151
|
Petit J, Carroll G, Zhao J, Roper E, Pockney P, Scott RJ. Evaluation of epigenetic methylation biomarkers for the detection of colorectal cancer using droplet digital PCR. Sci Rep 2023; 13:8883. [PMID: 37264006 DOI: 10.1038/s41598-023-35631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/21/2023] [Indexed: 06/03/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Screening programs allow early diagnosis and have improved the clinical management of this disease. Aberrant DNA methylation is increasingly being explored as potential biomarkers for many types of cancers. In this study we investigate the methylation of ten target genes in 105 CRC and paired normal adjacent colonic tissue samples using a MethylLight droplet digital PCR (ML-ddPCR) assay. Receiver operator characteristic (ROC) curves were used to determine the diagnostic performance of all target genes individually and in combination. All 515 different combinations of genes showed significantly higher levels of methylation in CRC tissue. The combination of multiple target genes into a single test generally resulted in greater diagnostic accuracy when compared to single target genes. Our data confirms that ML-ddPCR is able to reliably detect significant differences in DNA methylation between CRC tissue and normal adjacent colonic tissue in a specific selection of target genes.
Collapse
Affiliation(s)
- J Petit
- Division of Surgery, John Hunter Hospital, New Lambton Heights, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, Australia.
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
| | - G Carroll
- Division of Surgery, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - J Zhao
- Division of Surgery, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - E Roper
- Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - P Pockney
- Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - R J Scott
- Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Pathology North, Newcastle, NSW, Australia
| |
Collapse
|
152
|
Gorlov IP, Conway K, Edmiston SN, Parrish EA, Hao H, Amos CI, Tsavachidis S, Gorlova OY, Begg C, Hernando E, Cheng C, Shen R, Orlow I, Luo L, Ernstoff MS, Kuan PF, Ollila DW, Tsai YS, Berwick M, Thomas NE. Methylation of nonessential genes in cutaneous melanoma - Rule Out hypothesis. Melanoma Res 2023; 33:163-172. [PMID: 36805567 PMCID: PMC10148896 DOI: 10.1097/cmr.0000000000000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Differential methylation plays an important role in melanoma development and is associated with survival, progression and response to treatment. However, the mechanisms by which methylation promotes melanoma development are poorly understood. The traditional explanation of selective advantage provided by differential methylation postulates that hypermethylation of regulatory 5'-cytosine-phosphate-guanine-3' dinucleotides (CpGs) downregulates the expression of tumor suppressor genes and therefore promotes tumorigenesis. We believe that other (not necessarily alternative) explanations of the selective advantages of methylation are also possible. Here, we hypothesize that melanoma cells use methylation to shut down transcription of nonessential genes - those not required for cell survival and proliferation. Suppression of nonessential genes allows tumor cells to be more efficient in terms of energy and resource usage, providing them with a selective advantage over the tumor cells that transcribe and subsequently translate genes they do not need. We named the hypothesis the Rule Out (RO) hypothesis. The RO hypothesis predicts higher methylation of CpGs located in regulatory regions (CpG islands) of nonessential genes. It also predicts the higher methylation of regulatory CpGs linked to nonessential genes in melanomas compared to nevi and lower expression of nonessential genes in malignant (derived from melanoma) versus normal (derived from nonaffected skin) melanocytes. The analyses conducted using in-house and publicly available data found that all predictions derived from the RO hypothesis hold, providing observational support for the hypothesis.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Kathleen Conway
- Department of Dermatology, University of North Carolina
- Department of Epidemiology
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sharon N Edmiston
- Department of Dermatology, University of North Carolina
- Department of Epidemiology
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eloise A Parrish
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook
| | - Honglin Hao
- Department of Dermatology, University of North Carolina
| | | | | | - Olga Y Gorlova
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Colin Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Li Luo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Maxico
| | - Marc S Ernstoff
- Roswell Park Comprehensive Cancer Center, Elm and Carlton, Buffalo
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook and
| | - David W Ollila
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yihsuan S Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Marianne Berwick
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Maxico
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
153
|
Milicic L, Porter T, Vacher M, Laws SM. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:475-503. [PMID: 37313495 PMCID: PMC10259073 DOI: 10.3233/adr-220109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual's biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
154
|
Peng L, Baradar AA, Aguado J, Wolvetang E. Cellular senescence and premature aging in Down Syndrome. Mech Ageing Dev 2023; 212:111824. [PMID: 37236373 DOI: 10.1016/j.mad.2023.111824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Down syndrome (DS) is a genetic disorder caused by an extra copy of chromosome 21, resulting in cognitive impairment, physical abnormalities, and an increased risk of age-related co-morbidities. Individuals with DS exhibit accelerated aging, which has been attributed to several cellular mechanisms, including cellular senescence, a state of irreversible cell cycle arrest that is associated with aging and age-related diseases. Emerging evidence suggests that cellular senescence may play a key role in the pathogenesis of DS and the development of age-related disorders in this population. Importantly, cellular senescence may be a potential therapeutic target in alleviating age-related DS pathology. Here, we discuss the importance of focusing on cellular senescence to understand accelerated aging in DS. We review the current state of knowledge regarding cellular senescence and other hallmarks of aging in DS, including its putative contribution to cognitive impairment, multi-organ dysfunction, and premature aging phenotypes.
Collapse
Affiliation(s)
- Lianli Peng
- Australian Institute for Biotechnology and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alireza A Baradar
- Australian Institute for Biotechnology and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Julio Aguado
- Australian Institute for Biotechnology and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Ernst Wolvetang
- Australian Institute for Biotechnology and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
155
|
Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:210. [PMID: 37217462 DOI: 10.1038/s41392-023-01480-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Over decades, researchers have focused on the epigenetic control of DNA-templated processes. Histone modification, DNA methylation, chromatin remodeling, RNA modification, and noncoding RNAs modulate many biological processes that are crucial to the development of cancers. Dysregulation of the epigenome drives aberrant transcriptional programs. A growing body of evidence suggests that the mechanisms of epigenetic modification are dysregulated in human cancers and might be excellent targets for tumor treatment. Epigenetics has also been shown to influence tumor immunogenicity and immune cells involved in antitumor responses. Thus, the development and application of epigenetic therapy and cancer immunotherapy and their combinations may have important implications for cancer treatment. Here, we present an up-to-date and thorough description of how epigenetic modifications in tumor cells influence immune cell responses in the tumor microenvironment (TME) and how epigenetics influence immune cells internally to modify the TME. Additionally, we highlight the therapeutic potential of targeting epigenetic regulators for cancer immunotherapy. Harnessing the complex interplay between epigenetics and cancer immunology to develop therapeutics that combine thereof is challenging but could yield significant benefits. The purpose of this review is to assist researchers in understanding how epigenetics impact immune responses in the TME, so that better cancer immunotherapies can be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
156
|
Tuncay E, Aktay I, Turan B. Overexpression of Slc30a7/ZnT7 increases the mitochondrial matrix levels of labile Zn 2+ and modifies histone modification in hyperinsulinemic cardiomyoblasts. J Trace Elem Med Biol 2023; 78:127198. [PMID: 37196548 DOI: 10.1016/j.jtemb.2023.127198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cellular free Zn2+ concentrations ([Zn2+]) are primarily coordinated by Zn2+-transporters, although their roles are not well established in cardiomyocytes. Since we previously showed the important contribution of a Zn2+-transporter ZnT7 to [Zn2+]i regulation in hyperglycemic cardiomyocytes, here, we aimed to examine a possible regulatory role of ZnT7 not only on [Zn2+]i but also both the mitochondrial-free Zn2+ and/or Ca2+ in cardiomyocytes, focusing on the contribution of its overexpression to the mitochondrial function. METHODS We mimicked either hyperinsulinemia (by 50-μM palmitic acid, PA-cells, for 24-h) or overexpressed ZnT7 (ZnT7OE-cells) in H9c2 cardiomyoblasts. RESULTS Opposite to PA-cells, the [Zn2+]i in ZnT7OE-cells was not different from untreated H9c2-cells. An investigation of immunofluorescence imaging by confocal microscopy demonstrated a ZnT7 localization on the mitochondrial matrix. We demonstrated the ZnT7 localization on the mitochondrial matrix by using immunofluorescence imaging. Later, we determined the mitochondrial levels of [Zn2+]Mit and [Ca2+]Mit by using the Zn2+ and Ca2+ sensitive FRET probe and a Ca2+-sensitive dye Fluo4, respectively. The [Zn2+]Mit was found to increase significantly in ZnT7OE-cells, similar to the PA-cells while no significant changes in the [Ca2+]Mit in these cells. To examine the contribution of ZnT7 overexpression on the mitochondria function, we determined the level of reactive oxygen species (ROS) and the mitochondrial membrane potential (MMP) in these cells in comparison to the PA-cells. There were significantly increased production of ROS and depolarization in MMP and increases in marker proteins of mitochondria-associated apoptosis and autophagy in ZnT7-OE cells, similar to the PA-cells, parallel to increases in K-acetylation. Moreover, we determined significant increases in trimethylation of histone H3 lysine27, H3K27me3, and the mono-methylation of histone H3 lysine36, H3K36 in the ZnT7OE-cells, demonstrating the role of [Zn2+]Mit in epigenetic regulation of cardiomyocytes under hyperinsulinemia through histone modification. CONCLUSIONS Overall, our data have shown an important contribution of high expression of ZnT7-OE, through its buffering and muffling capacity in cardiomyocytes, on the regulation of not only [Zn2+]i but also both [Zn2+]Mit and [Ca2+]Mit affecting mitochondria function, in part, via histone modification.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, Ankara, Turkiye
| | - Irem Aktay
- Department of Biophysics, Ankara University, Faculty of Medicine, Ankara, Turkiye
| | - Belma Turan
- Department of Biophysics, Lokman Hekim University, Faculty of Medicine, Ankara, Turkiye.
