151
|
Medeiros-Silva J, Jekhmane S, Paioni AL, Gawarecka K, Baldus M, Swiezewska E, Breukink E, Weingarth M. High-resolution NMR studies of antibiotics in cellular membranes. Nat Commun 2018; 9:3963. [PMID: 30262913 PMCID: PMC6160437 DOI: 10.1038/s41467-018-06314-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023] Open
Abstract
The alarming rise of antimicrobial resistance requires antibiotics with unexploited mechanisms. Ideal templates could be antibiotics that target the peptidoglycan precursor lipid II, known as the bacterial Achilles heel, at an irreplaceable pyrophosphate group. Such antibiotics would kill multidrug-resistant pathogens at nanomolecular concentrations without causing antimicrobial resistance. However, due to the challenge of studying small membrane-embedded drug–receptor complexes in native conditions, the structural correlates of the pharmaceutically relevant binding modes are unknown. Here, using advanced highly sensitive solid-state NMR setups, we present a high-resolution approach to study lipid II-binding antibiotics directly in cell membranes. On the example of nisin, the preeminent lantibiotic, we show that the native antibiotic-binding mode strongly differs from previously published structures, and we demonstrate that functional hotspots correspond to plastic drug domains that are critical for the cellular adaptability of nisin. Thereby, our approach provides a foundation for an improved understanding of powerful antibiotics. Antibiotics that target the peptidoglycan precursor lipid II are promising templates for next-generation antibiotics. Here authors use solid-state NMR and monitor lipid II-binding antibiotics, such as nisin, directly in cell membranes.
Collapse
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
152
|
Xu B, Aitken EJ, Baker BP, Turner CA, Harvey JE, Stott MB, Power JF, Harris PWR, Keyzers RA, Brimble MA. Genome mining, isolation, chemical synthesis and biological evaluation of a novel lanthipeptide, tikitericin, from the extremophilic microorganism Thermogemmatispora strain T81. Chem Sci 2018; 9:7311-7317. [PMID: 30294420 PMCID: PMC6167946 DOI: 10.1039/c8sc02170h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/19/2018] [Indexed: 01/31/2023] Open
Abstract
Tikitericin, a novel lanthipeptide was isolated and characterised together with its first total synthesis.
Genome mining of the New Zealand extremophilic microorganism Thermogemmatispora strain T81 indicated the presence of biosynthetic machinery to produce several different peptidic natural products. Solid-phase culture of T81 led to the isolation of tikitericin 1, a new lanthipeptide characterised by four (methyl)lanthionine bridges. The mass-guided isolation and structural elucidation of tikitericin 1 is described together with its total synthesis via Fmoc-solid-phase peptide synthesis (SPPS). The key non-canonical (methyl)lanthionine residues were synthesised in solution phase via an improved synthetic route and subsequently assembled to construct the peptide backbone using Fmoc-SPPS. N-Terminal truncated analogues of tikitericin (2–5) were also prepared in order to evaluate the contribution of each sequential ring of the polycyclic lanthipeptide to the antibacterial activity.
Collapse
Affiliation(s)
- Buzhe Xu
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117
| | - Emma J Aitken
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Benjamin P Baker
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Claire A Turner
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Joanne E Harvey
- Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Matthew B Stott
- School of Biological Sciences , University of Canterbury , Private Bag 4800 , Christchurch 8140 , New Zealand.,GNS Science , Private Bag 2000 , Taupō 3352 , New Zealand
| | - Jean F Power
- GNS Science , Private Bag 2000 , Taupō 3352 , New Zealand
| | - Paul W R Harris
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Biological Sciences , 23 Symonds Street , Auckland 1010 , New Zealand
| | - Robert A Keyzers
- Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Biological Sciences , 23 Symonds Street , Auckland 1010 , New Zealand
| |
Collapse
|
153
|
Denoël T, Lemaire C, Luxen A. Progress in Lanthionine and Protected Lanthionine Synthesis. Chemistry 2018; 24:15421-15441. [PMID: 29714402 DOI: 10.1002/chem.201801115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Indexed: 01/01/2023]
Abstract
Lanthionine (Lan), a non-proteinogenic natural amino acid, is an essential component of peptidoglycan found in the cell wall of Fusobacterium species. Lan and β-methyllanthionine are also key constituents in lantibiotics, a prevalent class of peptide antibiotics. The development of those new antibacterial drugs with enhanced properties is the focus of recent research. Since multiple isomers of Lan are possible, a regio- and diastereoselective synthesis is challenging. This comprehensive review summarizes the known chemical syntheses of lanthionine from various precursors (e.g., β-chloroalanine, cystine, dehydroalanine, β-iodoalanine, aziridine, serine lactone, sulfamidate) since 1941. Methods for preparation of unprotected, protected, orthogonally protected, and mutually orthogonally protected lanthionine with relevant experimental details and perspectives on their usefulness are provided. The potential of these Lan derivatives is illustrated by one recent application.
Collapse
Affiliation(s)
- Thibaut Denoël
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| | - Christian Lemaire
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| | - André Luxen
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| |
Collapse
|
154
|
Jamali H, Krylova K, Dozois CM. The 100 Top-Cited Scientific Papers Focused on the Topic of Bacteriocins. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9741-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
155
|
Wen PC, Vanegas JM, Rempe SB, Tajkhorshid E. Probing key elements of teixobactin-lipid II interactions in membranes. Chem Sci 2018; 9:6997-7008. [PMID: 30210775 PMCID: PMC6124899 DOI: 10.1039/c8sc02616e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Two binding poses of the teixobactin–lipid II complex were captured with MD simulations at the membrane surface.
Teixobactin (Txb) is a recently discovered antibiotic against Gram-positive bacteria that induces no detectable resistance. The bactericidal mechanism is believed to be the inhibition of cell wall biosynthesis by Txb binding to lipid II and lipid III. Txb binding specificity likely arises from targeting of the shared lipid component, the pyrophosphate moiety. Despite synthesis and functional assessment of numerous chemical analogs of Txb, and consequent identification of the Txb pharmacophore, the detailed structural information of Txb–substrate binding is still lacking. Here, we use molecular modeling and microsecond-scale molecular dynamics simulations to capture the formation of Txb–lipid II complexes at a membrane surface. Two dominant binding conformations were observed, both showing characteristic lipid II phosphate binding by the Txb backbone amides near the C-terminal cyclodepsipeptide (d-Thr8–Ile11) ring. Additionally, binding by Txb also involved the side chain hydroxyl group of Ser7, as well as a secondary phosphate binding provided by the side chain of l-allo-enduracididine. Interestingly, those conformations differ by swapping two groups of hydrogen bond donors that coordinate the two phosphate moieties of lipid II, resulting in opposite orientations of lipid II binding. In addition, residues d-allo-Ile5 and Ile6 serve as the membrane anchors in both Txb conformations, regardless of the detailed phosphate binding interactions near the cyclodepsipeptide ring. The role of hydrophobic residues in Txb activity is primarily for its membrane insertion, and subsidiarily to provide non-polar interactions with the lipid II tail. Based on the Txb–lipid II interactions captured in their complexes, as well as their partitioning depths into the membrane, we propose that the bactericidal mechanism of Txb is to arrest cell wall synthesis by selectively inhibiting the transglycosylation of peptidoglycan, while possibly leaving the transpeptidation step unaffected. The observed “pyrophosphate caging” mechanism of lipid II inhibition appears to be similar to some lantibiotics, but different from that of vancomycin or bacitracin.
