151
|
Lambrus BG, Uetake Y, Clutario KM, Daggubati V, Snyder M, Sluder G, Holland AJ. p53 protects against genome instability following centriole duplication failure. J Cell Biol 2015; 210:63-77. [PMID: 26150389 PMCID: PMC4494000 DOI: 10.1083/jcb.201502089] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure.
Collapse
Affiliation(s)
- Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yumi Uetake
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael Snyder
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
152
|
Marshall WF. How Cells Measure Length on Subcellular Scales. Trends Cell Biol 2015; 25:760-768. [PMID: 26437596 DOI: 10.1016/j.tcb.2015.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
Cells are not just amorphous bags of enzymes, but precise and complex machines. With any machine, it is important that the parts be of the right size, yet our understanding of the mechanisms that control size of cellular structures remains at a rudimentary level in most cases. One problem with studying size control is that many cellular organelles have complex 3D structures that make their size hard to measure. Here we focus on linear structures within cells, for which the problem of size control reduces to the problem of length control. We compare and contrast potential mechanisms for length control to understand how cells solve simple geometry problems.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Systems and Synthetic Biology, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| |
Collapse
|
153
|
A Short CEP135 Splice Isoform Controls Centriole Duplication. Curr Biol 2015; 25:2591-6. [PMID: 26412126 DOI: 10.1016/j.cub.2015.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022]
Abstract
Centriole duplication is coordinated such that a single round of duplication occurs during each cell cycle. Disruption of this synchrony causes defects including supernumerary centrosomes in cancer and perturbed ciliary signaling [1-5]. To preserve the normal number of centrioles, the level, localization, and post-translational modification of centriole proteins is regulated so that, when centriole protein expression and/or activity are increased, centrioles self-assemble. Assembly is initiated by the formation of the cartwheel structure that comprises the base of centrioles [6-11]. SAS-6 constitutes the cartwheel, and SAS-6 levels remain low until centriole assembly is initiated at S phase onset [3, 12, 13]. CEP135 physically links to SAS-6 near the site of microtubule nucleation and binds to CPAP for triplet microtubule formation [13, 14]. We identify two distinct protein isoforms of CEP135 that antagonize each other to modulate centriole duplication: full-length CEP135 (CEP135(full)) promotes new assembly, whereas a short isoform, CEP135(mini), represses it. CEP135(mini) represses centriole duplication by limiting the centriolar localization of CEP135(full) binding proteins (SAS-6 and CPAP) and the pericentriolar localization of γ-tubulin. The CEP135 isoforms exhibit distinct and complementary centrosomal localization during the cell cycle. CEP135(mini) protein decreases from centrosomes upon anaphase onset. We suggest that the decrease in CEP135(mini) from centrosomes promotes centriole assembly. The repression of centriole duplication by a splice isoform of a protein that normally promotes it serves as a novel mechanism to limit centriole duplication.
Collapse
|
154
|
Abstract
It has become clear that the role of centrosomes extends well beyond that of important microtubule organizers. There is increasing evidence that they also function as coordination centres in eukaryotic cells, at which specific cytoplasmic proteins interact at high concentrations and important cell decisions are made. Accordingly, hundreds of proteins are concentrated at centrosomes, including cell cycle regulators, checkpoint proteins and signalling molecules. Nevertheless, several observations have raised the question of whether centrosomes are essential for many cell processes. Recent findings have shed light on the functions of centrosomes in animal cells and on the molecular mechanisms of centrosome assembly, in particular during mitosis. These advances should ultimately allow the in vitro reconstitution of functional centrosomes from their component proteins to unlock the secrets of these enigmatic organelles.
