151
|
Affiliation(s)
- Tie Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China;
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China;
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
152
|
|
153
|
Xue X, Li D, Yu J, Ma G, Su Z, Hu T. Phenyl Linker-Induced Dense PEG Conformation Improves the Efficacy of C-Terminally MonoPEGylated Staphylokinase. Biomacromolecules 2013; 14:331-41. [DOI: 10.1021/bm301511w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaoying Xue
- National Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dongxia Li
- National Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingkai Yu
- National Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanghui Ma
- National Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Su
- National Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Hu
- National Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
154
|
Enhanced protein stability through minimally invasive, direct, covalent, and site-specific immobilization. Biotechnol Prog 2013; 29:247-54. [DOI: 10.1002/btpr.1671] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Indexed: 01/20/2023]
|
155
|
A concise preparation of the fluorescent amino acid l-(7-hydroxycoumarin-4-yl) ethylglycine and extension of its utility in solid phase peptide synthesis. Bioorg Med Chem 2013; 21:553-9. [DOI: 10.1016/j.bmc.2012.10.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 11/21/2022]
|
156
|
Cell-Free Systems: Functional Modules for Synthetic and Chemical Biology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:67-102. [DOI: 10.1007/10_2013_185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
157
|
Steiner M, Hartmann I, Perrino E, Casi G, Brighton S, Jelesarov I, Bernardes GJL, Neri D. Spacer length shapes drug release and therapeutic efficacy of traceless disulfide-linked ADCs targeting the tumor neovasculature. Chem Sci 2013. [DOI: 10.1039/c2sc21107f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
158
|
Sanghamitra NJM, Ueno T. Expanding coordination chemistry from protein to protein assembly. Chem Commun (Camb) 2013; 49:4114-26. [DOI: 10.1039/c2cc36935d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
159
|
Gramer MJ. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 139:123-66. [DOI: 10.1007/10_2013_214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
160
|
Tian H, Deng D, Huang J, Yao D, Xu X, Gao X. Screening system for orthogonal suppressor tRNAs based on the species-specific toxicity of suppressor tRNAs. Biochimie 2012; 95:881-8. [PMID: 23274575 DOI: 10.1016/j.biochi.2012.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022]
Abstract
Incorporation of unnatural amino acids into proteins in vivo, known as expanding the genetic code, is a useful technology in the pharmaceutical and biotechnology industries. This procedure requires an orthogonal suppressor tRNA that is uniquely acylated with the desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. In order to enhance the numbers and types of suppressor tRNAs available for engineering genetic codes, we have developed a convenient screening system to generate suppressor tRNAs with good orthogonality from the available library of suppressor tRNA mutants. While developing an amber suppressor tRNA, we discovered that amber suppressor tRNA with poor orthogonality inhibited the growth rate of the host, indicating that suppressor tRNA demonstrates a species-specific toxicity to host cells. We verified this species-specific toxicity using amber suppressor tRNA mutants from prokaryotes, eukaryotes, and archaea. We also confirmed that adding terminal CCA to Methanococcus jannaschii tRNA(Tyr) mutant is important to its toxicity against Escherichia coli. Further, we compared the toxicity of the suppressor tRNA toward the host with differing copy numbers. Using the combined toxicity of suppressor tRNA toward the host with blue-white selection, we developed a convenient screening system for orthogonal suppressor tRNA that could serve as a general platform for generating tRNA/aaRS pairs and thereby obtained three suppressor tRNA mutants with high orthogonality from the tRNA library derived from Mj tRNA(Tyr).