Collapse
Affiliation(s)
- Po-Chao Wen
- Department of Biochemistry , Center for Biophysics and Quantitative Biology , Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA . ;
| | - Juan M Vanegas
- Department of Nanobiology , Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , NM 87185 , USA .
| | - Susan B Rempe
- Department of Nanobiology , Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , NM 87185 , USA .
| | - Emad Tajkhorshid
- Department of Biochemistry , Center for Biophysics and Quantitative Biology , Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA . ;
| |
Collapse
|
156
|
Modifying the Lantibiotic Mutacin 1140 for Increased Yield, Activity, and Stability. Appl Environ Microbiol 2018; 84:AEM.00830-18. [PMID: 29776930 DOI: 10.1128/aem.00830-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
Abstract
Mutacin 1140 belongs to the epidermin family of type AI lantibiotics. This family has a broad spectrum of activity against Gram-positive bacteria. The binding of mutacin 1140 to lipid II leads to the inhibition of cell wall synthesis. Pharmacokinetic experiments with type AI lantibiotics are generally discouraging for clinical applications due to the short half-life of these compounds. The unprotected dehydrated and protease-susceptible residues outside the lanthionine rings may play a role in the short half-life in physiological settings. Previous mutagenesis work on mutacin 1140 has been limited to the lanthionine-forming residues, the C-terminally decarboxylated residue, and single amino acid substitutions at residues Phe1, Trp4, Dha5, and Arg13. To study the importance of the dehydrated (Dha5 and Dhb14) and protease-susceptible (Lys2 and Arg13) residues within mutacin 1140 for stability and bioactivity, each of these residues was evaluated for its impact on production and inhibitory activity. More than 15 analogs were purified, enabling direct comparison of the activities against a select panel of Gram-positive bacteria. The efficiency of the posttranslational modification (PTM) machinery of mutacin 1140 is highly restricted on its substrate. Analogs in the various intermediate stages of PTMs were observed as minor products following single point mutations at the 2nd, 5th, 13th, and 14th positions. The combination of alanine substitutions at the Dha5 and Dhb14 positions abolished mutacin 1140 production, while the production was restored by substitution of a Gly residue at one of these positions. Analogs with improved activity, productivity, and proteolytic stability were identified.IMPORTANCE Our findings show that the efficiency of mutacin 1140 PTMs is highly dependent on the core peptide sequence. Analogs in various intermediate stages of PTMs can be transported by the bacterium, which indicates that PTMs and transport are finely tuned for the native mutacin 1140 core peptide. Only certain combinations of amino acid substitutions at the Dha5 and Dhb14 dehydrated residue positions were tolerated. Observation of glutamylated core peptide analogs shows that dehydrations occur in a glutamate-dependent manner. Interestingly, mutations at positions outside rings A and B, the lipid II binding domain, would interfere with lipid II binding. Purified mutacin 1140 analogs have various activities and selectivities against different genera of bacteria, supporting the effort to generate analogs with higher specificity against pathogenic bacteria. The discovery of analogs with improved inhibitory activity against pathogenic bacteria, increased stability in the presence of protease, and higher product yields may promote the clinical development of this unique antimicrobial compound.
Collapse
|
157
|
Jiang H, Tang X, Zhou Q, Zou J, Li P, Breukink E, Gu Q. Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Appl Microbiol Biotechnol 2018; 102:7465-7473. [PMID: 29982926 DOI: 10.1007/s00253-018-9182-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022]
Abstract
Plantaricin NC8, a two-peptide non-lantibiotic class IIb bacteriocin composed of PLNC8α and PLNC8β and derived from Lactobacillus plantarum ZJ316, has been shown to be highly potent against a range of bacteria and fungi. In this study, we assessed the antimicrobial mechanism of plantaricin NC8 against the most sensitive bacterial strain, Micrococcus luteus CGMCC 1.193. The results showed that plantaricin NC8 induced membrane permeabilization and caused cell membrane disruption to M. luteus CGMCC 1.193 cells, as evidenced by electrolyte efflux, loss of proton motive force, and ATP depletion within a few minutes of plantaricin NC8 treatment. Furthermore, scanning and transmission electron microscopy showed that plantaricin NC8 had a drastic impact on the structure and integrity of M. luteus CGMCC 1.193 cells. In addition, we found that either PLNC8α or PLNC8β alone exhibited membrane permeabilization activity, but that PLNC8β had higher permeabilization activity, and their individual effects were not as strong as that of the combined compounds as plantaricin NC8. Finally, we showed that lipid II is not the specific target of plantaricin NC8 against M. luteus CGMCC 1.193. Our study reveals the antimicrobial mechanism of plantaricin NC8 against M. luteus CGMCC 1.193.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.,Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Xuan Tang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Jiong Zou
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, 3584, CH, Utrecht, the Netherlands
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
158
|
Chen H, Zhang Y, Li QQ, Zhao YF, Chen YX, Li YM. De Novo Design To Synthesize Lanthipeptides Involving Cascade Cysteine Reactions: SapB Synthesis as an Example. J Org Chem 2018; 83:7528-7533. [PMID: 29893565 DOI: 10.1021/acs.joc.8b00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lanthipeptides are a family of ribosomally synthesized peptides that have crucial biological functions. However, due to their complicated structures, the total synthesis of lanthipeptides is challenging. Here, a novel strategy to construct lanthipeptides is described, which involves cascade reactions of cysteine, including Cys disalkylation elimination, Michael reaction, and native chemical ligation. We utilized this strategy to synthesize lanthipeptide SapB as an example. This methodology has the potential to obtain lanthipeptides and their analogues for biological research and drug discovery.
Collapse
Affiliation(s)
- Huai Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yuan Zhang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Qian-Qian Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China.,Beijing Institute for Brain Disorders , Beijing 100069 , P.R. China
| |
Collapse
|
159
|
Bolt HL, Kleijn LHJ, Martin NI, Cobb SL. Synthesis of Antibacterial Nisin⁻Peptoid Hybrids Using Click Methodology. Molecules 2018; 23:E1566. [PMID: 29958423 PMCID: PMC6099617 DOI: 10.3390/molecules23071566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides and structurally related peptoids offer potential for the development of new antibiotics. However, progress has been hindered by challenges presented by poor in vivo stability (peptides) or lack of selectivity (peptoids). Herein, we have developed a process to prepare novel hybrid antibacterial agents that combine both linear peptoids (increased in vivo stability compared to peptides) and a nisin fragment (lipid II targeting domain). The hybrid nisin⁻peptoids prepared were shown to have low micromolar activity (comparable to natural nisin) against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Hannah L Bolt
- Center for Global Infectious Diseases, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Laurens H J Kleijn
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Nathaniel I Martin
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Steven L Cobb
- Center for Global Infectious Diseases, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
160
|
Weishaupt R, Heuberger L, Siqueira G, Gutt B, Zimmermann T, Maniura-Weber K, Salentinig S, Faccio G. Enhanced Antimicrobial Activity and Structural Transitions of a Nanofibrillated Cellulose-Nisin Biocomposite Suspension. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20170-20181. [PMID: 29767501 DOI: 10.1021/acsami.8b04470] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Resistance to antibiotics has posed a high demand for novel strategies to fight bacterial infections. Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. However, their poor solubility in water and sensitivity to degradation has limited their application. Here, we report the design of a smart, pH-responsive antimicrobial nanobiocomposite material based on the AMP nisin and 2,2,6,6-tetramethyl-1-piperidinyloxyl-oxidized nanofibrillated cellulose (TONFC). Morphological transformations of the nanoscale structure of nisin functionalized-TONFC fibrils were discovered at pH values between 5.8 and 8.0 using small-angle X-ray scattering. Complementary ζ potential measurements indicate that electrostatic attractions between the negatively charged TONFC surface and the positively charged nisin molecules are responsible for the integration of nisin. Modification of the pH level or increasing the ionic strength reduces the nisin binding capacity of TONFC. Biological evaluation studies using a bioluminescence-based reporter strain of Bacillus subtilis and a clinically relevant strain of Staphylococcus aureus indicated a significantly higher antimicrobial activity of the TONFC-nisin biocomposite compared to the pure nisin against both strains under physiological pH and ionic strength conditions. The in-depth characterization of this new class of antimicrobial biocomposite material based on nanocellulose and nisin may guide the rational design of sustainable antimicrobial materials.