Collapse
|
155
|
Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 2015; 35:2711-22. [PMID: 26364601 PMCID: PMC4893635 DOI: 10.1038/onc.2015.332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 12/25/2022]
Abstract
Structural centrosome aberrations are frequently observed in early stage carcinomas, but their role in malignant transformation is poorly understood. Here, we examined the impact of overexpression of Ninein-like protein (Nlp) on the architecture of polarized epithelia in three-dimensional mammospheres. When Nlp was overexpressed to levels resembling those seen in human tumors, it formed striking centrosome-related bodies (CRBs), which sequestered Ninein and affected the kinetics of microtubule (MT) nucleation and release. In turn, the profound reorganization of the MT cytoskeleton resulted in mislocalization of several adhesion and junction proteins as well as the tumor suppressor Scribble, resulting in the disruption of epithelial polarity, cell-cell interactions and mammosphere architecture. Remarkably, cells harboring Nlp-CRBs displayed an enhanced proliferative response to epidermal growth factor. These results demonstrate that structural centrosome aberrations cause not only the disruption of epithelial polarity but also favor overproliferation, two phenotypes typically associated with human carcinomas.
Collapse
|
156
|
Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J Cell Biol 2015; 209:863-78. [PMID: 26101219 PMCID: PMC4477857 DOI: 10.1083/jcb.201502088] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of STIL activates Plk4, and the subsequent phosphorylation of STIL by Plk4 primes the binding of STIL to SAS6 to promote centriole assembly. Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle–regulated accumulation of STIL.
Collapse
Affiliation(s)
- Tyler C Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
157
|
Fujita H, Yoshino Y, Chiba N. Regulation of the centrosome cycle. Mol Cell Oncol 2015; 3:e1075643. [PMID: 27308597 PMCID: PMC4905396 DOI: 10.1080/23723556.2015.1075643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022]
Abstract
The centrosome, consisting of mother and daughter centrioles surrounded by the pericentriolar matrix (PCM), functions primarily as a microtubule organizing center (MTOC) in most animal cells. In dividing cells the centrosome duplicates once per cell cycle and its number and structure are highly regulated during each cell cycle to organize an effective bipolar spindle in the mitotic phase. Defects in the regulation of centrosome duplication lead to a variety of human diseases, including cancer, through abnormal cell division and inappropriate chromosome segregation. At the end of mitosis the daughter centriole disengages from the mother centriole. This centriole disengagement is an important licensing step for centrosome duplication. In S phase, one new daughter centriole forms perpendicular to each centriole. The centrosome recruits further PCM proteins in the late G2 phase and the two centrosomes separate at mitotic entry to form a bipolar spindle. Here, we summarize research findings in the field of centrosome biology, focusing on the mechanisms of regulation of the centrosome cycle in human cells.
Collapse
Affiliation(s)
- Hiroki Fujita
- Laboratory of Cancer Biology, Graduate School of Life Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Japan; Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku Sendai, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , 4-1 Seiryomachi Aoba-ku Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , 4-1 Seiryomachi Aoba-ku Sendai, Japan
| |
Collapse
|
158
|
Arquint C, Gabryjonczyk AM, Imseng S, Böhm R, Sauer E, Hiller S, Nigg EA, Maier T. STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife 2015; 4. [PMID: 26188084 PMCID: PMC4530586 DOI: 10.7554/elife.07888] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/17/2015] [Indexed: 01/14/2023] Open
Abstract
Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.
Collapse
Affiliation(s)
| | | | | | - Raphael Böhm
- Biozentrum, University of Basel, Basel, Switzerland
| | - Evelyn Sauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
159
|
The Centriole Cartwheel Protein SAS-6 in Trypanosoma brucei Is Required for Probasal Body Biogenesis and Flagellum Assembly. EUKARYOTIC CELL 2015; 14:898-907. [PMID: 26116214 DOI: 10.1128/ec.00083-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/22/2015] [Indexed: 01/06/2023]
Abstract
The centriole in eukaryotes functions as the cell's microtubule-organizing center (MTOC) to nucleate spindle assembly, and its biogenesis requires an evolutionarily conserved protein, SAS-6, which assembles the centriole cartwheel. Trypanosoma brucei, an early branching protozoan, possesses the basal body as its MTOC to nucleate flagellum biogenesis. However, little is known about the components of the basal body and their roles in basal body biogenesis and flagellum assembly. Here, we report that the T. brucei SAS-6 homolog, TbSAS-6, is localized to the mature basal body and the probasal body throughout the cell cycle. RNA interference (RNAi) of TbSAS-6 inhibited probasal body biogenesis, compromised flagellum assembly, and caused cytokinesis arrest. Surprisingly, overexpression of TbSAS-6 in T. brucei also impaired probasal body duplication and flagellum assembly, contrary to SAS-6 overexpression in humans, which produces supernumerary centrioles. Furthermore, we showed that depletion of T. brucei Polo-like kinase, TbPLK, or inhibition of TbPLK activity did not abolish TbSAS-6 localization to the basal body, in contrast to the essential role of Polo-like kinase in recruiting SAS-6 to centrioles in animals. Altogether, these results identified the essential role of TbSAS-6 in probasal body biogenesis and flagellum assembly and suggest the presence of a TbPLK-independent pathway governing basal body duplication in T. brucei.
