151
|
PEGylated prodrugs of antidiabetic peptides amylin and GLP-1. J Control Release 2018; 292:58-66. [DOI: 10.1016/j.jconrel.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
|
152
|
Cao X, Jiang H. Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:53-69. [PMID: 30367934 PMCID: PMC6358214 DOI: 10.1016/j.ibmb.2018.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 05/15/2023]
Abstract
Serine proteases (SPs) and serine protease homologs (SPHs) play essential roles in insect physiological processes including digestion, defense and development. Studies of insect genomes, transcriptomes and proteomes have generated a vast amount of information on these proteins, dwarfing the biological data acquired from a few model species. The large number and high diversity of homologous sequences makes it a challenge to use the limited functional information for making predictions across a broad taxonomic group of insects. In this work, we have extensively updated the framework of knowledge on the SP-related proteins in Drosophila melanogaster by identifying 52 new SPs/SPHs, classifying the 257 proteins into four groups (CLIP, gut, single- and multi-domain SPs/SPHs), and detecting inherent connections among phylogenetic relationships, genomic locations and expression profiles for 99 of the genes. Information on the existence of specific proteins in eggs, larvae, pupae and adults is presented to facilitate future research. More importantly, we have developed an approach to reveal close homologous or orthologous relationships among SPs/SPHs from D. melanogaster, Anopheles gambiae, Apis mellifera, Manduca sexta, and Tribolium castaneum thus inspiring functional studies in these and other holometabolous insects. This approach is useful for tackling similar problems on large and diverse protein families in other groups of organisms.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
153
|
Abstract
Proteases play a pivotal role in regulating important physiological processes from food digestion to blood clotting. They are also important biomarkers for many diseases such as cancers. The importance of proteases has led to extensive efforts in the screening of proteases and their inhibitors as potential drug molecules. For example, human immunodeficiency virus (HIV) patients have been treated with HIV-1 protease inhibitors to prolong the life expectancy of patients. Such a close relationship between diseases and proteases provides a strong motivation for developing sensitive, selective, and robust protease assays and sensors, which can be exploited to discover new proteases and inhibitors. In this aspect, protease assays based on levels of proteolytic activities are more relevant than protease affinity assays such as immunoassays. In this review, recent developments of protease activity assays based on different detection principles are discussed and compared. For homogenous assays, fluorescence-based techniques are the most popular due to their high sensitivity and quantitative results. However, homogeneous assays have limited multiplex sensing capabilities. In contrast, heterogeneous assays can be employed to detect multiple proteases simultaneously, given the microarray technology that is already available. Among them, electrochemical methods, surface spectroscopy techniques, and enzyme-linked peptide protease assays are commonly used. Finally, recent developments in liquid crystal (LC)-based protease assays and their applications for detecting proteases and their inhibitors are discussed.
Collapse
Affiliation(s)
| | - Kun-Lin Yang
- National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| |
Collapse
|
154
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
155
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
156
|
Sun C, Li Y, Cao S, Wang H, Jiang C, Pang S, Hussain MA, Hou J. Antibacterial Activity and Mechanism of Action of Bovine Lactoferricin Derivatives with Symmetrical Amino Acid Sequences. Int J Mol Sci 2018; 19:E2951. [PMID: 30262770 PMCID: PMC6213309 DOI: 10.3390/ijms19102951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
In recent years, the overuse of antibiotics has become very serious. Many pathogenic bacteria have become resistant to them, with serious potential health consequences. Thus, it is urgent that we develop new antibiotic drugs. Antimicrobial peptides (AMPs) are important endogenous antibacterial molecules that contribute to immunity. Most have spectral antibacterial properties and do not confer drug resistance. In this paper, an 11-residue peptide (LFcinB18⁻28) with a sequence of KCRRWQWRMKK was modified by amino acid substitution to form a symmetrical amino acid sequence. The antibacterial activities and mechanisms of action of engineered peptides including KW-WK (KWRRWQWRRWK), FP-PF (FPRRWQWRRPF), FW-WF (FWRRWQWRRWF), and KK-KK (KKRRWQWRRKK) were investigated. The four engineered peptides could more effectively inhibit bacteria than the original peptide, LFcinB18⁻28. This suggested that a symmetrical amino acid sequence might enhance the antibacterial activity of AMPs. However, only peptides KW-WK, FP-PF, and KK-KK were safe; FW-WF displayed hemolytic activity. The engineered peptides shared cationic and amphipathic characteristics that facilitated interactions with the anionic microbial membranes, leading to disruption of membrane integrity and permeabilizing microbial membranes, resulting in cell death. Therefore, a symmetrical amino acid sequence and related structural parameters offer an alternative approach to the design of AMPs. This will provide a scientific basis for the design and synthesis of new AMPs.
Collapse
Affiliation(s)
- Changbao Sun
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yingying Li
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Songsong Cao
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Haimei Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chenggang Jiang
- Harbin Veterinary Research Institute, CAAS, Harbin 150001, China.
| | - Shiyue Pang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Muhammad Altaf Hussain
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
157
|
Magalhães B, Trindade F, Barros AS, Klein J, Amado F, Ferreira R, Vitorino R. Reviewing Mechanistic Peptidomics in Body Fluids Focusing on Proteases. Proteomics 2018; 18:e1800187. [DOI: 10.1002/pmic.201800187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Beatriz Magalhães
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
| | - Fábio Trindade
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
- Instituto de Biomedicina; Department of Medical Sciences; University of Aveiro; 3810-193 Aveiro Portugal
| | - António S. Barros
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale; Institute of Cardiovascular and Metabolic Disease; Toulouse France
- Université Toulouse III Paul-Sabatier; 31330 Toulouse France
| | - Francisco Amado
- Química Orgânica, Produtos Naturais e Agroalimentares; Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| | - Rita Ferreira
- Química Orgânica, Produtos Naturais e Agroalimentares; Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
- Instituto de Biomedicina; Department of Medical Sciences; University of Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
158
|
Staudacher AH, Liapis V, Brown MP. Selectivity Conversion of Protease Inhibitory Antibodies. Antib Ther 2018; 1:55-63. [PMID: 30406213 PMCID: PMC7990135 DOI: 10.1093/abt/tby008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 11/14/2022] Open
Abstract
Background: Proteases are one of the largest pharmaceutical targets for drug developments. Their dysregulations result in a wide variety of diseases. Because proteolytic networks usually consist of protease family members that share high structural and catalytic homology, distinguishing them using small molecule inhibitors is often challenging. To achieve specific inhibition, this study described a novel approach for the generation of protease inhibitory antibodies. As a proof of concept, we aimed to convert a matrix metalloproteinase (MMP)-14 specific inhibitor to MMP-9 specific inhibitory antibodies with high selectivity. Methods: An error-prone single-chain Fv (scFv) library of an MMP-14 inhibitor 3A2 was generated for yeast surface display. A dual-color competitive FACS was developed for selection on MMP-9 catalytic domain (cdMMP-9) and counter-selection on cdMMP-14 simultaneously, which were fused/conjugated with different fluorophores. Isolated MMP-9 inhibitory scFvs were biochemically characterized by inhibition assays on MMP-2/-9/-12/-14, proteolytic stability tests, inhibition mode determination, competitive ELISA with TIMP-2 (a native inhibitor of MMPs), and paratope mutagenesis assays. Results: We converted an MMP-14 specific inhibitor 3A2 into a panel of MMP-9 specific inhibitory antibodies with dramatic selectivity shifts of 690-4,500 folds. Isolated scFvs inhibited cdMMP-9 at nM potency with high selectivity over MMP-2/-12/-14 and exhibited decent proteolytic stability. Biochemical characterizations revealed that these scFvs were competitive inhibitors binding to cdMMP-9 near its reaction cleft via their CDR-H3s. Conclusions: This study developed a novel approach able to convert the selectivity of inhibitory antibodies among closely related protease family members. This methodology can be directly applied for mAbs inhibiting many proteases of biomedical importance.