Collapse
Affiliation(s)
- Hong Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | |
Collapse
|
161
|
Farkas ME, Aanei IL, Behrens CR, Tong GJ, Murphy ST, O'Neil JP, Francis MB. PET Imaging and biodistribution of chemically modified bacteriophage MS2. Mol Pharm 2012; 10:69-76. [PMID: 23214968 DOI: 10.1021/mp3003754] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fields of nanotechnology and medicine have merged in the development of new imaging and drug delivery agents based on nanoparticle platforms. As one example, a mutant of bacteriophage MS2 can be differentially modified on the exterior and interior surfaces for the concurrent display of targeting functionalities and payloads, respectively. In order to realize their potential for use in in vivo applications, the biodistribution and circulation properties of this class of agents must first be investigated. A means of modulating and potentially improving the characteristics of nanoparticle agents is the appendage of PEG chains. Both MS2 and MS2-PEG capsids possessing interior DOTA chelators were labeled with (64)Cu and injected intravenously into mice possessing tumor xenografts. Dynamic imaging of the agents was performed using PET-CT on a single animal per sample, and the biodistribution at the terminal time point (24 h) was assessed by gamma counting of the organs ex vivo for 3 animals per agent. Compared to other viral capsids of similar size, the MS2 agents showed longer circulation times. Both MS2 and MS2-PEG bacteriophage behaved similarly, although the latter agent showed significantly less uptake in the spleen. This effect may be attributed to the ability of the PEG chains to mask the capsid charge. Although the tumor uptake of the agents may result from the enhanced permeation and retention (EPR) effect, selective tumor imaging may be achieved in the future by using exterior targeting groups.
Collapse
Affiliation(s)
- Michelle E Farkas
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | | | | | | | | | | | | |
Collapse
|
162
|
Bergeron ZL, Bingham JP. Scorpion toxins specific for potassium (K+) channels: a historical overview of peptide bioengineering. Toxins (Basel) 2012. [PMID: 23202307 PMCID: PMC3509699 DOI: 10.3390/toxins4111082] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics.
Collapse
Affiliation(s)
- Zachary L Bergeron
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | |
Collapse
|
163
|
Song H, Meng Q, Liu XQ. Protein trans-splicing of an atypical split intein showing structural flexibility and cross-reactivity. PLoS One 2012; 7:e45355. [PMID: 23024818 PMCID: PMC3443213 DOI: 10.1371/journal.pone.0045355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
Inteins catalyze a protein splicing reaction to excise the intein from a precursor protein and join the flanking sequences (exteins) with a peptide bond. In a split intein, the intein fragments (IN and IC) can reassemble non-covalently to catalyze a trans-splicing reaction that joins the exteins from separate polypeptides. An atypical split intein having a very small IN and a large IC is particularly useful for joining synthetic peptides with recombinant proteins, which can be a generally useful method of introducing site-specific chemical labeling or modifications into proteins. However, a large IC derived from an Ssp DnaX intein was found recently to undergo spontaneous C-cleavage, which raised questions regarding its structure-function and ability to trans-splice. Here, we show that this IC could undergo trans-splicing in the presence of IN, and the trans-splicing activity completely suppressed the C-cleavage activity. We also found that this IC could trans-splice with small IN sequences derived from two other inteins, showing a cross-reactivity of this atypical split intein. Furthermore, we found that this IC could trans-splice even when the IN sequence was embedded in a nearly complete intein sequence, suggesting that the small IN could project out of the central pocket of the intein to become accessible to the IC. Overall, these findings uncovered a new atypical split intein that can be valuable for peptide-protein trans-splicing, and they also revealed an interesting structural flexibility and cross-reactivity at the active site of this intein.
