cpf1. We found that pre-crRNAs with a full-length direct repeat sequence exhibited considerably increased efficiencies compared with mature crRNAs. In addition, the specificity and transmission of the mutation were investigated, and the behaviours of crRNA-Cpf1-induced plant targeted genome mutagenesis were assessed. Taken together, our results indicate that CRISPR-Cpf1 expression via stable transformation can efficiently generate specific and heritable targeted mutations in rice and thereby constitutes a novel and important approach to specific and precise plant genome editing.
Collapse
Affiliation(s)
- Rongfang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Ruiying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Dongdong Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Li Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Pengcheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Jianbo Yang
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| |
Collapse
|
193
|
Bi H, Yang B. Gene Editing With TALEN and CRISPR/Cas in Rice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:81-98. [PMID: 28712502 DOI: 10.1016/bs.pmbts.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered, site-specific nucleases induce genomic double-strand DNA breaks and break repair processes enable genome editing in a plethora of eukaryotic genomes. TALENs (transcription activator-like effector nucleases) and CRISPR/Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) are potent biotechnological tools used for genome editing. In rice, species-tailored editing tools have proven to be efficient and easy to use. Both tools are capable of generating DNA double-strand breaks (DSBs) in vivo and such breaks can be repaired either by error-prone NHEJ (nonhomologous end joining) that leads to nucleotide insertions or deletions or by HDR (homology-directed repair) if an appropriate exogenous DNA template is provided. NHEJ repair often results in gene knockout, while HDR results in precise nucleotide sequence or gene replacement. In this review, we revisit the molecular mechanisms underlying DSB repair in eukaryotes and review the TALEN and CRISPR technologies (CRISPR/Cas9, CRISPR/Cpf1, and Base Editor) developed and utilized for genome editing by scientists in rice community.
Collapse
Affiliation(s)
- Honghao Bi
- Iowa State University, Ames, IA, United States
| | - Bing Yang
- Iowa State University, Ames, IA, United States.
| |
Collapse
|
194
|
Collonnier C, Guyon-Debast A, Maclot F, Mara K, Charlot F, Nogué F. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Methods 2017; 121-122:103-117. [PMID: 28478103 DOI: 10.1016/j.ymeth.2017.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022] Open
Abstract
Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in.
Collapse
Affiliation(s)
- Cécile Collonnier
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France.
| | - Anouchka Guyon-Debast
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - François Maclot
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Kostlend Mara
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Florence Charlot
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Fabien Nogué
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France.
| |
Collapse
|
195
|
Liu X, Xie C, Si H, Yang J. CRISPR/Cas9-mediated genome editing in plants. Methods 2017; 121-122:94-102. [PMID: 28315486 DOI: 10.1016/j.ymeth.2017.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/09/2017] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
The increasing burden of the world's population on agriculture necessitates the development of more robust crops. As the amount of information from sequenced crop genomes increases, technology can be used to investigate the function of genes in detail and to design improved crops at the molecular level. Recently, an RNA-programmed genome-editing system composed of a clustered regularly interspaced short palindromic repeats (CRISPR)-encoded guide RNA and the nuclease Cas9 has provided a powerful platform to achieve these goals. By combining versatile tools to study and modify plants at different molecular levels, the CRISPR/Cas9 system is paving the way towards a new horizon for basic research and crop development. In this review, the accomplishments, problems and improvements of this technology in plants, including target sequence cleavage, knock-in/gene replacement, transcriptional regulation, epigenetic modification, off-target effects, delivery system and potential applications, will be highlighted.
Collapse
Affiliation(s)
- Xuejun Liu
- TianJin Crops Research Institute, China.
| | - Chuanxiao Xie
- Institute of Crop Science of Chinese Academy of Agricultural Sciences, China.
| | - Huaijun Si
- College of Life Science and Technology, GanSu Agricultural University, China.
| | | |
Collapse
|
196
|
Baltes NJ, Gil-Humanes J, Voytas DF. Genome Engineering and Agriculture: Opportunities and Challenges. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:1-26. [PMID: 28712492 PMCID: PMC8409219 DOI: 10.1016/bs.pmbts.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, plant biotechnology has witnessed unprecedented technological change. Advances in high-throughput sequencing technologies have provided insight into the location and structure of functional elements within plant DNA. At the same time, improvements in genome engineering tools have enabled unprecedented control over genetic material. These technologies, combined with a growing understanding of plant systems biology, will irrevocably alter the way we create new crop varieties. As the first wave of genome-edited products emerge, we are just getting a glimpse of the immense opportunities the technology provides. We are also seeing its challenges and limitations. It is clear that genome editing will play an increased role in crop improvement and will help us to achieve food security in the coming decades; however, certain challenges and limitations must be overcome to realize the technology's full potential.
