151
|
Brown AI, Koslover EF. Design principles for the glycoprotein quality control pathway. PLoS Comput Biol 2021; 17:e1008654. [PMID: 33524026 PMCID: PMC7877790 DOI: 10.1371/journal.pcbi.1008654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/11/2021] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Newly-translated glycoproteins in the endoplasmic reticulum (ER) often undergo cycles of chaperone binding and release in order to assist in folding. Quality control is required to distinguish between proteins that have completed native folding, those that have yet to fold, and those that have misfolded. Using quantitative modeling, we explore how the design of the quality-control pathway modulates its efficiency. Our results show that an energy-consuming cyclic quality-control process, similar to the observed physiological system, outperforms alternative designs. The kinetic parameters that optimize the performance of this system drastically change with protein production levels, while remaining relatively insensitive to the protein folding rate. Adjusting only the degradation rate, while fixing other parameters, allows the pathway to adapt across a range of protein production levels, aligning with in vivo measurements that implicate the release of degradation-associated enzymes as a rapid-response system for perturbations in protein homeostasis. The quantitative models developed here elucidate design principles for effective glycoprotein quality control in the ER, improving our mechanistic understanding of a system crucial to maintaining cellular health. We explore the architecture and limitations of the quality-control pathway responsible for efficient folding of secretory proteins. Newly-synthesized proteins are tagged by the attachment of a ‘glycan’ sugar chain which facilitates their binding to a chaperone that assists protein folding. Removal of a specific sugar group on the glycan ends the interaction with the chaperone, and not-yet-folded proteins can be re-tagged for another round of chaperone binding. A degradation pathway acts in parallel with the folding cycle, to remove those proteins that have remained unfolded for a sufficiently long time. We develop and solve a mathematical model of this quality-control system, showing that the cyclical design found in living cells is uniquely able to maximize folded protein throughput while avoiding accumulation of unfolded proteins. Although this physiological model provides the best performance, its parameters must be adjusted to perform optimally under different protein production loads, and any single fixed set of parameters leads to poor performance when production rate is altered. We find that a single adjustable parameter, the protein degradation rate, is sufficient to allow optimal performance across a range of conditions. Interestingly, observations of living cells suggest that the degradation speed is indeed rapidly adjusted.
Collapse
Affiliation(s)
- Aidan I. Brown
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
152
|
Bari KJ. The structural biology of crystallin aggregation: challenges and outlook. FEBS J 2021; 288:5888-5902. [DOI: 10.1111/febs.15684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Khandekar Jishan Bari
- Center for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad India
- Department of Chemical Sciences Indian Institute of Science Education and Research Berhampur India
| |
Collapse
|
153
|
Xu L, Zhang H, Cuskelly DD, Doyle S, Perrett S, Jones GW. Mutational analysis of the Hsp70 substrate-binding domain: Correlating molecular-level changes with in vivo function. Mol Microbiol 2021; 115:1262-1276. [PMID: 33341991 DOI: 10.1111/mmi.14671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/23/2020] [Accepted: 12/13/2020] [Indexed: 11/28/2022]
Abstract
Hsp70 is an evolutionarily conserved chaperone involved in maintaining protein homeostasis during normal growth and upon exposure to stresses. Mutations in the β6/β7 region of the substrate-binding domain (SBD) disrupt the SBD hydrophobic core resulting in impairment of the heat-shock response and prion propagation in yeast. To elucidate the mechanisms behind Hsp70 loss of function due to disruption of the SBD, we undertook targeted mutational analysis of key residues in the β6/β7 region. We demonstrate the critical functional role of the F475 residue across yeast cytosolic Hsp70-Ssa family. We identify the size of the hydrophobic side chain at 475 as the key factor in maintaining SBD stability and functionality. The introduction of amino acid variants to either residue 475, or close neighbor 483, caused instability and cleavage of the Hsp70 SBD and subsequent degradation. Interestingly, we found that Hsp70-Ssa cleavage may occur through a vacuolar carboxypeptidase (Pep4)-dependent mechanism rather than proteasomal. Mutations at 475 and 483 result in compromised ATPase function, which reduces protein re-folding activity and contributes to depletion of cytosolic Hsp70 in vivo. The combination of reduced functionality and stability of Hsp70-Ssa results in yeast cells that are compromised in their stress response and cannot propagate the [PSI+ ] prion.
Collapse
Affiliation(s)
- Linan Xu
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Ireland.,Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| |
Collapse
|
154
|
JANNUZZI AT, ARSLAN S, ALPERTUNGA B, KARADEMİR YILMAZ B. Proteasomal system related stress response in different cancer cell lines. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.802815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
155
|
Zhu G, Harischandra DS, Ghaisas S, Zhang P, Prall W, Huang L, Maghames C, Guo L, Luna E, Mack KL, Torrente MP, Luk KC, Shorter J, Yang X. TRIM11 Prevents and Reverses Protein Aggregation and Rescues a Mouse Model of Parkinson's Disease. Cell Rep 2020; 33:108418. [PMID: 33264628 PMCID: PMC7906527 DOI: 10.1016/j.celrep.2020.108418] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/15/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
Neurodegenerative diseases are characterized by the formation and propagation of protein aggregates, especially amyloid fibrils. However, what normally suppresses protein misfolding and aggregation in metazoan cells remains incompletely understood. Here, we show that TRIM11, a member of the metazoan tripartite motif (TRIM) family, both prevents the formation of protein aggregates and dissolves pre-existing protein deposits, including amyloid fibrils. These molecular chaperone and disaggregase activities are ATP independent. They enhance folding and solubility of normal proteins and cooperate with TRIM11 SUMO ligase activity to degrade aberrant proteins. TRIM11 abrogates α-synuclein fibrillization and restores viability in cell models of Parkinson's disease (PD). Intracranial adeno-associated viral delivery of TRIM11 mitigates α-synuclein-mediated pathology, neurodegeneration, and motor impairments in a PD mouse model. Other TRIMs can also function as ATP-independent molecular chaperones and disaggregases. Thus, we define TRIMs as a potent and multifunctional protein quality-control system in metazoa, which might be applied to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Guixin Zhu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dilshan S Harischandra
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shivani Ghaisas
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pengfei Zhang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wil Prall
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liangqian Huang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chantal Maghames
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Guo
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esteban Luna
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariana P Torrente
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
156
|
Oamen HP, Lau Y, Caudron F. Prion-like proteins as epigenetic devices of stress adaptation. Exp Cell Res 2020; 396:112262. [DOI: 10.1016/j.yexcr.2020.112262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 01/03/2023]
|
157
|
Fast kinetics of environmentally induced α-synuclein aggregation mediated by structural alteration in NAC region and result in structure dependent cytotoxicity. Sci Rep 2020; 10:18412. [PMID: 33110167 PMCID: PMC7591854 DOI: 10.1038/s41598-020-75361-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is associated with the manifestation of various pathogenic synucleinopathies, including Parkinson’s disease attributed to both genetic and environmental stress factors. The initial events triggering α-syn aggregation and disease initiation due to environmental stress factors are still largely unknown. Here, to understand the mechanism of misfolding and aggregation initiation, we induced α-syn aggregation with rotenone, an established chemical inducer of PD like symptoms. We found that rotenone accelerates the formation of structurally distinct oligomers and fibrils that act as templates and increase the formation of conformers capable of spreading to the neighboring neuronal cells. Molecular dynamics simulations and NMR studies revealed the involvement of NAC region and formation of helical conformations resulting in structural variations in oligomers and fibrils. These structural variations affect the cytotoxic potential of oligomers and fibrils, where, the beta sheet rich oligomers and fibrils alter the membrane potential of neuronal cells and lead to early apoptosis. Our results describe the initial mechanistic events in pathogenic protein aggregation, where initial structural alterations in response to external stress factors dictate the toxicity of resulting conformers. This information will further provide insights in the understanding of protein aggregation, disease progression and pathogenesis.