Collapse
Affiliation(s)
- Huiling Song
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People’s Republic of China
- * E-mail: (QM); (XQL)
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (QM); (XQL)
| |
Collapse
|
164
|
Bazewicz CG, Lipkin JS, Smith EE, Liskov MT, Brewer SH. Expanding the Utility of 4-Cyano-l-Phenylalanine As a Vibrational Reporter of Protein Environments. J Phys Chem B 2012; 116:10824-31. [DOI: 10.1021/jp306886s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher G. Bazewicz
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Jacob S. Lipkin
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Emily E. Smith
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Melanie T. Liskov
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| |
Collapse
|
165
|
Williamson DJ, Fascione MA, Webb ME, Turnbull WB. Efficient N-Terminal Labeling of Proteins by Use of Sortase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204538] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
166
|
Williamson DJ, Fascione MA, Webb ME, Turnbull WB. Efficient N-terminal labeling of proteins by use of sortase. Angew Chem Int Ed Engl 2012; 51:9377-80. [PMID: 22890696 DOI: 10.1002/anie.201204538] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Indexed: 01/30/2023]
Affiliation(s)
- Daniel J Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
167
|
Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Dwyer TJ, Ordoukhanian P, Romesberg FE, Marx A. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry. Nat Chem Biol 2012; 8:612-4. [PMID: 22660438 PMCID: PMC3690913 DOI: 10.1038/nchembio.966] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/03/2012] [Indexed: 01/04/2023]
Abstract
Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
Collapse
Affiliation(s)
- Karin Betz
- Department of Chemistry, Universität Konstanz, Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Wu B, Wang Z, Huang Y, Liu WR. Catalyst-free and site-specific one-pot dual-labeling of a protein directed by two genetically incorporated noncanonical amino acids. Chembiochem 2012; 13:1405-8. [PMID: 22628069 DOI: 10.1002/cbic.201200281] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Wu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
169
|
Gfeller D, Michielin O, Zoete V. Expanding molecular modeling and design tools to non-natural sidechains. J Comput Chem 2012; 33:1525-35. [PMID: 22505320 DOI: 10.1002/jcc.22982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/07/2012] [Accepted: 03/10/2012] [Indexed: 11/05/2022]
Abstract
Protein-protein interactions encode the wiring diagram of cellular signaling pathways and their deregulations underlie a variety of diseases, such as cancer. Inhibiting protein-protein interactions with peptide derivatives is a promising way to develop new biological and therapeutic tools. Here, we develop a general framework to computationally handle hundreds of non-natural amino acid sidechains and predict the effect of inserting them into peptides or proteins. We first generate all structural files (pdb and mol2), as well as parameters and topologies for standard molecular mechanics software (CHARMM and Gromacs). Accurate predictions of rotamer probabilities are provided using a novel combined knowledge and physics based strategy. Non-natural sidechains are useful to increase peptide ligand binding affinity. Our results obtained on non-natural mutants of a BCL9 peptide targeting beta-catenin show very good correlation between predicted and experimental binding free-energies, indicating that such predictions can be used to design new inhibitors. Data generated in this work, as well as PyMOL and UCSF Chimera plug-ins for user-friendly visualization of non-natural sidechains, are all available at http://www.swisssidechain.ch. Our results enable researchers to rapidly and efficiently work with hundreds of non-natural sidechains.
Collapse
Affiliation(s)
- David Gfeller
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, Lausanne, Switzerland
| | | | | |
Collapse
|
170
|
Hoop KA, Kennedy DC, Mishki T, Lopinski GP, Pezacki JP. Silicon and silicon oxide surface modification using thiamine-catalyzed benzoin condensations. CAN J CHEM 2012. [DOI: 10.1139/v11-157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The benzoin condensation that involves the umpolung coupling of two aldehyde groups has been applied to the formation of functionalized silicon and silicon oxide surfaces using thiamine and other N-heterocyclic carbene (NHC) catalysis in water. This bioorthogonal conjugation of an aldehyde to a modified silicon or silicon oxide surface has been monitored and characterized using X-ray photoelectron spectroscopy and IR spectroscopy. NHC catalysis was found to be efficient in water mediating full conversion of the aldehyde functionalized silicon oxide surfaces at the interface.
Collapse
Affiliation(s)
- Kelly A. Hoop
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Chemistry Department, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - David C. Kennedy
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Trevor Mishki
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Gregory P. Lopinski
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - John Paul Pezacki
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Chemistry Department, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
171
|
Venditti V, Fawzi NL, Clore GM. An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media. JOURNAL OF BIOMOLECULAR NMR 2012; 52:191-5. [PMID: 22350951 PMCID: PMC3321831 DOI: 10.1007/s10858-012-9606-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/15/2012] [Indexed: 05/28/2023]
Abstract
The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR field. Here, we describe a novel protocol for incorporating unnatural amino acids into fully deuterated proteins using glucose-based media (which are relevant to the production, for example, of amino acid-specific methyl-labeled proteins used in the study of large molecular weight systems). The method consists of pre-induction of the pEVOL plasmid encoding the tRNA/aminoacyl-tRNA synthetase pair in a rich, H(2)O-based medium prior to exchanging the culture into a D(2)O-based medium. Our protocol results in high level of isotopic incorporation (~95%) and retains the high expression level of the target protein observed in Luria-Bertani medium.