Collapse
Affiliation(s)
- Ramon Weishaupt
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Lukas Heuberger
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Gilberto Siqueira
- Laboratory for Applied Wood Materials , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Beatrice Gutt
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Tanja Zimmermann
- Laboratory for Applied Wood Materials , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Stefan Salentinig
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Greta Faccio
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
161
|
Punekar AS, Samsudin F, Lloyd AJ, Dowson CG, Scott DJ, Khalid S, Roper DI. The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization. Cell Surf 2018; 2:54-66. [PMID: 30046666 PMCID: PMC6053601 DOI: 10.1016/j.tcsw.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial peptidoglycan glycosyltransferases (PGT) catalyse the essential polymerization of lipid II into linear glycan chains required for peptidoglycan biosynthesis. The PGT domain is composed of a large head subdomain and a smaller jaw subdomain and can be potently inhibited by the antibiotic moenomycin A (MoeA). We present an X-ray structure of the MoeA-bound Staphylococcus aureus monofunctional PGT enzyme, revealing electron density for a second MoeA bound to the jaw subdomain as well as the PGT donor site. Isothermal titration calorimetry confirms two drug-binding sites with markedly different affinities and positive cooperativity. Hydrophobic cluster analysis suggests that the membrane-interacting surface of the jaw subdomain has structural and physicochemical properties similar to amphipathic cationic α -helical antimicrobial peptides for lipid II recognition and binding. Furthermore, molecular dynamics simulations of the drug-free and -bound forms of the enzyme demonstrate the importance of the jaw subdomain movement for lipid II selection and polymerization process and provide molecular-level insights into the mechanism of peptidoglycan biosynthesis by PGTs.
Collapse
Affiliation(s)
- Avinash S. Punekar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Adrian J. Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - David J. Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
- ISIS Neutron and Muon Spallation Source and Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
162
|
Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. Appl Environ Microbiol 2018; 84:AEM.00052-18. [PMID: 29625984 DOI: 10.1128/aem.00052-18] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial compounds containing lanthionine and methyl-lanthionine residues. Nisin, one of the most extensively studied and used lantibiotics, has been shown to display very potent activity against Gram-positive bacteria, and stable resistance is rarely observed. By binding to lipid II and forming pores in the membrane, nisin can cause the efflux of cellular constituents and inhibit cell wall biosynthesis. However, the activity of nisin against Gram-negative bacteria is much lower than that against Gram-positive bacteria, mainly because lipid II is located at the inner membrane, and the rather impermeable outer membrane in Gram-negative bacteria prevents nisin from reaching lipid II. Thus, if the outer membrane-traversing efficiency of nisin could be increased, the activity against Gram-negative bacteria could, in principle, be enhanced. In this work, several relatively short peptides with activity against Gram-negative bacteria were selected from literature data to be fused as tails to the C terminus of either full or truncated nisin species. Among these, we found that one of three tails (tail 2 [T2; DKYLPRPRPV], T6 [NGVQPKY], and T8 [KIAKVALKAL]) attached to a part of nisin displayed improved activity against Gram-negative microorganisms. Next, we rationally designed and reengineered the most promising fusion peptides. Several mutants whose activity significantly outperformed that of nisin against Gram-negative pathogens were obtained. The activity of the tail 16 mutant 2 (T16m2) construct against several important Gram-negative pathogens (i.e., Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes) was increased 4- to 12-fold compared to that of nisin. This study indicates that the rational design of nisin can selectively and significantly improve its outer membrane-permeating capacity as well as its activity against Gram-negative pathogens.IMPORTANCE Lantibiotics are antimicrobial peptides that are highly active against Gram-positive bacteria but that have relatively poor activity against most Gram-negative bacteria. Here, we modified the model lantibiotic nisin by fusing parts of it to antimicrobial peptides with known activity against Gram-negative bacteria. The appropriate selection of peptidic moieties that could be attached to (parts of) nisin could lead to a significant increase in its inhibitory activity against Gram-negative bacteria. Using this strategy, hybrids that outperformed nisin by displaying 4- to 12-fold higher levels of activity against relevant Gram-negative bacterial species were produced. This study shows the power of modified peptide engineering to alter target specificity in a desired direction.
Collapse
|
163
|
Mills S, Ross RP, Hill C. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiol Rev 2018; 41:S129-S153. [PMID: 28830091 DOI: 10.1093/femsre/fux022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Bacteriocins and bacteriophage (phage) are biological tools which exhibit targeted microbial killing, a phenomenon which until recently was seen as a major drawback for their use as antimicrobial agents. However, in an age when the deleterious consequences of broad-spectrum antibiotics on human health have become apparent, there is an urgent need to develop narrow-spectrum substitutes. Indeed, disruption of the microbial communities which exist on and in our bodies can generate immediate and long-term negative effects and this is particularly borne out in the gut microbiota community whose disruption has been linked to a number of disorders reaching as far as the brain. Moreover, the antibiotic resistance crisis has resulted in our inability to treat many bacterial infections and has triggered the search for damage-limiting alternatives. As bacteriocins and phage are natural entities they are relatively easy to isolate and characterise and are also ideal candidates for improving food safety and quality, forfeiting the need for largely unpopular chemical preservatives. This review highlights the efficacy of both antimicrobial agents in terms of gut health and food safety and explores the body of scientific evidence supporting their effectiveness in both environments.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Institute and School of Microbiology, University College Cork, Western Road, Cork T12 YN60, Ireland
| | - R Paul Ross
- APC Microbiome Institute and School of Microbiology, University College Cork, Western Road, Cork T12 YN60, Ireland
| | - Colin Hill
- APC Microbiome Institute and School of Microbiology, University College Cork, Western Road, Cork T12 YN60, Ireland
| |
Collapse
|
164
|
Santiago M, Lee W, Fayad AA, Coe KA, Rajagopal M, Do T, Hennessen F, Srisuknimit V, Müller R, Meredith TC, Walker S. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol 2018; 14:601-608. [PMID: 29662210 PMCID: PMC5964011 DOI: 10.1038/s41589-018-0041-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Identifying targets of antibacterial compounds remains a challenging step in antibiotic development. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures, identified from directional biases in insertions, revealed known molecular targets and resistance mechanisms for the majority of these. Because single gene upregulation does not always confer resistance, we used a complementary machine learning approach to predict mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating antibiotic mechanism of action.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Kathryn A Coe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Mithila Rajagopal
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
165
|
Zong Y, Sun X, Gao H, Meyer KJ, Lewis K, Rao Y. Developing Equipotent Teixobactin Analogues against Drug-Resistant Bacteria and Discovering a Hydrophobic Interaction between Lipid II and Teixobactin. J Med Chem 2018; 61:3409-3421. [PMID: 29629769 DOI: 10.1021/acs.jmedchem.7b01241] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Teixobactin, targeting lipid II, represents a new class of antibiotics with novel structures and has excellent activity against Gram-positive pathogens. We developed a new convergent method to synthesize a series of teixobactin analogues and explored structure-activity relationships. We obtained equipotent and simplified teixobactin analogues, replacing the l- allo-enduracididine with lysine, substituting oxygen to nitrogen on threonine, and adding a phenyl group on the d-phenylalanine. On the basis of the antibacterial activities that resulted from corresponding modifications of the d-phenylalanine, we propose a hydrophobic interaction between lipid II and the N-terminal of teixobactin analogues, which we map out with our analogue 35. Finally, a representative analogue from our series showed high efficiency in a mouse model of Streptococcus pneumoniae septicemia.