Collapse
|
158
|
Suresh HG, Pascoe N, Andrews B. The structure and function of deubiquitinases: lessons from budding yeast. Open Biol 2020; 10:200279. [PMID: 33081638 PMCID: PMC7653365 DOI: 10.1098/rsob.200279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination is a key post-translational modification that regulates diverse cellular processes in eukaryotic cells. The specificity of ubiquitin (Ub) signalling for different bioprocesses and pathways is dictated by the large variety of mono-ubiquitination and polyubiquitination events, including many possible chain architectures. Deubiquitinases (DUBs) reverse or edit Ub signals with high sophistication and specificity, forming an integral arm of the Ub signalling machinery, thus impinging on fundamental cellular processes including DNA damage repair, gene expression, protein quality control and organellar integrity. In this review, we discuss the many layers of DUB function and regulation, with a focus on insights gained from budding yeast. Our review provides a framework to understand key aspects of DUB biology.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Natasha Pascoe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Brenda Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
159
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
160
|
Määttä TA, Rettel M, Sridharan S, Helm D, Kurzawa N, Stein F, Savitski MM. Aggregation and disaggregation features of the human proteome. Mol Syst Biol 2020; 16:e9500. [PMID: 33022891 PMCID: PMC7538195 DOI: 10.15252/msb.20209500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Protein aggregates have negative implications in disease. While reductionist experiments have increased our understanding of aggregation processes, the systemic view in biological context is still limited. To extend this understanding, we used mass spectrometry-based proteomics to characterize aggregation and disaggregation in human cells after non-lethal heat shock. Aggregation-prone proteins were enriched in nuclear proteins, high proportion of intrinsically disordered regions, high molecular mass, high isoelectric point, and hydrophilic amino acids. During recovery, most aggregating proteins disaggregated with a rate proportional to the aggregation propensity: larger loss in solubility was counteracted by faster disaggregation. High amount of intrinsically disordered regions were associated with faster disaggregation. However, other characteristics enriched in aggregating proteins did not correlate with the disaggregation rates. In addition, we analyzed changes in protein thermal stability after heat shock. Soluble remnants of aggregated proteins were more thermally stable compared with control condition. Therefore, our results provide a rich resource of heat stress-related protein solubility data and can foster further studies related to protein aggregation diseases.
Collapse
Affiliation(s)
- Tomi A Määttä
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Mandy Rettel
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Sindhuja Sridharan
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Dominic Helm
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Nils Kurzawa
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Frank Stein
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Mikhail M Savitski
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
161
|
Andrianova AG, Kudzhaev AM, Abrikosova VA, Gustchina AE, Smirnov IV, Rotanova TV. Involvement of the N Domain Residues E34, K35, and R38 in the Functionally Active Structure of Escherichia coli Lon Protease. Acta Naturae 2020; 12:86-97. [PMID: 33456980 PMCID: PMC7800598 DOI: 10.32607/actanaturae.11197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent Lon protease of Escherichia coli (EcLon), which belongs to the superfamily of AAA+ proteins, is a key component of the cellular proteome quality control system. It is responsible for the cleavage of mutant, damaged, and short-lived regulatory proteins that are potentially dangerous for the cell. EcLon functions as a homooligomer whose subunits contain a central characteristic AAA+ module, a C-terminal protease domain, and an N-terminal non-catalytic region composed of the actual N-terminal domain and the inserted α-helical domain. An analysis of the N domain crystal structure suggested a potential involvement of residues E34, K35, and R38 in the formation of stable and active EcLon. We prepared and studied a triple mutant LonEKR in which these residues were replaced with alanine. The introduced substitutions were shown to affect the conformational stability and nucleotide-induced intercenter allosteric interactions, as well as the formation of the proper protein binding site.
Collapse
Affiliation(s)
- A. G. Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. M. Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. A. Abrikosova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. E. Gustchina
- Macromolecular Crystallography Laboratory, NCI-Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - T. V. Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
162
|
Gnuchikh EY, Manukhov IV, Zavilgelsky GB. DnaK Chaperone Takes Part in Folding but Not in Refolding of Thermal Inactivated Proteins in Bacillus subtilis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
163
|
Niu B, Mackness BC, Zitzewitz JA, Matthews CR, Gross ML. Trifluoroethanol Partially Unfolds G93A SOD1 Leading to Protein Aggregation: A Study by Native Mass Spectrometry and FPOP Protein Footprinting. Biochemistry 2020; 59:3650-3659. [PMID: 32924445 DOI: 10.1021/acs.biochem.0c00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misfolding of Cu, Zn superoxide dismutase (SOD1) variants may lead to protein aggregation and ultimately amyotrophic lateral sclerosis (ALS). The mechanism and protein conformational changes during this process are complex and remain unclear. To study SOD1 variant aggregation at the molecular level and in solution, we chemically induced aggregation of a mutant variant (G93A SOD1) with trifluoroethanol (TFE) and used both native mass spectrometry (MS) to analyze the intact protein and fast photochemical oxidation of proteins (FPOP) to characterize the structural changes induced by TFE. We found partially unfolded G93A SOD1 monomers prior to oligomerization and identified regions of the N-terminus, C-terminus, and strands β5, β6 accountable for the partial unfolding. We propose that exposure of hydrophobic interfaces of these unstructured regions serves as a precursor to aggregation. Our results provide a possible mechanism and molecular basis for ALS-linked SOD1 misfolding and aggregation.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brian C Mackness
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
164
|
Efficiency and Robustness of Processes Driven by Nucleoid Exclusion in Escherichia coli. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32894477 DOI: 10.1007/978-3-030-46886-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The internal spatial organization of prokaryotic organisms, including Escherichia coli, is essential for the proper functioning of processes such as cell division. One source of this organization in E. coli is the nucleoid, which causes the exclusion of macromolecules - e.g. protein aggregates and the chemotaxis network - from midcell. Similarly, following DNA replication, the nucleoid(s) assist in placing the Z-ring at midcell. These processes need to be efficient in optimal conditions and robust to suboptimal conditions. After reviewing recent findings on these topics, we make use of past data to study the efficiency of the spatial constraining of Z-rings, chemotaxis networks, and protein aggregates, as a function of the nucleoid(s) morphology. Also, we compare the robustness of these processes to nonoptimal temperatures. We show that Z-rings, Tsr clusters, and protein aggregates have temperature-dependent spatial distributions along the major cell axis that are consistent with the nucleoid(s) morphology and the volume-exclusion phenomenon. Surprisingly, the consequences of the changes in nucleoid size with temperature are most visible in the kurtosis of these spatial distributions, in that it has a statistically significant linear correlation with the mean nucleoid length and, in the case of Z-rings, with the distance between nucleoids prior to cell division. Interestingly, we also find a negative, statistically significant linear correlation between the efficiency of these processes at the optimal condition and their robustness to suboptimal conditions, suggesting a trade-off between these traits.
Collapse
|
165
|
Zhang N, Zhao H, Shi J, Wu Y, Jiang J. Functional characterization of class I SlHSP17.7 gene responsible for tomato cold-stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110568. [PMID: 32771169 DOI: 10.1016/j.plantsci.2020.110568] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 05/09/2023]
Abstract
Small heat shock proteins (sHSPs) increase stress tolerance in a wide variety of organisms and enable them to endure changes in their environment. However, the molecular mechanism by which sHSPs protect plants against cold stress is unknown. Here, the sHSP of tomato named SlHSP17.7 (Solyc06g076540.1.1) has the characteristic of low temperature induced expression in BL21(DE3) E. coli and a molecular chaperone function in vitro. Overexpression of SlHSP17.7 showed a tolerant response to cold stress treatment due to an induce intracellular sucrose and less accumulation of ROS. Yeast two-hybrid assays showed that SlHSP17.7 is a binding partner of the cation/Ca2+ exchanger (SlCCX1-like; Solyc07g006370.1.1). This interaction was confirmed by pull down and bimolecular fluorescence complementation (BiFC) assays. High SlHSP17.7 and low SlCCX1-like levels alleviated programed cell death (PCD) under cold stress. Thus, SlHSP17.7 might be a cofactor of SlCCX1-like targeting endoplasmic reticulum (ER) membrane proteins, retaining intracellular Ca2+ homeostasis, and decreasing cold stress sensitivity. These findings provide a sound basis for genetic engineering of cold stress tolerance in tomato.
Collapse
Affiliation(s)
- Ning Zhang
- College of Horticulture, Shenyang Agricultural University, Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, 110866, China; College of Horticulture Science and Technology, Hebei Normal University of Science Technology, Changli, Hebei, 066600, China
| | - Huaiyin Zhao
- College of Horticulture, Shenyang Agricultural University, Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, 110866, China
| | - Jiewei Shi
- College of Horticulture, Shenyang Agricultural University, Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, 110866, China
| | - Yuanyuan Wu
- College of Horticulture, Shenyang Agricultural University, Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, 110866, China; Vegetable Research Institute, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, 110866, China
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
166
|
Prahlad V. The discovery and consequences of the central role of the nervous system in the control of protein homeostasis. J Neurogenet 2020; 34:489-499. [PMID: 32527175 PMCID: PMC7736053 DOI: 10.1080/01677063.2020.1771333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Organisms function despite wide fluctuations in their environment through the maintenance of homeostasis. At the cellular level, the maintenance of proteins as functional entities at target expression levels is called protein homeostasis (or proteostasis). Cells implement proteostasis through universal and conserved quality control mechanisms that surveil and monitor protein conformation. Recent studies that exploit the powerful ability to genetically manipulate specific neurons in C. elegans have shown that cells within this metazoan lose their autonomy over this fundamental survival mechanism. These studies have uncovered novel roles for the nervous system in controlling how and when cells activate their protein quality control mechanisms. Here we discuss the conceptual underpinnings, experimental evidence and the possible consequences of such a control mechanism. PRELUDE: Whether the detailed examination of parts of the nervous system and their selective perturbation is sufficient to reconstruct how the brain generates behavior, mental disease, music and religion remains an open question. Yet, Sydney Brenner's development of C. elegans as an experimental organism and his faith in the bold reductionist approach that 'the understanding of wild-type behavior comes best after the discovery and analysis of mutations that alter it', has led to discoveries of unexpected roles for neurons in the biology of organisms.