Collapse
|
160
|
Balaji S. Internal symmetry in protein structures: prevalence, functional relevance and evolution. Curr Opin Struct Biol 2015; 32:156-66. [PMID: 26093245 DOI: 10.1016/j.sbi.2015.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Symmetry has been found at various levels of biological organization in the protein structural universe. Numerous evolutionary studies have proposed connections between internal symmetry within protein tertiary structures, quaternary associations and protein functions. Recent computational methods, such as SymD and CE-Symm, facilitate a large-scale detection of internal symmetry in protein structures. Based on the results from these methods, about 20% of SCOP folds, superfamilies and families are estimated to have structures with internal symmetry (Figure 1d). All-β and membrane proteins fold classes contain a relatively high number of unique instances of internal symmetry. In addition to the axis of symmetry, anecdotal evidence suggests that, the region of connection or contact between symmetric units could coincide with functionally relevant sites within a fold. General principles that underlie protein internal symmetry and their connections to protein structural integrity and functions remain to be elucidated.
Collapse
Affiliation(s)
- Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
161
|
Abstract
Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.
Collapse
Affiliation(s)
- Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, and
| | | | | |
Collapse
|
162
|
Rogala KB, Dynes NJ, Hatzopoulos GN, Yan J, Pong SK, Robinson CV, Deane CM, Gönczy P, Vakonakis I. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. eLife 2015; 4:e07410. [PMID: 26023830 PMCID: PMC4471805 DOI: 10.7554/elife.07410] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022] Open
Abstract
Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo. DOI:http://dx.doi.org/10.7554/eLife.07410.001 Most animal cells contain structures known as centrioles. Typically, a cell that is not dividing contains a pair of centrioles. But when a cell prepares to divide, the centrioles are duplicated. The two pairs of centrioles then organize the scaffolding that shares the genetic material equally between the newly formed cells at cell division. Centriole assembly is tightly regulated and abnormalities in this process can lead to developmental defects and cancer. Centrioles likely contain several hundred proteins, but only a few of these are strictly needed for centriole assembly. New centrioles usually assemble from a cartwheel-like arrangement of proteins, which includes a protein called SAS-6. In the worm Caenorhabditis elegans, SAS-6 associates with another protein called SAS-5. This interaction is essential for centrioles to form, but the reason behind this is not clearly understood. Now, Rogala et al. have used a range of techniques including X-ray crystallography, biophysics and studies of worm embryos to investigate the role of SAS-5 in C. elegans. These experiments revealed that SAS-5 proteins can interact with each other, via two regions of each protein termed a ‘coiled-coil’ and a previously unrecognized ‘Implico domain’. These regions drive the formation of assemblies that contain multiple SAS-5 proteins. Next, Rogala et al. asked whether SAS-5 assemblies are important for centriole duplication. Mutant worm embryos, in which SAS-5 proteins could not interact with one another, failed to form new centrioles. This resulted in defects with cell division. An independent study by Cottee, Muschalik et al. obtained similar results and found that the fruit fly equivalent of SAS-5, called Ana2, can also self-associate and this activity is required for centriole duplication. Further work is now needed to understand how SAS-5 and SAS-6 work with each other to form the initial framework at the core of centrioles. DOI:http://dx.doi.org/10.7554/eLife.07410.002
Collapse
Affiliation(s)
- Kacper B Rogala
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nicola J Dynes
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | - Jun Yan
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sheng Kai Pong
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
163
|
Guichard P, Hamel V, Neves A, Gönczy P. Isolation, cryotomography, and three-dimensional reconstruction of centrioles. Methods Cell Biol 2015; 129:191-209. [PMID: 26175440 DOI: 10.1016/bs.mcb.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Centrioles and basal bodies (referred to hereafter as centrioles for simplicity) are microtubule-based cylindrical organelles that are typically ∼450-nm long and ∼250nm in diameter. The centriole is composed of three distinct regions: the distal part characterized by microtubule doublets, the central core that harbors microtubule triplets, which are also present in the proximal part that also contains the cartwheel, a structure crucial for centriole assembly. The cartwheel was initially revealed by conventional electron microscopy of resin-embedded samples and is thought to impart the near universal ninefold symmetry of centrioles. Deciphering the native architecture of the cartwheel has proven challenging owing to its small dimensions and the difficulties in isolating it. Here, we present a method to purify and analyze the structure of the exceptionally long Trichonympha centriole by cryotomography and subtomogram averaging. Using this method, we revealed the native architecture of the proximal cartwheel-containing region at ∼40Å-resolution. This method can be applied as a general strategy for uncovering the structure of centrioles in other species.