Collapse
Affiliation(s)
- Yu Zong
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China
| | - Xiuyun Sun
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China.,Tsinghua-Peking Center for Life Sciences , Haidian District, Beijing 100084 , China
| | - Hongying Gao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China.,Tsinghua-Peking Center for Life Sciences , Haidian District, Beijing 100084 , China
| | - Kirsten J Meyer
- Antimicrobial Discovery Center, Department of Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
166
|
Silva CCG, Silva SPM, Ribeiro SC. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front Microbiol 2018; 9:594. [PMID: 29686652 PMCID: PMC5900009 DOI: 10.3389/fmicb.2018.00594] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
In the last years, consumers are becoming increasingly aware of the human health risk posed by the use of chemical preservatives in foods. In contrast, the increasing demand by the dairy industry to extend shelf-life and prevent spoilage of dairy products has appeal for new preservatives and new methods of conservation. Bacteriocins are antimicrobial peptides, which can be considered as safe since they can be easily degraded by proteolytic enzymes of the mammalian gastrointestinal tract. Also, most bacteriocin producers belong to lactic acid bacteria (LAB), a group that occurs naturally in foods and have a long history of safe use in dairy industry. Since they pose no health risk concerns, bacteriocins, either purified or excreted by bacteriocin producing strains, are a great alternative to the use of chemical preservatives in dairy products. Bacteriocins can be applied to dairy foods on a purified/crude form or as a bacteriocin-producing LAB as a part of fermentation process or as adjuvant culture. A number of applications of bacteriocins and bacteriocin-producing LAB have been reported to successful control pathogens in milk, yogurt, and cheeses. One of the more recent trends consists in the incorporation of bacteriocins, directly as purified or semi-purified form or in incorporation of bacteriocin-producing LAB into bioactive films and coatings, applied directly onto the food surfaces and packaging. This review is focused on recent developments and applications of bacteriocins and bacteriocin-producing LAB for reducing the microbiological spoilage and improve safety of dairy products.
Collapse
Affiliation(s)
- Célia C. G. Silva
- Instituto de Investigação e Tecnologias Agrárias e do Ambiente, Universidade dos Açores, Angra do Heroísmo, Portugal
| | | | | |
Collapse
|
167
|
Tryptophan-Rich and Proline-Rich Antimicrobial Peptides. Molecules 2018; 23:molecules23040815. [PMID: 29614844 PMCID: PMC6017362 DOI: 10.3390/molecules23040815] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022] Open
Abstract
Due to the increasing emergence of drug-resistant pathogenic microorganisms, there is a world-wide quest to develop new-generation antibiotics. Antimicrobial peptides (AMPs) are small peptides with a broad spectrum of antibiotic activities against bacteria, fungi, protozoa, viruses and sometimes exhibit cytotoxic activity toward cancer cells. As a part of the native host defense system, most AMPs target the membrane integrity of the microorganism, leading to cell death by lysis. These membrane lytic effects are often toxic to mammalian cells and restrict their systemic application. However, AMPs containing predominantly either tryptophan or proline can kill microorganisms by targeting intracellular pathways and are therefore a promising source of next-generation antibiotics. A minimum length of six amino acids is required for high antimicrobial activity in tryptophan-rich AMPs and the position of these residues also affects their antimicrobial activity. The aromatic side chain of tryptophan is able to rapidly form hydrogen bonds with membrane bilayer components. Proline-rich AMPs interact with the 70S ribosome and disrupt protein synthesis. In addition, they can also target the heat shock protein in target pathogens, and consequently lead to protein misfolding. In this review, we will focus on describing the structures, sources, and mechanisms of action of the aforementioned AMPs.
Collapse
|
168
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
169
|
Arora D, Chawla Y, Malakar B, Singh A, Nandicoori VK. The transpeptidase PbpA and noncanonical transglycosylase RodA of Mycobacterium tuberculosis play important roles in regulating bacterial cell lengths. J Biol Chem 2018. [PMID: 29530985 DOI: 10.1074/jbc.m117.811190] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) is a complex structure that protects the pathogen in hostile environments. Peptidoglycan (PG), which helps determine the morphology of the cell envelope, undergoes substantial remodeling under stress. This meshwork of linear chains of sugars, cross-linked through attached peptides, is generated through the sequential action of enzymes termed transglycosylases and transpeptidases. The Mtb genome encodes two classical transglycosylases and four transpeptidases, the functions of which are not fully elucidated. Here, we present work on the yet uncharacterized transpeptidase PbpA and a nonclassical transglycosylase RodA. We elucidate their roles in regulating in vitro growth and in vivo survival of pathogenic mycobacteria. We find that RodA and PbpA are required for regulating cell length, but do not affect mycobacterial growth. Biochemical analyses show PbpA to be a classical transpeptidase, whereas RodA is identified to be a member of an emerging class of noncanonical transglycosylases. Phosphorylation of RodA at Thr-463 modulates its biological function. In a guinea pig infection model, RodA and PbpA are found to be required for both bacterial survival and formation of granuloma structures, thus underscoring the importance of these proteins in mediating mycobacterial virulence in the host. Our results emphasize the fact that whereas redundant enzymes probably compensate for the absence of RodA or PbpA during in vitro growth, the two proteins play critical roles for the survival of the pathogen inside its host.
Collapse
Affiliation(s)
- Divya Arora
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Yogesh Chawla
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Basanti Malakar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, 110025 New Delhi, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| |
Collapse
|
170
|
Resistance to nonribosomal peptide antibiotics mediated by D-stereospecific peptidases. Nat Chem Biol 2018; 14:381-387. [PMID: 29483640 DOI: 10.1038/s41589-018-0009-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
Abstract
Nonribosomal peptide antibiotics, including polymyxin, vancomycin, and teixobactin, most of which contain D-amino acids, are highly effective against multidrug-resistant bacteria. However, overusing antibiotics while ignoring the risk of resistance arising has inexorably led to widespread emergence of resistant bacteria. Therefore, elucidation of the emerging mechanisms of resistance to nonribosomal peptide antibiotics is critical to their implementation. Here we describe a networking-associated genome-mining platform for linking biosynthetic building blocks to resistance components associated with biosynthetic gene clusters. By applying this approach to 5,585 complete bacterial genomes spanning the entire domain of bacteria, with subsequent chemical and enzymatic analyses, we demonstrate a mechanism of resistance toward nonribosomal peptide antibiotics that is based on hydrolytic cleavage by D-stereospecific peptidases. Our finding reveals both the widespread distribution and broad-spectrum resistance potential of D-stereospecific peptidases, providing a potential early indicator of antibiotic resistance to nonribosomal peptide antibiotics.
Collapse
|
171
|
Fluorescent Antibiotics: New Research Tools to Fight Antibiotic Resistance. Trends Biotechnol 2018; 36:523-536. [PMID: 29478675 DOI: 10.1016/j.tibtech.2018.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/02/2023]
Abstract
Better understanding how multidrug-resistant (MDR) bacteria can evade current and novel antibiotics requires a better understanding of the chemical biology of antibiotic action. This necessitates using new tools and techniques to advance our knowledge of bacterial responses to antibiotics, ideally in live cells in real time, to selectively investigate bacterial growth, division, metabolism, and resistance in response to antibiotic challenge. In this review, we discuss the preparation and biological evaluation of fluorescent antibiotics, focussing on how these reporters and assay methods can help elucidate resistance mechanisms. We also examine the potential utility of such probes for real-time in vivo diagnosis of infections.
Collapse
|
172
|
Abstract
Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.