Collapse
Affiliation(s)
- Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
167
|
Babazadeh R, Ahmadpour D, Jia S, Hao X, Widlund P, Schneider K, Eisele F, Edo LD, Smits GJ, Liu B, Nystrom T. Syntaxin 5 Is Required for the Formation and Clearance of Protein Inclusions during Proteostatic Stress. Cell Rep 2020; 28:2096-2110.e8. [PMID: 31433985 DOI: 10.1016/j.celrep.2019.07.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/14/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Spatial sorting to discrete quality control sites in the cell is a process harnessing the toxicity of aberrant proteins. We show that the yeast t-snare phosphoprotein syntaxin5 (Sed5) acts as a key factor in mitigating proteotoxicity and the spatial deposition and clearance of IPOD (insoluble protein deposit) inclusions associates with the disaggregase Hsp104. Sed5 phosphorylation promotes dynamic movement of COPII-associated Hsp104 and boosts disaggregation by favoring anterograde ER-to-Golgi trafficking. Hsp104-associated aggregates co-localize with Sed5 as well as components of the ER, trans Golgi network, and endocytic vesicles, transiently during proteostatic stress, explaining mechanistically how misfolded and aggregated proteins formed at the vicinity of the ER can hitchhike toward vacuolar IPOD sites. Many inclusions become associated with mitochondria in a HOPS/vCLAMP-dependent manner and co-localize with Vps39 (HOPS/vCLAMP) and Vps13, which are proteins providing contacts between vacuole and mitochondria. Both Vps39 and Vps13 are required also for efficient Sed5-dependent clearance of aggregates.
Collapse
Affiliation(s)
- Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Song Jia
- School of Life Science, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Per Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Kara Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Laura Dolz Edo
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1090, the Netherlands
| | - Gertien J Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1090, the Netherlands
| | - Beidong Liu
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden.
| |
Collapse
|
168
|
Shi X, Ezemaduka AN. IbpB-bound substrate release in living cells as revealed by unnatural amino acid-mediated photo-crosslinking. FEBS Open Bio 2020; 10:2081-2088. [PMID: 32812699 PMCID: PMC7530376 DOI: 10.1002/2211-5463.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 08/17/2020] [Indexed: 12/05/2022] Open
Abstract
Small heat shock proteins (sHSPs) are known to bind non‐native substrates and prevent irreversible aggregation in an ATP‐independent manner. However, the dynamic interaction between sHSPs and their substrates in vivo is less studied. Here, by utilizing a genetically incorporated crosslinker, we characterized the interaction between sHSP IbpB and its endogenous substrates in living cells. Through photo‐crosslinking analysis of five Bpa variants of IbpB, we found that the substrate binding of IbpB in living cells is reversible upon short‐time exposure at 50 °C. Our data provide in vivo evidence that IbpB engages in dynamic substrate release under nonstress conditions and suggest that photo‐crosslinking may be a suitable method for investigating dynamic interaction between molecular chaperones and their substrates in living cells.
Collapse
Affiliation(s)
- Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, China
| | - Anastasia N Ezemaduka
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
169
|
Aramin S, Fassler R, Chikne V, Goldenberg M, Arian T, Kolet Eliaz L, Rimon O, Ram O, Michaeli S, Reichmann D. TrypOx, a Novel Eukaryotic Homolog of the Redox-Regulated Chaperone Hsp33 in Trypanosoma brucei. Front Microbiol 2020; 11:1844. [PMID: 32849441 PMCID: PMC7423844 DOI: 10.3389/fmicb.2020.01844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 01/28/2023] Open
Abstract
ATP-independent chaperones are widespread across all domains of life and serve as the first line of defense during protein unfolding stresses. One of the known crucial chaperones for bacterial survival in a hostile environment (e.g., heat and oxidative stress) is the highly conserved, redox-regulated ATP-independent bacterial chaperone Hsp33. Using a bioinformatic analysis, we describe novel eukaryotic homologs of Hsp33 identified in eukaryotic pathogens belonging to the kinetoplastids, a family responsible for lethal human diseases such as Chagas disease as caused by Trypanosoma cruzi, African sleeping sickness caused by Trypanosoma brucei spp., and leishmaniasis pathologies delivered by various Leishmania species. During their pathogenic life cycle, kinetoplastids need to cope with elevated temperatures and oxidative stress, the same conditions which convert Hsp33 into a powerful chaperone in bacteria, thus preventing aggregation of a wide range of misfolded proteins. Here, we focused on a functional characterization of the Hsp33 homolog in one of the members of the kinetoplastid family, T. brucei, (Tb927.6.2630), which we have named TrypOx. RNAi silencing of TrypOx led to a significant decrease in the survival of T. brucei under mild oxidative stress conditions, implying a protective role of TrypOx during the Trypanosomes growth. We then adopted a proteomics-driven approach to investigate the role of TrypOx in defining the oxidative stress response. Depletion of TrypOx significantly altered the abundance of proteins mediating redox homeostasis, linking TrypOx with the antioxidant system. Using biochemical approaches, we identified the redox-switch domain of TrypOx, showing its modularity and oxidation-dependent structural plasticity. Kinetoplastid parasites such as T. brucei need to cope with high levels of oxidants produced by the innate immune system, such that parasite-specific antioxidant proteins like TrypOx - which are depleted in mammals - are highly promising candidates for drug targeting.
Collapse
Affiliation(s)
- Samar Aramin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Mor Goldenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Arian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kolet Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Oded Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Ram
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
170
|
Sarodaya N, Suresh B, Kim KS, Ramakrishna S. Protein Degradation and the Pathologic Basis of Phenylketonuria and Hereditary Tyrosinemia. Int J Mol Sci 2020; 21:ijms21144996. [PMID: 32679806 PMCID: PMC7404301 DOI: 10.3390/ijms21144996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
A delicate intracellular balance among protein synthesis, folding, and degradation is essential to maintaining protein homeostasis or proteostasis, and it is challenged by genetic and environmental factors. Molecular chaperones and the ubiquitin proteasome system (UPS) play a vital role in proteostasis for normal cellular function. As part of protein quality control, molecular chaperones recognize misfolded proteins and assist in their refolding. Proteins that are beyond repair or refolding undergo degradation, which is largely mediated by the UPS. The importance of protein quality control is becoming ever clearer, but it can also be a disease-causing mechanism. Diseases such as phenylketonuria (PKU) and hereditary tyrosinemia-I (HT1) are caused due to mutations in PAH and FAH gene, resulting in reduced protein stability, misfolding, accelerated degradation, and deficiency in functional proteins. Misfolded or partially unfolded proteins do not necessarily lose their functional activity completely. Thus, partially functional proteins can be rescued from degradation by molecular chaperones and deubiquitinating enzymes (DUBs). Deubiquitination is an important mechanism of the UPS that can reverse the degradation of a substrate protein by covalently removing its attached ubiquitin molecule. In this review, we discuss the importance of molecular chaperones and DUBs in reducing the severity of PKU and HT1 by stabilizing and rescuing mutant proteins.
Collapse
Affiliation(s)
- Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| |
Collapse
|
171
|
Chebotareva NA, Roman SG, Borzova VA, Eronina TB, Mikhaylova VV, Kurganov BI. Chaperone-Like Activity of HSPB5: The Effects of Quaternary Structure Dynamics and Crowding. Int J Mol Sci 2020; 21:ijms21144940. [PMID: 32668633 PMCID: PMC7404038 DOI: 10.3390/ijms21144940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Small heat-shock proteins (sHSPs) are ATP-independent molecular chaperones that interact with partially unfolded proteins, preventing their aberrant aggregation, thereby exhibiting a chaperone-like activity. Dynamics of the quaternary structure plays an important role in the chaperone-like activity of sHSPs. However, relationship between the dynamic structure of sHSPs and their chaperone-like activity remains insufficiently characterized. Many factors (temperature, ions, a target protein, crowding etc.) affect the structure and activity of sHSPs. The least studied is an effect of crowding on sHSPs activity. In this work the chaperone-like activity of HSPB5 was quantitatively characterized by dynamic light scattering using two test systems, namely test systems based on heat-induced aggregation of muscle glycogen phosphorylase b (Phb) at 48 °C and dithiothreitol-induced aggregation of α-lactalbumin at 37 °C. Analytical ultracentrifugation was used to control the oligomeric state of HSPB5 and target proteins. The possible anti-aggregation functioning of suboligomeric forms of HSPB5 is discussed. The effect of crowding on HSPB5 anti-aggregation activity was characterized using Phb as a target protein. The duration of the nucleation stage was shown to decrease with simultaneous increase in the relative rate of aggregation of Phb in the presence of HSPB5 under crowded conditions. Crowding may subtly modulate sHSPs activity.