Collapse
Affiliation(s)
- Vincenzo Venditti
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Nicolas L. Fawzi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
172
|
Chen X, Muthoosamy K, Pfisterer A, Neumann B, Weil T. Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling. Bioconjug Chem 2012; 23:500-8. [PMID: 22339664 DOI: 10.1021/bc200556n] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The site-selective modification of the proteins RNase A, lysozyme C, and the peptide hormone somatostatin is presented via a kinetically controlled labeling approach. A single lysine residue on the surface of these biomolecules reacts with an activated biotinylation reagent at mild conditions, physiological pH, and at RT in a high yield of over 90%. In addition, fast reaction speed, quick and easy purification, as well as low reaction temperatures are particularly attractive for labeling sensitive peptides and proteins. Furthermore, the multifunctional bioorthogonal bioconjugation reagent (19) has been achieved allowing the site-selective incorporation of a single ethynyl group. The introduced ethynyl group is accessible for, e.g., click chemistry as demonstrated by the reaction of RNase A with azidocoumarin. The approach reported herein is fast, less labor-intensive and minimizes the risk for protein misfolding. Kinetically controlled labeling offers a high potential for addressing a broad range of native proteins and peptides in a site-selective fashion and complements the portfolio of recombinant techniques or chemoenzymatic approaches.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Organic Chemistry III, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
173
|
Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol 2012; 13:168-82. [DOI: 10.1038/nrm3286] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
174
|
Wang YS, Fang X, Wallace AL, Wu B, Liu WR. A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J Am Chem Soc 2012; 134:2950-3. [PMID: 22289053 PMCID: PMC3288562 DOI: 10.1021/ja211972x] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Together with tRNA(CUA)(Pyl), a rationally designed pyrrolysyl-tRNA synthetase mutant N346A/C348A has been successfully used for the genetic incorporation of a variety of phenylalanine derivatives with large para substituents into superfolder green fluorescent protein at an amber mutation site in Escherichia coli. This discovery greatly expands the genetically encoded noncanonical amino acid inventory and opens the gate for the genetic incorporation of other phenylalanine derivatives using engineered pyrrolysyl-tRNA synthetase-tRNA(CUA)(Pyl) pairs.
Collapse
Affiliation(s)
- Yane-Shih Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xinqiang Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ashley L. Wallace
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Bo Wu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
175
|
|
176
|
Wang K, Schmied WH, Chin JW. Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed Engl 2012; 51:2288-97. [PMID: 22262408 DOI: 10.1002/anie.201105016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 11/10/2022]
Abstract
The genetic code of cells is near-universally triplet, and since many ribosomal mutations are lethal, changing the cellular ribosome to read nontriplet codes is challenging. Herein we review work on the incorporation of unnatural amino acids into proteins in response to quadruplet codons, and the creation of an orthogonal translation system in the cell that uses an evolved orthogonal ribosome to efficiently direct the incorporation of unnatural amino acids in response to quadruplet codons. Using this system multiple distinct unnatural amino acids have been incorporated and used to genetically program emergent properties into recombinant proteins. Extension of approaches to incorporate multiple unnatural amino acids may allow the combinatorial biosynthesis of materials and therapeutics, and drive investigations into whether life with additional genetically encoded polymers can evolve to perform functions that natural biological systems cannot.