| |
Collapse
|
157
|
Li F, Liu S, Li K, Zhang Y, Duan M, Yao Z, Zhu G, Guo Y, Wang Y, Huang L, Zhou F. EpiTEAmDNA: Sequence feature representation via transfer learning and ensemble learning for identifying multiple DNA epigenetic modification types across species. Comput Biol Med 2023; 160:107030. [PMID: 37196456 DOI: 10.1016/j.compbiomed.2023.107030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Methylation is a major DNA epigenetic modification for regulating the biological processes without altering the DNA sequence, and multiple types of DNA methylations have been discovered, including 6mA, 5hmC, and 4mC. Multiple computational approaches were developed to automatically identify the DNA methylation residues using machine learning or deep learning algorithms. The machine learning (ML) based methods are difficult to be transferred to the other predicting tasks of the DNA methylation sites using additional knowledge. Deep learning (DL) may facilitate the transfer learning of knowledge from similar tasks, but they are often ineffective on small datasets. This study proposes an integrated feature representation framework EpiTEAmDNA based on the strategies of transfer learning and ensemble learning, which is evaluated on multiple DNA methylation types across 15 species. EpiTEAmDNA integrates convolutional neural network (CNN) and conventional machine learning methods, and shows improved performances than the existing DL-based methods on small datasets when no additional knowledge is available. The experimental data suggests that the EpiTEAmDNA models may be further improved via transfer learning based on additional knowledge. The evaluation experiments on the independent test datasets also suggest that the proposed EpiTEAmDNA framework outperforms the existing models in most prediction tasks of the 3 DNA methylation types across 15 species. The source code, pre-trained global model, and the EpiTEAmDNA feature representation framework are freely available at http://www.healthinformaticslab.org/supp/.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Shuai Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yaqi Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Meiyu Duan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| | - Zhaomin Yao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China
| | - Gancheng Zhu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yutong Guo
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Ying Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
158
|
Liu L, Ju M, Hu Y, Luan C, Zhang J, Chen K. Genome-wide DNA methylation and transcription analysis in psoriatic epidermis. Epigenomics 2023; 15:209-226. [PMID: 37158398 DOI: 10.2217/epi-2022-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Aim: To identify DNA methylation and transcription biomarkers in the psoriatic epidermis. Materials & methods: Gene transcription and DNA methylation datasets of psoriatic epidermal tissue were obtained from the Gene Expression Omnibus. Machine learning algorithm analysis and weighted gene coexpression network analysis were carried out to screen hub genes. Results: Differentially methylated and expressed genes were identified in the psoriatic epidermis. Six hub genes were selected - GZMB, CRIP1, S100A12, ISG15, CRABP2 and VNN1 - whose transcript levels showed a significant correlation with Psoriasis Area and Severity Index scores and immune infiltration. Conclusion: Psoriatic epidermis is primarily in a hypermethylated status. Epidermis-specific hub differentially methylated and expressed genes are potential biomarkers to help judge the condition of psoriasis.
Collapse
Affiliation(s)
- Lingxi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Yu Hu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Chao Luan
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Jiaan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Kun Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| |
Collapse
|
159
|
Subasri V, Light N, Kanwar N, Brzezinski J, Luo P, Hansford JR, Cairney E, Portwine C, Elser C, Finlay JL, Nichols KE, Alon N, Brunga L, Anson J, Kohlmann W, de Andrade KC, Khincha PP, Savage SA, Schiffman JD, Weksberg R, Pugh TJ, Villani A, Shlien A, Goldenberg A, Malkin D. Multiple Germline Events Contribute to Cancer Development in Patients with Li-Fraumeni Syndrome. CANCER RESEARCH COMMUNICATIONS 2023; 3:738-754. [PMID: 37377903 PMCID: PMC10150777 DOI: 10.1158/2767-9764.crc-22-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/29/2023] [Indexed: 06/29/2023]
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer-predisposition disorder. Approximately 70% of individuals who fit the clinical definition of LFS harbor a pathogenic germline variant in the TP53 tumor suppressor gene. However, the remaining 30% of patients lack a TP53 variant and even among variant TP53 carriers, approximately 20% remain cancer-free. Understanding the variable cancer penetrance and phenotypic variability in LFS is critical to developing rational approaches to accurate, early tumor detection and risk-reduction strategies. We leveraged family-based whole-genome sequencing and DNA methylation to evaluate the germline genomes of a large, multi-institutional cohort of patients with LFS (n = 396) with variant (n = 374) or wildtype TP53 (n = 22). We identified alternative cancer-associated genetic aberrations in 8/14 wildtype TP53 carriers who developed cancer. Among variant TP53 carriers, 19/49 who developed cancer harbored a pathogenic variant in another cancer gene. Modifier variants in the WNT signaling pathway were associated with decreased cancer incidence. Furthermore, we leveraged the noncoding genome and methylome to identify inherited epimutations in genes including ASXL1, ETV6, and LEF1 that confer increased cancer risk. Using these epimutations, we built a machine learning model that can predict cancer risk in patients with LFS with an area under the receiver operator characteristic curve (AUROC) of 0.725 (0.633-0.810). Significance Our study clarifies the genomic basis for the phenotypic variability in LFS and highlights the immense benefits of expanding genetic and epigenetic testing of patients with LFS beyond TP53. More broadly, it necessitates the dissociation of hereditary cancer syndromes as single gene disorders and emphasizes the importance of understanding these diseases in a holistic manner as opposed to through the lens of a single gene.
Collapse
Affiliation(s)
- Vallijah Subasri
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Nicholas Light
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nisha Kanwar
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack Brzezinski
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jordan R. Hansford
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Michael Rice Cancer Centre, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Elizabeth Cairney
- Department of Paediatrics, London Health Sciences Centre and Western University, London, Ontario, Canada
| | - Carol Portwine
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Christine Elser
- Department of Medical Oncology, Princess Margaret Hospital and Mount Sinai Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan L. Finlay
- Neuro-Oncology Program, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | - Kim E. Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Noa Alon
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jo Anson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Wendy Kohlmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kelvin C. de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Joshua D. Schiffman
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
- PEEL Therapeutics, Inc., Salt Lake City, Utah
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trevor J. Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anita Villani
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anna Goldenberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- CIFAR: Child and Brain Development, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
160
|
Xiang J, Zhang J, Liao L, Jiang B, Yuan R, Xiang Y. Label-free and sensitive fluorescent sensing of ten-eleven translocation enzyme via cascaded recycling signal amplifications. Anal Chim Acta 2023; 1251:341025. [PMID: 36925297 DOI: 10.1016/j.aca.2023.341025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
The sensitive detection of ten-eleven translocation (TET) dioxygenase is of significance for understanding the demethylation mechanism of 5-methylocytosine (5mC), which is responsible for a wide range of biological functions that can affect gene expression in eukaryotic species. Here, a non-label and sensitive fluorescence biosensing method for TET assay using TET1 as the model target molecule is established on the basis of target-triggered Mg2+-dependent DNAzyme and catalytic hairpin assembly (CHA)-mediated multiple signal amplification cascades. 5mC sites in the hairpin DNA probe are first oxidized by TET1 into 5-carboxycytosine, which are further reduced by pyridine borane into dihydrouracil, followed by its recognition and cleavage by the USER enzyme to liberate active DNAzyme and G-quadruplex sequences from the probe. The DNAzyme further cyclically cleaves the substrate hairpins to trigger subsequent CHA reaction and DNAzyme cleavage cycles for yielding many G-quadruplex strands. Thioflavin T dye then intercalates into G-quadruplexes to cause a magnificent increase of fluorescence for high sensitivity assay of TET1 with 47 fM detection limit. And, application of this method for TET1 monitoring in diluted serum has also been confirmed.
Collapse
Affiliation(s)
- Jie Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Junyi Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lei Liao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
161
|
Pophali P, Desai SR, Shastri A. Therapeutic Targets in Myelodysplastic Neoplasms: Beyond Hypomethylating Agents. Curr Hematol Malig Rep 2023; 18:56-67. [PMID: 37052811 DOI: 10.1007/s11899-023-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW To discuss novel targeted therapies under investigation for treatment of myelodysplastic neoplasms (MDS). RECENT FINDINGS Over the last few years, results of phase 3 trials assessing novel therapies for high-risk MDS have been largely disappointing. Pevonedistat (NEDD-8 inhibitor) and APR-246 (TP53 reactivator) both did not meet trial endpoints. However, early phase trials of BCL-2, TIM3, and CD47 inhibitors have shown exciting data and are currently under phase 3 investigation. Moreover, combination of hypomethylating agents (HMA) with novel therapies targeting the mutational (IDH, FLT3, spliceosome complex) or immune (PD-1/PDL-1, TIM-3, IRAK-4) pathways are being investigated in early phase clinical trials and have shown adequate safety and promising efficacy. Myelodysplastic neoplasms (MDS) are a group of hematopoietic neoplasms defined by cytopenias and morphological dysplasia. They are characterized by clonal proliferation of aberrant hematopoietic stem cells caused by recurrent genetic abnormalities. This leads to ineffective erythropoiesis, peripheral blood cytopenias, abnormal cell maturation, and a high risk of transformation into acute myeloid leukemia (AML). Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, it is not a suitable option for majority patients due to their age, comorbidities, and the high rate of treatment-related complications. HMAs remain the only FDA-approved treatment option for high-risk MDS. Due to intolerance, primary, and secondary resistance to HMA, there is a large unmet need to develop new safe and effective therapies for patients with MDS. In this review, we focus on the current management strategies and novel therapies in development for treatment of high-risk MDS.
