151
|
Yang Q, Zhang D, Leng M, Yang L, Zhong L, Cooke HJ, Shi Q. Synapsis and meiotic recombination in male Chinese muntjac (Muntiacus reevesi). PLoS One 2011; 6:e19255. [PMID: 21559438 PMCID: PMC3084798 DOI: 10.1371/journal.pone.0019255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/23/2011] [Indexed: 11/18/2022] Open
Abstract
The muntjacs (Muntiacus, Cervidae) have been extensively studied in terms of chromosomal and karyotypic evolution. However, little is known about their meiotic chromosomes particularly the recombination patterns of homologous chromosomes. We used immunostained surface spreads to visualise synaptonemal complexes (SCs), recombination foci and kinetochores with antibodies against marker proteins. As in other mammals pachytene was the longest stage of meiotic prophase. 39.4% of XY bivalents lacked MLH1 foci compared to less than 0.5% of autosomes. The average number of MLH1 foci per pachytene cell in M. reevesi was 29.8. The distribution of MLH1 foci differed from other mammals. On SCs with one focus, the distribution was more even in M. reevesi than in other mammals; for SCs that have two or more MLH1 foci, usually there was a larger peak in the sub-centromere region than other regions on SC in M. reevesi. Additionally, there was a lower level of interference between foci in M. reevesi than in mouse or human. These observations may suggest that the regulation of homologous recombination in M. reevesi is slightly different from other mammals and will improve our understanding of the regulation of meiotic recombination, with respect to recombination frequency and position.
Collapse
Affiliation(s)
- Qingling Yang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ding Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Department of Biological Sciences, Bengbu Medical Collage, Bengbu, China
| | - Mei Leng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ling Yang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Liangwen Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Howard J. Cooke
- MRC Human Genetics Unit and Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Qinghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
152
|
Muyle A, Serres-Giardi L, Ressayre A, Escobar J, Glémin S. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice). Mol Biol Evol 2011; 28:2695-706. [PMID: 21504892 DOI: 10.1093/molbev/msr104] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Base composition varies among and within eukaryote genomes. Although mutational bias and selection have initially been invoked, more recently GC-biased gene conversion (gBGC) has been proposed to play a central role in shaping nucleotide landscapes, especially in yeast, mammals, and birds. gBGC is a kind of meiotic drive in favor of G and C alleles, associated with recombination. Previous studies have also suggested that gBGC could be at work in grass genomes. However, these studies were carried on third codon positions that can undergo selection on codon usage. As most preferred codons end in G or C in grasses, gBGC and selection can be confounded. Here we investigated further the forces that might drive GC content evolution in the rice genus using both coding and noncoding sequences. We found that recombination rates correlate positively with equilibrium GC content and that selfing species (Oryza sativa and O. glaberrima) have significantly lower equilibrium GC content compared with more outcrossing species. As recombination is less efficient in selfing species, these results suggest that recombination drives GC content. We also detected a positive relationship between expression levels and GC content in third codon positions, suggesting that selection favors codons ending with G or C bases. However, the correlation between GC content and recombination cannot be explained by selection on codon usage alone as it was also observed in noncoding positions. Finally, analyses of polymorphism data ruled out the hypothesis that genomic variation in GC content is due to mutational processes. Our results suggest that both gBGC and selection on codon usage affect GC content in the Oryza genus and likely in other grass species.
Collapse
Affiliation(s)
- Aline Muyle
- Institut des Sciences de l'Evolution, UMR 5554 CNRS, Université Montpellier II, France
| | | | | | | | | |
Collapse
|
153
|
Laayouni H, Montanucci L, Sikora M, Melé M, Dall'Olio GM, Lorente-Galdos B, McGee KM, Graffelman J, Awadalla P, Bosch E, Comas D, Navarro A, Calafell F, Casals F, Bertranpetit J. Similarity in recombination rate estimates highly correlates with genetic differentiation in humans. PLoS One 2011; 6:e17913. [PMID: 21464928 PMCID: PMC3065460 DOI: 10.1371/journal.pone.0017913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/14/2011] [Indexed: 11/18/2022] Open
Abstract
Recombination varies greatly among species, as illustrated by the poor conservation of the recombination landscape between humans and chimpanzees. Thus, shorter evolutionary time frames are needed to understand the evolution of recombination. Here, we analyze its recent evolution in humans. We calculated the recombination rates between adjacent pairs of 636,933 common single-nucleotide polymorphism loci in 28 worldwide human populations and analyzed them in relation to genetic distances between populations. We found a strong and highly significant correlation between similarity in the recombination rates corrected for effective population size and genetic differentiation between populations. This correlation is observed at the genome-wide level, but also for each chromosome and when genetic distances and recombination similarities are calculated independently from different parts of the genome. Moreover, and more relevant, this relationship is robustly maintained when considering presence/absence of recombination hotspots. Simulations show that this correlation cannot be explained by biases in the inference of recombination rates caused by haplotype sharing among similar populations. This result indicates a rapid pace of evolution of recombination, within the time span of differentiation of modern humans.
Collapse
Affiliation(s)
- Hafid Laayouni
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Ludovica Montanucci
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Martin Sikora
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Marta Melé
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | | | - Belén Lorente-Galdos
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Kate M. McGee
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jan Graffelman
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Philip Awadalla
- Faculty of Medicine, Ste-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Elena Bosch
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - David Comas
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Arcadi Navarro
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
- National Institute for Bioinformatics (INB), Barcelona, Spain
| | - Francesc Calafell
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Ferran Casals
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
- Faculty of Medicine, Ste-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Jaume Bertranpetit
- IBE, Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| |
Collapse
|
154
|
Hu XS, Yeh FC, Wang Z. Structural genomics: correlation blocks, population structure, and genome architecture. Curr Genomics 2011; 12:55-70. [PMID: 21886455 PMCID: PMC3129043 DOI: 10.2174/138920211794520141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 11/27/2022] Open
Abstract
An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level.
Collapse
Affiliation(s)
- Xin-Sheng Hu
- 1400 College Plaza, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6J 2C8, Canada
- Department of Renewable Resources, 751 General Service Building, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Francis C. Yeh
- Department of Renewable Resources, 751 General Service Building, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Zhiquan Wang
- 1400 College Plaza, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6J 2C8, Canada
| |
Collapse
|
155
|
Clément Y, Arndt PF. Substitution patterns are under different influences in primates and rodents. Genome Biol Evol 2011; 3:236-45. [PMID: 21339508 PMCID: PMC3068003 DOI: 10.1093/gbe/evr011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are large-scale variations of the GC-content along mammalian chromosomes that have been called isochore structures. Primates and rodents have different isochore structures, which suggests that these lineages exhibit different modes of GC-content evolution. It has been shown that, in the human lineage, GC-biased gene conversion (gBGC), a neutral process associated with meiotic recombination, acts on GC-content evolution by influencing A or T to G or C substitution rates. We computed genome-wide substitution patterns in the mouse lineage from multiple alignments and compared them with substitution patterns in the human lineage. We found that in the mouse lineage, gBGC is active but weaker than in the human lineage and that male-specific recombination better predicts GC-content evolution than female-specific recombination. Furthermore, we were able to show that G or C to A or T substitution rates are predicted by a combination of different factors in both lineages. A or T to G or C substitution rates are most strongly predicted by meiotic recombination in the human lineage but by CpG odds ratio (the observed CpG frequency normalized by the expected CpG frequency) in the mouse lineage, suggesting that substitution patterns are under different influences in primates and rodents.