Collapse
|
172
|
Abstract
PURPOSE OF REVIEW Protein homeostasis (proteostasis) is maintained by an integrated network of physiological mechanisms and stress response pathways that regulate the content and quality of the proteome. Maintenance of cellular proteostasis is key to ensuring normal development, resistance to environmental stress, coping with infection, and promoting healthy aging and lifespan. Recent studies have revealed that several proteostasis mechanisms can function in a cell-type-specific manner within hematopoietic stem cells (HSCs). Here, we review recent studies demonstrating that the proteostasis network functions uniquely in HSCs to promote their maintenance and regenerative function. RECENT FINDINGS The proteostasis network is regulated differently in HSCs as compared with restricted hematopoietic progenitors. Disruptions in proteostasis are particularly detrimental to HSC maintenance and function. These findings suggest that multiple aspects of cellular physiology are uniquely regulated in HSCs to maintain proteostasis, and that precise control of proteostasis is particularly important to support life-long HSC maintenance and regenerative function. SUMMARY The proteostasis network is uniquely configured within HSCs to promote their longevity and hematopoietic function. Future work uncovering cell-type-specific differences in proteostasis network configuration, integration, and function will be essential for understanding how HSCs function during homeostasis, in response to stress, and in disease.
Collapse
Affiliation(s)
- Bernadette A Chua
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
173
|
Dabbaghizadeh A, Tanguay RM. Structural and functional properties of proteins interacting with small heat shock proteins. Cell Stress Chaperones 2020; 25:629-637. [PMID: 32314314 PMCID: PMC7332586 DOI: 10.1007/s12192-020-01097-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones found in all domains of life, possessing significant roles in protein quality control in cells and assisting the refolding of non-native proteins. They are efficient chaperones against many in vitro protein substrates. Nevertheless, the in vivo native substrates of sHsps are not known. To better understand the functions of sHsps and the mechanisms by which they enhance heat resistance, sHsp-interacting proteins were identified using affinity purification under heat shock conditions. This paper aims at providing some insights into the characteristics of natural substrate proteins of sHsps. It seems that sHsps of prokaryotes, as well as sHsps of some eukaryotes, can bind to a wide range of substrate proteins with a preference for certain functional classes of proteins. Using Drosophila melanogaster mitochondrial Hsp22 as a model system, we observed that this sHsp interacted with the members of ATP synthase machinery. Mechanistically, Hsp22 interacts with the multi-type substrate proteins under heat shock conditions as well as non-heat shock conditions.
Collapse
Affiliation(s)
- Afrooz Dabbaghizadeh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Robert M Tanguay
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
174
|
Upadhyay RK, Tucker ML, Mattoo AK. Ethylene and RIPENING INHIBITOR Modulate Expression of SlHSP17.7A, B Class I Small Heat Shock Protein Genes During Tomato Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:975. [PMID: 32714357 PMCID: PMC7344320 DOI: 10.3389/fpls.2020.00975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 06/02/2023]
Abstract
Heat shock proteins (HSPs) are ubiquitous and highly conserved in nature. Heat stress upregulates their gene expression and now it is known that they are also developmentally regulated. We have studied regulation of small HSP genes during ripening of tomato fruit. In this study, we identify two small HSP genes, SlHSP17.7A and SlHSP17.7B, localized on tomato Chr.6 and Chr.9, respectively. Each gene encodes proteins constituting 154 amino acids and has characteristic domains as in other sHSP genes. We found that SlHSP17.7A and SlHSP17.7B gene expression is low in the vegetative tissues as compared to that in the fruit. These sHSP genes are characteristically expressed in a fruit-ripening fashion, being upregulated during the ripening transition of mature green to breaker stage. Their expression patterns mirror that of the rate-limiting ethylene biosynthesis gene ACC (1-aminocyclopropane-1-carboxylic acid) synthase, SlACS2, and its regulator SlMADS-RIN. Exogenous application of ethylene to either mature green tomato fruit or tomato leaves suppressed the expression of both the SlHSP17.7A, B genes. Notably and characteristically, a transgenic tomato line silenced for SlACS2 gene and whose fruits produce ~50% less ethylene in vivo, had higher expression of both the sHSP genes at the fruit ripening transition stages [breaker (BR) and BR+3] than the control fruit. Moreover, differential gene expression of SlHSP17.7A versus SlHSP17.7B gene was apparent in the tomato ripening mutants-rin/rin, nor/nor, and Nr/Nr, with the expression of SlHSP17.7A being significantly reduced but that of SlHSP17.7B significantly upregulated as compared to the wild type (WT). These data indicate that ethylene negatively regulates transcriptional abundance of both these sHSPs. Transient overexpression of the ripening regulator SlMADS-RIN in WT and ACS2-AS mature green tomato fruits suppressed the expression of SlHSP17.7A but not that of SlHSP17.7B. Thus, ethylene directly or in tune with SlMADS-RIN regulates the transcript abundance of both these sHSP genes.
Collapse
Affiliation(s)
- Rakesh K. Upadhyay
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| |
Collapse
|
175
|
Ramakrishnan R, Houben B, Rousseau F, Schymkowitz J. Differential proteostatic regulation of insoluble and abundant proteins. Bioinformatics 2020; 35:4098-4107. [PMID: 30903148 PMCID: PMC6792106 DOI: 10.1093/bioinformatics/btz214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Motivation Despite intense effort, it has been difficult to explain chaperone dependencies of proteins from sequence or structural properties. Results We constructed a database collecting all publicly available data of experimental chaperone interaction and dependency data for the Escherichia coli proteome, and enriched it with an extensive set of protein-specific as well as cell-context-dependent proteostatic parameters. Employing this new resource, we performed a comprehensive meta-analysis of the key determinants of chaperone interaction. Our study confirms that GroEL client proteins are biased toward insoluble proteins of low abundance, but for client proteins of the Trigger Factor/DnaK axis, we instead find that cellular parameters such as high protein abundance, translational efficiency and mRNA turnover are key determinants. We experimentally confirmed the finding that chaperone dependence is a function of translation rate and not protein-intrinsic parameters by tuning chaperone dependence of Green Fluorescent Protein (GFP) in E.coli by synonymous mutations only. The juxtaposition of both protein-intrinsic and cell-contextual chaperone triage mechanisms explains how the E.coli proteome achieves combining reliable production of abundant and conserved proteins, while also enabling the evolution of diverging metabolic functions. Availability and implementation The database will be made available via http://phdb.switchlab.org. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Reshmi Ramakrishnan
- Switch Laboratory, Center for Brain and Disease Research, VIB.,Department of Cellular and Molecular Medicine, KULeuven, Leuven Belgium
| | - Bert Houben
- Switch Laboratory, Center for Brain and Disease Research, VIB.,Department of Cellular and Molecular Medicine, KULeuven, Leuven Belgium
| | - Frederic Rousseau
- Switch Laboratory, Center for Brain and Disease Research, VIB.,Department of Cellular and Molecular Medicine, KULeuven, Leuven Belgium
| | - Joost Schymkowitz
- Switch Laboratory, Center for Brain and Disease Research, VIB.,Department of Cellular and Molecular Medicine, KULeuven, Leuven Belgium
| |
Collapse
|
176
|
den Brave F, Cairo LV, Jagadeesan C, Ruger-Herreros C, Mogk A, Bukau B, Jentsch S. Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 2020; 31:107680. [PMID: 32492414 PMCID: PMC7273177 DOI: 10.1016/j.celrep.2020.107680] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
The formation of insoluble inclusions in the cytosol and nucleus is associated with impaired protein homeostasis and is a hallmark of several neurodegenerative diseases. Due to the absence of the autophagic machinery, nuclear protein aggregates require a solubilization step preceding degradation by the 26S proteasome. Using yeast, we identify a nuclear protein quality control pathway required for the clearance of protein aggregates. The nuclear J-domain protein Apj1 supports protein disaggregation together with Hsp70 but independent of the canonical disaggregase Hsp104. Disaggregation mediated by Apj1/Hsp70 promotes turnover rather than refolding. A loss of Apj1 activity uncouples disaggregation from proteasomal turnover, resulting in accumulation of toxic soluble protein species. Endogenous substrates of the Apj1/Hsp70 pathway include both nuclear and cytoplasmic proteins, which aggregate inside the nucleus upon proteotoxic stress. These findings demonstrate the coordinated activity of the Apj1/Hsp70 disaggregation system with the 26S proteasome in facilitating the clearance of toxic inclusions inside the nucleus.