Collapse
Affiliation(s)
- Prateek Pophali
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Department of Developmental & Molecular Biology, Montefiore Medical Center & Albert Einstein College of Medicine, Chanin 302A, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
162
|
Orellana-Guerrero D, Uribe-Salazar JM, El-Sheikh Ali H, Scoggin KE, Ball B, Daels P, Finno CJ, Dini P. Dynamics of the Equine Placental DNA Methylome and Transcriptome from Mid- to Late Gestation. Int J Mol Sci 2023; 24:ijms24087084. [PMID: 37108254 PMCID: PMC10139181 DOI: 10.3390/ijms24087084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The placenta is a temporary organ that is essential for the survival of the fetus, with a lifelong effect on the health of both the offspring and the dam. The functions of the placenta are controlled by its dynamic gene expression during gestation. In this study, we aimed to investigate the equine placental DNA methylome as one of the fundamental mechanisms that controls the gene expression dynamic. Chorioallantois samples from four (4M), six (6M), and ten (10M) months of gestation were used to map the methylation pattern of the placenta. Globally, methylation levels increased toward the end of gestation. We identified 921 differentially methylated regions (DMRs) between 4M and 6M, 1225 DMRs between 4M and 10M, and 1026 DMRs between 6M and 10M. A total of 817 genes carried DMRs comparing 4M and 6M, 978 comparing 4M and 10M, and 804 comparing 6M and 10M. We compared the transcriptomes between the samples and found 1381 differentially expressed genes (DEGs) when comparing 4M and 6M, 1428 DEGs between 4M and 10M, and 741 DEGs between 6M and 10M. Finally, we overlapped the DEGs and genes carrying DMRs (DMRs-DEGs). Genes exhibiting (a) higher expression, low methylation and (b) low expression, high methylation at different time points were identified. The majority of these DMRs-DEGs were located in introns (48.4%), promoters (25.8%), and exons (17.7%) and were involved in changes in the extracellular matrix; regulation of epithelial cell migration; vascularization; and regulation of minerals, glucose, and metabolites, among other factors. Overall, this is the first report highlighting the dynamics in the equine placenta methylome during normal pregnancy. The findings presented serve as a foundation for future studies on the impact of abnormal methylation on the outcomes of equine pregnancies.
Collapse
Affiliation(s)
- Daniela Orellana-Guerrero
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
- College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Peter Daels
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
163
|
Zhang Y, He XJ, Barron AB, Li Z, Jin MJ, Wang ZL, Huang Q, Zhang LZ, Wu XB, Yan WY, Zeng ZJ. The diverging epigenomic landscapes of honeybee queens and workers revealed by multiomic sequencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103929. [PMID: 36906046 DOI: 10.1016/j.ibmb.2023.103929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023]
Abstract
The role of the epigenome in phenotypic plasticity is unclear presently. Here we used a multiomics approach to explore the nature of the epigenome in developing honey bee (Apis mellifera) workers and queens. Our data clearly showed distinct queen and worker epigenomic landscapes during the developmental process. Differences in gene expression between workers and queens become more extensive and more layered during the process of development. Genes known to be important for caste differentiation were more likely to be regulated by multiple epigenomic systems than other differentially expressed genes. We confirmed the importance of two candidate genes for caste differentiation by using RNAi to manipulate the expression of two genes that differed in expression between workers and queens were regulated by multiple epigenomic systems. For both genes the RNAi manipulation resulted in a decrease in weight and fewer ovarioles of newly emerged queens compared to controls. Our data show that the distinct epigenomic landscapes of worker and queen bees differentiate during the course of larval development.
Collapse
Affiliation(s)
- Yong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Meng Jie Jin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China.
| |
Collapse
|
164
|
Janoš T, Ottenbros I, Bláhová L, Šenk P, Šulc L, Pálešová N, Sheardová J, Vlaanderen J, Čupr P. Effects of pesticide exposure on oxidative stress and DNA methylation urinary biomarkers in Czech adults and children from the CELSPAC-SPECIMEn cohort. ENVIRONMENTAL RESEARCH 2023; 222:115368. [PMID: 36716809 PMCID: PMC10009299 DOI: 10.1016/j.envres.2023.115368] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 05/13/2023]
Abstract
Current-use pesticide (CUP) exposure occurs mainly through diet and environmental application in both agricultural and urban settings. While pesticide exposure has been associated with many adverse health outcomes, the intermediary molecular mechanisms are still not completely elucidated. Among others, their roles in epigenetics (DNA methylation) and DNA damage due to oxidative stress are presumed. Scientific evidence on urinary biomarkers of such body response in general population is limited, especially in children. A total of 440 urine samples (n = 110 parent-child pairs) were collected during the winter and summer seasons in order to describe levels of overall DNA methylation (5-mC, 5-mdC, 5-hmdC, 7-mG, 3-mA) and oxidative stress (8-OHdG) biomarkers and investigate their possible associations with metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH). Linear mixed-effects models accounting for intraindividual and intrahousehold correlations were utilized. We applied false discovery rate procedure to account for multiplicity and adjusted for potential confounding variables. Higher urinary levels of most biological response biomarkers were measured in winter samples. In adjusted repeated measures models, interquartile range (IQR) increases in pyrethroid metabolites were associated with higher oxidative stress. t/c-DCCA and TCPY were associated with higher urinary levels of cytosine methylation biomarkers (5-mC and/or 5-mdC). The most robust association was observed for tebuconazole metabolite with 3-mA (-15.1% change per IQR increase, 95% CI = -23.6, -5.69) suggesting a role of this pesticide in reduced demethylation processes through possible DNA glycosylase inhibition. Our results indicate an urgent need to extend the range of analyzed environmental chemicals such as azole pesticides (e.g. prothioconazole) in human biomonitoring studies. This is the first study to report urinary DNA methylation biomarkers in children and associations between CUP metabolites and a comprehensive set of biomarkers including methylated and oxidized DNA alterations. Observed associations warrant further large-scale research of these biomarkers and environmental pollutants including CUPs.
Collapse
Affiliation(s)
- Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ilse Ottenbros
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Center for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Libor Šulc
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jessica Sheardová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
165
|
Hu J, Xu X, Li J, Jiang Y, Hong X, Rexrode KM, Wang G, Hu FB, Zhang H, Karmaus WJ, Wang X, Liang L. Sex differences in the intergenerational link between maternal and neonatal whole blood DNA methylation: a genome-wide analysis in 2 birth cohorts. Clin Epigenetics 2023; 15:51. [PMID: 36966332 PMCID: PMC10040137 DOI: 10.1186/s13148-023-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/06/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND The mother-child inheritance of DNA methylation (DNAm) variations could contribute to the inheritance of disease susceptibility across generations. However, no study has investigated patterns of mother-child associations in DNAm at the genome-wide scale. It remains unknown whether there are sex differences in mother-child DNAm associations. RESULTS Using genome-wide DNAm profiling data (721,331 DNAm sites, including 704,552 on autosomes and 16,779 on the X chromosome) of 396 mother-newborn pairs (54.5% male) from the Boston Birth Cohort, we found significant sex differences in mother-newborn correlations in genome-wide DNAm patterns (Spearman's rho = 0.91-0.98; p = 4.0 × 10-8), with female newborns having stronger correlations. Sex differences in correlations were attenuated but remained significant after excluding X-chromosomal DNAm sites (Spearman's rho = 0.91-0.98; p = 0.035). Moreover, 89,267 DNAm sites (12.4% of all analyzed, including 88,051 [12.5% of analyzed] autosomal and 1,216 [7.2% of analyzed] X-chromosomal sites) showed significant mother-newborn associations in methylation levels, and the top autosomal DNAm sites had high heritability than the genome-wide background (e.g., the top 100 autosomal DNAm sites had a medium h2 of 0.92). Additionally, significant interactions between newborn sex and methylation levels were observed for 11 X-chromosomal and 4 autosomal DNAm sites that were mapped to genes that have been associated with sex-specific disease/traits or early development (e.g., EFHC2, NXY, ADCYAP1R1, and BMP4). Finally, 18,769 DNAm sites (14,482 [77.2%] on the X chromosome) showed mother-newborn differences in methylation levels that were significantly associated with newborn sex, and the top autosomal DNAm sites had relatively small heritability (e.g., the top 100 autosomal DNAm sites had a medium h2 of 0.23). These DNAm sites were mapped to 2,532 autosomal genes and 978 X-chromosomal genes with significant enrichment in pathways involved in neurodegenerative and psychological diseases, development, neurophysiological process, immune response, and sex-specific cancers. Replication analysis in the Isle of Wight birth cohort yielded consistent results. CONCLUSION In two independent birth cohorts, we demonstrated strong mother-newborn correlations in whole blood DNAm on both autosomes and ChrX, and such correlations vary substantially by sex. Future studies are needed to examine to what extent our findings contribute to developmental origins of pediatric and adult diseases with well-observed sex differences.
Collapse
Affiliation(s)
- Jie Hu
- Division of Women's Health, Department of Medicine, Bigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
| | - Xin Xu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
| | - Jun Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Xiumei Hong
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathryn M Rexrode
- Division of Women's Health, Department of Medicine, Bigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoying Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Wilfried J Karmaus
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Xiaobin Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
166
|
Jeynes-Cupper K, Catoni M. Long distance signalling and epigenetic changes in crop grafting. FRONTIERS IN PLANT SCIENCE 2023; 14:1121704. [PMID: 37021313 PMCID: PMC10067726 DOI: 10.3389/fpls.2023.1121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Humans have used grafting for more than 4000 years to improve plant production, through physically joining two different plants, which can continue to grow as a single organism. Today, grafting is becoming increasingly more popular as a technique to increase the production of herbaceous horticultural crops, where rootstocks can introduce traits such as resistance to several pathogens and/or improving the plant vigour. Research in model plants have documented how long-distance signalling mechanisms across the graft junction, together with epigenetic regulation, can produce molecular and phenotypic changes in grafted plants. Yet, most of the studied examples rely on proof-of-concept experiments or on limited specific cases. This review explores the link between research findings in model plants and crop species. We analyse studies investigating the movement of signalling molecules across the graft junction and their implications on epigenetic regulation. The improvement of genomics analyses and the increased availability of genetic resources has allowed to collect more information on potential benefits of grafting in horticultural crop models. Ultimately, further research into this topic will enhance our ability to use the grafting technique to exploit genetic and epigenetic variation in crops, as an alternative to traditional breeding.