Collapse
Affiliation(s)
- Yves Clément
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
156
|
Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast. EMBO J 2011; 30:1027-39. [PMID: 21317872 DOI: 10.1038/emboj.2011.32] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/21/2011] [Indexed: 01/01/2023] Open
Abstract
Meiosis-specific mRNAs are transcribed in vegetative fission yeast, and these meiotic mRNAs are selectively removed from mitotic cells to suppress meiosis. This RNA elimination system requires degradation signal sequences called determinant of selective removal (DSR), an RNA-binding protein Mmi1, polyadenylation factors, and the nuclear exosome. However, the detailed mechanism by which meiotic mRNAs are selectively degraded in mitosis but not meiosis is not understood fully. Here we report that Red1, a novel protein, is essential for elimination of meiotic mRNAs from mitotic cells. A red1 deletion results in the accumulation of a large number of meiotic mRNAs in mitotic cells. Red1 interacts with Mmi1, Pla1, the canonical poly(A) polymerase, and Rrp6, a subunit of the nuclear exosome, and promotes the destabilization of DSR-containing mRNAs. Moreover, Red1 forms nuclear bodies in mitotic cells, and these foci are disassembled during meiosis. These results demonstrate that Red1 is involved in DSR-directed RNA decay to prevent ectopic expression of meiotic mRNAs in vegetative cells.
Collapse
|
157
|
Kumar R, De Massy B. Initiation of meiotic recombination in mammals. Genes (Basel) 2010; 1:521-49. [PMID: 24710101 PMCID: PMC3966222 DOI: 10.3390/genes1030521] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/22/2010] [Accepted: 12/03/2010] [Indexed: 12/18/2022] Open
Abstract
Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs). DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs), which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots) of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization.
Collapse
Affiliation(s)
- Rajeev Kumar
- Institute of Human Genetics, UPR1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| | - Bernard De Massy
- Institute of Human Genetics, UPR1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| |
Collapse
|
158
|
Abstract
Recombination hotspots are small chromosomal regions, where meiotic crossover events happen with high frequency. Recombination is initiated by a double-strand break (DSB) that requires the intervention of the molecular repair mechanism. The DSB repair mechanism may result in the exchange of homologous chromosomes (crossover) and the conversion of the allelic sequence that breaks into the one that does not break (biased gene conversion). Biased gene conversion results in a transmission advantage for the allele that does not break, thus preventing recombination and rendering recombination hotspots transient. How is it possible that recombination hotspots persist over evolutionary time (maintaining the average chromosomal crossover rate) when they are self-destructive? This fundamental question is known as the recombination hotspot paradox and has attracted much attention in recent years. Yet, that attention has not translated into a fully satisfactory answer. No existing model adequately explains all aspects of the recombination hotspot paradox. Here, we formulate an intragenomic conflict model resulting in Red Queen dynamics that fully accounts for all empirical observations regarding the molecular mechanisms of recombination hotspots, the nonrandom targeting of the recombination machinery to hotspots and the evolutionary dynamics of hotspot turnover.
Collapse
Affiliation(s)
- F Ubeda
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
| | | |
Collapse
|
159
|
Abstract
The pattern of the correlation of non-allele descents among linked sites is an important aspect for an insight into the genomic evolution at the population level. Here, we present a new statistical method for estimating two types of non-allele descent correlations. One is the standardized parental descent disequilibrium termed by Cockerham & Weir (1973), the other is the standardized disequilibrium between non-allele descent segments from the same chromosome. Essential to this analysis is the partitioning of the joint identity-by-state probability for a random pair of non-allele gametes into the different components of identity by descents at the two or three sites. We consider the samples of phased haplotypes of single nucleotide polymorphism (SNP) markers and the weighted least square method for fast parameter estimation. Monte Carlo simulations demonstrate that robustly unbiased estimates with appropriate precisions can be obtained with certain sample sizes, ~100 diploids, under the impacts of allele frequency distributions and linkage disequilibrium. This method can be used to construct the maps of non-allele descent correlation blocks for the population whose genetic pedigree is not required on a prior basis.
Collapse
|
160
|
Abstract
Although very closely related species can differ in their fine-scale patterns of recombination hotspots, variation in the average genomic recombination rate among recently diverged taxa has rarely been surveyed. We measured recombination rates in eight species that collectively represent several temporal scales of divergence within a single rodent family, Muridae. We used a cytological approach that enables in situ visualization of crossovers at meiosis to quantify recombination rates in multiple males from each rodent group. We uncovered large differences in genomic recombination rate between rodent species, which were independent of karyotypic variation. The divergence in genomic recombination rate that we document is not proportional to DNA sequence divergence, suggesting that recombination has evolved at variable rates along the murid phylogeny. Additionally, we document significant variation in genomic recombination rate both within and between subspecies of house mice. Recombination rates estimated in F(1) hybrids reveal evidence for sex-linked loci contributing to the evolution of recombination in house mice. Our results provide one of the first detailed portraits of genomic-scale recombination rate variation within a single mammalian family and demonstrate that the low recombination rates in laboratory mice and rats reflect a more general reduction in recombination rate across murid rodents.
Collapse
|
161
|
Dumont BL, White MA, Steffy B, Wiltshire T, Payseur BA. Extensive recombination rate variation in the house mouse species complex inferred from genetic linkage maps. Genome Res 2010; 21:114-25. [PMID: 20978138 DOI: 10.1101/gr.111252.110] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rate of recombination is a key genomic parameter that displays considerable variation among taxa. Species comparisons have demonstrated that the rate of evolution in recombination rate is strongly dependent on the physical scale of measurement. Individual recombination hotspots are poorly conserved among closely related taxa, whereas genomic-scale recombination rate variation bears a strong signature of phylogenetic history. In contrast, the mode and tempo of evolution in recombination rates measured on intermediate physical scales is poorly understood. Here, we conduct a detailed statistical comparison between two whole-genome F₂ genetic linkage maps constructed from experimental intercrosses between closely related house mouse subspecies (Mus musculus). Our two maps profile a common wild-derived inbred strain of M. m. domesticus crossed to distinct wild-derived inbred strains representative of two other house mouse subspecies, M. m. castaneus and M. m. musculus. We identify numerous orthologous genomic regions with significant map length differences between these two crosses. Because the genomes of these recently diverged house mice are highly collinear, observed differences in map length (centimorgans) are suggestive of variation in broadscale recombination rate (centimorgans per megabase) within M. musculus. Collectively, these divergent intervals span 19% of the house mouse genome, disproportionately aggregating on the X chromosome. In addition, we uncover strong statistical evidence for a large effect, sex-linked, site-specific modifier of recombination rate segregating within M. musculus. Our findings reveal considerable variation in the megabase-scale recombination landscape among recently diverged taxa and underscore the continued importance of genetic linkage maps in the post-genome era.
Collapse
Affiliation(s)
- Beth L Dumont
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
162
|
Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis. J Mol Evol 2010; 71:332-45. [PMID: 20890595 DOI: 10.1007/s00239-010-9388-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 09/08/2010] [Indexed: 12/31/2022]
Abstract
Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed "recombinational neighborhoods," where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5-7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.