Collapse
Affiliation(s)
- Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
159
|
Jiang L, Oldenburg E, Kromann-Hansen T, Xu P, Jensen JK, Andreasen PA, Huang M. Cleavage of peptidic inhibitors by target protease is caused by peptide conformational transition. Biochim Biophys Acta Gen Subj 2018; 1862:2017-2023. [DOI: 10.1016/j.bbagen.2018.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 11/30/2022]
|
160
|
Lin CY, Chung YH, Shi YF, Tzang BS, Hsu TC. The VP1 unique region of human parvovirus B19 and human bocavirus induce lung injury in naïve Balb/c mice. PLoS One 2018; 13:e0202667. [PMID: 30114253 PMCID: PMC6095614 DOI: 10.1371/journal.pone.0202667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Both human parvovirus B19 (B19V) and human bocavirus (HBoV) are known to be important human pathogens of the Parvoviridae family. Our earlier investigation demonstrated that both B19V-VP1u and HBoV-VP1u have a significantly disruptive effect on tight junctions (TJs) in A549 cells, implying the essential role of parvovirus in airway infection and lung injury. However, no direct evidence that B19V-VP1u and HBoV-VP1u induce lung injury exists. The present study further investigates the induction of lung injury by B19V-VP1u and HBoV-VP1u in naïve Balb/c mice following subcutaneous injection of PBS, recombinant B19V-VP1u or HBoV-VP1u. The experimental results reveal significantly increased activity, protein expression and ratio of matrix metalloproteinase-9 (MMP-9) to MMP-2 in Balb/c mice that received B19V-VP1u or HBoV-VP1u compared to those that received PBS. Significantly higher levels of inflammatory cytokines, including IL-6 and IL-1β, and greater lymphocyte infiltration in lung tissue sections were detected in mice that received B19V-VP1u or HBoV-VP1u. Additionally, significantly increased levels of phosphorylated p65 (NF-κB) and MAPK signaling proteins were observed in lung tissue of mice that received B19V-VP1u or HBoV-VP1u compared to those of mice that received PBS. These findings demonstrate for the first time that B19V-VP1u and HBoV-VP1u proteins induce lung inflammatory reactions through p65 (NF-κB) and MAPK signaling.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Han Chung
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Fang Shi
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Bor-Show Tzang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (BST); (TCH)
| | - Tsai-Ching Hsu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (BST); (TCH)
| |
Collapse
|
161
|
Balta C, Ciceu A, Herman H, Rosu M, Boldura OM, Hermenean A. Dose-Dependent Antifibrotic Effect of Chrysin on Regression of Liver Fibrosis: The Role in Extracellular Matrix Remodeling. Dose Response 2018; 16:1559325818789835. [PMID: 30108459 PMCID: PMC6083810 DOI: 10.1177/1559325818789835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis represents an overaccumulation of extracellular matrix (ECM). This study was designed to investigate the effect of chrysin on established ECM overproduction in carbon tetrachloride (CCl4) mouse liver fibrosis. Experimental fibrosis was induced by intraperitoneal injection of 2 mL/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (5,7-dihydroxyflavone). For the assessment of the spontaneous reversion of fibrosis, CCl4-treated mice were investigated after 2 weeks of recovery time. Silymarin was used as a standard of liver protection. In fibrotic livers, the results showed the upregulation of collagen I (Col I) and tissue inhibitors of metalloproteinase 1 (TIMP-1) and modulation of matrix metalloproteinases (MMPs), which led to an altered ECM enriched in Col, confirmed as well by electron microscopy investigations. Treatment with chrysin significantly reduced ultrastructural changes, downregulated Col I, and restored TIMP-1/MMP balance, whereas in the group observed for the spontaneous regression of fibrosis, they remained in the same pattern with fibrotic livers. In this study, we have shown chrysin efficacy to attenuate dose-dependent CCl4-stimulated liver ECM accumulation by regulation of MMP/TIMP imbalance and inhibition of Col production. We have shown the dose-dependent chrysin efficiency in attenuation of CCl4-induced liver ECM accumulation by regulation of MMP/TIMP imbalance and inhibition of Col production. Our findings suggest that chrysin oral administration may introduce a new strategy for treating liver fibrosis in humans.
Collapse
Affiliation(s)
- Cornel Balta
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Alina Ciceu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Hildegard Herman
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Marcel Rosu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Oana Maria Boldura
- Department of Chemistry, Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine "King Mihai I of Romania," Timisoara, Romania
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, "Vasile Goldis" Western University of Arad, Arad, Romania
| |
Collapse
|
162
|
McKerrow JH. The diverse roles of cysteine proteases in parasites and their suitability as drug targets. PLoS Negl Trop Dis 2018; 12:e0005639. [PMID: 30138311 PMCID: PMC6107102 DOI: 10.1371/journal.pntd.0005639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
163
|
Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease. Sci Rep 2018; 8:7834. [PMID: 29777136 PMCID: PMC5959920 DOI: 10.1038/s41598-018-26282-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
While proteases are essential in gastrointestinal physiology, accumulating evidence indicates that dysregulated proteolysis plays a pivotal role in the pathophysiology of inflammatory bowel disease (IBD). Nonetheless, the identity of overactive proteases released by human colonic mucosa remains largely unknown. Studies of protease abundance have primarily investigated expression profiles, not taking into account their enzymatic activity. Herein we have used serine protease-targeted activity-based probes (ABPs) coupled with mass spectral analysis to identify active forms of proteases secreted by the colonic mucosa of healthy controls and IBD patients. Profiling of (Pro-Lys)-ABP bound proteases revealed that most of hyperactive proteases from IBD secretome are clustered at 28-kDa. We identified seven active proteases: the serine proteases cathepsin G, plasma kallikrein, plasmin, tryptase, chymotrypsin-like elastase 3 A, and thrombin and the aminopeptidase B. Only cathepsin G and thrombin were overactive in supernatants from IBD patient tissues compared to healthy controls. Gene expression analysis highlighted the transcription of genes encoding these proteases into intestinal mucosae. The functional ABP-targeted proteomic approach that we have used to identify active proteases in human colonic samples bears directly on the understanding of the role these enzymes may play in the pathophysiology of IBD.