Collapse
Affiliation(s)
- Fabian den Brave
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Lucas V Cairo
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Chandhuru Jagadeesan
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Carmen Ruger-Herreros
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
177
|
Ahmadpour D, Babazadeh R, Nystrom T. Hitchhiking on vesicles: a way to harness age-related proteopathies? FEBS J 2020; 287:5068-5079. [PMID: 32336030 DOI: 10.1111/febs.15345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
Abstract
Central to proteopathies and leading to most age-related neurodegenerative disorders is a failure in protein quality control (PQC). To harness the toxicity of misfolded and damaged disease proteins, such proteins are either refolded, degraded by temporal PQC, or sequestered by spatial PQC into specific, organelle-associated, compartments within the cell. Here, we discuss the impact of vesicle trafficking pathways in general, and syntaxin 5 in particular, as key players in spatial PQC directing misfolded proteins to the surface of vacuole and mitochondria, which facilitates their clearance and detoxification. Since boosting vesicle trafficking genetically can positively impact on spatial PQC and make cells less sensitive to misfolded disease proteins, we speculate that regulators of such trafficking might serve as therapeutic targets for age-related neurological disorders.
Collapse
Affiliation(s)
- Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden
| |
Collapse
|
178
|
Shi C, Chao L, Proenca AM, Qiu A, Chao J, Rang CU. Allocation of gene products to daughter cells is determined by the age of the mother in single Escherichia coli cells. Proc Biol Sci 2020; 287:20200569. [PMID: 32370668 DOI: 10.1098/rspb.2020.0569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene expression and growth rate are highly stochastic in Escherichia coli. Some of the growth rate variations result from the deterministic and asymmetric partitioning of damage by the mother to its daughters. One daughter, denoted the old daughter, receives more damage, grows more slowly and ages. To determine if expressed gene products are also allocated asymmetrically, we compared the levels of expressed green fluorescence protein in growing daughters descending from the same mother. Our results show that old daughters were less fluorescent than new daughters. Moreover, old mothers, which were born as old daughters, produced daughters that were more asymmetric when compared to new mothers. Thus, variation in gene products in a clonal E. coli population also has a deterministic component. Because fluorescence levels and growth rates were positively correlated, the aging of old daughters appears to result from both the presence of both more damage and fewer expressed gene products.
Collapse
Affiliation(s)
- Chao Shi
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Lin Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Audrey Menegaz Proenca
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA.,Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrew Qiu
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Jasper Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Camilla U Rang
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
179
|
Jung KH, Zhang X. Fluorogenic detection of protein aggregates in live cells using the AggTag method. Methods Enzymol 2020; 639:1-22. [PMID: 32475397 DOI: 10.1016/bs.mie.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein aggregation is a process that occurs through the self-assembly of misfolded proteins to form soluble oligomers and insoluble aggregates. While there has been significant interest in protein aggregation for neurodegenerative diseases, progress in this field of research has been limited by the lack of effective methods to detect and interrogate these species in live cells. To resolve this issue, we have developed a new imaging method named the AggTag to report on protein aggregation in live cells with fluorescence microscopy. The AggTag method utilizes a genetic fusion of a protein of interest (POI) to a protein tag to conjugate with the AggTag probe, which contains a fluorophore that turns on its fluorescence upon interaction with protein aggregates. Unlike the conventional methods, this method enables one to detect soluble misfolded oligomers that were previously invisible. Furthermore, the AggTag method has been applied for the simultaneous detection of co-aggregation between two different POIs by a dual-color and orthogonal tagging system. This chapter aims to provide step-by-step procedures of the AggTag method for researchers who intend to study aggregation of POIs in mammalian cell lines.
Collapse
Affiliation(s)
- Kwan Ho Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
180
|
Sachsenhauser V, Deng X, Kim HH, Jankovic M, Bardwell JC. Yeast Tripartite Biosensors Sensitive to Protein Stability and Aggregation Propensity. ACS Chem Biol 2020; 15:1078-1088. [PMID: 32105441 DOI: 10.1021/acschembio.0c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In contrast to the myriad approaches available to study protein misfolding and aggregation in vitro, relatively few tools are available for the study of these processes in the cellular context. This is in part due to the complexity of the cellular environment which, for instance, interferes with many spectroscopic approaches. Here, we describe a tripartite fusion approach that can be used to assess in vivo protein stability and solubility in the cytosol of Saccharomyces cerevisiae. Our biosensors contain tripartite fusions in which a protein of interest is inserted into antibiotic resistance markers. These fusions act to directly link the aggregation susceptibility and stability of the inserted protein to antibiotic resistance. We demonstrate a linear relationship between the thermodynamic stabilities of variants of the model folding protein immunity protein 7 (Im7) fused into the resistance markers and their antibiotic resistance readouts. We also use this system to investigate the in vivo properties of the yeast prion proteins Sup35 and Rnq1 and proteins whose aggregation is associated with some of the most prevalent neurodegenerative misfolding disorders, including peptide amyloid beta 1-42 (Aβ42), which is involved in Alzheimer's disease, and protein α-synuclein, which is linked to Parkinson's disease.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
- Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Xiexiong Deng
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Hyun-hee Kim
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Maja Jankovic
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - James C.A. Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| |
Collapse
|
181
|
Adav SS, Sze SK. Hypoxia-Induced Degenerative Protein Modifications Associated with Aging and Age-Associated Disorders. Aging Dis 2020; 11:341-364. [PMID: 32257546 PMCID: PMC7069466 DOI: 10.14336/ad.2019.0604] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aging is an inevitable time-dependent decline of various physiological functions that finally leads to death. Progressive protein damage and aggregation have been proposed as the root cause of imbalance in regulatory processes and risk factors for aging and neurodegenerative diseases. Oxygen is a modulator of aging. The oxygen-deprived conditions (hypoxia) leads to oxidative stress, cellular damage and protein modifications. Despite unambiguous evidence of the critical role of spontaneous non-enzymatic Degenerative Protein Modifications (DPMs) such as oxidation, glycation, carbonylation, carbamylation, and deamidation, that impart deleterious structural and functional protein alterations during aging and age-associated disorders, the mechanism that mediates these modifications is poorly understood. This review summarizes up-to-date information and recent developments that correlate DPMs, aging, hypoxia, and age-associated neurodegenerative diseases. Despite numerous advances in the study of the molecular hallmark of aging, hypoxia, and degenerative protein modifications during aging and age-associated pathologies, a major challenge remains there to dissect the relative contribution of different DPMs in aging (either natural or hypoxia-induced) and age-associated neurodegeneration.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
182
|
Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat Struct Mol Biol 2020; 27:363-372. [PMID: 32231288 DOI: 10.1038/s41594-020-0399-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Protein phase separation drives the assembly of membraneless organelles, but little is known about how these membraneless organelles are maintained in a metastable liquid- or gel-like phase rather than proceeding to solid aggregation. Here, we find that human small heat-shock protein 27 (Hsp27), a canonical chaperone that localizes to stress granules (SGs), prevents FUS from undergoing liquid-liquid phase separation (LLPS) via weak interactions with the FUS low complexity (LC) domain. Remarkably, stress-induced phosphorylation of Hsp27 alters its activity, leading Hsp27 to partition with FUS LC to preserve the liquid phase against amyloid fibril formation. NMR spectroscopy demonstrates that Hsp27 uses distinct structural mechanisms for both functions. Our work reveals a fine-tuned regulation of Hsp27 for chaperoning FUS into either a polydispersed state or a LLPS state and suggests an essential role for Hsp27 in stabilizing the dynamic phase of stress granules.
Collapse
|
183
|
Effect of Arginine on Chaperone-Like Activity of HspB6 and Monomeric 14-3-3ζ. Int J Mol Sci 2020; 21:ijms21062039. [PMID: 32188159 PMCID: PMC7139691 DOI: 10.3390/ijms21062039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
The effect of protein chaperones HspB6 and the monomeric form of the protein 14-3-3ζ (14-3-3ζm) on a test system based on thermal aggregation of UV-irradiated glycogen phosphorylase b (UV-Phb) at 37 °C and a constant ionic strength (0.15 M) was studied using dynamic light scattering. A significant increase in the anti-aggregation activity of HspB6 and 14-3-3ζm was demonstrated in the presence of 0.1 M arginine (Arg). To compare the effects of these chaperones on UV-Phb aggregation, the values of initial stoichiometry of the chaperone-target protein complex (S0) were used. The analysis of the S0 values shows that in the presence of Arg fewer chaperone subunits are needed to completely prevent aggregation of the UV-Phb subunit. The changes in the structures of HspB6 and 14-3-3ζm induced by binding of Arg were evaluated by the fluorescence spectroscopy and differential scanning calorimetry. It was suggested that Arg caused conformational changes in chaperone molecules, which led to a decrease in the thermal stability of protein chaperones and their destabilization.