Collapse
|
163
|
Clark AG, Wang X, Matise T. Contrasting methods of quantifying fine structure of human recombination. Annu Rev Genomics Hum Genet 2010; 11:45-64. [PMID: 20690817 DOI: 10.1146/annurev-genom-082908-150031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has been considerable excitement over the ability to construct linkage maps based only on genome-wide genotype data for single nucleotide polymorphic sites (SNPs) in a population sample. These maps, which are derived from estimates of linkage disequilibrium (LD), rely on population genetics theory to relate the decay of LD to the local rate of recombination, but other population processes also come into play. Here we contrast these LD maps to the classically derived, pedigree-based human recombination maps. The LD maps have a level of resolution greatly exceeding that of the pedigree maps, and at this fine scale, sperm typing allows a means of validation. While at a gross level both the pedigree maps and the sperm typing methods generally agree with LD maps, there are significant local differences between them, and the fact that these maps measure different genetic features should be remembered when using them for other genetic inferences.
Collapse
Affiliation(s)
- Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
164
|
Poissant J, Hogg JT, Davis CS, Miller JM, Maddox JF, Coltman DW. Genetic linkage map of a wild genome: genomic structure, recombination and sexual dimorphism in bighorn sheep. BMC Genomics 2010; 11:524. [PMID: 20920197 PMCID: PMC3091677 DOI: 10.1186/1471-2164-11-524] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/28/2010] [Indexed: 12/23/2022] Open
Abstract
Background The construction of genetic linkage maps in free-living populations is a promising tool for the study of evolution. However, such maps are rare because it is difficult to develop both wild pedigrees and corresponding sets of molecular markers that are sufficiently large. We took advantage of two long-term field studies of pedigreed individuals and genomic resources originally developed for domestic sheep (Ovis aries) to construct a linkage map for bighorn sheep, Ovis canadensis. We then assessed variability in genomic structure and recombination rates between bighorn sheep populations and sheep species. Results Bighorn sheep population-specific maps differed slightly in contiguity but were otherwise very similar in terms of genomic structure and recombination rates. The joint analysis of the two pedigrees resulted in a highly contiguous map composed of 247 microsatellite markers distributed along all 26 autosomes and the X chromosome. The map is estimated to cover about 84% of the bighorn sheep genome and contains 240 unique positions spanning a sex-averaged distance of 3051 cM with an average inter-marker distance of 14.3 cM. Marker synteny, order, sex-averaged interval lengths and sex-averaged total map lengths were all very similar between sheep species. However, in contrast to domestic sheep, but consistent with the usual pattern for a placental mammal, recombination rates in bighorn sheep were significantly greater in females than in males (~12% difference), resulting in an autosomal female map of 3166 cM and an autosomal male map of 2831 cM. Despite differing genome-wide patterns of heterochiasmy between the sheep species, sexual dimorphism in recombination rates was correlated between orthologous intervals. Conclusions We have developed a first-generation bighorn sheep linkage map that will facilitate future studies of the genetic architecture of trait variation in this species. While domestication has been hypothesized to be responsible for the elevated mean recombination rate observed in domestic sheep, our results suggest that it is a characteristic of Ovis species. However, domestication may have played a role in altering patterns of heterochiasmy. Finally, we found that interval-specific patterns of sexual dimorphism were preserved among closely related Ovis species, possibly due to the conserved position of these intervals relative to the centromeres and telomeres. This study exemplifies how transferring genomic resources from domesticated species to close wild relative can benefit evolutionary ecologists while providing insights into the evolution of genomic structure and recombination rates of domesticated species.
Collapse
Affiliation(s)
- Jocelyn Poissant
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
The prevalence of recombination in eukaryotes poses one of the most puzzling questions in biology. The most compelling general explanation is that recombination facilitates selection by breaking down the negative associations generated by random drift (i.e. Hill-Robertson interference, HRI). I classify the effects of HRI owing to: deleterious mutation, balancing selection and selective sweeps on: neutral diversity, rates of adaptation and the mutation load. These effects are mediated primarily by the density of deleterious mutations and of selective sweeps. Sequence polymorphism and divergence suggest that these rates may be high enough to cause significant interference even in genomic regions of high recombination. However, neither seems able to generate enough variance in fitness to select strongly for high rates of recombination. It is plausible that spatial and temporal fluctuations in selection generate much more fitness variance, and hence selection for recombination, than can be explained by uniformly deleterious mutations or species-wide selective sweeps.
Collapse
Affiliation(s)
- N H Barton
- Institute of Science and Technology, Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
166
|
Cooper DN, Ball EV, Mort M. Chromosomal distribution of disease genes in the human genome. Genet Test Mol Biomarkers 2010; 14:441-6. [PMID: 20642358 DOI: 10.1089/gtmb.2010.0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genes are nonrandomly distributed in the human genome, both within and between chromosomes. Thus, genes of similar function and common evolutionary origin are often clustered, as are genes with similar expression profiles. We now report that the >2400 genes known to underlie human monogenic inherited disease are non-randomly distributed in the genome over and above the general nonrandomness evident in the distribution of human genes. Further, a subset of 315 inherited disease genes subject to gross deletion was found to exhibit a degree of clustering that was twice that manifested by disease genes in general. The clustering of human disease genes is likely to have important implications for understanding the genotype-phenotype relationship in contiguous gene syndromes as well as those conditions characterized by multigene deletions or complex chromosomal rearrangements.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | | | | |
Collapse
|
167
|
McVean G. What drives recombination hotspots to repeat DNA in humans? Philos Trans R Soc Lond B Biol Sci 2010; 365:1213-8. [PMID: 20308096 DOI: 10.1098/rstb.2009.0299] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recombination between homologous, but non-allelic, stretches of DNA such as gene families, segmental duplications and repeat elements is an important source of mutation. In humans, recent studies have identified short DNA motifs that both determine the location of 40 per cent of meiotic cross-over hotspots and are significantly enriched at the breakpoints of recurrent non-allelic homologous recombination (NAHR) syndromes. Unexpectedly, the most highly penetrant form of the motif occurs on the background of an inactive repeat element family (THE1 elements) and the motif also has strong recombinogenic activity on currently active element families including Alu and LINE2 elements. Analysis of genetic variation among members of these repeat families indicates an important role for NAHR in their evolution. Given the potential for double-strand breaks within repeat DNA to cause pathological rearrangement, the association between repeats and hotspots is surprising. Here we consider possible explanations for why selection acting against NAHR has not eliminated hotspots from repeat DNA including mechanistic constraints, possible benefits to repeat DNA from recruiting hotspots and rapid evolution of the recombination machinery. I suggest that rapid evolution of hotspot motifs may, surprisingly, tend to favour sequences present in repeat DNA and outline the data required to differentiate between hypotheses.
Collapse
Affiliation(s)
- Gil McVean
- Department of Statistics, University of Oxford, , 1 South Parks Road, Oxford OX1 3TG, UK.
| |
Collapse
|
168
|
Is the control of recombination conserved among diverse eukaryotes? Heredity (Edinb) 2010; 106:710-1. [PMID: 20606688 DOI: 10.1038/hdy.2010.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
169
|
Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev 2010; 24:1266-80. [PMID: 20551173 DOI: 10.1101/gad.571710] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Meiotic recombination is initiated by the programmed induction of DNA double-strand breaks (DSBs) catalyzed by the evolutionarily conserved Spo11 protein. Studies in yeast have shown that DSB formation requires several other proteins, the role and conservation of which remain unknown. Here we show that two of these Saccharomyces cerevisiae proteins, Mei4 and Rec114, are evolutionarily conserved in most eukaryotes. Mei4(-/-) mice are deficient in meiotic DSB formation, thus showing the functional conservation of Mei4 in mice. Cytological analyses reveal that, in mice, MEI4 is localized in discrete foci on the axes of meiotic chromosomes that do not overlap with DMC1 and RPA foci. We thus propose that MEI4 acts as a structural component of the DSB machinery that ensures meiotic DSB formation on chromosome axes. We show that mouse MEI4 and REC114 proteins interact directly, and we identify conserved motifs as required for this interaction. Finally, the unexpected, concomitant absence of Mei4 and Rec114, as well as of Mnd1, Hop2, and Dmc1, in some eukaryotic species (particularly Neurospora crassa, Drosophila melanogaster, and Caenorhabditis elegans) suggests the existence of Mei4-Rec114-dependent and Mei4-Rec114-independent mechanisms for DSB formation, and a functional relationship between the chromosome axis and DSB formation.