Collapse
Affiliation(s)
- Paul Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Virginie Hamel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Aitana Neves
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
164
|
Mennella V, Hanna R, Kim M. Subdiffraction resolution microscopy methods for analyzing centrosomes organization. Methods Cell Biol 2015; 129:129-152. [PMID: 26175437 DOI: 10.1016/bs.mcb.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, we describe the current methods of examining the structure of centrosomes by fluorescence subdiffraction microscopy. By using recently developed microscopy techniques, centrosomal proteins can now be examined in cells with a resolution of only a few nanometers, a level of molecular detail beyond the reach of traditional cell biology methods as confocal and widefield microscopy. We emphasize imaging by three-dimensional structured illumination microscopy, stochastic optical reconstruction microscopy, and quantitative approaches to image data analysis.
Collapse
Affiliation(s)
- Vito Mennella
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
| | - Rachel Hanna
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Moshe Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
165
|
Cottee MA, Muschalik N, Johnson S, Leveson J, Raff JW, Lea SM. The homo-oligomerisation of both Sas-6 and Ana2 is required for efficient centriole assembly in flies. eLife 2015; 4:e07236. [PMID: 26002084 PMCID: PMC4471874 DOI: 10.7554/elife.07236] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Sas-6 and Ana2/STIL proteins are required for centriole duplication and the homo-oligomerisation properties of Sas-6 help establish the ninefold symmetry of the central cartwheel that initiates centriole assembly. Ana2/STIL proteins are poorly conserved, but they all contain a predicted Central Coiled-Coil Domain (CCCD). Here we show that the Drosophila Ana2 CCCD forms a tetramer, and we solve its structure to 0.8 Å, revealing that it adopts an unusual parallel-coil topology. We also solve the structure of the Drosophila Sas-6 N-terminal domain to 2.9 Å revealing that it forms higher-order oligomers through canonical interactions. Point mutations that perturb Sas-6 or Ana2 homo-oligomerisation in vitro strongly perturb centriole assembly in vivo. Thus, efficient centriole duplication in flies requires the homo-oligomerisation of both Sas-6 and Ana2, and the Ana2 CCCD tetramer structure provides important information on how these proteins might cooperate to form a cartwheel structure. DOI:http://dx.doi.org/10.7554/eLife.07236.001 Most animal cells contain structures known as centrioles. Typically, a cell that is not dividing contains a pair of centrioles. But when a cell prepares to divide, the centrioles are duplicated. The two pairs of centrioles then organize the scaffolding that shares the genetic material equally between the newly formed cells at cell division. Centriole assembly is tightly regulated and abnormalities in this process can lead to developmental defects and cancer. Centrioles likely contain several hundred proteins, but only a few of these are strictly needed for centriole assembly. New centrioles usually assemble from a cartwheel-like arrangement of proteins, which includes a protein called SAS-6. Previous work has suggested that in the fruit fly Drosophila melanogaster, Sas-6 can only form this cartwheel when another protein called Ana2 is also present, but the details of this process are unclear. Now, Cottee, Muschalik et al. have investigated potential features in the Ana2 protein that might be important for centriole assembly. These experiments revealed that a region in the Ana2 protein, called the ‘central coiled-coil domain’, is required to target Ana2 to centrioles. Furthermore, purified coiled-coil domains were found to bind together in groups of four (called tetramers). Cottee, Muschalik et al. then used a technique called X-ray crystallography to work out the three-dimensional structure of one of these tetramers and part of the Sas-6 protein with a high level of detail. These structures confirmed that Sas-6 proteins also associate with each other. When fruit flies were engineered to produce either Ana2 or Sas-6 proteins that cannot self-associate, the flies' cells were unable to efficiently make centrioles. Furthermore, an independent study by Rogala et al. found similar results for a protein that is related to Ana2: a protein called SAS-5 from the microscopic worm Caenorhabditis elegans. Further work is needed to understand how Sas-6 and Ana2 work with each other to form the cartwheel-like arrangement at the core of centrioles. DOI:http://dx.doi.org/10.7554/eLife.07236.002
Collapse
Affiliation(s)