Collapse
Affiliation(s)
- Srinivas Suda
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Des Field
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
173
|
Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nat Chem 2018; 10:363-371. [PMID: 29461535 DOI: 10.1038/nchem.2919] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/08/2017] [Indexed: 12/28/2022]
Abstract
Translocation of lipid II across the cytoplasmic membrane is essential in peptidoglycan biogenesis. Although most steps are understood, identifying the lipid II flippase has yielded conflicting results, and the lipid II binding properties of two candidate flippases-MurJ and FtsW-remain largely unknown. Here we apply native mass spectrometry to both proteins and characterize lipid II binding. We observed lower levels of lipid II binding to FtsW compared to MurJ, consistent with MurJ having a higher affinity. Site-directed mutagenesis of MurJ suggests that mutations at A29 and D269 attenuate lipid II binding to MurJ, whereas chemical modification of A29 eliminates binding. The antibiotic ramoplanin dissociates lipid II from MurJ, whereas vancomycin binds to form a stable complex with MurJ:lipid II. Furthermore, we reveal cardiolipins associate with MurJ but not FtsW, and exogenous cardiolipins reduce lipid II binding to MurJ. These observations provide insights into determinants of lipid II binding to MurJ and suggest roles for endogenous lipids in regulating substrate binding.
Collapse
|
174
|
Liu L, Wu S, Wang Q, Zhang M, Wang B, He G, Chen G. Total synthesis of teixobactin and its stereoisomers. Org Chem Front 2018. [DOI: 10.1039/c8qo00145f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The total syntheses of teixobactin and a series of its stereoisomers at positions 2, 5, 6, 10 and 11 were achieved via a combined strategy of solution and solid phase peptide synthesis.
Collapse
Affiliation(s)
- L. Liu
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - S. Wu
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Q. Wang
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - M. Zhang
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - B. Wang
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - G. He
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - G. Chen
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
175
|
Field D, Baghou I, Rea MC, Gardiner GE, Ross RP, Hill C. Nisin in Combination with Cinnamaldehyde and EDTA to Control Growth of Escherichia coli Strains of Swine Origin. Antibiotics (Basel) 2017; 6:antibiotics6040035. [PMID: 29231854 PMCID: PMC5745478 DOI: 10.3390/antibiotics6040035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Post-weaning diarrhoea (PWD) due to enterotoxigenic Escherichia coli (ETEC) is an economically important disease in pig production worldwide. Although antibiotics have contributed significantly to mitigate the economic losses caused by PWD, there is major concern over the increased incidence of antimicrobial resistance among bacteria isolated from pigs. Consequently, suitable alternatives that are safe and effective are urgently required. Many naturally occurring compounds, including the antimicrobial peptide nisin and a number of plant essential oils, have been widely studied and are reported to be effective as antimicrobial agents against pathogenic microorganisms. Here, we evaluate the potential of nisin in combination with the essential oil cinnamaldehyde and ethylenediaminetetraacetic acid (EDTA) to control the growth of E. coli strains of swine origin including two characterized as ETEC. The results reveal that the use of nisin (10 μM) with low concentrations of trans-cinnamaldehyde (125 μg/mL) and EDTA (0.25–2%) resulted in extended lag phases of growth compared to when either antimicrobial is used alone. Further analysis through kill curves revealed that an approximate 1-log reduction in E. coli cell counts was observed against the majority of targets tested following 3 h incubation. These results highlight the potential benefits of combining the natural antimicrobial nisin with trans-cinnamaldehyde and EDTA as a new approach for the inhibition of E. coli strains of swine origin.
Collapse
Affiliation(s)
- Des Field
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
| | - Inès Baghou
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork P61 C996, Ireland.
- APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland.
| | - Gillian E Gardiner
- Department of Science, Waterford Institute of Technology, Waterford X91 K0EK, Ireland.
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
- APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland.
| | - Colin Hill
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
- APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland.
| |
Collapse
|
176
|
Liu Y, Liu Y, Chan-Park MB, Mu Y. Binding Modes of Teixobactin to Lipid II: Molecular Dynamics Study. Sci Rep 2017; 7:17197. [PMID: 29222455 PMCID: PMC5722933 DOI: 10.1038/s41598-017-17606-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022] Open
Abstract
Teixobactin (TXB) is a newly discovered antibiotic targeting the bacterial cell wall precursor Lipid II (LII). In the present work, four binding modes of TXB on LII were identified by a contact-map based clustering method. The highly flexible binary complex ensemble was generated by parallel tempering metadynamics simulation in a well-tempered ensemble (PTMetaD-WTE). In agreement with experimental findings, the pyrophosphate group and the attached first sugar subunit of LII are found to be the minimal motif for stable TXB binding. Three of the four binding modes involve the ring structure of TXB and have relatively higher binding affinities, indicating the importance of the ring motif of TXB in LII recognition. TXB-LII complexes with a ratio of 2:1 are also predicted with configurations such that the ring motif of two TXB molecules bound to the pyrophosphate-MurNAc moiety and the glutamic acid residue of one LII, respectively. Our findings disclose that the ring motif of TXB is critical to LII binding and novel antibiotics can be designed based on its mimetics.
Collapse
Affiliation(s)
- Yang Liu
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yaxin Liu
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
177
|
Radeck J, Lautenschläger N, Mascher T. The Essential UPP Phosphatase Pair BcrC and UppP Connects Cell Wall Homeostasis during Growth and Sporulation with Cell Envelope Stress Response in Bacillus subtilis. Front Microbiol 2017; 8:2403. [PMID: 29259598 PMCID: PMC5723303 DOI: 10.3389/fmicb.2017.02403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 12/03/2022] Open
Abstract
The bacterial cell wall separates the cell from its surrounding and protects it from environmental stressors. Its integrity is maintained by a highly regulated process of cell wall biosynthesis. The membrane-located lipid II cycle provides cell wall building blocks that are assembled inside the cytoplasm to the outside for incorporation. Its carrier molecule, undecaprenyl phosphate (UP), is then recycled by dephosphorylation from undecaprenyl pyrophosphate (UPP). In Bacillus subtilis, this indispensable reaction is catalyzed by the UPP phosphatases BcrC and UppP. Here, we study the physiological function of both phosphatases with respect to morphology, cell wall homeostasis and the resulting cell envelope stress response (CESR). We demonstrate that uppP and bcrC represent a synthetic lethal gene pair, which encodes an essential physiological function. Accordingly, cell growth and morphology were severely impaired during exponential growth if the overall UPP phosphatase level was limiting. UppP, but not BcrC, was crucial for normal sporulation. Expression of bcrC, but not uppP, was upregulated in the presence of cell envelope stress conditions caused by bacitracin if UPP phosphatase levels were limited. This homeostatic feedback renders BcrC more important during growth than UppP, particularly in defense against cell envelope stress.
Collapse
Affiliation(s)
- Jara Radeck
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | | | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
178
|
Geng M, Smith L. Improving the attrition rate of Lanthipeptide discovery for commercial applications. Expert Opin Drug Discov 2017; 13:155-167. [PMID: 29195488 DOI: 10.1080/17460441.2018.1410137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Lanthipeptides are a class of ribosomally synthesized and post-translationally modified peptides. Lanthipeptides with antimicrobial activity are referred to as lantibiotics. Lantibiotics are generally active against Gram-positive bacteria. However, some modifications have expanded their activity toward Gram-negative bacteria. Furthermore, additional functions aside from antibacterial activities have been reported for lanthipeptides. Areas covered: This review provides a synopsis of current anthipeptide research for potential therapeutics. The review highlights the current tools used for identifying lanthipeptides from genomic sequencing data. It also describes the current approaches that have been used to overcome the limitations in the purification and isolation of lanthipeptides. The status of lanthipeptides in terms of potential applications and approaches that are currently being done to promote the development of lanthipeptides as novel therapeutics are also discussed. Expert opinion: Significant improvements have been made to promote the discovery of new lanthipeptides, while, simultaneously, tools have been developed to promote their production and isolation. Lanthipeptides are showing significant promise for treating bacterial infections, as well as for new applications as anticancer and antiviral agents, or as a novel treatment for pain management. At the current rate of lanthipeptide discovery and isolation of the products, it is likely several new applications will be discovered.
