151
|
Pertoldi C, Kristensen TN, Andersen DH, Loeschcke V. Developmental instability as an estimator of genetic stress. Heredity (Edinb) 2006; 96:122-7. [PMID: 16333301 DOI: 10.1038/sj.hdy.6800777] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To set conservation priorities, scientists should be able to assess the relative threats posed by the effects of loss of genetic variability, inbreeding and outbreeding as these can generate 'genetic stress'. Developmental instability (DI) has been suggested as an indicator of stress, possibly being more sensitive than other measures. However, there is controversy as to whether DI is an accurate and reliable tool for assessing the degree of genetic stress. After 50 years of the presentation of Lerner's conjecture, there are still several unresolved questions about the relationship between DI and genetic stress. Here, we review studies on mechanisms behind DI. The current status on the use of DI as an indicator of genetic stress is discussed, and suggestions are presented on how to obtain more knowledge on the potential of DI in an evolutionary context.
Collapse
Affiliation(s)
- C Pertoldi
- Department of Ecology and Genetics, University of Aarhus, Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
152
|
Abstract
Psyllids, whiteflies, aphids, and mealybugs are members of the suborder Sternorrhyncha and share a common property, namely the utilization of plant sap as their food source. Each of these insect groups has an obligatory association with a different prokaryotic endosymbiont, and the association is the result of a single infection followed by maternal, vertical transmission of the endosymbionts. The result of this association is the domestication of the free-living bacterium to serve the purposes of the host, namely the synthesis of essential amino acids. This domestication is probably in all cases accompanied by a major reduction in genome size. The different properties of the genomes and fragments of the genomes of these endosymbionts suggest that there are different constraints on the permissible evolutionary changes that are probably a function of the gene repertoire of the endosymbiont ancestor and the gene losses that occurred during the reduction of genome size.
Collapse
Affiliation(s)
- Paul Baumann
- Microbiology Section, University of California, Davis, California 95616,USA.
| |
Collapse
|
153
|
DePristo MA, Weinreich DM, Hartl DL. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 2006; 6:678-87. [PMID: 16074985 DOI: 10.1038/nrg1672] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteins are finicky molecules; they are barely stable and are prone to aggregate, but they must function in a crowded environment that is full of degradative enzymes bent on their destruction. It is no surprise that many common diseases are due to missense mutations that affect protein stability and aggregation. Here we review the literature on biophysics as it relates to molecular evolution, focusing on how protein stability and aggregation affect organismal fitness. We then advance a biophysical model of protein evolution that helps us to understand phenomena that range from the dynamics of molecular adaptation to the clock-like rate of protein evolution.
Collapse
Affiliation(s)
- Mark A DePristo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
154
|
Ryu J, Kim H, Lee SK, Chang EJ, Kim HJ, Kim HH. Proteomic identification of the TRAF6 regulation of vacuolar ATPase for osteoclast function. Proteomics 2006; 5:4152-60. [PMID: 16196101 DOI: 10.1002/pmic.200402035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteoclasts are cells specialized for bone resorption. For osteoclast activation, tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role. To find new molecules that bind TRAF6 and have a function in osteoclast activation, we employed a proteomic approach. TRAF6-binding proteins were purified from osteoclast cell lysates by affinity chromatography and their identity was disclosed by MS. The identified proteins included several heat shock proteins, actin and actin-binding proteins, and vacuolar ATPase (V-ATPase). V-ATPase, documented for a great increase in expression during osteoclast differentiation, is an important enzyme for osteoclast function; it transports proton to resorption lacunae for hydroxyapatite dissolution. The binding of V-ATPase with TRAF6 was confirmed both in vitro by GST pull-down assays and in osteoclasts by co-immunoprecipitation and confocal microscopy experiments. In addition, the V-ATPase activity associated with TRAF6 increased in osteoclasts stimulated with receptor activator of nuclear factor kappaB ligand (RANKL). Furthermore, a dominant-negative form of TRAF6 abrogated the RANKL stimulation of V-ATPase activity. Our study identified V-ATPase as a TRAF6-binding protein using a proteomics strategy and proved a direct link between these two important molecules for osteoclast function.