Collapse
|
170
|
Abstract
Meiotic recombination does not occur randomly along a chromosome, but instead tends to be concentrated in small regions, known as "recombination hotspots." Recombination hotspots are thought to be short-lived in evolutionary time due to their self-destructive nature, as gene conversion favors recombination-suppressing alleles over recombination-promoting alleles during double-strand repair. Consistent with this expectation, hotspots in humans are highly dynamic, with little correspondence in location between humans and chimpanzees. Here, we identify recombination hotspots in two lineages of the yeast Saccharomyces paradoxus, and compare their locations to those found previously in Saccharomyces cerevisiae. Surprisingly, we find considerable overlap between the two species, despite the fact that they are at least 10 times more divergent than humans and chimpanzees. We attribute this unexpected result to the low frequency of sex and outcrossing in these yeasts, acting to reduce the population genetic effect of biased gene conversion. Traces from two other signatures of recombination, namely high mutagenicity and GC-biased gene conversion, are consistent with this interpretation. Thus, recombination hotspots are not inevitably short-lived, but rather their persistence through evolutionary time will be determined by the frequency of outcrossing events in the life cycle.
Collapse
|
171
|
Kvikstad EM, Makova KD. The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. Genome Res 2010; 20:600-13. [PMID: 20219940 DOI: 10.1101/gr.099044.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The densities of transposable elements (TEs) in the human genome display substantial variation both within individual chromosomes and among chromosome types (autosomes and the two sex chromosomes). Finding an explanation for this variability has been challenging, especially in light of genome landscapes unique to the sex chromosomes. Here, using a multiple regression framework, we investigate primate Alu and L1 densities shaped by regional genome features and location on a particular chromosome type. As a result of our analysis, first, we build statistical models explaining up to 79% and 44% of variation in Alu and L1 element density, respectively. Second, we analyze sex chromosome versus autosome TE densities corrected for regional genomic effects. We discover that sex-chromosome bias in Alu and L1 distributions not only persists after accounting for these effects, but even presents differences in patterns, confirming preferential Alu integration in the male germline, yet likely integration of L1s in both male and female germlines or in early embryogenesis. Additionally, our models reveal that local base composition (measured by GC content and density of L1 target sites) and natural selection (inferred via density of most conserved elements) are significant to predicting densities of L1s. Interestingly, measurements of local double-stranded breaks (a 13-mer associated with genome instability) strongly correlate with densities of Alu elements; little evidence was found for the role of recombination-driven deletion in driving TE distributions over evolutionary time. Thus, Alu and L1 densities have been influenced by the combination of distinct local genome landscapes and the unique evolutionary dynamics of sex chromosomes.
Collapse
Affiliation(s)
- Erika M Kvikstad
- Center for Comparative Genomics and Bioinformatics, Penn State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
172
|
Ma J, Iannuccelli N, Duan Y, Huang W, Guo B, Riquet J, Huang L, Milan D. Recombinational landscape of porcine X chromosome and individual variation in female meiotic recombination associated with haplotypes of Chinese pigs. BMC Genomics 2010; 11:159. [PMID: 20211033 PMCID: PMC2850356 DOI: 10.1186/1471-2164-11-159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 03/09/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Variations in recombination fraction (theta) among chromosomal regions, individuals and families have been observed and have an important impact on quantitative trait loci (QTL) mapping studies. Such variations on porcine chromosome X (SSC-X) and on other mammalian chromosome X are rarely explored. The emerging assembly of pig sequence provides exact physical location of many markers, facilitating the study of a fine-scale recombination landscape of the pig genome by comparing a clone-based physical map to a genetic map. Using large offspring of F1 females from two large-scale resource populations (Large White male symbol x Chinese Meishan female symbol, and White Duroc male symbol x Chinese Erhualian female symbol), we were able to evaluate the heterogeneity in theta for a specific interval among individual F1 females. RESULTS Alignments between the cytogenetic map, radiation hybrid (RH) map, genetic maps and clone map of SSC-X with the physical map of human chromosome X (HSA-X) are presented. The most likely order of 60 markers on SSC-X is inferred. The average recombination rate across SSC-X is of approximately 1.27 cM/Mb. However, almost no recombination occurred in a large region of approximately 31 Mb extending from the centromere to Xq21, whereas in the surrounding regions and in the Xq telomeric region a recombination rate of 2.8-3.3 cM/Mb was observed, more than twice the chromosome-wide average rate. Significant differences in theta among F1 females within each population were observed for several chromosomal intervals. The largest variation was observed in both populations in the interval UMNP71-SW1943, or more precisely in the subinterval UMNP891-UMNP93. The individual variation in theta over this subinterval was found associated with F1 females' maternal haplotypes (Chinese pig haplotypes) and independent of paternal haplotype (European pig haplotypes). The theta between UMNP891 and UMNP93 for haplotype 1122 and 4311 differed by more than fourteen-fold (10.3% vs. 0.7%). CONCLUSIONS This study reveals marked regional, individual and haplotype-specific differences in recombination rate on SSC-X. Lack of recombination in such a large region makes it impossible to narrow QTL interval using traditional fine-mapping approaches. The relationship between recombination variation and haplotype polymorphism is shown for the first time in pigs.
Collapse
Affiliation(s)
- Junwu Ma
- Laboratoire de Génétique Cellulaire, INRA, BP52627, Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Wong AK, Ruhe AL, Dumont BL, Robertson KR, Guerrero G, Shull SM, Ziegle JS, Millon LV, Broman KW, Payseur BA, Neff MW. A comprehensive linkage map of the dog genome. Genetics 2010; 184:595-605. [PMID: 19966068 PMCID: PMC2828735 DOI: 10.1534/genetics.109.106831] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/30/2009] [Indexed: 12/15/2022] Open
Abstract
We have leveraged the reference sequence of a boxer to construct the first complete linkage map for the domestic dog. The new map improves access to the dog's unique biology, from human disease counterparts to fascinating evolutionary adaptations. The map was constructed with approximately 3000 microsatellite markers developed from the reference sequence. Familial resources afforded 450 mostly phase-known meioses for map assembly. The genotype data supported a framework map with approximately 1500 loci. An additional approximately 1500 markers served as map validators, contributing modestly to estimates of recombination rate but supporting the framework content. Data from approximately 22,000 SNPs informing on a subset of meioses supported map integrity. The sex-averaged map extended 21 M and revealed marked region- and sex-specific differences in recombination rate. The map will enable empiric coverage estimates and multipoint linkage analysis. Knowledge of the variation in recombination rate will also inform on genomewide patterns of linkage disequilibrium (LD), and thus benefit association, selective sweep, and phylogenetic mapping approaches. The computational and wet-bench strategies can be applied to the reference genome of any nonmodel organism to assemble a de novo linkage map.