Collapse
Affiliation(s)
- Mengxin Geng
- a Department of Biological Sciences , Texas A&M University, College Station , College Station , TX , USA
| | - Leif Smith
- a Department of Biological Sciences , Texas A&M University, College Station , College Station , TX , USA
| |
Collapse
|
179
|
Lee M, Hesek D, Zajíček J, Fisher JF, Mobashery S. Synthesis and shift-reagent-assisted full NMR assignment of bacterial (Z 8,E 2,ω)-undecaprenol. Chem Commun (Camb) 2017; 53:12774-12777. [PMID: 29139490 PMCID: PMC5749266 DOI: 10.1039/c7cc06781j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The repeating isoprene unit is a fundamental biosynthetic motif. The repetitive structure presents challenges both for synthesis and for structural characterization. In this synthesis of the (Z8,E2,ω)-undecaprenol of prokaryotic glycobiology, we exemplify solutions to these challenges. Allylation of sulfone-derived carbanions controlled the stereochemistry, and its proof-of-structure was secured by Eu(hfc)3 complexation to disperse the overlaid resonances of its 1H NMR spectrum.
Collapse
Affiliation(s)
- Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | |
Collapse
|
180
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemical and Biological Aspects of Nutritional Immunity-Perspectives for New Anti-Infectives that Target Iron Uptake Systems. Angew Chem Int Ed Engl 2017; 56:14360-14382. [PMID: 28439959 DOI: 10.1002/anie.201701586] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Upon bacterial infection, one of the defense mechanisms of the host is the withdrawal of essential metal ions, in particular iron, which leads to "nutritional immunity". However, bacteria have evolved strategies to overcome iron starvation, for example, by stealing iron from the host or other bacteria through specific iron chelators with high binding affinity. Fortunately, these complex interactions between the host and pathogen that lead to metal homeostasis provide several opportunities for interception and, thus, allow the development of novel antibacterial compounds. This Review focuses on iron, discusses recent highlights, and gives some future perspectives which are relevant in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Joshua A V Blodgett
- Department of Biology, Washington University, St. Louis, MO, 63130-4899, USA
| | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 7, 0569, Stuttgart, Germany
| | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Rainer Schobert
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
181
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemische und biologische Aspekte von “Nutritional Immunity” - Perspektiven für neue Antiinfektiva mit Fokus auf bakterielle Eisenaufnahmesysteme. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening; Helmholtz-Zentrum für Infektionsforschung; Inhoffenstraße 7 38124 Braunschweig Deutschland
| | | | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; I-20133 Milano Italien
| | - Sabine Laschat
- Institut für Organische Chemie; Universität Stuttgart; Pfaffenwaldring 55, 7 0569 Stuttgart Deutschland
| | - Anne Routledge
- Department of Chemistry; University of York, Heslington; York YO10 5DD Großbritannien
| | - Rainer Schobert
- Organische Chemie I; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| |
Collapse
|
182
|
't Hart P, Wood TM, Tehrani KHME, van Harten RM, Śleszyńska M, Rentero Rebollo I, Hendrickx APA, Willems RJL, Breukink E, Martin NI. De novo identification of lipid II binding lipopeptides with antibacterial activity against vancomycin-resistant bacteria. Chem Sci 2017; 8:7991-7997. [PMID: 29568446 PMCID: PMC5853558 DOI: 10.1039/c7sc03413j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid II binding lipopeptides discovered via bicyclic peptide phage display exhibit promising antibacterial activity.
Creative strategies for identifying new antibiotics are essential to addressing the looming threat of a post-antibiotic era. We here report the use of a targeted peptide phage display screen as a means of generating novel antimicrobial lipopeptides. Specifically, a library of phage displayed bicyclic peptides was screened against a biomolecular target based on the bacterial cell wall precursor lipid II. In doing so we identified unique lipid II binding peptides that upon lipidation were found to be active against a range of Gram-positive bacteria including clinically relevant strains of vancomycin resistant bacteria. Optimization of the peptide sequence led to variants with enhanced antibacterial activity and reduced hemolytic activity. Biochemical experiments further confirm a lipid II mediated mode of action for these new-to-nature antibacterial lipopeptides.
Collapse
Affiliation(s)
- Peter 't Hart
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Thomas M Wood
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Kamaleddin Haj Mohammad Ebrahim Tehrani
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Roel M van Harten
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Małgorzata Śleszyńska
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Inmaculada Rentero Rebollo
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Antoni P A Hendrickx
- Department of Medical Microbiology , University Medical Center , Utrecht , The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology , University Medical Center , Utrecht , The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics Group , Department of Chemistry , Utrecht University , The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| |
Collapse
|
183
|
Franzoi M, van Heuvel Y, Thomann S, Schürch N, Kallio PT, Venier P, Essig A. Structural Insights into the Mode of Action of the Peptide Antibiotic Copsin. Biochemistry 2017; 56:4992-5001. [PMID: 28825809 DOI: 10.1021/acs.biochem.7b00697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Defensins make up a class of cysteine-rich antimicrobial peptides, expressed by virtually all eukaryotes as part of their innate immune response. Because of their unique mode of action and rapid killing of pathogenic microbes, defensins are considered promising alternatives to clinically applied antibiotics. Copsin is a defensin-like peptide, previously identified in the mushroom Coprinopsis cinerea. It exerts its activity against a range of Gram-positive bacteria by binding to the peptidoglycan precursor lipid II and prevention of proper cell wall formation. In this study, we present a new workflow for the generation, production, and activity-driven selection of copsin derivatives, based on their expression in Pichia pastoris. One hundred fifty-two single-amino acid mutants and combinations thereof allowed the identification of k-copsin, a peptide variant exhibiting significantly enhanced activity against Bacillus subtilis and Staphylococcus aureus. Furthermore, we performed in silico characterizations of membrane interactions of copsin and k-copsin, in the presence and absence of lipid II. The molecular dynamics data highlighted a high variability in lipid II binding, with a preference for the MurNAc moiety with 47 and 35% of the total contacts for copsin and k-copsin, respectively. Mutated amino acids were located in loop regions of k-copsin and shown to be crucial in the perturbation of the bacterial membrane. These structural studies provide a better understanding of how defensins can be developed toward antibacterial therapies less prone to resistance issues.
Collapse
Affiliation(s)
- Marco Franzoi
- Department of Biology, University of Padova , Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Yasemin van Heuvel
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH Zurich , CH-8093 Zurich, Switzerland
| | - Susanne Thomann
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection , CH-3700 Spiez, Switzerland
| | - Nadia Schürch
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection , CH-3700 Spiez, Switzerland
| | - Pauli T Kallio
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH Zurich , CH-8093 Zurich, Switzerland
| | - Paola Venier
- Department of Biology, University of Padova , Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Andreas Essig
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH Zurich , CH-8093 Zurich, Switzerland
| |
Collapse
|
184
|
Chen H, Zhong Q. Lactobionic acid enhances the synergistic effect of nisin and thymol against Listeria monocytogenes Scott A in tryptic soy broth and milk. Int J Food Microbiol 2017; 260:36-41. [PMID: 28843122 DOI: 10.1016/j.ijfoodmicro.2017.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is a Gram-positive opportunistic human pathogen and it remains a significant cause of foodborne illnesses. A variety of natural and synthetic compounds have been studied to inhibit the growth of L. monocytogenes in foods. Antimicrobial combinations with synergistic antilisterial properties can reduce the dose of each antimicrobial, which can be further enhanced by chelating compounds. Therefore, the objective of this study was to determine antilisterial properties of binary or ternary combinations of lactobionic acid (LBA), nisin, and thymol in tryptic soy broth (TSB), 2% reduced-fat milk, and whole milk. The results showed that the minimum inhibitory concentration (MIC) of nisin, thymol and LBA was 125IU/mL, 0.25mg/mL, and 10mg/mL, respectively. The ternary combination was the most effective in reducing MICs of antimicrobials, with the MIC of nisin, thymol, and LBA being 31.25IU/mL, 0.0625mg/mL, and 1.25mg/mL, respectively. In TSB with 0.6% yeast extract, L. monocytogenes grew in individual or binary antimicrobial treatments of 31.25IU/mL nisin, 0.0625mg/mL thymol, and 1.25mg/mL LBA within 24h at 32°C, while it was completely inhibited by the ternary combination. In 2% reduced-fat milk at 21°C, the ternary combination of nisin, thymol, and LBA at respective concentrations of 250IU/mL, 2mg/mL, and 10mg/mL completely inhibited the bacterium to below the detection limit in 72h while >2log (CFU/mL) bacteria was still detected in all the binary combinations after 120h. In whole milk, the combination of 500IU/mL nisin, 2mg/mL thymol, and 10mg/mL LBA reduced bacteria to around 2log (CFU/mL) in 4h at 21°C, and no bacterial recovery was observed after 5 d. This study suggested the potential of the ternary combination of nisin, thymol and LBA for food preservation.