Collapse
|
164
|
Cao XY, Zhang XX, Yang MW, Hu LP, Jiang SH, Tian GA, Zhu LL, Li Q, Sun YW, Zhang ZG. Aberrant upregulation of KLK10 promotes metastasis via enhancement of EMT and FAK/SRC/ERK axis in PDAC. Biochem Biophys Res Commun 2018; 499:584-593. [PMID: 29621546 DOI: 10.1016/j.bbrc.2018.03.194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PADC) metastasis is the leading cause of morality of this severe malignant tumor. Proteases are key players in the degradation of extracellular matrix which promotes the cascade of tumor metastasis. As a kind of serine proteases, the kallikrein family performs vital function on the cancer proteolysis scene, which have been proved in diverse malignant tumors. However, the specific member of kallikrein family and its function in PDAC remain unexplored. In this study, by data mining of GEO datasets, we have identified KLK10 is upregulated gene in PDAC. We found that KLK10 was significantly overexpressed in tissues of pancreatic intraepithelial neoplasia (PanIN) and PDAC from Pdx1-Cre; LSL-KrasG12D/+ mice (KC) and Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) by immunohistochemical analysis. Moreover, KLK10 is extremely elevated in the PDAC tissues, especially that from the PDAC patients with lymphatic and distant metastasis. Aberrant KLK10 expression is significantly correlated with poor prognosis and shorter survival by univariable and multivariable analysis. Functionally, knockdown of KLK10 observably inhibits invasion and metastatic phenotype of PDAC cells in vitro and metastasis in vivo. In addition, blockade of KLK10 attenuates epithelial-mesenchymal transition and activation of FAK-SRC-ERK signaling, which explains the mechanism of KLK10 in promoting metastasis. Collectively, KLK10 should be considered as a promising biomarker for diagnosis and potential target for therapy in PDAC.
Collapse
Affiliation(s)
- Xiao-Yan Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, PR China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shu-Heng Jiang
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Guang-Ang Tian
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Li-Li Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qing Li
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China.
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, PR China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
165
|
Lee MY, Kang JS, Go RE, Byun YS, Wi YJ, Hwang KA, Choi JH, Kim HC, Choi KC, Nam KH. Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse. Biomol Ther (Seoul) 2018; 26:298-305. [PMID: 29223140 PMCID: PMC5933897 DOI: 10.4062/biomolther.2017.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/02/2022] Open
Abstract
Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramembrane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha (TNF-α) converting enzyme, which is the molecule responsible for the release of TNF-α. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of TNF-α release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the representative TNF-α related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes. Moreover, a grip strength test was shown to be useful for the evaluation of physical functional losses by CIA. Overall, the results showed that the Rhbdf2 gene has a significant effect on the induction of CIA, which is related to TNF-α.
Collapse
Affiliation(s)
- Min-Young Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea.,Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ju-Seong Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yong-Sub Byun
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea
| | - Young Jin Wi
- Department of Life Science, College of Natureal Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natureal Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea
| |
Collapse
|
166
|
Lymperis E, Kaloudi A, Sallegger W, Bakker IL, Krenning EP, de Jong M, Maina T, Nock BA. Radiometal-Dependent Biological Profile of the Radiolabeled Gastrin-Releasing Peptide Receptor Antagonist SB3 in Cancer Theranostics: Metabolic and Biodistribution Patterns Defined by Neprilysin. Bioconjug Chem 2018; 29:1774-1784. [PMID: 29664606 DOI: 10.1021/acs.bioconjchem.8b00225] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in oncology involve the use of diagnostic/therapeutic radionuclide-carrier pairs that target cancer cells, offering exciting opportunities for personalized patient treatment. Theranostic gastrin-releasing peptide receptor (GRPR)-directed radiopeptides have been proposed for the management of GRPR-expressing prostate and breast cancers. We have recently introduced the PET tracer 68Ga-SB3 (SB3, DOTA- p-aminomethylaniline-diglycolic acid-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt), a receptor-radioantagonist that enables the visualization of GRPR-positive lesions in humans. Aiming to fully assess the theranostic potential of SB3, we herein report on the impact of switching 68Ga to 111In/177Lu-label on the biological properties of resulting radiopeptides. Notably, the bioavailability of 111In/177Lu-SB3 in mice drastically deteriorated compared with metabolically robust 68Ga-SB3, and as a result led to poorer 111In/177Lu-SB3 uptake in GRPR-positive PC-3 xenografts. The peptide cleavage sites were identified by chromatographic comparison of blood samples from mice intravenously receiving 111In/177Lu-SB3 with each of newly synthesized 111In/177Lu-SB3-fragments. Coinjection of the radioconjugates with the neprilysin (NEP)-inhibitor phosphoramidon led to full stabilization of 111In/177Lu-SB3 in peripheral mouse blood and resulted in markedly enhanced radiolabel uptake in the PC-3 tumors. In conclusion, in situ NEP-inhibition led to indistinguishable 68Ga/111In/177Lu-SB3 profiles in mice emphasizing the theranostic prospects of SB3 for clinical use.
Collapse
Affiliation(s)
- Emmanouil Lymperis
- Molecular Radiopharmacy, INRASTES , National Center for Scientific Research "Demokritos" , GR-15310 Athens , Greece
| | - Aikaterini Kaloudi
- Molecular Radiopharmacy, INRASTES , National Center for Scientific Research "Demokritos" , GR-15310 Athens , Greece
| | | | - Ingrid L Bakker
- Department of Radiology & Nuclear Medicine , Erasmus MC , 3015 CN Rotterdam , The Netherlands
| | - Eric P Krenning
- Cyclotron Rotterdam BV , Erasmus MC , 3015 CE Rotterdam , The Netherlands
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine , Erasmus MC , 3015 CN Rotterdam , The Netherlands
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES , National Center for Scientific Research "Demokritos" , GR-15310 Athens , Greece
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES , National Center for Scientific Research "Demokritos" , GR-15310 Athens , Greece
| |
Collapse
|
167
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
168
|
Wang Y, Zhang Z, Zhang Y, Yu C. A real-time fluorescence assay for protease activity and inhibitor screening based on the aggregation-caused quenching of a perylene probe. LUMINESCENCE 2018; 33:790-796. [PMID: 29607616 DOI: 10.1002/bio.3478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/04/2018] [Accepted: 02/10/2018] [Indexed: 01/01/2023]
Abstract
We have established a real-time and label-free fluorescence turn-on strategy for protease activity detection and inhibitor screening via peptide-induced aggregation-caused quenching of a perylene probe. Because of electrostatic interactions and high hydrophilicity, poly-l-glutamic acid sodium salt (PGA; a negatively charged peptide) could induce aggregation of a positively charged perylene probe (probe 1) and the monomer fluorescence of probe 1 was effectively quenched. After a protease was added, PGA was enzymatically hydrolyzed into small fragments and probe 1 disaggregated. The fluorescence recovery of probe 1 was found to be proportional to the concentration of protease in the range from 0 to 1 mU/ml. The detection limit was down to 0.1 mU/ml. In the presence of a protease inhibitor, protease activity was inhibited and fluorescence recovery reduced. Moreover, we demonstrated the potential application of our method in a complex mixture sample including 1% human serum. Our method is simple, fast and cost effective.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Yulin University, Shaanxi, Yulin, People's Republic of China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Zhifang Zhang
- School of Chemistry and Chemical Engineering, Yulin University, Shaanxi, Yulin, People's Republic of China
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Yulin University, Shaanxi, Yulin, People's Republic of China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People's Republic of China
| |
Collapse
|
169
|
Zoppi N, Chiarelli N, Ritelli M, Colombi M. Multifaced Roles of the αvβ3 Integrin in Ehlers-Danlos and Arterial Tortuosity Syndromes' Dermal Fibroblasts. Int J Mol Sci 2018; 19:ijms19040982. [PMID: 29587413 PMCID: PMC5979373 DOI: 10.3390/ijms19040982] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023] Open
Abstract
The αvβ3 integrin, an endothelial cells’ receptor-binding fibronectin (FN) in the extracellular matrix (ECM) of blood vessels, regulates ECM remodeling during migration, invasion, angiogenesis, wound healing and inflammation, and is also involved in the epithelial mesenchymal transition. In vitro-grown human control fibroblasts organize a fibrillar network of FN, which is preferentially bound on the entire cell surface to its canonical α5β1 integrin receptor, whereas the αvβ3 integrin is present only in rare patches in focal contacts. We report on the preferential recruitment of the αvβ3 integrin, due to the lack of FN–ECM and its canonical integrin receptor, in dermal fibroblasts from Ehlers–Danlos syndromes (EDS) and arterial tortuosity syndrome (ATS), which are rare multisystem connective tissue disorders. We review our previous findings that unraveled different biological mechanisms elicited by the αvβ3 integrin in fibroblasts derived from patients affected with classical (cEDS), vascular (vEDS), hypermobile EDS (hEDS), hypermobility spectrum disorders (HSD), and ATS. In cEDS and vEDS, respectively, due to defective type V and type III collagens, αvβ3 rescues patients’ fibroblasts from anoikis through a paxillin-p60Src-mediated cross-talk with the EGF receptor. In hEDS and HSD, without a defined molecular basis, the αvβ3 integrin transduces to the ILK-Snail1-axis inducing a fibroblast-to-myofibroblast-transition. In ATS cells, the deficiency of the dehydroascorbic acid transporter GLUT10 leads to redox imbalance, ECM disarray together with the activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving p125FAK/p60Src/p38MAPK. The characterization of these different biological functions triggered by αvβ3 provides insights into the multifaced nature of this integrin, at least in cultured dermal fibroblasts, offering future perspectives for research in this field.