Collapse
Affiliation(s)
- Aaron K. Wong
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Alison L. Ruhe
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Beth L. Dumont
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Kathryn R. Robertson
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Giovanna Guerrero
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Sheila M. Shull
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Janet S. Ziegle
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Lee V. Millon
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Karl W. Broman
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Bret A. Payseur
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Mark W. Neff
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California 95616, Applied Biosystems, Foster City, California 94404, Department of Biostatistics and Medical Informatics and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
174
|
Khil PP, Camerini-Otero RD. Genetic crossovers are predicted accurately by the computed human recombination map. PLoS Genet 2010; 6:e1000831. [PMID: 20126534 PMCID: PMC2813264 DOI: 10.1371/journal.pgen.1000831] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 12/28/2009] [Indexed: 11/26/2022] Open
Abstract
Hotspots of meiotic recombination can change rapidly over time. This instability and the reported high level of inter-individual variation in meiotic recombination puts in question the accuracy of the calculated hotspot map, which is based on the summation of past genetic crossovers. To estimate the accuracy of the computed recombination rate map, we have mapped genetic crossovers to a median resolution of 70 Kb in 10 CEPH pedigrees. We then compared the positions of crossovers with the hotspots computed from HapMap data and performed extensive computer simulations to compare the observed distributions of crossovers with the distributions expected from the calculated recombination rate maps. Here we show that a population-averaged hotspot map computed from linkage disequilibrium data predicts well present-day genetic crossovers. We find that computed hotspot maps accurately estimate both the strength and the position of meiotic hotspots. An in-depth examination of not-predicted crossovers shows that they are preferentially located in regions where hotspots are found in other populations. In summary, we find that by combining several computed population-specific maps we can capture the variation in individual hotspots to generate a hotspot map that can predict almost all present-day genetic crossovers. In eukaryotes genetic crossovers are responsible for generating genetic diversity and ensuring the proper segregation of chromosomes. Genetic crossovers are tightly clustered in hotspots. Although the existence of hotspots in humans is clearly proven, mechanisms of their formation and the regulation of meiotic recombination in general remain poorly understood. An additional complication in studies of meiotic recombination is the fact that the direct experimental mapping of human hotspots on a genome-wide scale is not feasible with current methods. The best available indirect methods compute the position of hotspots from patterns of historic associations between genetic markers in population samples. In this study we determined the positions of genetic crossovers in ten pedigrees of European origin and then compared the positions of crossovers with the hotspots computed from HapMap data. Importantly, we find that the population-averaged computed map is in close agreement with the observed distribution of genetic crossovers. We also find that cryptic hotspots that are not easily detected in the computed European map can be more effectively identified if other populations are included in the analysis. Our analysis shows that high-resolution recombination profiles are highly similar between distantly related populations and that by including computed hotspots from several populations we can predict nearly all crossovers.
Collapse
Affiliation(s)
- Pavel P. Khil
- Genetics and Biochemistry Branch, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - R. Daniel Camerini-Otero
- Genetics and Biochemistry Branch, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
175
|
Pool JE, Hellmann I, Jensen JD, Nielsen R. Population genetic inference from genomic sequence variation. Genome Res 2010; 20:291-300. [PMID: 20067940 DOI: 10.1101/gr.079509.108] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Population genetics has evolved from a theory-driven field with little empirical data into a data-driven discipline in which genome-scale data sets test the limits of available models and computational analysis methods. In humans and a few model organisms, analyses of whole-genome sequence polymorphism data are currently under way. And in light of the falling costs of next-generation sequencing technologies, such studies will soon become common in many other organisms as well. Here, we assess the challenges to analyzing whole-genome sequence polymorphism data, and we discuss the potential of these data to yield new insights concerning population history and the genomic prevalence of natural selection.
Collapse
Affiliation(s)
- John E Pool
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
176
|
Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 2009; 327:836-40. [PMID: 20044539 DOI: 10.1126/science.1183439] [Citation(s) in RCA: 708] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.
Collapse
Affiliation(s)
- F Baudat
- Institut de Génétique Humaine, UPR1142, CNRS, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
177
|
X chromosomal recombination—a family study analysing 39 STR markers in German three-generation pedigrees. Int J Legal Med 2009; 124:483-91. [DOI: 10.1007/s00414-009-0387-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
|
178
|
Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 2009; 10:285-311. [PMID: 19630562 DOI: 10.1146/annurev-genom-082908-150001] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombination is typically thought of as a symmetrical process resulting in large-scale reciprocal genetic exchanges between homologous chromosomes. Recombination events, however, are also accompanied by short-scale, unidirectional exchanges known as gene conversion in the neighborhood of the initiating double-strand break. A large body of evidence suggests that gene conversion is GC-biased in many eukaryotes, including mammals and human. AT/GC heterozygotes produce more GC- than AT-gametes, thus conferring a population advantage to GC-alleles in high-recombining regions. This apparently unimportant feature of our molecular machinery has major evolutionary consequences. Structurally, GC-biased gene conversion explains the spatial distribution of GC-content in mammalian genomes-the so-called isochore structure. Functionally, GC-biased gene conversion promotes the segregation and fixation of deleterious AT --> GC mutations, thus increasing our genomic mutation load. Here we review the recent evidence for a GC-biased gene conversion process in mammals, and its consequences for genomic landscapes, molecular evolution, and human functional genomics.
Collapse
Affiliation(s)
- Laurent Duret
- Université de Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France.
| | | |
Collapse
|
179
|
Marques-Bonet T, Ryder OA, Eichler EE. Sequencing primate genomes: what have we learned? Annu Rev Genomics Hum Genet 2009; 10:355-86. [PMID: 19630567 DOI: 10.1146/annurev.genom.9.081307.164420] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We summarize the progress in whole-genome sequencing and analyses of primate genomes. These emerging genome datasets have broadened our understanding of primate genome evolution revealing unexpected and complex patterns of evolutionary change. This includes the characterization of genome structural variation, episodic changes in the repeat landscape, differences in gene expression, new models regarding speciation, and the ephemeral nature of the recombination landscape. The functional characterization of genomic differences important in primate speciation and adaptation remains a significant challenge. Limited access to biological materials, the lack of detailed phenotypic data and the endangered status of many critical primate species have significantly attenuated research into the genetic basis of primate evolution. Next-generation sequencing technologies promise to greatly expand the number of available primate genome sequences; however, such draft genome sequences will likely miss critical genetic differences within complex genomic regions unless dedicated efforts are put forward to understand the full spectrum of genetic variation.
Collapse
Affiliation(s)
- Tomas Marques-Bonet
- Department of Genome Sciences, University of Washington and the Howard Hughes Medical Institute, Seattle, Washington 98105, USA.
| | | | | |
Collapse
|
180
|
Fledel-Alon A, Wilson DJ, Broman K, Wen X, Ober C, Coop G, Przeworski M. Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genet 2009; 5:e1000658. [PMID: 19763175 PMCID: PMC2734982 DOI: 10.1371/journal.pgen.1000658] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022] Open
Abstract
Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans. In humans, as in most sexually reproducing organisms, recombination plays a fundamental role in meiosis, helping to align chromosomes and to ensure their proper segregation. Recombination events are tightly regulated both in terms of their minimum number (the rule of “crossover assurance”) and placement (due to “crossover interference”). Accumulating evidence, however, suggests that recombination patterns are highly variable among humans, raising numerous questions about the nature and stringency of crossover assurance and interference. We took a first step towards answering these questions by examining patterns of recombination in gametes inherited by viable, non-trisomic offspring. We found that the minimum number of crossovers is tightly regulated at the level of a chromosome (rather than chromosome arm), but with a notable exception: in females, chromosome 21 appears to frequently segregate properly in the absence of a crossover. We also found a set of double recombination events in surprisingly close proximity, consistent with a pathway not subject to crossover interference. These findings suggest that there are multiple mechanisms of recombination in human meiosis, which may buffer the effects of inter-individual variation in rates.