Collapse
Affiliation(s)
- Huaiqiong Chen
- Department of Food Science, University of Tennessee Knoxville, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee Knoxville, USA.
| |
Collapse
|
185
|
Müller A, Klöckner A, Schneider T. Targeting a cell wall biosynthesis hot spot. Nat Prod Rep 2017; 34:909-932. [PMID: 28675405 DOI: 10.1039/c7np00012j] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2017History points to the bacterial cell wall biosynthetic network as a very effective target for antibiotic intervention, and numerous natural product inhibitors have been discovered. In addition to the inhibition of enzymes involved in the multistep synthesis of the macromolecular layer, in particular, interference with membrane-bound substrates and intermediates essential for the biosynthetic reactions has proven a valuable antibacterial strategy. A prominent target within the peptidoglycan biosynthetic pathway is lipid II, which represents a particular "Achilles' heel" for antibiotic attack, as it is readily accessible on the outside of the cytoplasmic membrane. Lipid II is a unique non-protein target that is one of the structurally most conserved molecules in bacterial cells. Notably, lipid II is more than just a target molecule, since sequestration of the cell wall precursor may be combined with additional antibiotic activities, such as the disruption of membrane integrity or disintegration of membrane-bound multi-enzyme machineries. Within the membrane bilayer lipid II is likely organized in specific anionic phospholipid patches that form a particular "landing platform" for antibiotics. Nature has invented a variety of different "lipid II binders" of at least 5 chemical classes, and their antibiotic activities can vary substantially depending on the compounds' physicochemical properties, such as amphiphilicity and charge, and thus trigger diverse cellular effects that are decisive for antibiotic activity.
Collapse
Affiliation(s)
- Anna Müller
- Institute of Pharmaceutical Microbiology, University of Bonn, Bonn, Germany.
| | | | | |
Collapse
|
186
|
Pidgeon SE, Pires MM. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci. ACS Chem Biol 2017; 12:1913-1918. [PMID: 28574692 DOI: 10.1021/acschembio.7b00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.
Collapse
Affiliation(s)
- Sean E. Pidgeon
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
187
|
Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ, Radey MC, Kulasekara HD, Ching MQ, Bullen NP, Bryant D, Goo YA, Surette MG, Borenstein E, Vollmer W, Mougous JD. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. eLife 2017; 6. [PMID: 28696203 PMCID: PMC5555719 DOI: 10.7554/elife.26938] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022] Open
Abstract
The Firmicutes are a phylum of bacteria that dominate numerous polymicrobial habitats of importance to human health and industry. Although these communities are often densely colonized, a broadly distributed contact-dependent mechanism of interbacterial antagonism utilized by Firmicutes has not been elucidated. Here we show that proteins belonging to the LXG polymorphic toxin family present in Streptococcus intermedius mediate cell contact- and Esx secretion pathway-dependent growth inhibition of diverse Firmicute species. The structure of one such toxin revealed a previously unobserved protein fold that we demonstrate directs the degradation of a uniquely bacterial molecule required for cell wall biosynthesis, lipid II. Consistent with our functional data linking LXG toxins to interbacterial interactions in S. intermedius, we show that LXG genes are prevalent in the human gut microbiome, a polymicrobial community dominated by Firmicutes. We speculate that interbacterial antagonism mediated by LXG toxins plays a critical role in shaping Firmicute-rich bacterial communities. DOI:http://dx.doi.org/10.7554/eLife.26938.001 Most bacteria live in densely colonized environments, such as the human gut, in which they must constantly compete with other microbes for space and nutrients. As a result, bacteria have evolved a wide array of strategies to directly fight their neighbors. For example, some bacteria release antimicrobial compounds into their surroundings, while others ‘inject’ protein toxins directly into adjacent cells. Bacteria can be classified into two groups known as Gram-positive and Gram-negative. Previous studies found that Gram-negative bacteria inject toxins into neighboring cells, but no comparable toxins in Gram-positive bacteria had been identified. Before a bacterium can inject molecules into an adjacent cell, it needs to move the toxins from its interior to the cell surface. It had been suggested that a transport system in Gram-positive bacteria called the Esx pathway may export toxins known as LXG proteins. However, it was not clear whether these proteins help Gram-positive bacteria to compete against other bacteria. Whitney et al. studied the LXG proteins in Gram-positive bacteria known as Firmicutes. The experiments reveal that Firmicutes found in the human gut possess LXG genes. A Firmicute known as Streptococcus intermedius produces three LXG proteins that are all toxic to bacteria. To avoid being harmed by its own LXG proteins, S. intermedius also produces matching antidote proteins. Further experiments show that LXG proteins are exported out of S. intermedius cells and into adjacent competitor bacteria by the Esx pathway. Examining one of these LXG proteins in more detail showed that it can degrade a molecule that bacteria need to make their cell wall. Together, these findings suggest that LXG proteins may influence the species living in many important microbial communities, including the human gut. Changes in the communities of gut microbes have been linked with many diseases. Therefore, understanding more about how the LXG proteins work may help us to develop ways to manipulate these communities to improve human health. DOI:http://dx.doi.org/10.7554/eLife.26938.002
Collapse
Affiliation(s)
- John C Whitney
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Jungyun Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Manuel Pazos
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Adrian J Verster
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Hemantha D Kulasekara
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Mary Q Ching
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Nathan P Bullen
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Diane Bryant
- Experimental Systems Group, Advanced Light Source, Berkeley, United States
| | - Young Ah Goo
- Northwestern Proteomics Core Facility, Northwestern University, Chicago, United States
| | - Michael G Surette
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, United States.,Department of Computer Science and Engineering, University of Washington, Seattle, United States.,Santa Fe Institute, Santa Fe, United States
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States.,Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
188
|
Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front Microbiol 2017; 8:1205. [PMID: 28706513 PMCID: PMC5489601 DOI: 10.3389/fmicb.2017.01205] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
The continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.