Collapse
Affiliation(s)
- Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
170
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
171
|
Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem Sci 2018; 43:269-284. [PMID: 29506880 DOI: 10.1016/j.tibs.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Limited proteolytic processing is an essential and ubiquitous post-translational modification (PTM) affecting secreted proteins; failure to regulate the process is often associated with disease. Glycosylation is also a ubiquitous protein PTM and site-specific O-glycosylation in close proximity to sites of proteolysis can regulate and direct the activity of proprotein convertases, a disintegrin and metalloproteinases (ADAMs), and metalloproteinases affecting the activation or inactivation of many classes of proteins, including G-protein-coupled receptors (GPCRs). Here, we summarize the emerging data that suggest O-glycosylation to be a key regulator of limited proteolysis, and highlight the potential for crosstalk between multiple PTMs.
Collapse
|
172
|
Ivry SL, Meyer NO, Winter MB, Bohn MF, Knudsen GM, O'Donoghue AJ, Craik CS. Global substrate specificity profiling of post-translational modifying enzymes. Protein Sci 2018; 27:584-594. [PMID: 29168252 PMCID: PMC5818756 DOI: 10.1002/pro.3352] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
Enzymes that modify the proteome, referred to as post-translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes. In this article, we highlight various peptide-based approaches for analysis of PTM enzyme substrate specificity. We focus on the application of these technologies to proteases and also discuss specific examples in which they have been used to uncover the substrate specificity of other types of PTM enzymes, such as kinases. In particular, we highlight our multiplex substrate profiling by mass spectrometry (MSP-MS) assay, which uses a rationally designed, physicochemically diverse library of tetradecapeptides. We show how this method has been applied to PTM enzymes to uncover biological function, and guide substrate and inhibitor design. We also briefly discuss how this technique can be combined with other methods to gain a systems-level understanding of PTM enzyme regulation and function.
Collapse
Affiliation(s)
- Sam L. Ivry
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Nicole O. Meyer
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Michael B. Winter
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Markus F. Bohn
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Giselle M. Knudsen
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San DiegoLa JollaCalifornia
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| |
Collapse
|
173
|
Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R. Biotechnological Applications of Proteases in Food Technology. Compr Rev Food Sci Food Saf 2018; 17:412-436. [DOI: 10.1111/1541-4337.12326] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Olga Luisa Tavano
- Faculty of Nutrition; Alfenas Federal Univ.; 700 Gabriel Monteiro da Silva St Alfenas MG 37130-000 Brazil
| | - Angel Berenguer-Murcia
- Inorganic Chemistry Dept. and Materials Science Inst.; Alicante Univ.; Ap. 99 E-03080 Alicante Spain
| | - Francesco Secundo
- Istit. di Chimica del Riconoscimento Molecolare; CNR; v. Mario Bianco 9 20131 Milan Italy
| | | |
Collapse
|
174
|
Folgueras AR, Freitas-Rodríguez S, Español Y, Velasco G. Cancer Susceptibility Models in Protease-Deficient Mice. Methods Mol Biol 2018; 1731:235-245. [PMID: 29318558 DOI: 10.1007/978-1-4939-7595-2_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For decades, proteases have been associated with cancer progression due to the ability of some members of this large group of enzymes to degrade tumor cell surroundings, thereby facilitating cancer invasion and dissemination. However, the generation of mouse models deficient in proteases has revealed the existence of a great variety of functions among proteolytic enzymes in cancer biology, including important tumor-suppressive roles. Therefore, in this chapter, we describe methods to chemically induce different types of cancer (lung adenocarcinoma, hepatocellular carcinoma, oral and esophageal carcinoma, colorectal carcinoma, skin cancer, and fibrosarcoma) in genetically modified mouse models to efficiently evaluate the specific pro- or antitumoral function of proteases in cancer.
Collapse
Affiliation(s)
- Alicia R Folgueras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
| | - Sandra Freitas-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Yaiza Español
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Gloria Velasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
175
|
Álvarez-Eguiluz Á, Díaz-Navarro A, Puente XS. Dissecting Degradomes: Analysis of Protease-Coding Genes. Methods Mol Biol 2018; 1731:1-13. [PMID: 29318538 DOI: 10.1007/978-1-4939-7595-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proteases constitute up to 3% of all protein-coding genes in a vertebrate genome and participate in numerous physiological and pathological processes. The characterization of the degradome of one organism, the set of all genes encoding proteolytic enzymes, and the comparison to the degradome of other species have proved useful to identify genetic differences that are helpful to elucidate the molecular basis of diverse biological processes, the different susceptibility to disease, and the evolution of the structure and function of proteases. Here we describe the main procedures involved in the characterization of the degradome of an organism for which its genome sequence is available.
Collapse
Affiliation(s)
- Ángel Álvarez-Eguiluz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Ander Díaz-Navarro
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain. .,Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain.
| |
Collapse
|
176
|
Solis N, Overall CM. Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS). Methods Mol Biol 2018; 1731:15-28. [PMID: 29318539 DOI: 10.1007/978-1-4939-7595-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Determination of drug targets and development of novel therapeutics for the treatment of different cancers are actively ongoing areas of research. Proteases being the second largest group of enzymes in humans present themselves as attractive targets for blocking and activation to treat malignancies. However, determination of the protease cleavage substrates is often missed by utilizing conventional modern proteomic approaches. The relatively low abundance of proteolytically processed, and mostly semi-tryptic, peptides compared to tryptic peptides generated in shotgun proteomics compounded with their poorer identification rates makes the identification of such critical peptides challenging and so are mostly overlooked. Our laboratory introduced Terminal Amine Isotopic Labeling of Substrates (TAILS) to identify N-terminal peptides from cleavage events. In this chapter we present a protocol from our complementary method carboxy-TAILS (C-TAILS) to identify C-terminal peptides in metabolically labeled cancer cell lines.