Collapse
Affiliation(s)
- Jiyoon Ryu
- Department of Cell and Developmental Biology, Dental Research Institute, College of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
155
|
Debat V, Milton CC, Rutherford S, Klingenberg CP, Hoffmann AA. HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution 2006. [DOI: 10.1554/06-045.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
156
|
Fisher MT. Molecular roles of chaperones in assisted folding and assembly of proteins. GENETIC ENGINEERING 2006; 27:191-229. [PMID: 16382878 DOI: 10.1007/0-387-25856-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
157
|
Wang C, Butt TM, Leger RJS. Colony sectorization of Metarhizium anisopliae is a sign of ageing. MICROBIOLOGY-SGM 2005; 151:3223-3236. [PMID: 16207906 DOI: 10.1099/mic.0.28148-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spontaneous phenotypic degeneration resulting in sterile sectors is frequently observed when culturing filamentous fungi on artificial medium. Sterile sectors from two different strains of the insect pathogenic fungus Metarhizium anisopliae were investigated and found to contain reduced levels of cAMP and destruxins (insecticidal peptides). Microarray analysis using slides printed with 1730 clones showed that compared to wild-type, sterile sectors down-regulated 759 genes and upregulated 27 genes during growth in Sabouraud glucose broth or on insect cuticle. The differentially expressed genes are largely involved in cell metabolism (18.8 %), cell structure and function (13.6 %) and protein metabolism (8.8 %). Strong oxidative stress was demonstrated in sectorial cultures using the nitro blue tetrazolium assay and these cultures show other syndromes associated with ageing, including mitochondrial DNA alterations. However, genes involved in deoxidation and self-protection (e.g. heat-shock proteins, HSPs) were also upregulated. Further evidence of physiological adaptation by the degenerative sectorial cultures included cell-structure reorganization and the employment of additional signalling pathways. In spite of their very similar appearance, microarray analysis identified 181 genes differentially expressed between the two sectors, and the addition of exogenous cAMP only restored conidiation in one of them. Most of the differentially expressed genes were involved in catabolic or anabolic pathways, but the latter included genes for sporulation. Compared to the mammalian ageing process, sectorization in M. anisopliae showed many similarities, including similar patterns of cAMP production, oxidative stress responses and the involvement of HSPs. Thus, a common molecular machinery for ageing may exist throughout the eukaryotes.
Collapse
Affiliation(s)
- Chengshu Wang
- School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK
- Department of Entomology, 4112 Plant Science Building, University of Maryland, College Park, MD 20742-4454, USA
| | - Tariq M Butt
- School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK
| | - Raymond J St Leger
- Department of Entomology, 4112 Plant Science Building, University of Maryland, College Park, MD 20742-4454, USA
| |
Collapse
|
158
|
A helping hand. Nat Rev Drug Discov 2005. [DOI: 10.1038/nrd1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
159
|
Owens J. A helping hand. Nat Rev Genet 2005. [DOI: 10.1038/nrg1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
160
|
Wang Z, Farmer K, Hill GE, Edwards SV. A cDNA macroarray approach to parasite-induced gene expression changes in a songbird host: genetic response of house finches to experimental infection by Mycoplasma gallisepticum. Mol Ecol 2005; 15:1263-73. [PMID: 16626453 DOI: 10.1111/j.1365-294x.2005.02753.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 1994, the bacterial parasite Mycoplasma gallisepticum expanded its host range and swept through populations of a novel host--eastern US populations of the house finch (Carpodacus mexicanus). This epizootic caused a dramatic decline in finch population numbers, has been shown to have caused strong selection on house finch morphology, and presumably caused evolutionary change at the molecular level as finches evolved enhanced resistance. As a first step toward identifying finch genes that respond to infection by Mycoplasma and which may have experienced natural selection by this parasite, we used suppression subtractive hybridization (SSH) and cDNA macroarray approaches to identify differentially expressed genes regulated by the Mycoplasma parasite. Two subtractive cDNA libraries consisting of 16,512 clones were developed from spleen using an experimentally uninfected bird as the 'tester' and an infected bird as 'driver', and vice versa. Two hundred and twenty cDNA clones corresponding 34 genes with known vertebrate homologues and a large number of novel transcripts were found to be qualitatively up- or down-regulated genes by high-density filter hybridization. These gene expression changes were further confirmed by a high throughout reverse Northern blot approach and in specific cases by targeted Northern analysis. blast searches show that heat shock protein (HSP) 90, MHC II-associated invariant chain (CD74), T-cell immunoglobulin mucin 1 (TIM1), as well as numerous novel expressed genes not found in the databases were up- or down-regulated by the host in response to this parasite. Our results and macroarray resources provide a foundation for molecular co-evolutionary studies of the Mycoplasma parasite and its recently colonized avian host.