Collapse
|
197
|
Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research in Legumes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:187-213. [PMID: 28712497 DOI: 10.1016/bs.pmbts.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen-fixing rhizobia have established a symbiotic relationship with the legume family through more than 60 million years of evolution. Hundreds of legume host genes are involved in the SNF (symbiotic nitrogen fixation) process, such as recognition of the bacterial partners, nodulation signaling and nodule development, maintenance of highly efficient nitrogen fixation within nodules, regulation of nodule numbers, and nodule senescence. However, investigations of SNF-related gene functions and dissecting molecular mechanisms of the complicated signaling crosstalk on a genomic scale were significantly restricted by insufficient mutant resources of several representative model legumes. Targeted genome-editing technologies, including ZFNs, TALENs, and CRISPR-Cas systems, have been developed in recent years and rapidly revolutionized biological research in many fields. These technologies were also applied to legume plants, and significant progress has been made in the last several years. Here, we summarize the applications of these genome-editing technologies, especially CRISPR-Cas9, toward the study of SNF in legumes, which should greatly advance our understanding of the basic mechanisms underpinning the legume-rhizobia interactions and guide the engineering of the SNF pathway into nonlegume crops to reduce the dependence on the use of nitrogen fertilizers for sustainable development of modern agriculture.
Collapse
|
198
|
Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T, Gray JE, Quick PW, Bandyopadhyay A. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. PLANT CELL REPORTS 2017; 36:745-757. [PMID: 28349358 DOI: 10.1007/s00299-017-2118-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
CRISPR-Cas9/Cpf1 system with its unique gene targeting efficiency, could be an important tool for functional study of early developmental genes through the generation of successful knockout plants. The introduction and utilization of systems biology approaches have identified several genes that are involved in early development of a plant and with such knowledge a robust tool is required for the functional validation of putative candidate genes thus obtained. The development of the CRISPR-Cas9/Cpf1 genome editing system has provided a convenient tool for creating loss of function mutants for genes of interest. The present study utilized CRISPR/Cas9 and CRISPR-Cpf1 technology to knock out an early developmental gene EPFL9 (Epidermal Patterning Factor like-9, a positive regulator of stomatal development in Arabidopsis) orthologue in rice. Germ-line mutants that were generated showed edits that were carried forward into the T2 generation when Cas9-free homozygous mutants were obtained. The homozygous mutant plants showed more than an eightfold reduction in stomatal density on the abaxial leaf surface of the edited rice plants. Potential off-target analysis showed no significant off-target effects. This study also utilized the CRISPR-LbCpf1 (Lachnospiracae bacterium Cpf1) to target the same OsEPFL9 gene to test the activity of this class-2 CRISPR system in rice and found that Cpf1 is also capable of genome editing and edits get transmitted through generations with similar phenotypic changes seen with CRISPR-Cas9. This study demonstrates the application of CRISPR-Cas9/Cpf1 to precisely target genomic locations and develop transgene-free homozygous heritable gene edits and confirms that the loss of function analysis of the candidate genes emerging from different systems biology based approaches, could be performed, and therefore, this system adds value in the validation of gene function studies.
Collapse
Affiliation(s)
- Xiaojia Yin
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Akshaya K Biswal
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline Dionora
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Kristel M Perdigon
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | | | - Shamik Mazumdar
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Caspar Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Departamento de Biologıá Molecular de Plantas, Instituto de Biotecnologıá, Universidad Nacional Autónoma de Mexico Cuernavaca, Cuernavaca, Mexico
| | - Hsiang-Chun Lin
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Robert A Coe
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Tobias Kretzschmar
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Paul W Quick
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
199
|
Sweetlove LJ, Nielsen J, Fernie AR. Engineering central metabolism - a grand challenge for plant biologists. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:749-763. [PMID: 28004455 DOI: 10.1111/tpj.13464] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative 'design-build-test-learn' cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Lyngby, Denmark
- Science for Life Laboratory, Royal Institute of Technology, SE17121, Stockholm, Sweden
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
200
|
Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:819-833. [PMID: 28027431 DOI: 10.1111/tpj.13469] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
Production of mutants of crop plants by the use of chemical or physical genotoxins has a long tradition. These factors induce the natural DNA repair machinery to repair damage in an error-prone way. In the case of radiation, multiple double-strand breaks (DSBs) are induced randomly in the genome, leading in very rare cases to a desirable phenotype. In recent years the use of synthetic, site-directed nucleases (SDNs) - also referred to as sequence-specific nucleases - like the CRISPR/Cas system has enabled scientists to use exactly the same naturally occurring DNA repair mechanisms for the controlled induction of genomic changes at pre-defined sites in plant genomes. As these changes are not necessarily associated with the permanent integration of foreign DNA, the obtained organisms per se cannot be regarded as genetically modified as there is no way to distinguish them from natural variants. This applies to changes induced by DSBs as well as single-strand breaks, and involves repair by non-homologous end-joining and homologous recombination. The recent development of SDN-based 'DNA-free' approaches makes mutagenesis strategies in classical breeding indistinguishable from SDN-derived targeted genome modifications, even in regard to current regulatory rules. With the advent of new SDN technologies, much faster and more precise genome editing becomes available at reasonable cost, and potentially without requiring time-consuming deregulation of newly created phenotypes. This review will focus on classical mutagenesis breeding and the application of newly developed SDNs in order to emphasize similarities in the context of the regulatory situation for genetically modified crop plants.
Collapse
Affiliation(s)
- Michael Pacher
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| |
Collapse
|