Collapse
Affiliation(s)
- Adi Fledel-Alon
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Daniel J. Wilson
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Karl Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaoquan Wen
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Graham Coop
- Evolution and Ecology Section, University of California Davis, Davis, California, United States of America
| | - Molly Przeworski
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
181
|
Abstract
Genetic maps provide a means to estimate the probability of the co-inheritance of linked loci as they are transmitted across generations in both experimental and natural populations. However, in the age of whole-genome sequences, physical distances measured in base pairs of DNA provide the standard coordinates for navigating the myriad features of genomes. Although genetic and physical maps are colinear, there are well-characterized and sometimes dramatic heterogeneities in the average frequency of meiotic recombination events that occur along the physical extent of chromosomes. There also are documented differences in the recombination landscape between the two sexes. We have revisited high-resolution genetic map data from a large heterogeneous mouse population and have constructed a revised genetic map of the mouse genome, incorporating 10,195 single nucleotide polymorphisms using a set of 47 families comprising 3546 meioses. The revised map provides a different picture of recombination in the mouse from that reported previously. We have further integrated the genetic and physical maps of the genome and incorporated SSLP markers from other genetic maps into this new framework. We demonstrate that utilization of the revised genetic map improves QTL mapping, partially due to the resolution of previously undetected errors in marker ordering along the chromosome.
Collapse
|
182
|
Abstract
We used a large panel of pedigreed, genetically admixed house mice to study patterns of recombination rate variation in a leading mammalian model system. We found considerable inter-individual differences in genomic recombination rates and documented a significant heritable component to this variation. These findings point to clear variation in recombination rate among common laboratory strains, a result that carries important implications for genetic analysis in the house mouse.
Collapse
|
183
|
Vaughan LK, Divers J, Padilla M, Redden DT, Tiwari HK, Pomp D, Allison DB. The use of plasmodes as a supplement to simulations: A simple example evaluating individual admixture estimation methodologies. Comput Stat Data Anal 2009; 53:1755-1766. [PMID: 20161321 DOI: 10.1016/j.csda.2008.02.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the advent of powerful computers, simulation studies are becoming an important tool in statistical methodology research. However, computer simulations of a specific process are only as good as our understanding of the underlying mechanisms. An attractive supplement to simulations is the use of plasmode datasets. Plasmodes are data sets that are generated by natural biologic processes, under experimental conditions that allow some aspect of the truth to be known. The benefit of the plasmode approach is that the data are generated through completely natural processes, thus circumventing the common concern of the realism and accuracy of computer simulated data. The estimation of admixture, or the proportion of an individual's genome that originates from different founding populations, is a particularly difficult research endeavor that is well suited to the use of plasmodes. Current methods have been tested with simulations of complex populations where the underlying mechanisms such as the rate and distribution of recombination are not well understood. To demonstrate the utility of this method data derived from mouse crosses is used to evaluate the effectiveness of several admixture estimation methodologies. Each cross shares a common founding population so that the ancestry proportion for each individual is known, allowing for the comparison of true and estimated individual admixture values. Analysis shows that the different estimation methodologies (Structure, AdmixMap and FRAPPE) examined all perform well with simple datasets. However, the performance of the estimation methodologies varied greatly when applied to a plasmode consisting of three founding populations. The results of these examples illustrate the utility of plasmodes in the evaluation of statistical genetics methodologies.
Collapse
Affiliation(s)
- Laura K Vaughan
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | | | | | | | | | |
Collapse
|
184
|
Groenen MAM, Wahlberg P, Foglio M, Cheng HH, Megens HJ, Crooijmans RPMA, Besnier F, Lathrop M, Muir WM, Wong GKS, Gut I, Andersson L. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genes Dev 2009; 19:510-9. [PMID: 19088305 PMCID: PMC2661806 DOI: 10.1101/gr.086538.108] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/04/2008] [Indexed: 11/25/2022]
Abstract
The resolution of the chicken consensus linkage map has been dramatically improved in this study by genotyping 12,945 single nucleotide polymorphisms (SNPs) on three existing mapping populations in chicken: the Wageningen (WU), East Lansing (EL), and Uppsala (UPP) mapping populations. As many as 8599 SNPs could be included, bringing the total number of markers in the current consensus linkage map to 9268. The total length of the sex average map is 3228 cM, considerably smaller than previous estimates using the WU and EL populations, reflecting the higher quality of the new map. The current map consists of 34 linkage groups and covers at least 29 of the 38 autosomes. Sex-specific analysis and comparisons of the maps based on the three individual populations showed prominent heterogeneity in recombination rates between populations, but no significant heterogeneity between sexes. The recombination rates in the F(1) Red Jungle fowl/White Leghorn males and females were significantly lower compared with those in the WU broiler population, consistent with a higher recombination rate in purebred domestic animals under strong artificial selection. The recombination rate varied considerably among chromosomes as well as along individual chromosomes. An analysis of the sequence composition at recombination hot and cold spots revealed a strong positive correlation between GC-rich sequences and high recombination rates. The GC-rich cohesin binding sites in particular stood out from other GC-rich sequences with a 3.4-fold higher density at recombination hot spots versus cold spots, suggesting a functional relationship between recombination frequency and cohesin binding.
Collapse
Affiliation(s)
- Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Genes that have experienced accelerated evolutionary rates on the human lineage during recent evolution are candidates for involvement in human-specific adaptations. To determine the forces that cause increased evolutionary rates in certain genes, we analyzed alignments of 10,238 human genes to their orthologues in chimpanzee and macaque. Using a likelihood ratio test, we identified protein-coding sequences with an accelerated rate of base substitutions along the human lineage. Exons evolving at a fast rate in humans have a significant tendency to contain clusters of AT-to-GC (weak-to-strong) biased substitutions. This pattern is also observed in noncoding sequence flanking rapidly evolving exons. Accelerated exons occur in regions with elevated male recombination rates and exhibit an excess of nonsynonymous substitutions relative to the genomic average. We next analyzed genes with significantly elevated ratios of nonsynonymous to synonymous rates of base substitution (dN/dS) along the human lineage, and those with an excess of amino acid replacement substitutions relative to human polymorphism. These genes also show evidence of clusters of weak-to-strong biased substitutions. These findings indicate that a recombination-associated process, such as biased gene conversion (BGC), is driving fixation of GC alleles in the human genome. This process can lead to accelerated evolution in coding sequences and excess amino acid replacement substitutions, thereby generating significant results for tests of positive selection. Regions of the human genome that appear to evolve rapidly may have been under strong positive selection and could contain the genetic changes responsible for the uniqueness of our species. However, neutral (nonadaptive) evolutionary processes can give rise to signals that can be mistaken as signs of selection. In this article, we identify coding sequences that have undergone accelerated rates of change in humans, affecting the divergence of the proteins they encode. By analyzing patterns of molecular evolution in these genes and their distribution in the genome, we show that many protein-coding changes in the fastest-changing genes are not a result of selection operating on the genes, but instead result from biased fixation of AT-to-GC mutations. Our findings are consistent with a model of recombination-driven biased gene conversion. This leads to the provocative hypothesis that many of the genetic changes leading to human-specific characters may have been prompted by fixation of deleterious mutations. Natural selection is commonly believed to be the main engine of functional genetic change, but a separate neutral evolutionary process linked to recombination may have contributed significantly to the divergence of human proteins.