Collapse
Affiliation(s)
- Kaihang Wang
- Medical Research Council Laboratory of Molecular Biology, Hills Rd, Cambridge, CB2 0QH UK
| | | | | |
Collapse
|
177
|
Wang K, Schmied WH, Chin JW. Die Umprogrammierung des genetischen Codes: vom Triplett- zum Quadruplettcode. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201105016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
178
|
Merkel L, Budisa N. Organic fluorine as a polypeptide building element: in vivo expression of fluorinated peptides, proteins and proteomes. Org Biomol Chem 2012; 10:7241-61. [DOI: 10.1039/c2ob06922a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
179
|
van Dongen SFM, Janvore J, van Berkel SS, Marie E, Piel M, Tribet C. Reactive protein-repellent surfaces for the straightforward attachment of small molecules up to whole cells. Chem Sci 2012. [DOI: 10.1039/c2sc20652h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
180
|
Abstract
The collection of chemical techniques that can be used to attach synthetic groups to proteins has expanded substantially in recent years. Each of these approaches allows new protein targets to be addressed, leading to advances in biological understanding, new protein-drug conjugates, targeted medical imaging agents and hybrid materials with complex functions. The protein modification reactions in current use vary widely in their inherent site selectivity, overall yields and functional group compatibility. Some are more amenable to large-scale bioconjugate production, and a number of techniques can be used to label a single protein in a complex biological mixture. This review examines the way in which experimental circumstances influence one's selection of an appropriate protein modification strategy. It also provides a simple decision tree that can narrow down the possibilities in many instances. The review concludes with example studies that examine how this decision process has been applied in different contexts.
Collapse
|
181
|
Lin X, Xie J, Chen X. Protein-based tumor molecular imaging probes. Amino Acids 2011; 41:1013-36. [PMID: 20232092 PMCID: PMC3617487 DOI: 10.1007/s00726-010-0545-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/24/2010] [Indexed: 12/30/2022]
Abstract
Molecular imaging is an emerging discipline which plays critical roles in diagnosis and therapeutics. It visualizes and quantifies markers that are aberrantly expressed during the disease origin and development. Protein molecules remain to be one major class of imaging probes, and the option has been widely diversified due to the recent advances in protein engineering techniques. Antibodies are part of the immunosystem which interact with target antigens with high specificity and affinity. They have long been investigated as imaging probes and were coupled with imaging motifs such as radioisotopes for that purpose. However, the relatively large size of antibodies leads to a half-life that is too long for common imaging purposes. Besides, it may also cause a poor tissue penetration rate and thus compromise some medical applications. It is under this context that various engineered protein probes, essentially antibody fragments, protein scaffolds, and natural ligands have been developed. Compared to intact antibodies, they possess more compact size, shorter clearance time, and better tumor penetration. One major challenge of using protein probes in molecular imaging is the affected biological activity resulted from random labeling. Site-specific modification, however, allows conjugation happening in a stoichiometric fashion with little perturbation of protein activity. The present review will discuss protein-based probes with focus on their application and related site-specific conjugation strategies in tumor imaging.
Collapse
Affiliation(s)
- Xin Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
182
|
The imminent role of protein engineering in synthetic biology. Biotechnol Adv 2011; 30:541-9. [PMID: 21963685 DOI: 10.1016/j.biotechadv.2011.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/08/2023]
Abstract
Protein engineering has for decades been a powerful tool in biotechnology for generating vast numbers of useful enzymes for industrial applications. Today, protein engineering has a crucial role in advancing the emerging field of synthetic biology, where metabolic engineering efforts alone are insufficient to maximize the full potential of synthetic biology. This article reviews the advancements in protein engineering techniques for improving biocatalytic properties to optimize engineered pathways in host systems, which are instrumental to achieve high titer production of target molecules. We also discuss the specific means by which protein engineering has improved metabolic engineering efforts and provide our assessment on its potential to continue to advance biology engineering as a whole.