Collapse
Affiliation(s)
- Harsh Mathur
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Des Field
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
189
|
Vasilchenko AS, Rogozhin EA, Valyshev AV. Purification of a Novel Bacteriocin-Like Inhibitory Substance Produced byEnterococcus faeciumICIS 8 and Characterization of Its Mode of Action. Microb Drug Resist 2017; 23:447-456. [DOI: 10.1089/mdr.2016.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alexey S. Vasilchenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
- Orenburg State University, Orenburg, Russian Federation
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Gause Institute of New Antibiotics, Moscow, Russian Federation
| | - Alexander V. Valyshev
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
| |
Collapse
|
190
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
191
|
Abstract
Self-assembly, the autonomous organization of components to form patterns or structures, is a prevalent process in nature at all scales. Particularly, biological systems offer remarkable examples of diverse structures (as well as building blocks) and processes resulting from self-assembly. The exploration of bioinspired assemblies not only allows for mimicking the structures of living systems, but it also leads to functions for applications in different fields that benefit humans. In the last several decades, efforts on understanding and controlling self-assembly of small molecules have produced a large library of candidates for developing the biomedical applications of assemblies of small molecules. Moreover, recent findings in biology have provided new insights on the assemblies of small molecules to modulate essential cellular processes (such as apoptosis). These observations indicate that the self-assembly of small molecules, as multifaceted entities and processes to interact with multiple proteins, can have profound biological impacts on cells. In this review, we illustrate that the generation of assemblies of small molecules in cell milieu with their interactions with multiple cellular proteins for regulating cellular processes can result in primary phenotypes, thus providing a fundamentally new molecular approach for controlling cell behavior. By discussing the correlation between molecular assemblies in nature and the assemblies of small molecules in cell milieu, illustrating the functions of the assemblies of small molecules, and summarizing some guiding principles, we hope this review will stimulate more molecular scientists to explore the bioinspired self-assembly of small molecules in cell milieu.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| | | | | |
Collapse
|
192
|
Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 2017; 31:1-14. [PMID: 28867240 DOI: 10.1016/j.drup.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a major cause of bacterial infection in humans, and has been notoriously able to acquire resistance to a variety of antibiotics. An example is methicillin-resistant S. aureus (MRSA), which despite having been initially associated with clinical settings, now is one of the key causative agents of community-acquired infections. Antibiotic resistance in S. aureus involves mechanisms ranging from drug efflux to increased expression or mutation of target proteins, and this has required innovative approaches to develop novel treatment methodologies. This review provides an overview of the major mechanisms of antibiotic resistance developed by S. aureus, and describes the emerging alternatives being sought to circumvent infection and proliferation, including new generations of classic antibiotics, synergistic approaches, antibodies, and targeting of virulence factors.
Collapse
Affiliation(s)
- L Mayrink Assis
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | - M Nedeljković
- Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France
| | - A Dessen
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil; Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France.
| |
Collapse
|
193
|
Abstract
Antimicrobial peptides (AMPs) are expressed in various living organisms as first-line host defenses against potential harmful encounters in their surroundings. AMPs are short polycationic peptides exhibiting various antimicrobial activities. The principal antibacterial activity is attributed to the membrane-lytic mechanism which directly interferes with the integrity of the bacterial cell membrane and cell wall. In addition, a number of AMPs form a transmembrane channel in the membrane by self-aggregation or polymerization, leading to cytoplasm leakage and cell death. However, an increasing body of evidence has demonstrated that AMPs are able to exert intracellular inhibitory activities as the primary or supportive mechanisms to achieve efficient killing. In this review, we focus on the major intracellular targeting activities reported in AMPs, which include nucleic acids and protein biosynthesis and protein-folding, protease, cell division, cell wall biosynthesis, and lipopolysaccharide inhibition. These multifunctional AMPs could serve as the potential lead peptides for the future development of novel antibacterial agents with improved therapeutic profiles.
Collapse
|
194
|
Abstract
INTRODUCTION The effectiveness of lantibiotics against MDR pathogens and the progression of agents MU1140, NAI-107, NVB302 and duramycin into pre-clinical and clinical trials have highlighted their potential in the fight against bacterial resistance. The number of known lantibiotics and knowledge of their biosynthetic pathways has increased in recent years due to higher quality genomic data being delivered by next generation sequencing technologies combined with the development of specific genome mining tools, enabling the prediction of lantibiotic clusters. Areas covered: In this review, the author describes how the increase of high quality genomic data has increased the discovery of novel lantibiotics. Expert opinion: Novel apparatus such as the iChip enabling the isolation of uncultable bacteria will undoubtedly increase the identification rate of novel antimicrobial peptides including lantibiotics. The ability to then assess the lantibiotic clusters via recombinant production or synthesis using a high throughput method is one of the next challenges for developing these agents into the clinical environment.
Collapse
|
195
|
Ran R, Zeng H, Zhao D, Liu R, Xu X. The Novel Property of Heptapeptide of Microcin C7 in Affecting the Cell Growth of Escherichia coli. Molecules 2017; 22:E432. [PMID: 28282893 PMCID: PMC6155343 DOI: 10.3390/molecules22030432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/06/2017] [Indexed: 12/01/2022] Open
Abstract
Microcin C7 (McC), widely distributed in enterobacteria, is a promising antibiotic against antibiotic resistance [...].
Collapse
Affiliation(s)
- Rensen Ran
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huan Zeng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dong Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruiyuan Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xia Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
196
|
Bakka TA, Strøm MB, Andersen JH, Gautun OR. Synthesis and antimicrobial evaluation of cationic low molecular weight amphipathic 1,2,3-triazoles. Bioorg Med Chem Lett 2017; 27:1119-1123. [DOI: 10.1016/j.bmcl.2017.01.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 11/24/2022]
|
197
|
Piepenbreier H, Fritz G, Gebhard S. Transporters as information processors in bacterial signalling pathways. Mol Microbiol 2017; 104:1-15. [DOI: 10.1111/mmi.13633] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Hannah Piepenbreier
- LOEWE Center for Synthetic Microbiology; Philipps-University Marburg; Germany
| | - Georg Fritz
- LOEWE Center for Synthetic Microbiology; Philipps-University Marburg; Germany
| | - Susanne Gebhard
- Milner Centre for Evolution, Department of Biology and Biochemistry; University of Bath; UK
| |
Collapse
|
198
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
199
|
Gharsallaoui A, Oulahal N, Joly C, Degraeve P. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit Rev Food Sci Nutr 2017; 56:1262-74. [PMID: 25675115 DOI: 10.1080/10408398.2013.763765] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nisin is a natural preservative for many food products. This bacteriocin is mainly used in dairy and meat products. Nisin inhibits pathogenic food borne bacteria such as Listeria monocytogenes and many other Gram-positive food spoilage microorganisms. Nisin can be used alone or in combination with other preservatives or also with several physical treatments. This paper reviews physicochemical and biological properties of nisin, the main factors affecting its antimicrobial effectiveness, and its food applications as an additive directly incorporated into food matrices.
Collapse
Affiliation(s)
- Adem Gharsallaoui
- a Université de Lyon, Université Lyon 1-ISARA Lyon, Laboratoire BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) , Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Bourg en Bresse , France
| | - Nadia Oulahal
- a Université de Lyon, Université Lyon 1-ISARA Lyon, Laboratoire BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) , Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Bourg en Bresse , France
| | - Catherine Joly
- a Université de Lyon, Université Lyon 1-ISARA Lyon, Laboratoire BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) , Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Bourg en Bresse , France
| | - Pascal Degraeve
- a Université de Lyon, Université Lyon 1-ISARA Lyon, Laboratoire BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) , Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Bourg en Bresse , France
| |
Collapse
|
200
|
Fang C, Nagy-Staroń A, Grafe M, Heermann R, Jung K, Gebhard S, Mascher T. Insulation and wiring specificity of BceR-like response regulators and their target promoters inBacillus subtilis. Mol Microbiol 2017; 104:16-31. [DOI: 10.1111/mmi.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chong Fang
- Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
| | - Anna Nagy-Staroń
- Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
- Institute of Science and Technology (IST) Austria, Am Campus 1; Klosterneuburg A-3400 Austria
| | - Martin Grafe
- Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
| | - Ralf Heermann
- Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
- Munich Center for Integrated Protein Science (CiPSM) at the Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
| | - Kirsten Jung
- Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
- Munich Center for Integrated Protein Science (CiPSM) at the Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
| | - Susanne Gebhard
- Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
- Milner Centre for Evolution, Department of Biology and Biochemistry; University of Bath; Claverton Down Bath BA2 7AY UK
| | - Thorsten Mascher
- Department Biology I; Ludwig-Maximilians-Universität München; Großhaderner Str. 2-4 Martinsried 82152 Germany
- Institute of Microbiology; Technische Universität (TU) Dresden; 01062 Dresden Germany
| |
Collapse
|