Collapse
Affiliation(s)
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
167
|
Aberrant promoter methylation of Wnt inhibitory factor-1 gene is a potential target for treating psoriasis. Clin Immunol 2023; 250:109294. [PMID: 36925027 DOI: 10.1016/j.clim.2023.109294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/29/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease mediated by immune and complex genetic factors. The wingless-related integration site (Wnt) signaling pathway plays a critical role in psoriasis, but how the Wnt pathway is regulated in psoriatic skin and whether it can be exploited for therapeutic benefits is unclear. By comparing biopsies from healthy and psoriatic skin, we found that Wnt inhibitory factor 1 (WIF1), an inhibitor of Wnt signaling, showed reduced expression at both mRNA and protein levels in psoriatic skin. We then quantified methylation of the WIF1 gene promoter by DNA methylation sequencing and found that the WIF1 promoter region was hypermethylated. We further showed that recombinant WIF1 injection ameliorates the imiquimod (IMQ) mouse model of psoriasis. We also revealed that treatment with the DNA methylation inhibitor, decitabine, inhibited proliferation of immortalized human keratinocytes (HaCaT) in a psoriasis-like inflammatory environment. Finally, we applied decitabine to the IMQ mouse model and demonstrated that treatment of mice with decitabine ameliorates the disease. Therefore, our study reveals that methylation of the WIF1 gene is associated with the pathogenesis of psoriasis, and suggests that pharmacological targeting of DNA methylation is a potential treatment strategy for psoriasis.
Collapse
|
168
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
169
|
Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2023; 58:101001. [PMID: 35989137 DOI: 10.1016/j.blre.2022.101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Over the past few years, we have gained a deeper understanding of clonal hematopoiesis of indeterminate potential (CHIP), especially with regard to the epidemiology, clinical sequelae, and mechanical aspects. However, interventional strategies to prevent or delay the potential negative consequences of CHIP remain underdeveloped. In this review, we highlight the latest updates on clonal hematopoiesis research, including molecular mechanisms and clinical implications, with a particular focus on the evolving strategies for the interventions that are being evaluated in ongoing observational and interventional trials. There remains an urgent need to formulate standardized and evidence-based recommendations and guidelines for evaluating and managing individuals with clonal hematopoiesis. In addition, patient-centric endpoints must be defined for clinical trials, which will enable us to continue the robust development of effective preventive strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, United States.
| |
Collapse
|
170
|
Stevens C, Hightower A, Buxbaum SG, Falzarano SM, Rhie SK. Genomic, epigenomic, and transcriptomic signatures of prostate cancer between African American and European American patients. Front Oncol 2023; 13:1079037. [PMID: 36937425 PMCID: PMC10018228 DOI: 10.3389/fonc.2023.1079037] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Prostate cancer is the second most common cancer in men in the United States, and racial disparities are greatly observed in the disease. Specifically, African American (AA) patients have 60% higher incidence and mortality rates, in addition to higher grade and stage prostate tumors, than European American (EA) patients. In order to narrow the gap between clinical outcomes for these two populations, genetic and molecular signatures contributing to this disparity have been characterized. Over the past decade, profiles of prostate tumor samples from different ethnic groups have been developed using molecular and functional assays coupled with next generation sequencing or microarrays. Comparative genome-wide analyses of genomic, epigenomic, and transcriptomic profiles from prostate tumor samples have uncovered potential race-specific mutations, copy number alterations, DNA methylation, and gene expression patterns. In this study, we reviewed over 20 published studies that examined the aforementioned molecular contributions to racial disparities in AA and EA prostate cancer patients. The reviewed genomic studies revealed mutations, deletions, amplifications, duplications, or fusion genes differentially enriched in AA patients relative to EA patients. Commonly reported genomic alterations included mutations or copy number alterations of FOXA1, KMT2D, SPOP, MYC, PTEN, TP53, ZFHX3, and the TMPRSS2-ERG fusion. The reviewed epigenomic studies identified that CpG sites near the promoters of PMEPA1, RARB, SNRPN, and TIMP3 genes were differentially methylated between AA and EA patients. Lastly, the reviewed transcriptomic studies identified genes (e.g. CCL4, CHRM3, CRYBB2, CXCR4, GALR1, GSTM3, SPINK1) and signaling pathways dysregulated between AA and EA patients. The most frequently found dysregulated pathways were involved in immune and inflammatory responses and neuroactive ligand signaling. Overall, we observed that the genomic, epigenomic, and transcriptomic alterations evaluated between AA and EA prostate cancer patients varied between studies, highlighting the impact of using different methods and sample sizes. The reported genomic, epigenomic, and transcriptomic alterations do not only uncover molecular mechanisms of tumorigenesis but also provide researchers and clinicians valuable resources to identify novel biomarkers and treatment modalities to improve the disparity of clinical outcomes between AA and EA patients.
Collapse
Affiliation(s)
- Claire Stevens
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| | - Alexandria Hightower
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| | - Sarah G. Buxbaum
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
- Department of Epidemiology and Biostatistics, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, United States
| | - Sara M. Falzarano
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| |
Collapse
|
171
|
Chu DT, Ngo AD, Wu CC. Epigenetics in cancer development, diagnosis and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:73-92. [PMID: 37225325 DOI: 10.1016/bs.pmbts.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cancer is a dangerous disease and one of the leading causes of death in the world. In 2020, there were nearly 10 million cancer deaths and approximately 20 million new cases. New cases and deaths from cancer are expected to increase further in the coming years. To have a deeper insight into the mechanism of carcinogenesis, epigenetics studies have been published and received much attention from scientists, doctors, and patients. Among alterations in epigenetics, DNA methylation and histone modification are studied by many scientists. They have been reported to be a major contributor in tumor formation and are involved in metastasis. From the understanding of DNA methylation and histone modification, effective, accurate and cost-effective methods for diagnosis and screening of cancer patients have been introduced. Furthermore, therapeutic approaches and drugs targeting altered epigenetics have also been clinically studied and have shown positive results in combating tumor progression. Several cancer drugs that rely on DNA methylation inactivation or histone modification have been approved by the FDA for the treatment of cancer patients. In summary, epigenetics changes such as DNA methylation or histone modification are take part in tumor growth, and they also have great prospect to study diagnostic and therapeutic methods of this dangerous disease.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
172
|
Wu YH, Huang YF, Wu PY, Chang TH, Huang SC, Chou CY. The Downregulation of miR-509-3p Expression by Collagen Type XI Alpha 1-Regulated Hypermethylation Facilitates Cancer Progression and Chemoresistance via the DNA Methyltransferase 1/Small Ubiquitin-like Modifier-3 Axis in Ovarian Cancer Cells. RESEARCH SQUARE 2023:rs.3.rs-2592453. [PMID: 36865240 PMCID: PMC9980191 DOI: 10.21203/rs.3.rs-2592453/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Background MicroRNAs are a group of small non-coding RNAs that are involved in development and diseases such as cancer. Previously, we demonstrated that miR-335 is crucial for preventing collagen type XI alpha 1 (COL11A1)-mediated epithelial ovarian cancer (EOC) progression and chemoresistance. Here, we examined the role of miR-509-3p in EOC. Methods The patients with EOC who underwent primary cytoreductive surgery and postoperative platinum-based chemotherapy were recruited. Their clinic-pathologic characteristics were collected, and disease-related survivals were determined. The COL11A1 and miR-509-3p mRNA expression levels of 161 ovarian tumors were determined by real-time reverse transcription-polymerase chain reaction. Additionally, miR-509-3p hypermethylation was evaluated by sequencing in these tumors. The A2780CP70 and OVCAR-8 cells transfected with miR-509-3p mimic, while the A2780 and OVCAR-3 cells transfected with miR-509-3p inhibitor. The A2780CP70 cells transfected with a small interference RNA of COL11A1, and the A2780 cells transfected with a COL11A1 expression plasmid. Site-directed mutagenesis, luciferase, and chromatin immunoprecipitation assays were performed in this study. Results Low miR-509-3p levels were correlated with disease progression, a poor survival, and high COL11A1 expression levels. In vivo studies reinforced these findings and indicated that the occurrence of invasive EOC cell phenotypes and resistance to cisplatin are decreased by miR-509-3p. The miR-509-3p promoter region (p278) is important for miR-509-3p transcription regulation via methylation. The miR-509-3p hypermethylation frequency was significantly higher in EOC tumors with a low miR-509-3p expression than in those with a high miR-509-3p expression. The patients with miR-509-3p hypermethylation had a significantly shorter overall survival (OS) than those without miR-509-3p hypermethylation. Mechanistic studies further indicated that miR-509-3p transcription was downregulated by COL11A1 through a DNA methyltransferase 1 (DNMT1) phosphorylation and stability increase. Moreover, miR-509-3p targets small ubiquitin-like modifier (SUMO)-3 to regulate EOC cell growth, invasiveness, and chemosensitivity. Conclusion The miR-509-3p/DNMT1/SUMO-3 axis may be an ovarian cancer treatment target.