Collapse
Affiliation(s)
- Nestor Solis
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada. .,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
177
|
Goel P, Jumpertz T, Mikles DC, Tichá A, Nguyen MTN, Verhelst S, Hubalek M, Johnson DC, Bachovchin DA, Ogorek I, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases. Biochemistry 2017; 56:6713-6725. [PMID: 29185711 DOI: 10.1021/acs.biochem.7b01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this study, we describe the computer-based rational design, chemical synthesis, and biological evaluation of novel N-methylene saccharin-based rhomboid protease inhibitors. Saccharin inhibitors displayed inhibitory potency in the submicromolar range, effectiveness against rhomboids both in vitro and in live Escherichia coli cells, and substantially improved selectivity against human serine hydrolases compared to those of previously known rhomboid inhibitors. Consequently, N-methylene saccharins are promising new templates for the development of rhomboid inhibitors, providing novel tools for probing rhomboid functions in physiology and disease.
Collapse
Affiliation(s)
- Parul Goel
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany.,Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt , Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany
| | - Thorsten Jumpertz
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - David C Mikles
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Anežka Tichá
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Minh T N Nguyen
- Chemical Proteomics Group, Leibnitz Institute for Analytical Sciences (ISAS) e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Steven Verhelst
- Chemical Proteomics Group, Leibnitz Institute for Analytical Sciences (ISAS) e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, University of Leuven , Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Darren C Johnson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 428, New York, New York 10065, United States
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 428, New York, New York 10065, United States
| | - Isabella Ogorek
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz , Duesbergweg 6, 55128 Mainz, Germany
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Boris Schmidt
- Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt , Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
178
|
Armstrong HF, Podolanczuk AJ, Barr RG, Oelsner EC, Kawut SM, Hoffman EA, Tracy R, Kaminski N, McClelland RL, Lederer DJ. Serum Matrix Metalloproteinase-7, Respiratory Symptoms, and Mortality in Community-Dwelling Adults. MESA (Multi-Ethnic Study of Atherosclerosis). Am J Respir Crit Care Med 2017; 196:1311-1317. [PMID: 28570100 DOI: 10.1164/rccm.201701-0254oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Matrix metalloproteinase-7 (MMP-7) has been implicated in interstitial lung disease pathobiology and proposed as a diagnostic and prognostic biomarker of idiopathic pulmonary fibrosis. OBJECTIVES To test associations between serum MMP-7 and lung function, respiratory symptoms, interstitial lung abnormalities (ILA), and all-cause mortality in community-dwelling adults sampled without regard to respiratory symptoms or disease. METHODS We measured serum MMP-7 in 1,227 participants in MESA (Multi-Ethnic Study of Atherosclerosis) at baseline. The 5-year outcome data were available for spirometry (n = 697), cough (n = 722), and dyspnea (n = 1,050). The 10-year outcome data were available for ILA (n = 561) and mortality (n = 1,227). We used linear, logistic, and Cox regression to control for potential confounders. MEASUREMENTS AND MAIN RESULTS The mean (±SD) serum MMP-7 level was 4.3 (±2.5) ng/ml (range, 1.2-24.1 ng/ml). In adjusted models, each natural log unit increment in serum MMP-7 was associated with a 3.7% absolute decrement in FVC% (95% confidence interval [CI] = 0.9-6.6%), a 1.6-fold increased odds of exertional dyspnea (95% CI = 1.3-1.9), a 1.5-fold increased odds of ILAs (95% CI = 1.1-2.1), and a 2.2-fold increased all-cause mortality rate (95% CI = 1.9-2.5). The associations with ILA and mortality tended to be stronger among never-smokers (P values for interaction 0.06 and 0.01, respectively). CONCLUSIONS Serum MMP-7 levels may be a quantitative biomarker of subclinical extracellular matrix remodeling in the lungs of community-dwelling adults, which may facilitate investigation of subclinical interstitial lung disease.
Collapse
Affiliation(s)
- Hilary F Armstrong
- 1 Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - Anna J Podolanczuk
- 2 Department of Medicine, Columbia University Medical Center, New York, New York
| | - R Graham Barr
- 2 Department of Medicine, Columbia University Medical Center, New York, New York
| | - Elizabeth C Oelsner
- 2 Department of Medicine, Columbia University Medical Center, New York, New York
| | - Steven M Kawut
- 3 Department of Medicine and.,4 Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric A Hoffman
- 5 Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Russell Tracy
- 6 Department of Pathology, University of Vermont, Burlington, Vermont
| | - Naftali Kaminski
- 7 Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Robyn L McClelland
- 8 Department of Biostatistics, University of Washington, Seattle, Washington
| | - David J Lederer
- 1 Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York.,2 Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
179
|
Naim A, Pan Q, Baig MS. Matrix Metalloproteinases (MMPs) in Liver Diseases. J Clin Exp Hepatol 2017; 7:367-372. [PMID: 29234202 PMCID: PMC5715451 DOI: 10.1016/j.jceh.2017.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are proteinases capable of degrading components of the extracellular matrix and numerous nonmatrix proteins. MMPs along with tissue inhibitors of MMPs, have been implicated in the pathogenesis of liver diseases. Although, the precise mechanism-of-actions of MMPs in various liver related disorders is largely unknown, however, data from diverse experimental models indicate that these proteinases influence cellular activities including proliferation and survival, gene expression, as well as multiple aspects of inflammation. Hence, MMP's are likely key players in the outcomes related to liver disease.
Collapse
Key Words
- Col, collagen
- ECM, extra cellular matrix
- GBD, global burden of disease
- HCC, hepato-cellular carcinoma
- IRI, ischemia and reperfusion injury
- MMP, matrix metalloproteases
- NAFLD, non-alcoholic fatty liver disease
- NFkB, nuclear factor kappa-B
- TIMPs, tissue inhibitors of MMPs
- TNF, tumor necrosis factor
- cirrhosis
- extracellular matrix (ECM)
- hepatocellular carcinoma
- liver fibrosis
- matrix metalloproteinases
Collapse
Affiliation(s)
- Adnan Naim
- Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mirza S. Baig
- Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India,Address for correspondence: Mirza S. Baig, Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore 453552, MP, India.Mirza S. Baig, Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI)IndoreMP453552India
| |
Collapse
|
180
|
Hagimori M, Temma T, Kudo S, Sano K, Kondo N, Mukai T. Synthesis of radioiodinated probes targeted toward matrix metalloproteinase-12. Bioorg Med Chem Lett 2017; 28:193-195. [PMID: 29191557 DOI: 10.1016/j.bmcl.2017.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
Matrix metalloproteinase-12 (MMP-12, macrophage elastase) is a member of the MMP family that is responsible for the degradation of extracellular matrix, and is associated with the inflammatory process of chronic obstructive pulmonary disease (COPD). COPD, characterized by progressive and irreversible airflow obstruction, is recently a major cause of mortality and morbidity worldwide. Herein, to develop radioiodinated probes for the early diagnosis of COPD, we designed and synthesized novel MMP-12-targeted dibenzofuran compounds (1-3) with a variety of linker structures (carbamate, amide, and sulfonamide). In competitive enzyme activity assays, it was revealed that the linker structures significantly affected the inhibitory activity against and selectivity for MMP-12. Compound 1, with carbamate linker, demonstrated potent MMP-12 inhibitory activity (IC50 = 8.5 nM) compared to compound 2, with amide linker, and compound 3, with sulfonamide linker. Using bromo-substituted carbamate 13 as a radioiodination precursor, [125I]1 was successfully prepared to high radiochemical purity (over 98%) and good specific radioactivity (4.1 GBq/μmol). These results suggest that radioiodinated compound 1 is potent as a novel MMP-12-targeted probe.