- Matthew A Cottee
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nadine Muschalik
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Joanna Leveson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
166
|
Ross L, Normark BB. Evolutionary problems in centrosome and centriole biology. J Evol Biol 2015; 28:995-1004. [PMID: 25781035 PMCID: PMC4979663 DOI: 10.1111/jeb.12620] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/01/2023]
Abstract
Centrosomes have been an enigma to evolutionary biologists. Either they have been the subject of ill-founded speculation or they have been ignored. Here, we highlight evolutionary paradoxes and problems of centrosome and centriole evolution and seek to understand them in the light of recent advances in centrosome biology. Most evolutionary accounts of centrosome evolution have been based on the hypothesis that centrosomes are replicators, independent of the nucleus and cytoplasm. It is now clear, however, that this hypothesis is not tenable. Instead, centrosomes are formed de novo each cell division, with the presence of an old centrosome regulating, but not essential for, the assembly of a new one. Centrosomes are the microtubule-organizing centres of cells. They can potentially affect sensory and motor characters (as the basal body of cilia), as well as the movements of chromosomes during cell division. This latter role does not seem essential, however, except in male meiosis, and the reasons for this remain unclear. Although the centrosome is absent in some taxa, when it is present, its structure is extraordinarily conserved: in most taxa across eukaryotes, it does not appear to evolve at all. And yet a few insect groups display spectacular hypertrophy of the centrioles. We discuss how this might relate to the unusual reproductive system found in these insects. Finally, we discuss why the fate of centrosomes in sperm and early embryos might differ between different groups of animals.
Collapse
Affiliation(s)
- L Ross
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - B B Normark
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
167
|
Balestra FR, von Tobel L, Gönczy P. Paternally contributed centrioles exhibit exceptional persistence in C. elegans embryos. Cell Res 2015; 25:642-4. [PMID: 25906994 PMCID: PMC4423087 DOI: 10.1038/cr.2015.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Fernando R Balestra
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Lukas von Tobel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| |
Collapse
|
168
|
Hori A, Peddie CJ, Collinson LM, Toda T. Centriolar satellite- and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly. Mol Biol Cell 2015; 26:2005-19. [PMID: 25833712 PMCID: PMC4472012 DOI: 10.1091/mbc.e14-11-1561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 01/05/2023] Open
Abstract
Human Msd1/SSX2IP is a component of centriolar satellites and essential for microtubule anchoring to the centrosome. Anchoring defects lead to abnormal accumulation of centriolar components at centriolar satellites, which interferes with centriole assembly. Loss of Msd1/SSX2IP produces supernumerary centriole precursors specifically in tumor cells. Centriolar satellites are numerous electron-dense granules dispersed around the centrosome. Mutations in their components are linked to various human diseases, but their molecular roles remain elusive. In particular, the significance of spatial communication between centriolar satellites and the centrosome is unknown. hMsd1/SSX2IP localizes to both the centrosome and centriolar satellites and is required for tethering microtubules to the centrosome. Here we show that hMsd1/SSX2IP-mediated microtubule anchoring is essential for proper centriole assembly and duplication. On hMsd1/SSX2IP knockdown, the centriolar satellites become stuck at the microtubule minus end near the centrosome. Intriguingly, these satellites contain many proteins that normally localize to the centrosome. Of importance, microtubule structures, albeit not being anchored properly, are still required for the emergence of abnormal satellites, as complete microtubule depolymerization results in the disappearance of these aggregates from the vicinity of the centrosome. We highlighted, using superresolution and electron microscopy, that under these conditions, centriole structures are faulty. Remarkably, these cells are insensitive to Plk4 overproduction–induced ectopic centriole formation, yet they accelerate centrosome reduplication upon hydroxyurea arrest. Finally, the appearance of satellite aggregates is cancer cell specific. Together our findings provide novel insights into the mechanism of centriole assembly and microtubule anchoring.