Collapse
Affiliation(s)
- Zhenshan Wang
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
161
|
Abstract
Standing watch over the proteome, molecular chaperones are an ancient and evolutionarily conserved class of proteins that guide the normal folding, intracellular disposition and proteolytic turnover of many of the key regulators of cell growth, differentiation and survival. This essential guardian function is subverted during oncogenesis to allow malignant transformation and to facilitate rapid somatic evolution. Pharmacologically 'bribing' the essential guard duty of the chaperone HSP90 (heat-shock protein of 90 kDa) seems to offer a unique anticancer strategy of considerable promise.
Collapse
Affiliation(s)
- Luke Whitesell
- Steele Memorial Children's Research Center, University of Arizona, Tucson, Arizona 85724, USA.
| | | |
Collapse
|
162
|
Abstract
Evolutionary genetics has recently made enormous progress in understanding how genetic variation maps into phenotypic variation. However why some traits are phenotypically invariant despite apparent genetic and environmental changes has remained a major puzzle. In the 1940s, Conrad Hal Waddington coined the concept and term "canalization" to describe the robustness of phenotypes to perturbation; a similar concept was proposed by Waddington's contemporary Ivan Ivanovich Schmalhausen. This paper reviews what has been learned about canalization since Waddington. Canalization implies that a genotype's phenotype remains relatively invariant when individuals of a particular genotype are exposed to different environments (environmental canalization) or when individuals of the same single- or multilocus genotype differ in their genetic background (genetic canalization). Consequently, genetic canalization can be viewed as a particular kind of epistasis, and environmental canalization and phenotypic plasticity are two aspects of the same phenomenon. Canalization results in the accumulation of phenotypically cryptic genetic variation, which can be released after a "decanalizing" event. Thus, canalized genotypes maintain a cryptic potential for expressing particular phenotypes, which are only uncovered under particular decanalizing environmental or genetic conditions. Selection may then act on this newly released genetic variation. The accumulation of cryptic genetic variation by canalization may therefore increase evolvability at the population level by leading to phenotypic diversification under decanalizing conditions. On the other hand, under canalizing conditions, a major part of the segregating genetic variation may remain phenotypically cryptic; canalization may therefore, at least temporarily, constrain phenotypic evolution. Mechanistically, canalization can be understood in terms of transmission patterns, such as epistasis, pleiotropy, and genotype by environment interactions, and in terms of genetic redundancy, modularity, and emergent properties of gene networks and biochemical pathways. While different forms of selection can favor canalization, the requirements for its evolution are typically rather restrictive. Although there are several methods to detect canalization, there are still serious problems with unambiguously demonstrating canalization, particularly its adaptive value.
Collapse
Affiliation(s)
- Thomas Flatt
- Division of Biology and Medicine, Department of Ecology and Evolutionary Biology, Brown University, Box G-W, Providence, Rhode Island 02912, USA.
| |
Collapse
|
163
|
Feder ME, Walser JC. The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol 2005; 18:901-10. [PMID: 16033562 DOI: 10.1111/j.1420-9101.2005.00921.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Global analysis of mRNA abundance via genomic arrays (i.e. transcriptomics or transcriptional profiling) is one approach to finding the genes that matter to organisms undergoing environmental stress. In evolutionary analyses of stress, mRNA abundance is often invoked as a proxy for the protein activity that may underlie variation in fitness. To provoke discussion of the utility and sensible application of this valuable approach, this manuscript examines the adequacy of mRNA abundance as a proxy for protein activity, fitness and stress. Published work to date suggests that mRNA abundance typically provides little information on protein activity and fitness and cannot substitute for detailed functional and ecological analyses of candidate genes. While the transcriptional profile can be an exquisitely sensitive indicator of stress, simpler indicators will often suffice. In view of this outcome, transcriptomics should undergo careful cost-benefit analysis before investigators deploy it in studies of stress responses and their evolution.