Collapse
Affiliation(s)
- Masayori Hagimori
- Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-ku, Kobe 658-8558, Japan; Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takashi Temma
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan; Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shinji Kudo
- Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Kohei Sano
- Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Naoya Kondo
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan; Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takahiro Mukai
- Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-ku, Kobe 658-8558, Japan.
| |
Collapse
|
181
|
Roth-Konforti ME, Bauer CR, Shabat D. Unprecedented Sensitivity in a Probe for Monitoring Cathepsin B: Chemiluminescence Microscopy Cell-Imaging of a Natively Expressed Enzyme. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709347] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
182
|
Roth-Konforti ME, Bauer CR, Shabat D. Unprecedented Sensitivity in a Probe for Monitoring Cathepsin B: Chemiluminescence Microscopy Cell-Imaging of a Natively Expressed Enzyme. Angew Chem Int Ed Engl 2017; 56:15633-15638. [DOI: 10.1002/anie.201709347] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
183
|
Radchenko T, Brink A, Siegrist Y, Kochansky C, Bateman A, Fontaine F, Morettoni L, Zamora I. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry. PLoS One 2017; 12:e0186461. [PMID: 29091918 PMCID: PMC5665424 DOI: 10.1371/journal.pone.0186461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids). This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids) of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The main advantages of the developed approach are the abilities to elucidate metabolite structure of cyclic peptides and those containing unnatural amino acids, store processed information in a searchable format within a database leading to frequency analysis of the labile sites for the analyzed peptides. The presented algorithm may be useful to optimize peptide drug properties with regards to cleavage sites, stability, metabolism and degradation products in drug discovery.
Collapse
Affiliation(s)
- Tatiana Radchenko
- Pompeu Fabra University, Barcelona, Spain
- Lead Molecular Design, S.L, Sant Cugat del Vallés, Spain
- * E-mail: (TR); (IZ)
| | - Andreas Brink
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Yves Siegrist
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christopher Kochansky
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Alison Bateman
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | | | | | - Ismael Zamora
- Pompeu Fabra University, Barcelona, Spain
- Lead Molecular Design, S.L, Sant Cugat del Vallés, Spain
- * E-mail: (TR); (IZ)
| |
Collapse
|
184
|
He D, Xie X, Yang F, Zhang H, Su H, Ge Y, Song H, Chen PR. Quantitative and Comparative Profiling of Protease Substrates through a Genetically Encoded Multifunctional Photocrosslinker. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dan He
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xiao Xie
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Heng Zhang
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Haomiao Su
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yun Ge
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Haiping Song
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Peng R. Chen
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
185
|
He D, Xie X, Yang F, Zhang H, Su H, Ge Y, Song H, Chen PR. Quantitative and Comparative Profiling of Protease Substrates through a Genetically Encoded Multifunctional Photocrosslinker. Angew Chem Int Ed Engl 2017; 56:14521-14525. [DOI: 10.1002/anie.201708151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Dan He
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xiao Xie
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Heng Zhang
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Haomiao Su
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yun Ge
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Haiping Song
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Peng R. Chen
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
186
|
Bogyo M. Introduction to the Special Issue on Proteases and Proteolysis in Health and Disease. FEBS J 2017; 284:1392-1393. [PMID: 28503839 DOI: 10.1111/febs.14089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Special Issue on Proteases and Proteolysis in Health and Disease comprises 11 reviews that cover a broad range of topics in this diverse field. We hope you find these pieces as engaging and informative as we have and we are grateful to their authors for taking the time to write for The FEBS Journal.
Collapse
Affiliation(s)
- Matthew Bogyo
- Department of Pathology, School of Medicine, Stanford University, CA, USA
| |
Collapse
|
187
|
Kappelhoff R, Puente XS, Wilson CH, Seth A, López-Otín C, Overall CM. Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: Organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIP™ DNA microarray. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2210-2219. [PMID: 28797648 DOI: 10.1016/j.bbamcr.2017.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023]
Abstract
The protease degradome is defined as the complete repertoire of proteases and inhibitors, and their nonfunctional homologs present in a cell, tissue or organism at any given time. We review the tissue distribution of virtually the entire degradome in 23 different human tissues and 6 ovarian cancer cell lines. To do so, we developed the CLIP-CHIP™, a custom microarray based on a 70-mer oligonucleotide platform, to specifically profile the transcripts of the entire repertoire of 473 active human proteases, 156 protease inhibitors and 92 non-proteolytically active homologs known at the design date using one specific 70-mer oligonucleotide per transcript. Using the CLIP-CHIP™ we mapped the expression profile of proteases and their inhibitors in 23 different human tissues and 6 ovarian cancer cell lines in 104 sample datasets. Hierarchical cluster analysis showed that expression profiles clustered according to their anatomic locations, cellular composition, physiologic functions, and the germ layer from which they are derived. The human ovarian cancer cell lines cluster according to malignant grade. 110 proteases and 42 inhibitors were tissue specific (1 to 3 tissues). Of these 110 proteases 69% (74) are mainly extracellular, 30% (34) intracellular and 1% intramembrane. Notably, 35% (197/565) of human proteases and 30% (47/156) of inhibitors were ubiquitously expressed in all 23 tissues; 27% (155) of proteases and 21% (32) of inhibitors were broadly expressed in 4-20 tissues. Our datasets provide a valuable resource for the community of baseline protease and inhibitor relative expression in normal human tissues and can be used for comparison with diseased tissue, e.g. ovarian cancer, to decipher pathogenesis, and to aid drug development. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Reinhild Kappelhoff
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xose S Puente
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Claire H Wilson
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arun Seth
- Sunnybrook Research Institute, Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Carlos López-Otín
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
188
|
Learning to read and write in evolution: from static pseudoenzymes and pseudosignalers to dynamic gear shifters. Biochem Soc Trans 2017; 45:635-652. [PMID: 28620026 DOI: 10.1042/bst20160281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/17/2022]
Abstract
We present a systems biology view on pseudoenzymes that acknowledges that genes are not selfish: the genome is. With network function as the selectable unit, there has been an evolutionary bonus for recombination of functions of and within proteins. Many proteins house a functionality by which they 'read' the cell's state, and one by which they 'write' and thereby change that state. Should the writer domain lose its cognate function, a 'pseudoenzyme' or 'pseudosignaler' arises. GlnK involved in Escherichia coli ammonia assimilation may well be a pseudosignaler, associating 'reading' the nitrogen state of the cell to 'writing' the ammonium uptake activity. We identify functional pseudosignalers in the cyclin-dependent kinase complexes regulating cell-cycle progression. For the mitogen-activated protein kinase pathway, we illustrate how a 'dead' pseudosignaler could produce potentially selectable functionalities. Four billion years ago, bioenergetics may have shuffled 'electron-writers', producing various networks that all served the same function of anaerobic ATP synthesis and carbon assimilation from hydrogen and carbon dioxide, but at different ATP/acetate ratios. This would have enabled organisms to deal with variable challenges of energy need and substrate supply. The same principle might enable 'gear-shifting' in real time, by dynamically generating different pseudo-redox enzymes, reshuffling their coenzymes, and rerouting network fluxes. Non-stationary pH gradients in thermal vents together with similar such shuffling mechanisms may have produced a first selectable proton-motivated pyrophosphate synthase and subsequent ATP synthase. A combination of functionalities into enzymes, signalers, and the pseudo-versions thereof may offer fitness in terms of plasticity, both in real time and in evolution.