Collapse
|
184
|
Zhang J, Kim EC, Chen C, Procko E, Pant S, Lam K, Patel J, Choi R, Hong M, Joshi D, Bolton E, Tajkhorshid E, Chung HJ. Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy. Sci Rep 2020; 10:4756. [PMID: 32179837 PMCID: PMC7075958 DOI: 10.1038/s41598-020-61697-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/02/2020] [Indexed: 11/08/2022] Open
Abstract
Kv7 channels are enriched at the axonal plasma membrane where their voltage-dependent potassium currents suppress neuronal excitability. Mutations in Kv7.2 and Kv7.3 subunits cause epileptic encephalopathy (EE), yet the underlying pathogenetic mechanism is unclear. Here, we used novel statistical algorithms and structural modeling to identify EE mutation hotspots in key functional domains of Kv7.2 including voltage sensing S4, the pore loop and S6 in the pore domain, and intracellular calmodulin-binding helix B and helix B-C linker. Characterization of selected EE mutations from these hotspots revealed that L203P at S4 induces a large depolarizing shift in voltage dependence of Kv7.2 channels and L268F at the pore decreases their current densities. While L268F severely reduces expression of heteromeric channels in hippocampal neurons without affecting internalization, K552T and R553L mutations at distal helix B decrease calmodulin-binding and axonal enrichment. Importantly, L268F, K552T, and R553L mutations disrupt current potentiation by increasing phosphatidylinositol 4,5-bisphosphate (PIP2), and our molecular dynamics simulation suggests PIP2 interaction with these residues. Together, these findings demonstrate that each EE variant causes a unique combination of defects in Kv7 channel function and neuronal expression, and suggest a critical need for both prediction algorithms and experimental interrogations to understand pathophysiology of Kv7-associated EE.
Collapse
Affiliation(s)
- Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Congcong Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Shashank Pant
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kin Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jaimin Patel
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Rebecca Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Mary Hong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Dhruv Joshi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eric Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
185
|
Greffe VRG, Michiels J. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Appl Microbiol Biotechnol 2020; 104:3757-3770. [PMID: 32170388 DOI: 10.1007/s00253-020-10501-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting bacteria show great potential for use in agriculture although efficient application remains challenging to achieve. Cells often lose viability during inoculant production and application, jeopardizing the efficacy of the inoculant. Since desiccation has been documented to be the primary stress factor affecting the decrease in survival, obtaining xerotolerance in plant growth-promoting bacteria is appealing. The molecular damage that occurs by drying bacteria has been broadly investigated, although a complete view is still lacking due to the complex nature of the process. Mechanic, structural, and metabolic changes that occur as a result of water depletion may potentially afflict lethal damage to membranes, DNA, and proteins. Bacteria respond to these harsh conditions by increasing production of exopolysaccharides, changing composition of the membrane, improving the stability of proteins, reducing oxidative stress, and repairing DNA damage. This review provides insight into the complex nature of desiccation stress in bacteria in order to facilitate strategic choices to improve survival and shelf life of newly developed inoculants. KEY POINTS: Desiccation-induced damage affects most major macromolecules in bacteria. Most bacteria are not xerotolerant despite multiple endogenous adaption mechanisms. Sensitivity to drying severely hampers inoculant quality.
Collapse
Affiliation(s)
- Vincent Robert Guy Greffe
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
186
|
Kim SY, Kim HJ, Kim HJ, Kim CH. Non-Thermal Plasma Induces Antileukemic Effect Through mTOR Ubiquitination. Cells 2020; 9:cells9030595. [PMID: 32131492 PMCID: PMC7140413 DOI: 10.3390/cells9030595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Non-thermal plasma (NTP) has been studied as a novel therapeutic tool for cancer that does not damage healthy cells. In this study, we show that NTP-treated solutions (NTS) can induce death in various leukemia cells through mechanistic target of rapamycin (mTOR) ubiquitination. Previously, we manufactured and demonstrated the efficacy of NTS in solid cancers. NTS did not exhibit any deleterious side effects, such as acute death or weight loss in nude mice. In the present study, NTS induced cell death in myeloid leukemia cells, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). We found that mTOR was downregulated in NTS-treated cells via the ubiquitin-proteasome system (UPS). We also identified ‘really interesting new gene’ finger protein 126 (RNF126) as a novel binding protein for mTOR through protein arrays and determined the role of E3 ligase in NTS-induced mTOR ubiquitination. NTS-derived reactive oxygen species (ROS) affected RNF126 expression and lysosomal dysfunction. These findings suggest that NTS has potential antileukemic effects through RNF126-mediated mTOR ubiquitination with no deleterious side effects. Thus, NTS may represent a new therapeutic method for chemotherapy-resistant leukemia.
Collapse
Affiliation(s)
- Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5269
| |
Collapse
|
187
|
Hirano S, Kanno S. Relevance of autophagy markers to cytotoxicity of zinc compounds in macrophages. Toxicol In Vitro 2020; 65:104816. [PMID: 32126253 DOI: 10.1016/j.tiv.2020.104816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Autophagy molecules such as microtubule-associated protein light chain 3 (LC3) and p62/SQSTM1 have been used as biomarkers of protective or conversely adverse effects of exposure to toxicants. In the present study we show changes in LC3-II (a lipidated form of LC3-I) and p62 levels in response to zinc compounds and some other toxicants in J774.1 murine macrophages. The cytotoxicity of either ZnO or ZnSO4 largely depended on the concentration of FBS or albumin in the culture medium. Accordingly, these authophagy markers were more remarkably increased when the cells were exposed to ZnO or ZnSO4 in the absence of FBS. We next addressed lysosomal function impairment and changes in LC3-II and p62 levels following exposure to TiO2, ZnO, and ZnSO4. Lysosomal pH was quickly decreased by autolysosome inhibitors such as bafilomycin A1 and chloroquine, while TiO2, ZnO and ZnSO4 did not decrease lysosomal pH. However, the amounts of LC3-II and p62 and the LC3-II/LC3-I ratio were increased either by the lysosomal inhibitors and the Zn compounds. LC3-II and p62 levels were increased after exposure to arsenite and lipopolysaccharide (LPS). The p62 and phospho-p62 levels were also increased by either ZnSO4 and bafilomycin A1 in HEK293 cells stably expressing RFP-LC3. The current observations suggest that LC3-II and p62 levels were increased as consequences of early effects of toxicants without changing lysosomal pH.
Collapse
Affiliation(s)
- Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Sanae Kanno
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
188
|
Abstract
Influenza A virus (IAV) is an enveloped virus of the Orthomyxoviridae with a negative-sense single-stranded RNA genome. During virus cell entry, viral and cellular cues are delivered in a stepwise manner within two distinct cellular compartments-the endosomes and the cytosol. Endosome maturation primes the viral core for uncoating by cytosolic host proteins and host-mediated virus disaggregation is essential for genome import and replication in the nucleus. Recent evidence shows that two well-known cellular proteins-histone deacetylase 6 (HDAC6) and karyopherin-β2 (kapβ2)-uncoat influenza virus. HDAC6 is 1 of 11 HDACs and an X-linked, cytosolic lysine deacetylase. Under normal cellular conditions HDAC6 is the tubulin deacetylase. Under proteasomal stress HDAC6 binds unanchored ubiquitin, dynein and myosin II to sequester misfolded protein aggregates for autophagy. Kapβ2 is a member of the importin β family that transports RNA-binding proteins into the nucleus by binding to disordered nuclear localization signals (NLSs) known as PY-NLS. Kapβ2 is emerging as a universal uncoating factor for IAV and human immunodeficiency virus type 1 (HIV-1). Kapβ2 can also reverse liquid-liquid phase separation (LLPS) of RNA-binding proteins by promoting their disaggregation. Thus, it is becoming evident that key players in the management of cellular condensates and membraneless organelles are potent virus uncoating factors. This emerging concept reveals implications in viral pathogenesis, as well as, the promise for cell-targeted therapeutic strategies to block universal virus uncoating pathways hijacked by enveloped RNA viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
189
|
Iburg M, Puchkov D, Rosas-Brugada IU, Bergemann L, Rieprecht U, Kirstein J. The noncanonical small heat shock protein HSP-17 from Caenorhabditis elegans is a selective protein aggregase. J Biol Chem 2020; 295:3064-3079. [PMID: 32001616 DOI: 10.1074/jbc.ra119.011185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHsps) are conserved, ubiquitous members of the proteostasis network. Canonically, they act as "holdases" and buffer unfolded or misfolded proteins against aggregation in an ATP-independent manner. Whereas bacteria and yeast each have only two sHsps in their genomes, this number is higher in metazoan genomes, suggesting a spatiotemporal and functional specialization in higher eukaryotes. Here, using recombinantly expressed and purified proteins, static light-scattering analysis, and disaggregation assays, we report that the noncanonical sHsp HSP-17 of Caenorhabditis elegans facilitates aggregation of model substrates, such as malate dehydrogenase (MDH), and inhibits disaggregation of luciferase in vitro Experiments with fluorescently tagged HSP-17 under the control of its endogenous promoter revealed that HSP-17 is expressed in the digestive and excretory organs, where its overexpression promotes the aggregation of polyQ proteins and of the endogenous kinase KIN-19. Systemic depletion of hsp-17 shortens C. elegans lifespan and severely reduces fecundity and survival upon prolonged heat stress. HSP-17 is an abundant protein exhibiting opposing chaperone activities on different substrates, indicating that it is a selective protein aggregase with physiological roles in development, digestion, and osmoregulation.