Collapse
Affiliation(s)
- M E Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
164
|
Badyaev AV. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proc Biol Sci 2005; 272:877-86. [PMID: 16024341 PMCID: PMC1564094 DOI: 10.1098/rspb.2004.3045] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.
Collapse
|
165
|
Badyaev AV, Foresman KR, Young RL. Evolution of morphological integration: developmental accommodation of stress-induced variation. Am Nat 2005; 166:382-95. [PMID: 16224692 DOI: 10.1086/432559] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 04/08/2005] [Indexed: 11/04/2022]
Abstract
Extreme environmental change during growth often results in an increase in developmental abnormalities in the morphology of an organism. The evolutionary significance of such stress-induced variation depends on the recurrence of a stressor and on the degree to which developmental errors can be accommodated by an organism's ontogeny without significant loss of function. We subjected populations of four species of soricid shrews to an extreme environment during growth and measured changes in the patterns of integration and accommodation of stress-induced developmental errors in a complex of mandibular traits. Adults that grew under an extreme environment had lower integration of morphological variation among mandibular traits and highly elevated fluctuating asymmetry in these traits, compared to individuals that grew under the control conditions. However, traits differed strongly in the magnitude of response to a stressor--traits within attachments of the same muscle (functionally integrated traits) had lower response and changed their integration less than other traits. Cohesiveness in functionally integrated complexes of traits under stress was maintained by close covariation of their developmental variation. Such developmental accommodation of stress-induced variation might enable the individual's functioning and persistence under extreme environmental conditions and thus provides a link between individual adaptation to stress and the evolution of stress resistance.
Collapse
Affiliation(s)
- Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
166
|
Pauwels K, Stoks R, de Meester L. Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna. J Evol Biol 2005; 18:867-72. [PMID: 16033558 DOI: 10.1111/j.1420-9101.2005.00890.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although predation is a strong selection pressure, little is known about the molecular mechanisms to cope with predator stress. This is crucial to understanding of the mechanisms and constraints involved in the evolution of antipredator traits. We quantified the expression of heat-shock protein 60 (Hsp60), a potential marker for predator stress, in four clones of the water flea Daphnia magna, when exposed to fish kairomones. Expression of Hsp60 induction increased after 6 h and returned to base levels after 24 h of predator stress. This suggests that it is a costly transient mechanism to temporarily cope with novel predator stress, before other defences are induced. We found genetic variation in the fixed levels and in the fish-induced levels of Hsp60, which seemed to be linked to each clone's history of fish predation. Our data suggest that Hsp60 can be considered part of a multiple-trait antipredator defence strategy of Daphnia clones to cope with predator stress.
Collapse
Affiliation(s)
- K Pauwels
- Laboratory of Aquatic Ecology, K.U. Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
167
|
Abstract
One of the most solid generalizations of transmission genetics is that the phenotypic variance of populations carrying a major mutation is increased relative to the wild type. At least some part of this higher variance is genetic and due to release of previously hidden variation. Similarly, stressful environments also lead to the expression of hidden variation. These two observations have been considered as evidence that the wild type has evolved robustness against genetic variation, i.e., genetic canalization. In this article we present a general model for the interaction of a major mutation or a novel environment with the additive genetic basis of a quantitative character under stabilizing selection. We introduce an approximation to the genetic variance in mutation-selection-drift balance that includes the previously used stochastic Gaussian and house-of-cards approximations as limiting cases. We then show that the release of hidden genetic variation is a generic property of models with epistasis or genotype-environment interaction, regardless of whether the wild-type genotype is canalized or not. As a consequence, the additive genetic variance increases upon a change in the environment or the genetic background even if the mutant character state is as robust as the wild-type character. Estimates show that this predicted increase can be considerable, in particular in large populations and if there are conditionally neutral alleles at the loci underlying the trait. A brief review of the relevant literature suggests that the assumptions of this model are likely to be generic for polygenic traits. We conclude that the release of hidden genetic variance due to a major mutation or environmental stress does not demonstrate canalization of the wild-type genotype.