Collapse
Affiliation(s)
| | - Yu-Fang Huang
- National Cheng Kung University Hospital, National Cheng Kung University
| | - Pei-Ying Wu
- National Cheng Kung University Hospital, National Cheng Kung University
| | | | | | - Cheng-Yang Chou
- National Cheng Kung University Hospital, National Cheng Kung University
| |
Collapse
|
173
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
174
|
Takahashi Y, Morales Valencia M, Yu Y, Ouchi Y, Takahashi K, Shokhirev MN, Lande K, Williams AE, Fresia C, Kurita M, Hishida T, Shojima K, Hatanaka F, Nuñez-Delicado E, Esteban CR, Izpisua Belmonte JC. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 2023; 186:715-731.e19. [PMID: 36754048 DOI: 10.1016/j.cell.2022.12.047] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/19/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.
Collapse
Affiliation(s)
- Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Mariana Morales Valencia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Yang Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yasuo Ouchi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Kazuki Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Maxim Nikolaievich Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kathryn Lande
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chiara Fresia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Masakazu Kurita
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shitibancho, Wakayama, Wakayama, Japan
| | - Kensaku Shojima
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Estrella Nuñez-Delicado
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA.
| |
Collapse
|
175
|
MacKenzie M, Argyropoulos C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. MICROMACHINES 2023; 14:459. [PMID: 36838159 PMCID: PMC9966803 DOI: 10.3390/mi14020459] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
There has been significant progress made in the field of nanopore biosensor development and sequencing applications, which address previous limitations that restricted widespread nanopore use. These innovations, paired with the large-scale commercialization of biological nanopore sequencing by Oxford Nanopore Technologies, are making the platforms a mainstay in contemporary research laboratories. Equipped with the ability to provide long- and short read sequencing information, with quick turn-around times and simple sample preparation, nanopore sequencers are rapidly improving our understanding of unsolved genetic, transcriptomic, and epigenetic problems. However, there remain some key obstacles that have yet to be improved. In this review, we provide a general introduction to nanopore sequencing principles, discussing biological and solid-state nanopore developments, obstacles to single-base detection, and library preparation considerations. We present examples of important clinical applications to give perspective on the potential future of nanopore sequencing in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Morgan MacKenzie
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Christos Argyropoulos
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Clinical & Translational Science Center, Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
176
|
Khurana I, Kaipananickal H, Maxwell S, Birkelund S, Syreeni A, Forsblom C, Okabe J, Ziemann M, Kaspi A, Rafehi H, Jørgensen A, Al-Hasani K, Thomas MC, Jiang G, Luk AO, Lee HM, Huang Y, Thewjitcharoen Y, Nakasatien S, Himathongkam T, Fogarty C, Njeim R, Eid A, Hansen TW, Tofte N, Ottesen EC, Ma RC, Chan JC, Cooper ME, Rossing P, Groop PH, El-Osta A. Reduced methylation correlates with diabetic nephropathy risk in type 1 diabetes. J Clin Invest 2023; 133:160959. [PMID: 36633903 PMCID: PMC9927943 DOI: 10.1172/jci160959] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.
Collapse
Affiliation(s)
- Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Maxwell
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sørine Birkelund
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jun Okabe
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Antony Kaspi
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Haloom Rafehi
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anne Jørgensen
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Merlin C. Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Andrea O.Y. Luk
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | | | | | | | - Christopher Fogarty
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rachel Njeim
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Nete Tofte
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Ronald C.W. Ma
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Juliana C.N. Chan
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mark E. Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Per-Henrik Groop
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark.,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
177
|
Hosseini M, Lotfi‐Shahreza M, Nikpour P. Integrative analysis of DNA methylation and gene expression through machine learning identifies stomach cancer diagnostic and prognostic biomarkers. J Cell Mol Med 2023; 27:714-726. [PMID: 36779430 PMCID: PMC9983314 DOI: 10.1111/jcmm.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 02/14/2023] Open
Abstract
DNA methylation is an early event in tumorigenesis. Here, by integrative analysis of DNA methylation and gene expression and utilizing machine learning approaches, we introduced potential diagnostic and prognostic methylation signatures for stomach cancer. Differentially-methylated positions (DMPs) and differentially-expressed genes (DEGs) were identified using The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) data. A total of 256 DMPs consisting of 140 and 116 hyper- and hypomethylated positions were identified between 443 tumour and 27 nontumour STAD samples. Gene expression analysis revealed a total of 2821 DEGs with 1247 upregulated and 1574 downregulated genes. By analysing the impact of cis and trans regulation of methylation on gene expression, a dominant negative correlation between methylation and expression was observed, while for trans regulation, in hypermethylated and hypomethylated genes, there was mainly a negative and positive correlation with gene expression, respectively. To find diagnostic biomarkers, we used 28 hypermethylated probes locating in the promoter of 27 downregulated genes. By implementing a feature selection approach, eight probes were selected and then used to build a support vector machine diagnostic model, which had an area under the curve of 0.99 and 0.97 in the training and validation (GSE30601 with 203 tumour and 94 nontumour samples) cohorts, respectively. Using 412 TCGA-STAD samples with both methylation and clinical data, we also identified four prognostic probes by implementing univariate and multivariate Cox regression analysis. In summary, our study introduced potential diagnostic and prognostic biomarkers for STAD, which demands further validation.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Genetics and Molecular Biology, Faculty of MedicineIsfahan University of Medical SciencesIsfahanIran
| | | | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
178
|
Solute Carrier Family 29A1 Mediates In Vitro Resistance to Azacitidine in Acute Myeloid Leukemia Cell Lines. Int J Mol Sci 2023; 24:ijms24043553. [PMID: 36834962 PMCID: PMC9965596 DOI: 10.3390/ijms24043553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-labeled AZA (14C-AZA), gene expression, transporter pump activity with or without inhibitors, and cytotoxicity in naïve and resistant cell lines provided insight into the mechanism of AZA resistance. AML cell lines were exposed to increasing concentrations of AZA to create resistant clones. 14C-AZA IUR was significantly lower in MOLM-13- (1.65 ± 0.08 ng vs. 5.79 ± 0.18 ng; p < 0.0001) and SKM-1- (1.10 ± 0.08 vs. 5.08 ± 0.26 ng; p < 0.0001) resistant cells compared to respective parental cells. Importantly, 14C-AZA IUR progressively reduced with downregulation of SLC29A1 expression in MOLM-13- and SKM-1-resistant cells. Furthermore, nitrobenzyl mercaptopurine riboside, an SLC29A inhibitor, reduced 14C-AZA IUR in MOLM-13 (5.79 ± 0.18 vs. 2.07 ± 0.23, p < 0.0001) and SKM-1-naive cells (5.08 ± 2.59 vs. 1.39 ± 0.19, p = 0.0002) and reduced efficacy of AZA. As the expression of cellular efflux pumps such as ABCB1 and ABCG2 did not change in AZA-resistant cells, they are unlikely contribute to AZA resistance. Therefore, the current study provides a causal link between in vitro AZA resistance and downregulation of cellular influx transporter SLC29A1.
Collapse
|
179
|
Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023; 118:3556-3575. [PMID: 36504368 DOI: 10.1093/cvr/cvac166] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
180
|
Biological and Genetic Mechanisms of COPD, Its Diagnosis, Treatment, and Relationship with Lung Cancer. Biomedicines 2023; 11:biomedicines11020448. [PMID: 36830984 PMCID: PMC9953173 DOI: 10.3390/biomedicines11020448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most prevalent chronic adult diseases, with significant worldwide morbidity and mortality. Although long-term tobacco smoking is a critical risk factor for this global health problem, its molecular mechanisms remain unclear. Several phenomena are thought to be involved in the evolution of emphysema, including airway inflammation, proteinase/anti-proteinase imbalance, oxidative stress, and genetic/epigenetic modifications. Furthermore, COPD is one main risk for lung cancer (LC), the deadliest form of human tumor; formation and chronic inflammation accompanying COPD can be a potential driver of malignancy maturation (0.8-1.7% of COPD cases develop cancer/per year). Recently, the development of more research based on COPD and lung cancer molecular analysis has provided new light for understanding their pathogenesis, improving the diagnosis and treatments, and elucidating many connections between these diseases. Our review emphasizes the biological factors involved in COPD and lung cancer, the advances in their molecular mechanisms' research, and the state of the art of diagnosis and treatments. This work combines many biological and genetic elements into a single whole and strongly links COPD with lung tumor features.