Collapse
|
186
|
Lee IW, Kuan LC, Lin CH, Pan HA, Hsu CC, Tsai YC, Kuo PL, Teng YN. Association of USP26 haplotypes in men in Taiwan, China with severe spermatogenic defect. Asian J Androl 2009; 10:896-904. [PMID: 18958354 DOI: 10.1111/j.1745-7262.2008.00439.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM To complete comprehensive haplotype analysis of USP26 for both fertile and infertile men. METHODS Two hundred infertile men with severe oligospermia or non-obstructive azoospermia were subjected to sequence analysis for the entire coding sequences of the USP26 gene. Two hundred men with proven fertility were genotyped by primer extension methods. Allele/genotype frequencies, linkage disequilibrium (LD) characteristics and haplotypes of fertile men were compared with infertile men. RESULTS The allele frequencies of five single nucleotide polymorphisms (370-371insACA, 494T>C, 576G>A, ss6202791C>T, 1737G>A) were significantly higher in infertile patients than control subjects. The major haplotypes in infertile men were TACCGA (28% of the population), TGCCGA (15%), TACCAA (8%), TGCCAA (6%), TATCAA (5%) and CATCAA (5%). The major haplotypes for the control subjects were TACCGA (58% of the population), CACCGA (7%), CATCGA (6%) and TGCCGA (5%). Haplotypes TGCCGA, TATCAA, CATCAA, CATCGC, TACCAA and TGCCAA were over-transmitted in patients with spermatogenic defect, whereas haplotypes TACCGA, CACCGA, and CATCGA were under-transmitted in these patients. CONCLUSION Some USP26 alleles and haplotypes are associated with spermatogenic defect in the Han nationality in Taiwan, China.
Collapse
Affiliation(s)
- I-Wen Lee
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan 701, Taiwan, China
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 2008; 9:403-33. [PMID: 18593304 DOI: 10.1146/annurev.genom.9.081307.164258] [Citation(s) in RCA: 530] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility.
Collapse
Affiliation(s)
- Michael C Campbell
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
188
|
Abstract
Sexual dimorphism in anatomical, physiological and behavioural traits are characteristics of many vertebrate species. In humans, sexual dimorphism is also observed in the prevalence, course and severity of many common diseases, including cardiovascular diseases, autoimmune diseases and asthma. Although sex differences in the endocrine and immune systems probably contribute to these observations, recent studies suggest that sex-specific genetic architecture also influences human phenotypes, including reproductive, physiological and disease traits. It is likely that an underlying mechanism is differential gene regulation in males and females, particularly in sex steroid-responsive genes. Genetic studies that ignore sex-specific effects in their design and interpretation could fail to identify a significant proportion of the genes that contribute to risk for complex diseases.
Collapse
Affiliation(s)
- Carole Ober
- Department of Human Genetics, 920 East 58th Street, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
189
|
Wright SI, Andolfatto P. The Impact of Natural Selection on the Genome: Emerging Patterns inDrosophilaandArabidopsis. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008. [DOI: 10.1146/annurev.ecolsys.39.110707.173342] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2 Canada,
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544,
| |
Collapse
|
190
|
Jensen JD, Thornton KR, Andolfatto P. An approximate bayesian estimator suggests strong, recurrent selective sweeps in Drosophila. PLoS Genet 2008; 4:e1000198. [PMID: 18802463 PMCID: PMC2529407 DOI: 10.1371/journal.pgen.1000198] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 08/13/2008] [Indexed: 11/18/2022] Open
Abstract
The recurrent fixation of newly arising, beneficial mutations in a species reduces levels of linked neutral variability. Models positing frequent weakly beneficial substitutions or, alternatively, rare, strongly selected substitutions predict similar average effects on linked neutral variability, if the product of the rate and strength of selection is held constant. We propose an approximate Bayesian (ABC) polymorphism-based estimator that can be used to distinguish between these models, and apply it to multi-locus data from Drosophila melanogaster. We investigate the extent to which inference about the strength of selection is sensitive to assumptions about the underlying distributions of the rates of substitution and recombination, the strength of selection, heterogeneity in mutation rate, as well as the population's demographic history. We show that assuming fixed values of selection parameters in estimation leads to overestimates of the strength of selection and underestimates of the rate. We estimate parameters for an African population of D. melanogaster (ŝ approximately 2E-03, ) and compare these to previous estimates. Finally, we show that surveying larger genomic regions is expected to lend much more discriminatory power to the approach. It will thus be of great interest to apply this method to emerging whole-genome polymorphism data sets in many taxa.
Collapse
Affiliation(s)
- Jeffrey D Jensen
- Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
191
|
Controlling type-I error of the McDonald-Kreitman test in genomewide scans for selection on noncoding DNA. Genetics 2008; 180:1767-71. [PMID: 18791238 DOI: 10.1534/genetics.108.091850] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Departures from the assumption of homogenously interdigitated neutral and putatively selected sites in the McDonald-Kreitman test can lead to false rejections of the neutral model in the presence of intermediate levels of recombination. This problem is exacerbated by small sample sizes, nonequilibrium demography, recombination rate variation, and in comparisons involving more recently diverged species. I propose that establishing significance levels by coalescent simulation with recombination can improve the fidelity of the test in genomewide scans for selection on noncoding DNA.
Collapse
|
192
|
Affiliation(s)
- Xin-Sheng Hu
- Department of Renewable Resources, 751 General Services Building, University of Alberta, Edmonton, Alberta T6G 2H1, Canada.