Collapse
Affiliation(s)
- Manuel Iburg
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Irving U Rosas-Brugada
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Linda Bergemann
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Ulrike Rieprecht
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Janine Kirstein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany; Faculty 2, Cell Biology, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.
| |
Collapse
|
190
|
Xiao L, Li H, Tian J, Jin N, Zhang J, Yang F, Zhou L, Wang Q, Huang Z. The Traditional Formula Kai-Xin-San Alleviates Polyglutamine-Mediated Neurotoxicity by Modulating Proteostasis Network in Caenorhabditis elegans. Rejuvenation Res 2020; 23:207-216. [PMID: 31985332 DOI: 10.1089/rej.2018.2149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The inherited polyglutamine (polyQ) expansion diseases are characterized by progressive accumulation of aggregation-prone polyQ proteins, which may provoke proteostasis imbalance and result in significant neurotoxicity. Using polyQ transgenic Caenorhabditis elegans models, we find that Kai-Xin-San (KXS), a well-known herbal formula traditionally used to treat mental disorders in China, can alleviate polyQ-mediated neuronal death and associated chemosensory deficiency. Intriguingly, KXS does not reduce polyQ aggregation in vitro as demonstrated by Thioflavin-T test, but does inhibit polyQ aggregation in C. elegans models, indicating an indirect aggregation-inhibitory mechanism. Further investigation reveals that KXS can modulate two key arms of the protein quality control system, that is, heat shock response and autophagy, to clear polyQ aggregates, but has little effect on proteasome activity. In addition, KXS is able to reduce oxidative stress, which is involved in proteostasis and neurodegeneration, but has no effect on life span or dietary restriction response. To examine potential interaction of the four component herbs of KXS, a dissection strategy was used to study the effects of differential herbal combinations in C. elegans polyQ models. While the four herbs do contribute additively to KXS function, Panax ginseng is found to be the most effective constituent. Taken together, these findings not only demonstrate the neuroprotective ability of KXS but also suggest its potential as a proteostasis regulator in protein aggregation disorders and provide an insight into the mechanism studies of traditionally used complex prescriptions and their rationality.
Collapse
Affiliation(s)
- Lingyun Xiao
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Center Lab of Longhua Branch, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Haifeng Li
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jing Tian
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
| | - Nanxiang Jin
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ju Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Fan Yang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ling Zhou
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiangqiang Wang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Research Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zebo Huang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Research Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
191
|
Park JS, Lee JY, Nguyen YTK, Kang NW, Oh EK, Jang DM, Kim HJ, Kim DD, Han BW. Structural Analyses on the Deamidation of N-Terminal Asn in the Human N-Degron Pathway. Biomolecules 2020; 10:biom10010163. [PMID: 31968674 PMCID: PMC7022378 DOI: 10.3390/biom10010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
The N-degron pathway is a proteolytic system in which a single N-terminal amino acid acts as a determinant of protein degradation. Especially, degradation signaling of N-terminal asparagine (Nt-Asn) in eukaryotes is initiated from its deamidation by N-terminal asparagine amidohydrolase 1 (NTAN1) into aspartate. Here, we have elucidated structural principles of deamidation by human NTAN1. NTAN1 adopts the characteristic scaffold of CNF1/YfiH-like cysteine hydrolases that features an α-β-β sandwich structure and a catalytic triad comprising Cys, His, and Ser. In vitro deamidation assays using model peptide substrates with varying lengths and sequences showed that NTAN1 prefers hydrophobic residues at the second-position. The structures of NTAN1-peptide complexes further revealed that the recognition of Nt-Asn is sufficiently organized to produce high specificity, and the side chain of the second-position residue is accommodated in a hydrophobic pocket adjacent to the active site of NTAN1. Collectively, our structural and biochemical analyses of the substrate specificity of NTAN1 contribute to understanding the structural basis of all three amidases in the eukaryotic N-degron pathway.
Collapse
Affiliation(s)
- Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Yen Thi Kim Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Nae-Won Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Eun Kyung Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Dong Man Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Dae-Duk Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
- Correspondence: ; Tel.: +82-2-880-7899
| |
Collapse
|
192
|
Vecchi G, Sormanni P, Mannini B, Vandelli A, Tartaglia GG, Dobson CM, Hartl FU, Vendruscolo M. Proteome-wide observation of the phenomenon of life on the edge of solubility. Proc Natl Acad Sci U S A 2020; 117:1015-1020. [PMID: 31892536 PMCID: PMC6969518 DOI: 10.1073/pnas.1910444117] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To function effectively proteins must avoid aberrant aggregation, and hence they are expected to be expressed at concentrations safely below their solubility limits. By analyzing proteome-wide mass spectrometry data of Caenorhabditis elegans, however, we show that the levels of about three-quarters of the nearly 4,000 proteins analyzed in adult animals are close to their intrinsic solubility limits, indeed exceeding them by about 10% on average. We next asked how aging and functional self-assembly influence these solubility limits. We found that despite the fact that the total quantity of proteins within the cellular environment remains approximately constant during aging, protein aggregation sharply increases between days 6 and 12 of adulthood, after the worms have reproduced, as individual proteins lose their stoichiometric balances and the cellular machinery that maintains solubility undergoes functional decline. These findings reveal that these proteins are highly prone to undergoing concentration-dependent phase separation, which on aging is rationalized in a decrease of their effective solubilities, in particular for proteins associated with translation, growth, reproduction, and the chaperone system.
Collapse
Affiliation(s)
- Giulia Vecchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Andrea Vandelli
- Gene Function and Evolution, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- CRG, BIST, 08003 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
- Department of Biology "Charles Darwin," Sapienza University of Rome, 00185 Rome, Italy
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom;
| |
Collapse
|
193
|
Owyong TC, Subedi P, Deng J, Hinde E, Paxman JJ, White JM, Chen W, Heras B, Wong WWH, Hong Y. A Molecular Chameleon for Mapping Subcellular Polarity in an Unfolded Proteome Environment. Angew Chem Int Ed Engl 2020; 59:10129-10135. [DOI: 10.1002/anie.201914263] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Tze Cin Owyong
- ARC Centre of Excellence in Exciton Science School of Chemistry Bio21 Institute The University of Melbourne Parkville VIC 3010 Australia
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Jieru Deng
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Elizabeth Hinde
- School of Physics Department of Biochemistry and Molecular Biology Bio21 Institute The University of Melbourne Melbourne VIC 3010 Australia
| | - Jason J. Paxman
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Jonathan M. White
- ARC Centre of Excellence in Exciton Science School of Chemistry Bio21 Institute The University of Melbourne Parkville VIC 3010 Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Wallace W. H. Wong
- ARC Centre of Excellence in Exciton Science School of Chemistry Bio21 Institute The University of Melbourne Parkville VIC 3010 Australia
| | - Yuning Hong
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|
194
|
Owyong TC, Subedi P, Deng J, Hinde E, Paxman JJ, White JM, Chen W, Heras B, Wong WWH, Hong Y. A Molecular Chameleon for Mapping Subcellular Polarity in an Unfolded Proteome Environment. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tze Cin Owyong
- ARC Centre of Excellence in Exciton Science School of Chemistry Bio21 Institute The University of Melbourne Parkville VIC 3010 Australia
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Jieru Deng
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Elizabeth Hinde
- School of Physics Department of Biochemistry and Molecular Biology Bio21 Institute The University of Melbourne Melbourne VIC 3010 Australia
| | - Jason J. Paxman
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Jonathan M. White
- ARC Centre of Excellence in Exciton Science School of Chemistry Bio21 Institute The University of Melbourne Parkville VIC 3010 Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Wallace W. H. Wong
- ARC Centre of Excellence in Exciton Science School of Chemistry Bio21 Institute The University of Melbourne Parkville VIC 3010 Australia
| | - Yuning Hong
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|
195
|
Abosheasha MA, Abd El Khalik EAM, El-Gowily AH. Indispensable Role of Protein Turnover in Autophagy, Apoptosis and Ubiquitination Pathways. HEAT SHOCK PROTEINS 2020:447-468. [DOI: 10.1007/7515_2020_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
196
|
Rostampour Ghareghozloo E, Mahdavimehr M, Meratan AA, Nikfarjam N, Ghasemi A, Katebi B, Nemat-Gorgani M. Role of surface oxygen-containing functional groups of graphene oxide quantum dots on amyloid fibrillation of two model proteins. PLoS One 2020; 15:e0244296. [PMID: 33362209 PMCID: PMC7757872 DOI: 10.1371/journal.pone.0244296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
There are many reports demonstrating that various derivatives of carbon nanoparticles are effective inhibitors of protein aggregation. As surface structural features of nanoparticles play a key role on modulating amyloid fibrillation process, in the present in vitro study, bovine insulin and hen egg white lysozyme (HEWL) were selected as two model proteins to investigate the reducing effect of graphene oxide quantum dots (GOQDs) on their assembly under amyloidogenic conditions. GOQDs were prepared through direct pyrolysis of citric acid, and the reduction step was carried out using ascorbic acid. The prepared nanoparticles were characterized by UV-Vis, X-ray photoelectron, and FT-IR spectroscopies, transmission electron and atomic force microscopies, zeta potential measurement, and Nile red fluorescence assay. They showed the tendencies to modulate the assembly of the proteins through different mechanisms. While GOQDs appeared to have the capacity to inhibit fibrillation, the presence of reduced GOQDs (rGOQDs) was found to promote protein assembly via shortening the nucleation phase, as suggested by ThT fluorescence data. Moreover, the structures produced in the presence of GOQDs or rGOQDs were totally nontoxic. We suggest that surface properties of these particles may be part of the differences in their mechanism(s) of action.