Collapse
|
168
|
|
169
|
Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 2005; 120:715-27. [PMID: 15766533 DOI: 10.1016/j.cell.2004.12.024] [Citation(s) in RCA: 634] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/19/2004] [Accepted: 12/22/2004] [Indexed: 11/28/2022]
Abstract
Physical, genetic, and chemical-genetic interactions centered on the conserved chaperone Hsp90 were mapped at high resolution in yeast using systematic proteomic and genomic methods. Physical interactions were identified using genome-wide two hybrid screens combined with large-scale affinity purification of Hsp90-containing protein complexes. Genetic interactions were uncovered using synthetic genetic array technology and by a microarray-based chemical-genetic screen of a set of about 4700 viable yeast gene deletion mutants for hypersensitivity to the Hsp90 inhibitor geldanamycin. An extended network, consisting of 198 putative physical interactions and 451 putative genetic and chemical-genetic interactions, was found to connect Hsp90 to cofactors and substrates involved in a wide range of cellular functions. Two novel Hsp90 cofactors, Tah1 (YCR060W) and Pih1 (YHR034C), were also identified. These cofactors interact physically and functionally with the conserved AAA(+)-type DNA helicases Rvb1/Rvb2, which are key components of several chromatin remodeling factors, thereby linking Hsp90 to epigenetic gene regulation.
Collapse
Affiliation(s)
- Rongmin Zhao
- Department of Biochemistry, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Phylogenetic systematics and historical biogeography of the Neotropical electric fishGymnotus(Teleostei: Gymnotidae). SYST BIODIVERS 2005. [DOI: 10.1017/s1477200004001574] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
171
|
Corley LS. Microevolution and development: studies of the genetic basis of adaptive variation in insects. Evol Dev 2005; 7:79-80. [PMID: 15733304 DOI: 10.1111/j.1525-142x.2005.05019.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura S Corley
- Department of Entomology and Center for Reproductive Biology, P.O. Box 646382, Washington State University, Pullman, WA 99164-6382, USA.
| |
Collapse
|
172
|
|
173
|
Wisser KC, Schauerte JA, Burke DT, Galecki A, Chen S, Miller RA, Gafni A. Mapping tissue-specific genes correlated with age-dependent changes in protein stability and function. Arch Biochem Biophys 2004; 432:58-70. [PMID: 15519297 DOI: 10.1016/j.abb.2004.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/02/2004] [Indexed: 11/21/2022]
Abstract
Biophysical measurements indicative of protein stability and function were performed on crude extracts from liver, muscle, and lens of a genetically heterogeneous mouse population. Genetic information was used to search for quantitative trait loci (QTL) that influenced the biophysical traits, with emphasis on phenotypes that previously have been shown to be altered in aged animals. Spectroscopic and enzymatic assays of crude liver and muscle tissue extracts from approximately 600 18-month-old mice, the progeny of (BALB/cJxC57BL/6J)F1 females and (C3H/HeJxDBA/2J)F1 males, were used to measure the susceptibility of a ubiquitous glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), to thermal denaturation. The rate constant for thermal inactivation of GAPDH correlated with markers on chromosome 5 (D5Mit79 and D5Mit251) for muscle lysates and chromosome 15 (D15Mit63 and D15Mit100) for liver tissue. The degree of variability of inactivation rate constants, a measure of the heterogeneity of muscle GAPDH in tissue extracts, was also associated with markers on chromosome 5 (D5Mit79 and D5Mit205). In addition, spectroscopic characteristics of extracted eye lens proteins were evaluated for their susceptibility to photooxidative stress. Absorbance and fluorescence emission characteristics of the lens proteins were mapped to QTL on chromosomes 5 and 15 (D5Mit25 and D15Mit171) while the degree of heterogeneity in photochemical oxidation kinetics was associated with a marker on the chromosome 8 (D8Mit42). Recent work has shown that GAPDH possesses a number of non-glycolytic functions including DNA/RNA binding and regulation of protein expression. Tissue specific differences in GAPDH stability may have significant consequences to these alternate functions during aging.
Collapse
Affiliation(s)
- Kathleen C Wisser
- Biophysics Research Division, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.