Collapse
|
181
|
Ye S, Xin X, Wei B, Zeng L. Genome-wide DNA methylation profile of human dental pulp stem cells during odontogenic differentiation. Arch Oral Biol 2023; 146:105603. [PMID: 36516691 DOI: 10.1016/j.archoralbio.2022.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Human dental pulp stem cells (hDPSCs) is essential for dentin formation and regeneration, emerging evidence revealed that epigenetic regulation plays vital roles in odontogenic differentiation of hDPSCs. The purpose of this study was to explore the genome-wide DNA methylation changes during odontogenic differentiation of hDPSCs. DESIGN hDPSCs were isolated from young healthy premolars and reduced representation bisulfite sequencing (RRBS) was taken to detect the genome-wide DNA methylation profile of hDPSCs during odontogenic differentiation. Genome-wide DNA methylation map, differentially methylated region (DMR) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. RESULTS We found a totally different DNA methylation patterns during the odontogenic differentiation of hDPSCs. A total of 9309 differentially methylated genes (DMG) were identified. Bio-information analysis revealed that calcium signaling pathway, pathways in cancer, and HTLV-I infection signaling pathways may play potential roles in odontogenic differentiation of hDPSCs. NOTCH1, WNT7B, and AXIN2 proteins were related with calcium signaling pathway. CONCLUSIONS This study revealed a comprehensive analysis of global DNA methylation profiles in odontogeinc differentiation of hDPSCs and provided several possible underlying signaling pathways and candidate genes that may regulate the odontogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Shengjia Ye
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Research Institute of Stomatology; China
| | - Xianzhen Xin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Research Institute of Stomatology; China
| | - Bin Wei
- Department of Special Clinic, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; China.
| | - Li Zeng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Research Institute of Stomatology; China.
| |
Collapse
|
182
|
Martínez-Iglesias O, Naidoo V, Corzo L, Pego R, Seoane S, Rodríguez S, Alcaraz M, Muñiz A, Cacabelos N, Cacabelos R. DNA Methylation as a Biomarker for Monitoring Disease Outcome in Patients with Hypovitaminosis and Neurological Disorders. Genes (Basel) 2023; 14:genes14020365. [PMID: 36833292 PMCID: PMC9956161 DOI: 10.3390/genes14020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
DNA methylation remains an under-recognized diagnostic biomarker for several diseases, including neurodegenerative disorders. In this study, we examined differences in global DNA methylation (5mC) levels in serum samples from patients during the initial- and the follow-up visits. Each patient underwent a blood analysis and neuropsychological assessments. The analysis of 5mC levels revealed two categories of patients; Group A who, during the follow-up, had increased 5mC levels, and Group B who had decreased 5mC levels. Patients with low Fe-, folate-, and vitamin B12- levels during the initial visit showed increased levels of 5mC after treatment when assessed during the follow-up. During the follow-up, 5mC levels in Group A patients increased after treatment for hypovitaminosis with the nutraceutical compounds Animon Complex and MineraXin Plus. 5mC levels were maintained during the follow-up in Group A patients treated for neurological disorders with the bioproducts AtreMorine and NeoBrainine. There was a positive correlation between 5mC levels and MMSE scores, and an inverse correlation between 5mC and ADAS-Cog scores. This expected correlation was observed in Group A patients only. Our study appears to indicate that 5mC has a diagnostic value as a biomarker across different pathologies.
Collapse
|
183
|
Sun H, Zhou S, Liu Y, Lu P, Qi N, Wang G, Yang M, Huo D, Hou C. A fluorescent biosensor based on exponential amplification reaction-initiated CRISPR/Cas12a (EIC) strategy for ultrasensitive DNA methyltransferase detection. Anal Chim Acta 2023; 1239:340732. [PMID: 36628729 DOI: 10.1016/j.aca.2022.340732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
DNA methyltransferase (DNA MTase) catalyzes the process of DNA methylation, and the aberrant DNA MTase activity is closely associated with cancer incidence and progression. Inspired by the exponential amplification reaction (EXPAR) characteristics, we developed an EXPAR-initiated CRISPR/Cas12a (EIC) strategy for sensitively detecting DNA MTase activity. A hairpin probe (HP) was designed with a palindromic sequence in the stem as substrate and NH2-modified 3' end to prevent nonspecific amplification. HP could be methylated by DNA adenine methyltransferase (Dam MTase) and then digested by DpnI to generate an oligonucleotide that can serve as an EXPAR primer. With the assistance of Nt.BstNBI nicking enzyme and Vent(exo-) polymerase, this primer bound to template and induced EXPAR. Interestingly, the product of Cycle 1 in EXPAR can function as primer to initiate Cycle 2. Both EXPAR products can further activate the collateral cleavage of CRISPR/Cas12a-crRNA, resulting in the fragmentation of fluorescence reporters and fluorescence recovery. Due to the highly efficient amplification (about 5 times signal-to-noise of SDA) and the robust trans-cleavage of CRISPR/Cas12a, the EIC system owned an extreme limit of detection (LOD) of 2 × 10-4 U/mL and a broad detection range from 2 × 10-4 to 10 U/mL for Dam MTase. In addition, this method has succeeded in inhibitor screening and evaluation, showing magnificent promise in drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
184
|
Ding W, Kaur D, Horvath S, Zhou W. Comparative epigenome analysis using Infinium DNA methylation BeadChips. Brief Bioinform 2023; 24:6974838. [PMID: 36617464 PMCID: PMC10147478 DOI: 10.1093/bib/bbac617] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
The arrival of the Infinium DNA methylation BeadChips for mice and other nonhuman mammalian species has outpaced the development of the informatics that supports their use for epigenetics study in model organisms. Here, we present informatics infrastructure and methods to allow easy DNA methylation analysis on multiple species, including domesticated animals and inbred laboratory mice (in SeSAMe version 1.16.0+). First, we developed a data-driven analysis pipeline covering species inference, genome-specific data preprocessing and regression modeling. We targeted genomes of 310 species and 37 inbred mouse strains and showed that genome-specific preprocessing prevents artifacts and yields more accurate measurements than generic pipelines. Second, we uncovered the dynamics of the epigenome evolution in different genomic territories and tissue types through comparative analysis. We identified a catalog of inbred mouse strain-specific methylation differences, some of which are linked to the strains' immune, metabolic and neurological phenotypes. By streamlining DNA methylation array analysis for undesigned genomes, our methods extend epigenome research to broad species contexts.
Collapse
Affiliation(s)
- Wubin Ding
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Diljeet Kaur
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Steve Horvath
- Dept. of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Altos Labs, San Diego, CA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
185
|
Dou B, Zhou H, Han X, Wang P. Wedged DNA Walker Coupled with a Bimetallic Metal-Organic Framework Electrocatalyst for Rapid and Sensitive Monitoring of DNA Methylation. Anal Chem 2023; 95:994-1001. [PMID: 36601781 DOI: 10.1021/acs.analchem.2c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The dissociation of the walking strand from the track gives rise to decreased efficiency and long reaction time of DNA walkers. In this work, we constructed a DNA walker combining the introduction of a wedge segment with a bimetallic metal-organic framework (MOF) electrocatalyst to solve this problem. The target methylated DNA acted as a single-legged walker, and the immobilization probe assembled on the track contained a wedge segment that was complementary to the target methylated DNA persistently, inhibiting its dissociation from the track. The fuel strand modified with a bimetallic MOF would drive the target strand to conduct branch migration and move processively along the track. The stepwise movement of the target strand resulted in the loading of numerous bimetallic MOF catalysts to reduce H2O2 at the electrode interface, thereby a significantly increased current response would be obtained for the detection of methylated DNA. This DNA walker achieved a detection limit of 200 aM within 20 min and effectively distinguished DNA with different methylation statuses, which would pave a way for rapid and sensitive monitoring of DNA methylation.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hui Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiguang Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
186
|
High-fat diet induced obesity alters Dnmt1 and Dnmt3a levels and global DNA methylation in mouse ovary and testis. Histochem Cell Biol 2023; 159:339-352. [PMID: 36624173 DOI: 10.1007/s00418-022-02173-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Obesity impairs reproductive capacity, and the link between imprinting disorders and obesity has been discussed in many studies. Recent studies indicate that a high-fat diet may cause epigenetic changes in maternal and paternal genes, which may be transmitted to offspring and negatively affect their development. On this basis, our study aims to reveal the changes in DNA methylation and DNA methyltransferase enzymes in the ovaries and testes of C57BL/6 mice fed a high-fat diet and created a model of obesity, by comparing them with the control group. For this purpose, we demonstrated the presence and quantitative differences of DNA methyltransferase 1 and DNA methyltransferase 3a enzymes as well as global DNA methylation in ovaries and testis of C57BL/6 mice fed a high-fat diet by using immunohistochemistry and western blot methods. We found that a high-fat diet induces the levels of Dnmt1 and Dnmt3a proteins (p < 0.05). We observed increased global DNA methylation in testes but, interestingly, decreased global DNA methylation in ovaries. We think that our outcomes have significant value to demonstrate the effects of obesity on ovarian follicle development and testicular spermatogenesis and may bring a new perspective to obesity-induced infertility treatments. Additionally, to the best of our knowledge, this is the first study to document dynamic alteration of Dnmt1 and Dnmt3a as well as global DNA methylation patterns during follicle development in healthy mouse ovaries.
Collapse
|
187
|
Dnmt1/Tet2-mediated changes in Cmip methylation regulate the development of nonalcoholic fatty liver disease by controlling the Gbp2-Pparγ-CD36 axis. Exp Mol Med 2023; 55:143-157. [PMID: 36609599 PMCID: PMC9898513 DOI: 10.1038/s12276-022-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 01/07/2023] Open
Abstract
Dynamic alteration of DNA methylation leads to various human diseases, including nonalcoholic fatty liver disease (NAFLD). Although C-Maf-inducing protein (Cmip) has been reported to be associated with NAFLD, its exact underlying mechanism remains unclear. Here, we aimed to elucidate this mechanism in NAFLD in vitro and in vivo. We first identified alterations in the methylation status of the Cmip intron 1 region in mouse liver tissues with high-fat high-sucrose diet-induced NAFLD. Knockdown of DNA methyltransferase (Dnmt) 1 significantly increased Cmip expression. Chromatin immunoprecipitation assays of AML12 cells treated with oleic and palmitic acid (OPA) revealed that Dnmt1 was dissociated and that methylation of H3K27me3 was significantly decreased in the Cmip intron 1 region. Conversely, the knockdown of Tet methylcytosine dioxygenase 2 (Tet2) decreased Cmip expression. Following OPA treatment, the CCCTC-binding factor (Ctcf) was recruited, and H3K4me3 was significantly hypermethylated. Intravenous Cmip siRNA injection ameliorated NAFLD pathogenic features in ob/ob mice. Additionally, Pparγ and Cd36 expression levels were dramatically decreased in the livers of ob/ob mice administered siCmip, and RNA sequencing revealed that Gbp2 was involved. Gbp2 knockdown also induced a decrease in Pparγ and Cd36 expression, resulting in the abrogation of fatty acid uptake into cells. Our data demonstrate that Cmip and Gbp2 expression levels are enhanced in human liver tissues bearing NAFLD features. We also show that Dnmt1-Trt2/Ctcf-mediated reversible modulation of Cmip methylation regulates the Gbp2-Pparγ-Cd36 signaling pathway, indicating the potential of Cmip as a novel therapeutic target for NAFLD.