Collapse
|
183
|
Chalker JM, Bernardes GJL, Davis BG. A "tag-and-modify" approach to site-selective protein modification. Acc Chem Res 2011; 44:730-41. [PMID: 21563755 DOI: 10.1021/ar200056q] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalent modification can expand a protein's functional capacity. Fluorescent or radioactive labeling, for instance, allows imaging of a protein in real time. Labeling with an affinity probe enables isolation of target proteins and other interacting molecules. At the other end of this functional spectrum, protein structures can be naturally altered by enzymatic action. Protein-protein interactions, genetic regulation, and a range of cellular processes are under the purview of these post-translational modifications. The ability of protein chemists to install these covalent additions selectively has been critical for elucidating their roles in biology. Frequently the transformations must be applied in a site-specific manner, which demands the most selective chemistry. In this Account, we discuss the development and application of such chemistry in our laboratory. A centerpiece of our strategy is a "tag-and-modify" approach, which entails sequential installation of a uniquely reactive chemical group into the protein (the "tag") and the selective or specific modification of this group. The chemical tag can be a natural or unnatural amino acid residue. Of the natural residues, cysteine is the most widely used as a tag. Early work in our program focused on selective disulfide formation in the synthesis of glycoproteins. For certain applications, the susceptibility of disulfides to reduction was a limitation and prompted the development of several methods for the synthesis of more stable thioether modifications. The desulfurization of disulfides and conjugate addition to dehydroalanine are two routes to these modifications. The dehydroalanine tag has since proven useful as a general precursor to many modifications after conjugate addition of various nucleophiles; phosphorylated, glycosylated, peptidylated, prenylated, and even mimics of methylated and acetylated lysine-containing proteins are all accessible from dehydroalanine. While cysteine is a useful tag for selective modification, unnatural residues present the opportunity for bio-orthogonal chemistry. Azide-, arylhalide-, alkyne-, and alkene-containing amino acids can be incorporated into proteins genetically and can be specifically modified through various transformations. These transformations often rely on metal catalysis. The Cu-catalyzed azide-alkyne addition, Ru-catalyzed olefin metathesis, and Pd-catalyzed cross-coupling are examples of such transformations. In the course of adapting these reactions to protein modification, we learned much about the behavior of these reactions in water, and in some cases entirely new catalysts were developed. Through a combination of these bio-orthogonal transformations from the panel of tag-and-modify reactions, multiple and distinct modifications can be installed on protein surfaces. Multiple modifications are common in natural systems, and synthetic access to these proteins has enabled study of their biological role. Throughout these investigations, much has been learned in chemistry and biology. The demands of selective protein modification have revealed many aspects of reaction mechanisms, which in turn have guided the design of reagents and catalysts that allow their successful deployment in water and in biological milieu. With this ability to modify proteins, it is now possible to interrogate biological systems with precision that was not previously possible.
Collapse
Affiliation(s)
- Justin M. Chalker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Gonçalo J. L. Bernardes
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Benjamin G. Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
184
|
Abstract
Genetic code expansion, for the site-specific incorporation of unnatural amino acids into proteins, is currently limited to cultured cells and unicellular organisms. Here we expand the genetic code of a multicellular animal, the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Sebastian Greiss
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, U.K
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, U.K
| |
Collapse
|
185
|
Optical and magnetic resonance imaging as complementary modalities in drug discovery. Future Med Chem 2011; 2:317-37. [PMID: 21426169 DOI: 10.4155/fmc.09.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Imaging has the ability to study various biological and chemical processes noninvasively in living subjects in a longitudinal way. For this reason, imaging technologies have become an integral part of the drug-discovery and development program and are commonly used in following disease processes and drug action in both preclinical and clinical stages. As the domain of imaging sciences transitions from anatomical/functional to molecular applications, the development of molecular probes becomes crucial for the advancement of the field. This review summarizes the role of two complementary techniques, magnetic resonance and fluorescence optical imaging, in drug discovery. While the first approach exploits intrinsic tissue characteristics as the source of image contrast, the second necessitates the use of appropriate probes for signal generation. The anatomical, functional, metabolic and molecular information that becomes accessible through imaging can provide invaluable insights into disease mechanisms and mechanisms of drug action.