Collapse
Affiliation(s)
- Hiroaki Kitano
- Sony Computer Science Laboratories, Inc., 3-14-13 Higashi-Gotanda, Shinagawa, Tokyo 141-0022, Japan.
| |
Collapse
|
175
|
The long road from genotype to phenotype. Nat Rev Genet 2004. [DOI: 10.1038/nrg1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
176
|
Abstract
Cryptic genetic variation is the dark matter of biology: it is variation that is not normally seen, but that might be an essential source of physiological and evolutionary potential. It is uncovered by environmental or genetic perturbations, and is thought to modify the penetrance of common diseases, the response of livestock and crops to artificial selection and the capacity of populations to respond to the emergence of a potentially advantageous macro-mutation. We argue in this review that cryptic genetic variation is pervasive but under-appreciated, we highlight recent progress in determining the nature and identity of genes that underlie cryptic genetic effects and we outline future research directions.
Collapse
Affiliation(s)
- Greg Gibson
- Department of Genetics, Gardner Hall, North Carolina State University, Raleigh, North Carolina 27695-7614, USA.
| | | |
Collapse
|
177
|
Abstract
Abstract
Molecular chaperones or so-called heat shock proteins serve as central integrators of protein homeostasis within cells. In performing this function, they guide the folding, intracellular disposition, and proteolytic turnover of many key regulators of cell growth, differentiation, and survival. Recent data show essential roles for the chaperones in facilitating malignant transformation at the molecular level and support the concept that their altered utilization during oncogenesis is critical to the development of human cancers. The field is evolving rapidly, but it has become apparent that chaperones can serve as biochemical buffers at the phenotypic level for the genetic instability that is characteristic of many human cancers. Chaperone proteins thus allow tumor cells to tolerate the mutation of multiple critical signaling molecules that would otherwise be lethal. Much of the recent progress in understanding the complex role of heat shock proteins in tumorigenesis has been made possible by the discovery of several natural product antitumor antibiotics that selectively inhibit the function of the chaperone Hsp90. These agents have been used as probes to define the biological functions of Hsp90 at the molecular level and to validate it as a novel target for anticancer drug action. One of these agents, 17-allylamino,17-demethoxygeldanamycin (NSC 330507) has begun phase II clinical trials, and several second-generation compounds are now in late preclinical development. The best way to use Hsp90 inhibitors as anticancer agents remains to be defined. Trials accomplished to date, however, serve as proof of principle that Hsp90 function can be modulated pharmacologically without undue toxicity in humans. Given the redundancy and complexity of the signaling pathway abnormalities present in most cancers, the ability of Hsp90 inhibitors to alter the activity of multiple aberrant signaling molecules instead of just one or two (as most current-generation molecular therapeutics have been designed to do) may prove of unique therapeutic benefit.
Collapse
Affiliation(s)
- Rochelle Bagatell
- Steele Memorial Children's Research Center and Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Luke Whitesell
- Steele Memorial Children's Research Center and Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
178
|
Price J, Laxmi A, St Martin SK, Jang JC. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. THE PLANT CELL 2004; 16:2128-50. [PMID: 15273295 PMCID: PMC519203 DOI: 10.1105/tpc.104.022616] [Citation(s) in RCA: 370] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 05/17/2004] [Indexed: 05/17/2023]
Abstract
Complex and interconnected signaling networks allow organisms to control cell division, growth, differentiation, or programmed cell death in response to metabolic and environmental cues. In plants, it is known that sugar and nitrogen are critical nutrient signals; however, our understanding of the molecular mechanisms underlying nutrient signal transduction is very limited. To begin unraveling complex sugar signaling networks in plants, DNA microarray analysis was used to determine the effects of glucose and inorganic nitrogen source on gene expression on a global scale in Arabidopsis thaliana. In whole seedling tissue, glucose is a more potent signal in regulating transcription than inorganic nitrogen. In fact, other than genes associated with nitrate assimilation, glucose had a greater effect in regulating nitrogen metabolic genes than nitrogen itself. Glucose also regulated a broader range of genes, including genes associated with carbohydrate metabolism, signal transduction, and metabolite transport. In addition, a large number of stress responsive genes were also induced by glucose, indicating a role of sugar in environmental responses. Cluster analysis revealed significant interaction between glucose and nitrogen in regulating gene expression because glucose can modulate the effects of nitrogen and vise versa. Intriguingly, cycloheximide treatment appeared to disrupt glucose induction more than glucose repression, suggesting that de novo protein synthesis is an intermediary event required before most glucose induction can occur. Cross talk between sugar and ethylene signaling may take place on the transcriptional level because several ethylene biosynthetic and signal transduction genes are repressed by glucose, and the repression is largely unaffected by cycloheximide. Collectively, our global expression data strongly support the idea that glucose and inorganic nitrogen act as both metabolites and signaling molecules.