Collapse
|
188
|
Okamoto J, Wang L, Yin X, Luca F, Pique-Regi R, Helms A, Im HK, Morrison J, Wen X. Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits. Am J Hum Genet 2023; 110:44-57. [PMID: 36608684 PMCID: PMC9892769 DOI: 10.1016/j.ajhg.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023] Open
Abstract
Integrative genetic association methods have shown great promise in post-GWAS (genome-wide association study) analyses, in which one of the most challenging tasks is identifying putative causal genes and uncovering molecular mechanisms of complex traits. Recent studies suggest that prevailing computational approaches, including transcriptome-wide association studies (TWASs) and colocalization analysis, are individually imperfect, but their joint usage can yield robust and powerful inference results. This paper presents INTACT, a computational framework to integrate probabilistic evidence from these distinct types of analyses and implicate putative causal genes. This procedure is flexible and can work with a wide range of existing integrative analysis approaches. It has the unique ability to quantify the uncertainty of implicated genes, enabling rigorous control of false-positive discoveries. Taking advantage of this highly desirable feature, we further propose an efficient algorithm, INTACT-GSE, for gene set enrichment analysis based on the integrated probabilistic evidence. We examine the proposed computational methods and illustrate their improved performance over the existing approaches through simulation studies. We apply the proposed methods to analyze the multi-tissue eQTL data from the GTEx project and eight large-scale complex- and molecular-trait GWAS datasets from multiple consortia and the UK Biobank. Overall, we find that the proposed methods markedly improve the existing putative gene implication methods and are particularly advantageous in evaluating and identifying key gene sets and biological pathways underlying complex traits.
Collapse
Affiliation(s)
- Jeffrey Okamoto
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lijia Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xianyong Yin
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Adam Helms
- University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jean Morrison
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
189
|
Saini A, Rawat Y, Jain K, Mani I. State-of-the-art techniques to study epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:23-50. [PMID: 37019594 DOI: 10.1016/bs.pmbts.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The epigenome consists of all the epigenetic alterations like DNA methylation, the histone modifications and non-coding RNAs which change the gene expression and have a role in diseases like cancer and other processes. Epigenetic modifications can control gene expression through variable gene activity at various levels which affects various cellular phenomenon such as cell differentiations, variability, morphogenesis, and the adaptability of an organism. Various factors such as food, pollutants, drugs, stress etc., impact the epigenome. Epigenetic mechanisms mainly involve various post-translational alteration of histones and DNA methylation. Numerous methods have been utilized to study these epigenetic marks. Various histone modifications and binding of histone modifier proteins can be analyzed using chromatin immunoprecipitation (ChIP) which is one of broadly utilized method. Other modified forms of the ChIP have been developed such as reverse chromatin immunoprecipitation (R-ChIP); sequential ChIP (ChIP-re-ChIP) and some high-throughput modified forms of ChIP such as ChIP-seq and ChIP-on-chip. Another epigenetic mechanism is DNA methylation, in which DNA methyltransferases (DNMTs) add a methyl group to the C-5 position of the cytosine. Bisulfite sequencing is the oldest and usually utilized method to measure the DNA methylation status. Other techniques have been established are whole genome bisulfite sequencing (WGBS), methylated DNA immune-precipitation based methods (MeDIP), methylation sensitive restriction enzyme digestion followed by sequencing (MRE-seq) and methylation BeadChip to study the methylome. This chapter briefly discusses the key principles and methods used to study epigenetics in health and disease conditions.
Collapse
Affiliation(s)
- Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India.
| | | | - Kritika Jain
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
190
|
Zhang N, Tian X, Yan T, Wang H, Zhang D, Lin C, Liu Q, Jiang S. Insights into the role of nucleotide methylation in metabolic-associated fatty liver disease. Front Immunol 2023; 14:1148722. [PMID: 37020540 PMCID: PMC10067741 DOI: 10.3389/fimmu.2023.1148722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by fatty infiltration of the liver. In recent years, the MAFLD incidence rate has risen and emerged as a serious public health concern. MAFLD typically progresses from the initial hepatocyte steatosis to steatohepatitis and then gradually advances to liver fibrosis, which may ultimately lead to cirrhosis and carcinogenesis. However, the potential evolutionary mechanisms still need to be clarified. Recent studies have shown that nucleotide methylation, which was directly associated with MAFLD's inflammatory grading, lipid synthesis, and oxidative stress, plays a crucial role in the occurrence and progression of MAFLD. In this review, we highlight the regulatory function and associated mechanisms of nucleotide methylation modification in the progress of MAFLD, with a particular emphasis on its regulatory role in the inflammation of MAFLD, including the regulation of inflammation-related immune and metabolic microenvironment. Additionally, we summarize the potential value of nucleotide methylation in the diagnosis and treatment of MAFLD, intending to provide references for the future investigation of MAFLD.
Collapse
Affiliation(s)
- Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Dengtian Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| |
Collapse
|
191
|
Wu M, Jiang M, Ding H, Tang S, Li D, Pi J, Zhang R, Chen W, Chen R, Zheng Y, Piao J. Nrf2 -/- regulated lung DNA demethylation and CYP2E1 DNA methylation under PM 2.5 exposure. Front Genet 2023; 14:1144903. [PMID: 37113990 PMCID: PMC10128193 DOI: 10.3389/fgene.2023.1144903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 04/29/2023] Open
Abstract
Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate CYP450 expression; however, the mechanism by which Nrf2-/- (KO) regulates CYP450 expression via methylation of its promoter after PM2.5 exposure remains unclear. Here, Nrf2-/- (KO) mice and wild-type (WT) were placed in a PM2.5 exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the real-ambient exposure system. The CYP2E1 expression trends were opposite between the WT and KO mice following PM2.5 exposure. After exposure to PM2.5, CYP2E1 mRNA and protein levels were increased in WT mice but decreased in KO mice, and CYP1A1 expression was increased after exposure to PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on CYP450 promoter methylation and global methylation levels in WT and KO mice. In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites examined in the CYP2E1 promoter, the CpG2 methylation level showed an opposite trend with CYP2E1 mRNA expression. The same relationship was evident between CpG3 unit methylation in the CYP1A1 promoter and CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1 promoter and CYP2S1 mRNA expression. This data suggests that methylation of these CpG units regulates the expression of the corresponding gene. After exposure to PM2.5, the expression of the DNA methylation markers ten-eleven translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the WT group but significantly increased in the KO group. In summary, the changes in CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT and Nrf2-/- mice might be related to the specific methylation patterns in their promoter CpG units. After exposure to PM2.5, Nrf2 might regulate CYP2E1 expression by affecting CpG2 unit methylation and induce DNA demethylation via TET3 expression. Our study revealed the underlying mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5.
Collapse
Affiliation(s)
- Mengjie Wu
- School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Hao Ding
- The Municipal Government Hospital of Zibo, Zibo, Shandong, China
| | - Siying Tang
- Qingdao Chengyang District Center for Disease Control and Prevention, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Jinmei Piao,
| |
Collapse
|
192
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
193
|
Peng X, Wu X, Wu G, Peng C, Huang B, Huang M, Ding J, Mao C, Zhang H. MiR-129-2-3p Inhibits Esophageal Carcinoma Cell Proliferation, Migration, and Invasion via Targeting DNMT3B. Curr Mol Pharmacol 2023; 16:116-123. [PMID: 35260066 DOI: 10.2174/1874467215666220308122716] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE The study aims to explore the regulatory mechanism of miR-129-2-3p underlying esophageal carcinoma (EC) cell progression and generate new ideas for targeted treatment of EC. METHODS Mature miRNA expression data and total RNA sequencing data of EC in the TCGAESCA dataset were utilized to explore differentially expressed miRNAs (DEmiRNAs). StarBase database was then utilized to predict targets of miRNA. MiR-129-2-3p and DNMT3B expression in EC cell lines was assayed through qRT-PCR and Western blot. CCK-8, scratch healing, and transwell assays were conducted to assess the impact of miR-129-2-3p on EC cell phenotypes. In addition, a dual-luciferase assay was completed to identify the binding relationship between DNMT3B and miR-129-2-3p. RESULTS MiR-129-2-3p was noticeably less expressed in EC cell lines, while DNMT3B was highly expressed. MiR-129-2-3p could bind to DNMT3B. Furthermore, in vitro functional experiments uncovered that overexpressed miR-129-2-3p repressed EC cell progression while further overexpressing DNMT3B would restore the above inhibitory effect. CONCLUSION MiR-129-2-3p is a cancer repressor in EC cells, and it could target DNMT3B, thus hampering the progression of EC cells.