Collapse
|
186
|
Thom J, Anderson D, McGregor J, Cotton G. Recombinant Protein Hydrazides: Application to Site-Specific Protein PEGylation. Bioconjug Chem 2011; 22:1017-20. [DOI: 10.1021/bc2001374] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jennifer Thom
- Almac Sciences, Elvingston Sciences Centre, Gladsmuir, East Lothian, EH33 1EH, United Kingdom
| | - David Anderson
- Almac Sciences, Elvingston Sciences Centre, Gladsmuir, East Lothian, EH33 1EH, United Kingdom
| | - Joanne McGregor
- Almac Sciences, Elvingston Sciences Centre, Gladsmuir, East Lothian, EH33 1EH, United Kingdom
| | - Graham Cotton
- Almac Sciences, Elvingston Sciences Centre, Gladsmuir, East Lothian, EH33 1EH, United Kingdom
| |
Collapse
|
187
|
Chin JW. Reprogramming the genetic code. EMBO J 2011; 30:2312-24. [PMID: 21602790 PMCID: PMC3116288 DOI: 10.1038/emboj.2011.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/27/2011] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
188
|
Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 2011; 7:137-45. [PMID: 21321552 PMCID: PMC7098185 DOI: 10.1038/nchembio.525] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nonlinear variant of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) microscopy, combines powerful Raman signal enhancement with several other advantages such as label-free detection and has been used to image various cellular processes including host-pathogen interactions and lipid metabolism.![]() Cellular biomolecules contain unique molecular vibrations that can be visualized by coherent anti-Stokes Raman scattering (CARS) microscopy without the need for labels. Here we review the application of CARS microscopy for label-free imaging of cells and tissues using the natural vibrational contrast that arises from biomolecules like lipids as well as for imaging of exogenously added probes or drugs. High-resolution CARS microscopy combined with multimodal imaging has allowed for dynamic monitoring of cellular processes such as lipid metabolism and storage, the movement of organelles, adipogenesis and host-pathogen interactions and can also be used to track molecules within cells and tissues. The CARS imaging modality provides a unique tool for biological chemists to elucidate the state of a cellular environment without perturbing it and to perceive the functional effects of added molecules.
Collapse
Affiliation(s)
- John Paul Pezacki
- Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Canada.
| | | | | | | | | | | |
Collapse
|
189
|
Smith EE, Linderman BY, Luskin AC, Brewer SH. Probing Local Environments with the Infrared Probe: l-4-Nitrophenylalanine. J Phys Chem B 2011; 115:2380-5. [DOI: 10.1021/jp109288j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Emily E. Smith
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Barton Y. Linderman
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Austin C. Luskin
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| |
Collapse
|
190
|
Voigt P, Reinberg D. Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 2011; 12:236-52. [PMID: 21243712 PMCID: PMC3760146 DOI: 10.1002/cbic.201000493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Indexed: 01/19/2023]
Abstract
Post-translational modifications (PTMs) on histone proteins have emerged as a central theme in the regulation of gene expression and other chromatin-associated processes. The discovery that certain protein domains can recognize acetylated and methylated lysine residues of histones has spurred efforts to uncover and characterize histone PTM-binding proteins. In this task, chromatin biology has strongly benefited from synthetic approaches stemming from chemical biology. Peptide-based techniques have been instrumental in identifying histone mark-binding proteins and analyzing their binding specificities. To explore how histone PTMs carry out their function in the context of chromatin, reconstituted systems based on recombinant histones carrying defined modifications are increasingly being used. They constitute promising tools to analyze mechanistic aspects of histone PTMs, including their role in transcription and their transmission in replication. In this review, we present strategies that have been used successfully to investigate the role of histone modifications, concepts that have emerged from their application, and their potential to contribute to current developments in the field.
Collapse
Affiliation(s)
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, Department of Biochemistry, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
191
|
Hoesl MG, Budisa N. Expanding and Engineering the Genetic Code in a Single Expression Experiment. Chembiochem 2011; 12:552-5. [DOI: 10.1002/cbic.201000586] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Indexed: 12/31/2022]
|
192
|
Importance of single molecular determinants in the fidelity of expanded genetic codes. Proc Natl Acad Sci U S A 2011; 108:1320-5. [PMID: 21224416 DOI: 10.1073/pnas.1012276108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented.
Collapse
|
193
|
Ogawa A, Doi Y, Matsushita N. Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract. Org Biomol Chem 2011; 9:8495-503. [DOI: 10.1039/c1ob06351k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
194
|
Abstract
Here, we describe a route orthogonal gene expression which combines orthogonal transcription and translation using library-based selections. We show how orthogonal gene expression can be used to create a minimal orthogonal ribosome and describe how to create orthogonal transcription-translation feed forward loops that introduce tailored information processing delays into gene expression.