Collapse
|
189
|
Cang Z, Wei GW. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput Biol 2017; 13:e1005690. [PMID: 28749969 PMCID: PMC5549771 DOI: 10.1371/journal.pcbi.1005690] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/08/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH) method. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains important biological information via a multichannel image-like representation. This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the deep learning limitations from small and noisy training sets, we propose a multi-task multichannel topological convolutional neural network (MM-TCNN). We demonstrate that TopologyNet outperforms the latest methods in the prediction of protein-ligand binding affinities, mutation induced globular protein folding free energy changes, and mutation induced membrane protein folding free energy changes. AVAILABILITY weilab.math.msu.edu/TDL/.
Collapse
Affiliation(s)
- Zixuan Cang
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
190
|
Brzdak P, Nowak D, Wiera G, Mozrzymas JW. Multifaceted Roles of Metzincins in CNS Physiology and Pathology: From Synaptic Plasticity and Cognition to Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:178. [PMID: 28713245 PMCID: PMC5491558 DOI: 10.3389/fncel.2017.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) and membrane proteolysis play a key role in structural and functional synaptic plasticity associated with development and learning. A growing body of evidence underscores the multifaceted role of members of the metzincin superfamily, including metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) and astacins in physiological and pathological processes in the central nervous system (CNS). The expression and activity of metzincins are strictly controlled at different levels (e.g., through the regulation of translation, limited activation in the extracellular space, the binding of endogenous inhibitors and interactions with other proteins). Thus, unsurprising is that the dysregulation of proteolytic activity, especially the greater expression and activation of metzincins, is associated with neurodegenerative disorders that are considered synaptopathies, especially Alzheimer's disease (AD). We review current knowledge of the functions of metzincins in the development of AD, mainly the proteolytic processing of amyloid precursor protein, the degradation of amyloid β (Aβ) peptide and several pathways for Aβ clearance across brain barriers (i.e., blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB)) that contain specific receptors that mediate the uptake of Aβ peptide. Controlling the proteolytic activity of metzincins in Aβ-induced pathological changes in AD patients' brains may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Daria Nowak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Grzegorz Wiera
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| |
Collapse
|
191
|
Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS, Ali AN. Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis 2017. [DOI: 10.1093/carcin/bgx063] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
192
|
Randall TA, London RE, Fitzgerald MC, Mueller GA. Proteases of Dermatophagoides pteronyssinus. Int J Mol Sci 2017; 18:ijms18061204. [PMID: 28587273 PMCID: PMC5486027 DOI: 10.3390/ijms18061204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023] Open
Abstract
Since the discovery that Der p 1 is a cysteine protease, the role of proteolytic activity in allergic sensitization has been explored. There are many allergens with proteolytic activity; however, exposure from dust mites is not limited to allergens. In this paper, genomic, transcriptomic and proteomic data on Dermatophagoides pteronyssinus (DP) was mined for information regarding the complete degradome of this house dust mite. D. pteronyssinus has more proteases than the closely related Acari, Dermatophagoides farinae (DF) and Sarcoptes scabiei (SS). The group of proteases in D. pteronyssinus is found to be more highly transcribed than the norm for this species. The distribution of protease types is dominated by the cysteine proteases like Der p 1 that account for about half of protease transcription by abundance, and Der p 1 in particular accounts for 22% of the total protease transcripts. In an analysis of protease stability, the group of allergens (Der p 1, Der p 3, Der p 6, and Der p 9) is found to be more stable than the mean. It is also statistically demonstrated that the protease allergens are simultaneously more highly expressed and more stable than the group of D. pteronyssinus proteases being examined, consistent with common assumptions about allergens in general. There are several significant non-allergen outliers from the normal group of proteases with high expression and high stability that should be examined for IgE binding. This paper compiles the first holistic picture of the D. pteronyssinus degradome to which humans may be exposed.
Collapse
Affiliation(s)
- Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| | | | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| |
Collapse
|
193
|
Friis S, Tadeo D, Le-Gall SM, Jürgensen HJ, Sales KU, Camerer E, Bugge TH. Matriptase zymogen supports epithelial development, homeostasis and regeneration. BMC Biol 2017; 15:46. [PMID: 28571576 PMCID: PMC5452369 DOI: 10.1186/s12915-017-0384-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background Matriptase is a membrane serine protease essential for epithelial development, homeostasis, and regeneration, as well as a central orchestrator of pathogenic pericellular signaling in the context of inflammatory and proliferative diseases. Matriptase is an unusual protease in that its zymogen displays measurable enzymatic activity. Results Here, we used gain and loss of function genetics to investigate the possible biological functions of zymogen matriptase. Unexpectedly, transgenic mice mis-expressing a zymogen-locked version of matriptase in the epidermis displayed pathologies previously reported for transgenic mice mis-expressing wildtype epidermal matriptase. Equally surprising, mice engineered to express only zymogen-locked endogenous matriptase, unlike matriptase null mice, were viable, developed epithelial barrier function, and regenerated the injured epithelium. Compatible with these observations, wildtype and zymogen-locked matriptase were equipotent activators of PAR-2 inflammatory signaling. Conclusion The study demonstrates that the matriptase zymogen is biologically active and is capable of executing developmental and homeostatic functions of the protease. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0384-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stine Friis
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Section for Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Tadeo
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Georgetown University School of Medicine, Washington, DC, 20057, USA
| | - Sylvain M Le-Gall
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Henrik Jessen Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA
| | - Katiuchia Uzzun Sales
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Department of Cell and Molecular Biology, Ribierão Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.
| |
Collapse
|
194
|
Subramanian V, Ain QU, Henno H, Pietilä LO, Fuchs JE, Prusis P, Bender A, Wohlfahrt G. 3D proteochemometrics: using three-dimensional information of proteins and ligands to address aspects of the selectivity of serine proteases. MEDCHEMCOMM 2017; 8:1037-1045. [PMID: 30108817 PMCID: PMC6072133 DOI: 10.1039/c6md00701e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/14/2017] [Indexed: 11/21/2022]
Abstract
The high similarity between certain sub-pockets of serine proteases may lead to low selectivity of protease inhibitors. Therefore the application of proteochemometrics (PCM), which quantifies the relationship between protein/ligand descriptors and affinity for multiple ligands and targets simultaneously, is useful to understand and improve the selectivity profiles of potential inhibitors. In this study, protein field-based PCM that uses knowledge-based and WaterMap derived fields to describe proteins in combination with 2D (RDKit and MOE fingerprints) and 3D (4 point pharmacophoric fingerprints and GRIND) ligand descriptors was used to model the bioactivities of 24 homologous serine proteases and 5863 inhibitors in an integrated fashion. Of the multiple field-based PCM models generated based on different ligand descriptors, RDKit fingerprints showed the best performance in terms of external prediction with Rtest2 of 0.72 and RMSEP of 0.81. Further, visual interpretation of the models highlights sub-pocket specific regions that influence affinity and selectivity of serine protease inhibitors.