Collapse
Affiliation(s)
- Xuyang Peng
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Chongxiong Peng
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Mingjiang Huang
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| |
Collapse
|
194
|
Genetic aetiology of Down syndrome birth: novel variants of maternal DNMT3B and RFC1 genes increase risk of meiosis II nondisjunction in the oocyte. Mol Genet Genomics 2023; 298:293-313. [PMID: 36447056 DOI: 10.1007/s00438-022-01981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
The aim of the present work was to explore the intriguing association of maternal folate regulator gene polymorphisms and mutations with the incidence of chromosome 21 nondisjunction and Down syndrome birth. We tested polymorphisms/mutations of DNMT3B and RFC1 genes for their association with meiotic errors in oocyte among the 1215 Down syndrome child-bearing women and 900 controls. We observed that 23 out of 31 variants of DNMT3B and RFC1 exhibited an association with meiosis II nondisjunction in maternal age-independent manner. Additionally, we have reported 17 novel mutations and 1 novel polymorphic variant that are unique to the Indian Bengali speaking cohort and increased odds in favour of meiosis II nondisjunction. We hypothesize that the risk variants and mutations of DNMT3B and RFC1 genes may cause reduction in two or more recombination events and also cause peri-centromeric single exchange that increases the risk of nondisjunction at any age of women. In silico analyses predicted the probable damages of the transcripts or proteins from the respective genes owing to the said polymorphisms. These findings from the largest population sample tested ever revealed that mutations/polymorphisms of the genes DNMT3B and RFC1 impair recombination that leads to chromosome 21 nondisjunction in the oocyte at meiosis II stage and bring us a significant step closer towards understanding the aetiology of chromosome 21 nondisjunction and birth of a child with Down syndrome to women at any age.
Collapse
|
195
|
Saini A, Varshney A, Saini A, Mani I. Insight into epigenetics and human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:1-21. [PMID: 37019588 DOI: 10.1016/bs.pmbts.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The most eminent research of the 21st century whirls around the epigenetic and the variability of DNA sequences in humans. The reciprocity between the epigenetic changes and the exogenous factors drives an influence on the inheritance biology and gene expression both inter-generationally and trans-generationally. Chromatin level modifications like DNA methylation, histone modifications or changes in transcripts functions either at transcription level or translational level pave the way for certain diseases or cancer in humans. The ability of epigenetics to explain the processes of various diseases has been demonstrated by recent epigenetic studies. Multidisciplinary therapeutic strategies were developed in order to analyse how epigenetic elements interact with different disease pathways. In this chapter we summarize how an organism may be predisposed to certain diseases by exposure to environmental variables such as chemicals, medications, stress, or infections during particular, vulnerable phases of life, and the epigenetic component may influence some of the diseases in humans.
Collapse
|
196
|
Fan Y, S Chan A, Zhu J, Yi Leung S, Fan X. A Bayesian model for identifying cancer subtypes from paired methylation profiles. Brief Bioinform 2022; 24:6961790. [PMID: 36575828 PMCID: PMC9851340 DOI: 10.1093/bib/bbac568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2022] Open
Abstract
Aberrant DNA methylation is the most common molecular lesion that is crucial for the occurrence and development of cancer, but has thus far been underappreciated as a clinical tool for cancer classification, diagnosis or as a guide for therapeutic decisions. Partly, this has been due to a lack of proven algorithms that can use methylation data to stratify patients into clinically relevant risk groups and subtypes that are of prognostic importance. Here, we proposed a novel Bayesian model to capture the methylation signatures of different subtypes from paired normal and tumor methylation array data. Application of our model to synthetic and empirical data showed high clustering accuracy, and was able to identify the possible epigenetic cause of a cancer subtype.
Collapse
Affiliation(s)
- Yetian Fan
- School of Mathematics and Statistics, Liaoning University, Shenyang, 110036, China,Department of Statistics, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR, China
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jun Zhu
- Sema4, Stamford, CT, 06902, USA,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaodan Fan
- Corresponding author: Xiaodan Fan, Department of Statistics, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR, China. E-mail:
| |
Collapse
|
197
|
Mredul MBR, Khan U, Rana HK, Meem TM, Awal MA, Rahman MH, Khan MS. Bioinformatics and System Biology Techniques to Determine Biomolecular Signatures and Pathways of Prion Disorder. Bioinform Biol Insights 2022; 16:11779322221145373. [PMID: 36582393 PMCID: PMC9793038 DOI: 10.1177/11779322221145373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022] Open
Abstract
Prion disorder (PD) is caused by misfolding and the formation of clumps of proteins in the brain, notably Prion proteins resulting in a steady decrease in brain function. Early detection of PD is difficult due to its unpredictable nature, and diagnosis is limited regarding specificity and sensitivity. Considering the uncertainties, the current study used network-based integrative system biology approaches to reveal promising molecular biomarkers and therapeutic targets for PD. In this study, brain transcriptomics gene expression microarray datasets (GSE160208 and GSE124571) of human PD were evaluated and 35 differentially expressed genes (DEGs) were identified. By employing network-based protein-protein interaction (PPI) analysis on these DEGs, 10 central hub proteins, including SPP1, FKBP5, HPRT1, CDKN1A, BAG3, HSPB1, SYK, TNFRSF1A, PTPN6, and CD44, were identified. Employing bioinformatics approaches, a variety of transcription factors (EGR1, SSRP1, POLR2A, TARDP, and NR2F1) and miRNAs (hsa-mir-8485, hsa-mir-148b-3p, hsa-mir-4295, hsa-mir-26b-5p, and hsa-mir-16-5p) were predicted. EGR1 was found as the most imperative transcription factor (TF), and hsa-mir-16-5p and hsa-mir-148b-3p were found as the most crucial miRNAs targeted in PD. Finally, resveratrol and hypochlorous acid were predicted as possible therapeutic drugs for PD. This study could be helpful in better understanding of molecular systems and prospective pharmacological targets for developing effective PD treatments.
Collapse
Affiliation(s)
- Md Bazlur Rahman Mredul
- Statistics Discipline, Science,
Engineering and Technology School, Khulna University, Khulna, Bangladesh
| | - Umama Khan
- Biotechnology and Genetic Engineering
Discipline, Khulna University, Khulna, Bangladesh
| | - Humayan Kabir Rana
- Department of Computer Science and
Engineering, Green University of Bangladesh, Dhaka, Bangladesh
| | - Tahera Mahnaz Meem
- Statistics Discipline, Science,
Engineering and Technology School, Khulna University, Khulna, Bangladesh
| | - Md Abdul Awal
- Electronics and Communication
Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and
Engineering, Islamic University, Kushtia, Bangladesh
| | - Md Salauddin Khan
- Statistics Discipline, Science,
Engineering and Technology School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
198
|
Thapa B, Adhikari NP, Tiwari PB, Chapagain PP. A 5'-Flanking C/G Pair at the Core Region Enhances the Recognition and Binding of Kaiso to Methylated DNA. J Chem Inf Model 2022; 63:2095-2103. [PMID: 36563044 DOI: 10.1021/acs.jcim.2c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methyl CpG binding proteins (MBPs) are transcription factors that recognize the methylated CpG sites in DNA and mediate the DNA methylation signal into various downstream cellular processes. The C2H2 zinc finger (ZF) protein, Kaiso, also an MBP, preferentially binds to two symmetrically methylated CpG sites in DNA sequences via C-terminal C2H2 ZF domains and mediates the transcription regulation process. Investigation of the molecular mechanism of the recognition of methylated DNA (meDNA) by Kaiso is important to understand how this protein reads and translates this methylation signal into downstream transcription outcomes. Despite previous studies in Kaiso-meDNA interactions, detailed structural investigations on the sequence-specific interaction of Kaiso with the meDNA sequence are still lacking. In this work, we used molecular modeling and molecular dynamics (MD) simulation-based computational approaches to investigate the recognition of various methylated DNA sequences by Kaiso. Our MD simulation results show that the Kaiso-meDNA interaction is sequence specific. The recognition of meDNA by Kaiso is enhanced in the MeECad sequence compared to the MeCG2 sequence. Compared to the 5'-flanking T/A pair in MeCG2, both MeCG2_mutCG and MeECad sequences show that a C/G base pair allows GLU535 of Kaiso to preferably recognize and bind the core mCpG site. The core mCGmCG site is crucial for the recognition process and formation of a stable complex. Our results reveal that the 5'-flanking nucleotides are also important for the enhanced binding and recognition of methylated sites.
Collapse
Affiliation(s)
- Bidhya Thapa
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal.,Padma Kanya Multiple Campus, Tribhuvan University, Bagbazar, Kathmandu 44613, Nepal
| | - Narayan P Adhikari
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal
| | - Purushottam B Tiwari
- Department of Oncology, Georgetown University, Washington, DC 20057, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
199
|
Nunez-Vazquez R, Desvoyes B, Gutierrez C. Histone variants and modifications during abiotic stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:984702. [PMID: 36589114 PMCID: PMC9797984 DOI: 10.3389/fpls.2022.984702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.
Collapse
Affiliation(s)
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| |
Collapse
|
200
|
Urban VS, Cegledi A, Mikala G. Multiple myeloma, a quintessential malignant disease of aging: a geroscience perspective on pathogenesis and treatment. GeroScience 2022; 45:727-746. [PMID: 36508077 PMCID: PMC9742673 DOI: 10.1007/s11357-022-00698-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy, which is predominantly a disease of older adults (the median age at diagnosis is 70 years). The slow progression from asymptomatic stages and the late-onset of MM suggest fundamental differences compared to many other hematopoietic system-related malignancies. The concept discussed in this review is that age-related changes at the level of terminally differentiated plasma cells act as the main risk factors for the development of MM. Epigenetic and genetic changes that characterize both MM development and normal aging are highlighted. The relationships between cellular aging processes, genetic mosaicism in plasma cells, and risk for MM and the stochastic processes contributing to clonal selection and expansion of mutated plasma cells are investigated. In line with the DNA damage accumulation theory of aging, in this review, the evolution of monoclonal gammopathy to symptomatic MM is considered. Therapeutic consequences of age-dependent comorbidities that lead to frailty and have fundamental influence on treatment outcome are described. The importance of considering geriatric states when planning the life-long treatment course of an elderly MM patient in order to achieve maximal therapeutic benefit is emphasized.
Collapse
Affiliation(s)
- Veronika S. Urban
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Andrea Cegledi
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital–National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabor Mikala
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary.
| |
Collapse
|