Collapse
Affiliation(s)
- John Price
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
179
|
Larreta R, Soto M, Quijada L, Folgueira C, Abanades DR, Alonso C, Requena JM. The expression of HSP83 genes in Leishmania infantum is affected by temperature and by stage-differentiation and is regulated at the levels of mRNA stability and translation. BMC Mol Biol 2004; 5:3. [PMID: 15176985 PMCID: PMC436058 DOI: 10.1186/1471-2199-5-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 06/03/2004] [Indexed: 11/10/2022] Open
Abstract
Background Exposure of Leishmania promastigotes to the temperature of their mammalian hosts results in the induction of a typical heat shock response. It has been suggested that heat shock proteins play an important role in parasite survival and differentiation. Results Here we report the studies on the expression of the heat shock protein 83 (HSP83) genes of Leishmania infantum. Confirming previous observations for other Leishmania species, we found that the L. infantum HSP83 transcripts also show a temperature-dependent accumulation that is controlled by a post-transcriptional mechanism involving sequences located in the 3'-untranslated region (3'-UTR). However, contrary to that described for L. amazonensis, the accumulation of the HSP83 transcripts in L. infantum is dependent on active protein synthesis. The translation of HSP83 transcripts is enhanced during heat shock and, as first described in L. amazonensis, we show that the 3'-UTR of the L. infantum HSP83 gene is essential for this translational control. Measurement of the steady-state levels of HSP83 transcripts along the promastigote-to-amastigote differentiation evidenced a specific profile of HSP83 RNAs: after an initial accumulation of HSP83 transcripts observed short after (2 h) incubation in the differentiation conditions, the amount of HSP83 RNA decreased to a steady-state level lower than in undifferentiated promastigotes. We show that this transient accumulation is linked to the presence of the 3'-UTR and flanking regions. Again, an 8-fold increase in translation of the HSP83 transcripts is observed short after the initiation of the axenic differentiation, but it is not sustained after 9 h. Conclusions This transient expression of HSP83 genes could be relevant for the differentiation of Leishmania, and the underlying regulatory mechanism may be part of the developmental program of this parasite.
Collapse
Affiliation(s)
- Ruth Larreta
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Luis Quijada
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Folgueira
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Daniel R Abanades
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carlos Alonso
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
180
|
de Visser JAGM, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC. Perspective: Evolution and detection of genetic robustness. Evolution 2004; 57:1959-72. [PMID: 14575319 DOI: 10.1111/j.0014-3820.2003.tb00377.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Robustness is the invariance of phenotypes in the face of perturbation. The robustness of phenotypes appears at various levels of biological organization, including gene expression, protein folding, metabolic flux, physiological homeostasis, development, and even organismal fitness. The mechanisms underlying robustness are diverse, ranging from thermodynamic stability at the RNA and protein level to behavior at the organismal level. Phenotypes can be robust either against heritable perturbations (e.g., mutations) or nonheritable perturbations (e.g., the weather). Here we primarily focus on the first kind of robustness--genetic robustness--and survey three growing avenues of research: (1) measuring genetic robustness in nature and in the laboratory; (2) understanding the evolution of genetic robustness: and (3) exploring the implications of genetic robustness for future evolution.