Collapse
Affiliation(s)
- Vigneshwari Subramanian
- Division of Pharmaceutical Chemistry and Technology , Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
- Computer-Aided Drug Design , Orion Pharma , Orionintie 1 , 02101 Espoo , Finland .
| | - Qurrat Ul Ain
- Centre for Molecular Informatics , Department of Chemistry , Lensfield Road , CB2 1EW Cambridge , UK
| | - Helena Henno
- Computer-Aided Drug Design , Orion Pharma , Orionintie 1 , 02101 Espoo , Finland .
| | - Lars-Olof Pietilä
- Computer-Aided Drug Design , Orion Pharma , Orionintie 1 , 02101 Espoo , Finland .
| | - Julian E Fuchs
- Centre for Molecular Informatics , Department of Chemistry , Lensfield Road , CB2 1EW Cambridge , UK
- Institute of General , Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 82 , 6020 Innsbruck , Austria
| | - Peteris Prusis
- Computer-Aided Drug Design , Orion Pharma , Orionintie 1 , 02101 Espoo , Finland .
| | - Andreas Bender
- Centre for Molecular Informatics , Department of Chemistry , Lensfield Road , CB2 1EW Cambridge , UK
| | - Gerd Wohlfahrt
- Computer-Aided Drug Design , Orion Pharma , Orionintie 1 , 02101 Espoo , Finland .
| |
Collapse
|
195
|
Menou A, Duitman J, Flajolet P, Sallenave JM, Mailleux AA, Crestani B. Human airway trypsin-like protease, a serine protease involved in respiratory diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L657-L668. [DOI: 10.1152/ajplung.00509.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/12/2023] Open
Abstract
More than 2% of all human genes are coding for a complex system of more than 700 proteases and protease inhibitors. Among them, serine proteases play extraordinary, diverse functions in different physiological and pathological processes. The human airway trypsin-like protease (HAT), also referred to as TMPRSS11D and serine 11D, belongs to the emerging family of cell surface proteolytic enzymes, the type II transmembrane serine proteases (TTSPs). Through the cleavage of its four major identified substrates, HAT triggers specific responses, notably in epithelial cells, within the pericellular and extracellular environment, including notably inflammatory cytokine production, inflammatory cell recruitment, or anticoagulant processes. This review summarizes the potential role of this recently described protease in mediating cell surface proteolytic events, to highlight the structural features, proteolytic activity, and regulation, including the expression profile of HAT, and discuss its possible roles in respiratory physiology and disease.
Collapse
Affiliation(s)
- Awen Menou
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - JanWillem Duitman
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Pauline Flajolet
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Jean-Michel Sallenave
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Arnaud André Mailleux
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Bruno Crestani
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
- APHP, Hôpital Bichat, Service de Pneumologie A, Paris, France
| |
Collapse
|
196
|
Coradin M, Karch KR, Garcia BA. Monitoring proteolytic processing events by quantitative mass spectrometry. Expert Rev Proteomics 2017; 14:409-418. [PMID: 28395554 DOI: 10.1080/14789450.2017.1316977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.
Collapse
Affiliation(s)
- Mariel Coradin
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Kelly R Karch
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
197
|
Marino-Puertas L, Goulas T, Gomis-Rüth FX. Matrix metalloproteinases outside vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2026-2035. [PMID: 28392403 DOI: 10.1016/j.bbamcr.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Laura Marino-Puertas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Theodoros Goulas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| |
Collapse
|
198
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
199
|
Liu N, Kong T, Chen X, Hu H, Gu H, Liu S, Chen X, Yang Q, Li A, Xiong X, Zhang Z. Ubiquitin-specific protease 14 regulates LPS-induced inflammation by increasing ERK1/2 phosphorylation and NF-κB activation. Mol Cell Biochem 2017; 431:87-96. [PMID: 28364380 DOI: 10.1007/s11010-017-2978-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
Persistent activation of nuclear factor B (NF-κB) is very important in the modulation of macrophages cellular response to microbial infections. The deubiquitinase USP14, which is critical for ubiquitin-mediated proteasomal degradation of proteins, is known to be involved in cancer, neurological diseases, and aging. However, the mechanism by which USP14 regulates inflammation remains unclear. Here, we demonstrated that decreasing the deubiquitinase activity of USP14 resulted in reduced lipopolysaccharides (LPS)-mediated tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 release in THP-1 and RAW264.7 cells. Meanwhile, USP14 knockdown by siRNA showed the same effects, with no cytotoxicity in THP-1 cells. Moreover, inhibiting the deubiquitinase activity of USP14 or USP14 knockdown resulted in decreased ERK1/2 and IκBα phosphorylation, increased amounts of the NF-κB inhibitor IκBα, and reduced NF-κB p65 transport from the cytoplasm into nucleus. These findings suggested that USP14 induces NF-κB activity and ERK1/2 phosphorylation triggered by microbial infection.
Collapse
Affiliation(s)
- Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Tianyu Kong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Xiaohua Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Huan Hu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Hongjiao Gu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Qilin Yang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Aiqun Li
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Xuming Xiong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
200
|
Waasdorp M, Duitman J, Spek CA. Plasmin reduces fibronectin deposition by mesangial cells in a protease-activated receptor-1 independent manner. Biochem Biophys Rep 2017; 10:152-156. [PMID: 29114573 PMCID: PMC5637235 DOI: 10.1016/j.bbrep.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
Background Protease-activated receptor-1 (PAR-1) potentiates diabetic nephropathy (DN) as evident from reduced kidney injury in diabetic PAR-1 deficient mice. Although thrombin is the prototypical PAR-1 agonist, anticoagulant treatment does not limit DN in experimental animal models suggesting that thrombin is not the endogenous PAR-1 agonist driving DN. Objectives To identify the endogenous PAR-1 agonist potentiating diabetes-induced nephropathy. Methods Unbiased protease expression profiling in glomeruli from human kidneys with DN was performed using publically available microarray data. The identified prime candidate PAR-1 agonist was subsequently analysed for PAR-1-dependent induction of fibrosis in vitro. Results Of the 553 proteases expressed in the human genome, 247 qualified as potential PAR-1 agonists of which 71 were significantly expressed above background in diabetic glomeruli. The recently identified PAR-1 agonist plasmin(ogen), together with its physiological activator tissue plasminogen activator, were among the highest expressed proteases. Plasmin did however not induce mesangial proliferation and/or fibronectin deposition in vitro. In a PAR-1 independent manner, plasmin even reduced fibronectin deposition. Conclusion Expression profiling identified plasmin as potential endogenous PAR-1 agonist driving DN. Instead of inducing fibronectin expression, plasmin however reduced mesangial fibronectin deposition in vitro. Therefore we conclude that plasmin may not be the endogenous PAR-1 agonist potentiating DN. Plasmin is highly expressed in kidneys of diabetic nephropathy patients. Plasmin limits fibronectin deposition by mesangial cells. Plasmin-dependent PAR-1 activation does not drive diabetic nephropathy.
Collapse
Affiliation(s)
- Maaike Waasdorp
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.,INSERM, UMR1152, Medical School Xavier Bichat, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), LabEx Inflamex, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|