Collapse
Affiliation(s)
| | - Mohsen Mahdavimehr
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- * E-mail: ,
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bentolhoda Katebi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohsen Nemat-Gorgani
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States of America
| |
Collapse
|
197
|
Palanirajan SK, Gummadi SN. Heavy-Metals-Mediated Phospholipids Scrambling by Human Phospholipid Scramblase 3: A Probable Role in Mitochondrial Apoptosis. Chem Res Toxicol 2019; 33:553-564. [PMID: 31769662 DOI: 10.1021/acs.chemrestox.9b00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human phospholipid scramblases are a family of four homologous transmembrane proteins (hPLSCR1-4) mediating phospholipids (PLs) translocation in plasma membrane upon Ca2+ activation. hPLSCR3, the only homologue localized to mitochondria, plays a vital role in mitochondrial structure, function, maintenance, and apoptosis. Upon Ca2+ activation, hPLSCR3 mediates PL translocation at the mitochondrial membrane enhancing t-bid-induced cytochrome c release and apoptosis. Mitochondria are important target organelles for heavy-metals-induced apoptotic signaling cascade and are the central executioner of apoptosis to trigger. Pb2+ and Hg2+ toxicity mediates apoptosis by increased reactive oxygen species (ROS) and cytochrome c release from mitochondria. To discover the role of hPLSCR3 in heavy metal toxicity, hPLSCR3 was overexpressed as a recombinant protein in Escherichia coli Rosetta (DE3) and purified by affinity chromatography. The biochemical assay using synthetic proteoliposomes demonstrated that hPLSCR3 translocated aminophospholipids in the presence of micromolar concentrations of Pb2+ and Hg2+. A point mutation in the Ca2+-binding motif (F258V) led to a ∼60% loss in the functional activity and decreased binding affinities for Pb2+ and Hg2+ implying that the divalent heavy metal ions bind to the Ca2+-binding motif. This was further affirmed by the characteristic spectra observed with stains-all dye. The conformational changes upon heavy metal binding were monitored by circular dichroism, intrinsic tryptophan fluorescence, and light-scattering studies. Our results revealed that Pb2+ and Hg2+ bind to hPLSCR3 with higher affinity than Ca2+ thus mediating scramblase activity. To summarize, this is the first biochemical evidence for heavy metals binding to the mitochondrial membrane protein leading to bidirectional translocation of PLs specifically toward phosphatidylethanolamine.
Collapse
Affiliation(s)
- Santosh Kumar Palanirajan
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600 036 , India
| |
Collapse
|
198
|
Ntountoumi C, Vlastaridis P, Mossialos D, Stathopoulos C, Iliopoulos I, Promponas V, Oliver SG, Amoutzias GD. Low complexity regions in the proteins of prokaryotes perform important functional roles and are highly conserved. Nucleic Acids Res 2019; 47:9998-10009. [PMID: 31504783 PMCID: PMC6821194 DOI: 10.1093/nar/gkz730] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023] Open
Abstract
We provide the first high-throughput analysis of the properties and functional role of Low Complexity Regions (LCRs) in more than 1500 prokaryotic and phage proteomes. We observe that, contrary to a widespread belief based on older and sparse data, LCRs actually have a significant, persistent and highly conserved presence and role in many and diverse prokaryotes. Their specific amino acid content is linked to proteins with certain molecular functions, such as the binding of RNA, DNA, metal-ions and polysaccharides. In addition, LCRs have been repeatedly identified in very ancient, and usually highly expressed proteins of the translation machinery. At last, based on the amino acid content enriched in certain categories, we have developed a neural network web server to identify LCRs and accurately predict whether they can bind nucleic acids, metal-ions or are involved in chaperone functions. An evaluation of the tool showed that it is highly accurate for eukaryotic proteins as well.
Collapse
Affiliation(s)
- Chrysa Ntountoumi
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | - Panayotis Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | | | | | - Vasilios Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus
| | - Stephen G Oliver
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| |
Collapse
|
199
|
Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates. Proc Natl Acad Sci U S A 2019; 116:26057-26065. [PMID: 31772010 DOI: 10.1073/pnas.1914484116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein aggregation is a complex physiological process, primarily determined by stress-related factors revealing the hidden aggregation propensity of proteins that otherwise are fully soluble. Here we report a mechanism by which glycolytic glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana (AtGAPC1) is primed to form insoluble aggregates by the glutathionylation of its catalytic cysteine (Cys149). Following a lag phase, glutathionylated AtGAPC1 initiates a self-aggregation process resulting in the formation of branched chains of globular particles made of partially misfolded and totally inactive proteins. GSH molecules within AtGAPC1 active sites are suggested to provide the initial destabilizing signal. The following removal of glutathione by the formation of an intramolecular disulfide bond between Cys149 and Cys153 reinforces the aggregation process. Physiological reductases, thioredoxins and glutaredoxins, could not dissolve AtGAPC1 aggregates but could efficiently contrast their growth. Besides acting as a protective mechanism against overoxidation, S-glutathionylation of AtGAPC1 triggers an unexpected aggregation pathway with completely different and still unexplored physiological implications.
Collapse
|
200
|
Guo Q, He X, Li C, He Y, Peng Y, Zhang Y, Lu Y, Chen X, Zhang Y, Chen Q, Sun T, Jiang C. Dandelion-Like Tailorable Nanoparticles for Tumor Microenvironment Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901430. [PMID: 31728288 PMCID: PMC6839635 DOI: 10.1002/advs.201901430] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Indexed: 05/19/2023]
Abstract
Tumor-associated macrophages (TAMs) constitute over 50% of the number of cells within the tumor, playing a major role in tumor progression and invasion. Remodeling the tumor immune microenvironment by modulating TAM polarization has been emerging as a new and promising therapeutic strategy. However, the high interstitial fluid pressure and dense extracellular matrix lead to insufficient penetration of nanosized therapies. To overcome this dilemma, an acid-triggered size-changeable nanoparticle (aptamer/acid sensitive linker crosslinked DGL/zoledronic acid, i.e., Apt@(DGL-ZA) n NPs) with effective tumor distribution, extravasation, and penetration is designed. Dendrigraft poly-L-lysines (DGLs) which can induce tumor autophagy as mimics of natural abnormal proteins are crosslinked via a mild-acid-responsive linker (1,6-bis(4-formylbenzoyloxy) hexane). Long circulation property and tumor penetration are achieved simultaneously by catching DGLs in neutral pH while releasing them in the tumor's pH, like dandelion seeds in midair. The macrophage conditioning agent zoledronic acid (ZA) is loaded on DGLs by the charge attraction. A Tenascin-C targeting aptamer (GBI-10) is modified onto (DGL-ZA) n NPs for a tumor-homing effect. Apt@(DGL-ZA) n NPs show both enhanced penetration in in vitro 3D triple negative breast cancer spheroids and in vivo tumor tissues. Effective macrophage regulation, enhanced tumor autophagy, and excellent in vivo antitumor efficacy are achieved, suggesting this tactic as a significant antitumor strategy.
Collapse
Affiliation(s)
- Qin Guo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Xi He
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chao Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yongqing He
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yiying Peng
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yu Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yifei Lu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Xinli Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yujie Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qinjun Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|