Collapse
Affiliation(s)
- J Arjan G M de Visser
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
|
182
|
Sangster TA, Lindquist S, Queitsch C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 2004; 26:348-62. [PMID: 15057933 DOI: 10.1002/bies.20020] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The environmentally responsive molecular chaperone Hsp90 assists the maturation of many key regulatory proteins. An unexpected consequence of this essential biochemical function is that genetic variation can accumulate in genomes and can remain phenotypically silent until Hsp90 function is challenged. Notably, this variation can be revealed by modest environmental change, establishing an environmentally responsive exposure mechanism. The existence of diverse cryptic polymorphisms with a plausible exposure mechanism in evolutionarily distant lineages has implications for the pace and nature of evolutionary change. Chaperone-mediated storage and release of genetic variation is undoubtedly rooted in protein-folding phenomena. As we discuss, proper protein folding crucially affects the trajectory from genotype to phenotype. Indeed, the impact of protein quality-control mechanisms and other fundamental cellular processes on evolution has heretofore been overlooked. A true understanding of evolutionary processes will require an integration of current evolutionary paradigms with the many new insights accruing in protein science.
Collapse
Affiliation(s)
- Todd A Sangster
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | |
Collapse
|
183
|
Milton CC, Huynh B, Batterham P, Rutherford SL, Hoffmann AA. Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of genetic canalization and developmental stability. Proc Natl Acad Sci U S A 2003; 100:13396-401. [PMID: 14595030 PMCID: PMC263825 DOI: 10.1073/pnas.1835613100] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2003] [Indexed: 11/18/2022] Open
Abstract
The Hsp90 chaperone buffers development against a wide range of morphological changes in many organisms and in Drosophila masks the effects of hidden genetic variation. Theory predicts that genetic and nongenetic buffering will share common mechanisms. For example, it is argued that Hsp90 genetic buffering evolved solely as a by-product of environmental buffering, and that Hsp90 should mask morphological deviations from any source. To test this idea, we examined the effect of Hsp90 on purely nongenetic variation in phenotype, measured as differences between the left and right sides of several bilaterally symmetrical bristle and wing traits in individual flies. Consistent with previous reports, Hsp90 buffered the expression of rare morphogenic variants specific to particular genetic backgrounds. However, neither trait-by-trait nor global asymmetry was affected in outbred flies treated with an Hsp90 inhibitor or across a series of inbred genetic backgrounds from a wild population tested in isogenic F1 heterozygotes carrying either (i) a dominant negative Hsp90 allele on a mutant 3rd chromosome or (ii) a null P-insertion mutation, which was introgressed into the control genetic background on all chromosomes. By contrast, Hsp90-regulated trait means and significant effects of sex, temperature, and genetic background on trait symmetry were clearly detected. We conclude that, by maintaining the function of signaling proteins, Hsp90 masks variation affecting target pathways and traits in populations independent of purely nongenetic sources of variation, refuting the idea that a single Hsp90-dependent process generally controls genetic canalization and developmental stability.
Collapse
Affiliation(s)
- Claire C Milton
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
184
|
|
185
|
Abstract
Alzheimer's disease (AD) is a polygenic/complex disorder in which more than 50 genetic loci are involved. Primary and secondary loci are potentially responsible for the phenotypic expression of the disease under the influence of both environmental factors and epigenetic phenomena. The construction of haplotypes as genomic clusters integrating the different genotype combinations of AD-related genes is a suitable strategy to investigate functional genomics in AD. It appears that AD patients show about 3-5 times higher genetic variation than the control population. The analysis of genotype-phenotype correlations has revealed that the presence of the APOE-4 allele in AD, in conjunction with other loci distributed across the genome, influence disease onset, brain atrophy, cerebrovascular perfusion, blood pressure, beta-amyloid deposition, ApoE secretion, lipid metabolism, brain bioelectrical activity, cognition, apoptosis and treatment outcome. Pharmacogenomics studies also indicate that the therapeutic response in AD is genotype-specific and that approximately 15% of the cases with efficacy and/or safety problems are associated with a defective CYP2D6 gene. Consequently, the understanding of functional genomics in AD will foster productive pharmacogenomic studies in the search for effective medications and preventive strategies in AD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15166-Bergondo, Coruña, Spain.
| |
Collapse
|
186
|
de Visser JAGM, Hermisson J, Wagner GP, Meyers LA, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC. PERSPECTIVE:EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS. Evolution 2003. [DOI: 10.1554/02-750r] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|