| |
Collapse
|
193
|
Abstract
What factors shape the evolution of invasive populations? Recent theoretical and empirical studies suggest that an evolutionary history of disturbance might be an important factor. This perspective presents hypotheses regarding the impact of disturbance on the evolution of invasive populations, based on a synthesis of the existing literature. Disturbance might select for life-history traits that are favorable for colonizing novel habitats, such as rapid population growth and persistence. Theoretical results suggest that disturbance in the form of fluctuating environments might select for organismal flexibility, or alternatively, the evolution of evolvability. Rapidly fluctuating environments might favor organismal flexibility, such as broad tolerance or plasticity. Alternatively, longer fluctuations or environmental stress might lead to the evolution of evolvability by acting on features of the mutation matrix. Once genetic variance is generated via mutations, temporally fluctuating selection across generations might promote the accumulation and maintenance of genetic variation. Deeper insights into how disturbance in native habitats affects evolutionary and physiological responses of populations would give us greater capacity to predict the populations that are most likely to tolerate or adapt to novel environments during habitat invasions. Moreover, we would gain fundamental insights into the evolutionary origins of invasive populations.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution (CORE), Department of Zoology, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
194
|
Sun F, Mikhaail-Philips M, Oliver-Bonet M, Ko E, Rademaker A, Turek P, Martin RH. Reduced meiotic recombination on the XY bivalent is correlated with an increased incidence of sex chromosome aneuploidy in men with non-obstructive azoospermia. Mol Hum Reprod 2008; 14:399-404. [PMID: 18583429 PMCID: PMC2453242 DOI: 10.1093/molehr/gan030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Both aberrant meiotic recombination and an increased frequency of sperm aneuploidy have been observed in infertile men. However, this association has not been demonstrated within individual men. The purpose of this study was to determine the association between the frequency of recombination observed in pachytene spermatocytes and the frequency of aneuploidy in sperm from the same infertile men. Testicular tissue from seven men with non-obstructive azoospermia (NOA) and six men undergoing vasectomy reversal (controls) underwent meiotic analysis. Recombination sites were recorded for individual chromosomes. Testicular and ejaculated sperm from NOA patients and controls, respectively, were tested for aneuploidy frequencies for chromosomes 9, 21, X and Y. There was a significant increase in the frequency of pachytene cells with at least one achiasmate bivalent in infertile men (12.4%) compared with controls (4.2%, P = 0.02). Infertile men also had a significantly higher frequency of sperm disomy than controls for chromosomes 21 (1.0% versus 0.24%, P = 0.001), XX (0.16% versus 0.03%, P = 0.004) and YY (0.12% versus 0.03%, P = 0.04). There was a significant correlation between meiotic cells with zero MLH1 foci in the sex body and total sex chromosome disomy (XX + YY + XY) in sperm from men with NOA (r = 0.79, P = 0.036).
Collapse
Affiliation(s)
- F Sun
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
195
|
General pattern of meiotic recombination in male dogs estimated by MLH1 and RAD51 immunolocalization. Chromosome Res 2008; 16:709-19. [PMID: 18512122 DOI: 10.1007/s10577-008-1221-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 01/22/2023]
Abstract
The aim of this study was to estimate a general pattern of meiotic recombination in the domestic dog (Canis familiaris) using immunolocalization of MLH1, a mismatch repair protein of mature recombination nodules. We prepared synaptonemal complex (SC) spreads from 124 spermatocytes of three male dogs and mapped 4959 MLH1 foci along 4712 autosomes. The mean number of MLH1 foci for all autosomes was 40.0 foci per cell. Total recombination length of the male dog autosomal genome map was estimated as 2000 cM. A global pattern of MLH1 foci distribution along the autosomal bivalents was rather similar to that found in the mammals studied: a high frequency near the telomeres and a low frequency near the centromeres. An obligate MLH1 focus in the X-Y pairing region was usually located very close to Xp-Yq telomeres. The distances between MLH1 foci at autosomal bivalents were consistent with crossover interference. A comparison of the interference estimates coming from the distribution of MLH1 interfocus distances and RAD51/MLH1 focus ratio indicated a substantial variation between species in the strength of interference.
Collapse
|
196
|
Abstract
Our understanding of the details of mammalian meiotic recombination has recently advanced significantly. Sperm typing technologies, linkage studies, and computational inferences from population genetic data have together provided information in unprecedented detail about the location and activity of the sites of crossing-over in mice and humans. The results show that the vast majority of meiotic recombination events are localized to narrow DNA regions (hot spots) that constitute only a small fraction of the genome. The data also suggest that the molecular basis of hot spot activity is unlikely to be strictly determined by specific DNA sequence motifs in cis. Further molecular studies are needed to understand how hot spots originate, function and evolve.
Collapse
Affiliation(s)
- Norman Arnheim
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | | | | |
Collapse
|
197
|
Meiotic Chromatin: The Substrate for Recombination Initiation. RECOMBINATION AND MEIOSIS 2008. [DOI: 10.1007/7050_2008_040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
198
|
Duret L, Arndt PF. The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 2008; 4:e1000071. [PMID: 18464896 PMCID: PMC2346554 DOI: 10.1371/journal.pgen.1000071] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 04/11/2008] [Indexed: 01/19/2023] Open
Abstract
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of crossovers (R2 = 47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots. We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations indicate that variations in population size or density in recombination hotspots can have a very strong impact on the evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of hotspot density between human and chimp. Mammalian genomes show a very strong heterogeneity of base composition along chromosomes (the so-called isochores). The functional significance of these peculiar genomic landscapes is highly debated: do isochores confer some selective advantage, or are they simply the by-product of neutral evolutionary processes? To resolve this issue, we analyzed the pattern of substitution in the human genome by comparison with chimpanzee and macaque. We show that the evolution of base composition (GC-content) is essentially determined by the rate of recombination. This effect appears to be much stronger in male than in female germline, which rules out selective explanations for the evolution of isochores. We show that this impact of recombination is most probably a consequence of the process of biased gene conversion (BGC). This neutral process mimics the action of selection and can induce strong substitution hotspots within recombination hotspots, sometimes leading to the fixation of deleterious mutations. BGC appears to be one of the major factors driving genome evolution. It is therefore essential to take this process into account if we want to be able to interpret genome sequences.
Collapse
Affiliation(s)
- Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
- * E-mail: (LD); (PFA)
| | - Peter F. Arndt
- Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (LD); (PFA)
| |
Collapse
|
199
|
Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, López-Otín C, Ordóñez GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AFA, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ESW, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefèvre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, de Jong PJ, Renfree MB, Mardis ER, Wilson RK. Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008; 453:175-83. [PMID: 18464734 PMCID: PMC2803040 DOI: 10.1038/nature06936] [Citation(s) in RCA: 476] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 03/25/2008] [Indexed: 12/18/2022]
Abstract
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
Collapse
Affiliation(s)
- Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Tyekucheva S, Makova KD, Karro JE, Hardison RC, Miller W, Chiaromonte F. Human-macaque comparisons illuminate variation in neutral substitution rates. Genome Biol 2008; 9:R76. [PMID: 18447906 PMCID: PMC2643947 DOI: 10.1186/gb-2008-9-4-r76] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/04/2008] [Accepted: 04/30/2008] [Indexed: 11/10/2022] Open
Abstract
The evolutionary distance between human and macaque is particularly attractive for investigating neutral substitution rates, which were calculated as a function of a number of genomic parameters. Background The evolutionary distance between human and macaque is particularly attractive for investigating local variation in neutral substitution rates, because substitutions can be inferred more reliably than in comparisons with rodents and are less influenced by the effects of current and ancient diversity than in comparisons with closer primates. Here we investigate the human-macaque neutral substitution rate as a function of a number of genomic parameters. Results Using regression analyses we find that male mutation bias, male (but not female) recombination rate, distance to telomeres and substitution rates computed from orthologous regions in mouse-rat and dog-cow comparisons are prominent predictors of the neutral rate. Additionally, we demonstrate that the previously observed biphasic relationship between neutral rate and GC content can be accounted for by properly combining rates at CpG and non-CpG sites. Finally, we find the neutral rate to be negatively correlated with the densities of several classes of computationally predicted functional elements, and less so with the densities of certain classes of experimentally verified functional elements. Conclusion Our results suggest that while female recombination may be mainly responsible for driving evolution in GC content, male recombination may be mutagenic, and that other mutagenic mechanisms acting near telomeres, and mechanisms whose effects are shared across mammalian genomes, play significant roles. We also have evidence that the nonlinear increase in rates at high GC levels may be largely due to hyper-mutability of CpG dinucleotides. Finally, our results suggest that the performance of conservation-based prediction methods can be improved by accounting for neutral rates.
Collapse
Affiliation(s)
- Svitlana Tyekucheva
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|