Collapse
Affiliation(s)
- Wenlin An
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom
| | | |
Collapse
|
195
|
Stigers DJ, Watts ZI, Hennessy JE, Kim HK, Martini R, Taylor MC, Ozawa K, Keillor JW, Dixon NE, Easton CJ. Incorporation of chlorinated analogues of aliphatic amino acids during cell-free protein synthesis. Chem Commun (Camb) 2011; 47:1839-41. [DOI: 10.1039/c0cc02879g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
196
|
Lin YA, Davis BG. The allylic chalcogen effect in olefin metathesis. Beilstein J Org Chem 2010; 6:1219-28. [PMID: 21283554 PMCID: PMC3028527 DOI: 10.3762/bjoc.6.140] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/09/2010] [Indexed: 11/23/2022] Open
Abstract
Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.
Collapse
Affiliation(s)
- Yuya A Lin
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | |
Collapse
|
197
|
Sato S, Mimasu S, Sato A, Hino N, Sakamoto K, Umehara T, Yokoyama S. Crystallographic Study of a Site-Specifically Cross-Linked Protein Complex with a Genetically Incorporated Photoreactive Amino Acid,. Biochemistry 2010; 50:250-7. [DOI: 10.1021/bi1016183] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shin Sato
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shinya Mimasu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Aya Sato
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Nobumasa Hino
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
198
|
Chalker JM, Davis BG. Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues. Curr Opin Chem Biol 2010; 14:781-9. [DOI: 10.1016/j.cbpa.2010.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 02/01/2023]
|
199
|
Wang J, Zhang W, Song W, Wang Y, Yu Z, Li J, Wu M, Wang L, Zang J, Lin Q. A biosynthetic route to photoclick chemistry on proteins. J Am Chem Soc 2010; 132:14812-8. [PMID: 20919707 PMCID: PMC2965590 DOI: 10.1021/ja104350y] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Light-induced chemical reactions exist in nature, regulating many important cellular and organismal functions, e.g., photosensing in prokaryotes and vision formation in mammals. Here, we report the genetic incorporation of a photoreactive unnatural amino acid, p-(2-tetrazole)phenylalanine (p-Tpa), into myoglobin site-specifically in E. coli by evolving an orthogonal tRNA/aminoacyl-tRNA synthetase pair and the use of p-Tpa as a bioorthogonal chemical "handle" for fluorescent labeling of p-Tpa-encoded myoglobin via the photoclick reaction. Moreover, we elucidated the structural basis for the biosynthetic incorporation of p-Tpa into proteins by solving the X-ray structure of p-Tpa-specific aminoacyl-tRNA synthetase in complex with p-Tpa. The genetic encoding of this photoreactive amino acid should make it possible in the future to photoregulate protein function in living systems.
Collapse
Affiliation(s)
- Jiangyun Wang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjiao Song
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - Yizhong Wang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - Zhipeng Yu
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - Jiasong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Minhao Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lin Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianye Zang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|
200
|
Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS NANO 2010; 4:6014-6020. [PMID: 20863095 DOI: 10.1021/nn1014769] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bacteriophage MS2 was used to construct a targeted, multivalent photodynamic therapy vehicle for the treatment of Jurkat leukemia T cells. The self-assembling spherical virus capsid was modified on the interior surface with up to 180 porphyrins capable of generating cytotoxic singlet oxygen upon illumination. The exterior of the capsid was modified with ∼20 copies of a Jurkat-specific aptamer using an oxidative coupling reaction targeting an unnatural amino acid. The capsids were able to target and selectively kill more than 76% of the Jurkat cells after only 20 min of illumination. Capsids modified with a control DNA strand did not target Jurkat cells, and capsids modified with the aptamer were found to be specific for Jurkat cells over U266 cells (a control B cell line). The doubly modified capsids were also able to kill Jurkat cells selectively even when mixed with erythrocytes, suggesting the possibility of using our system to target blood-borne cancers or other pathogens in the blood supply.
Collapse
Affiliation(s)
- Nicholas Stephanopoulos
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|