Collapse
Affiliation(s)
- Akiko Hori
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Christopher J Peddie
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Lucy M Collinson
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Takashi Toda
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| |
Collapse
|
169
|
Avidor-Reiss T, Khire A, Fishman EL, Jo KH. Atypical centrioles during sexual reproduction. Front Cell Dev Biol 2015; 3:21. [PMID: 25883936 PMCID: PMC4381714 DOI: 10.3389/fcell.2015.00021] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 01/30/2023] Open
Abstract
Centrioles are conserved, self-replicating, microtubule-based, 9-fold symmetric subcellular organelles that are essential for proper cell division and function. Most cells have two centrioles and maintaining this number of centrioles is important for animal development and physiology. However, how animals gain their first two centrioles during reproduction is only partially understood. It is well established that in most animals, the centrioles are contributed to the zygote by the sperm. However, in humans and many animals, the sperm centrioles are modified in their structure and protein composition, or they appear to be missing altogether. In these animals, the origin of the first centrioles is not clear. Here, we review various hypotheses on how centrioles are gained during reproduction and describe specialized functions of the zygotic centrioles. In particular, we discuss a new and atypical centriole found in sperm and zygote, called the proximal centriole-like structure (PCL). We also discuss another type of atypical centriole, the "zombie" centriole, which is degenerated but functional. Together, the presence of centrioles, PCL, and zombie centrioles suggests a universal mechanism of centriole inheritance among animals and new causes of infertility. Since the atypical centrioles of sperm and zygote share similar functions with typical centrioles in somatic cells, they can provide unmatched insight into centriole biology.
Collapse
|
170
|
Fırat-Karalar EN, Stearns T. The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0460. [PMID: 25047614 DOI: 10.1098/rstb.2013.0460] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole 'origin of duplication' that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| |
Collapse
|
171
|
Abstract
Centrioles are among the largest protein-based structures found in most cell types, measuring approximately 250 nm in diameter and approximately 500 nm long in vertebrate cells. Here, we briefly review ultrastructural observations about centrioles and associated structures. At the core of most centrioles is a microtubule scaffold formed from a radial array of nine triplet microtubules. Beyond the microtubule triplets of the centriole, we discuss the critically important cartwheel structure and the more enigmatic luminal density, both found on the inside of the centriole. Finally, we discuss the connectors between centrioles, and the distal and subdistal appendages outside of the microtubule scaffold that reflect centriole age and impart special functions to the centriole. Most of the work we review has been done with electron microscopy or electron tomography of resin-embedded samples, but we also highlight recent work performed with cryoelectron microscopy, cryotomography and subvolume averaging. Significant opportunities remain in the description of centriolar structure, both in mapping of component proteins within the structure and in determining the effect of mutations on components that contribute to the structure and function of the centriole.
Collapse
Affiliation(s)
- Mark Winey
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Eileen O'Toole
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA The Boulder Laboratory for the 3D EM of Cells, Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
172
|
Abstract
The cartwheel is a subcentriolar structure consisting of a central hub and nine radially arranged spokes, located at the proximal end of the centriole. It appears at the initial stage of the centriole assembly process as the first ninefold symmetrical structure. The cartwheel was first described more than 50 years ago, but it is only recently that its pivotal role in establishing the ninefold symmetry of the centriole was demonstrated. Significant progress has since been made in understanding its fine structure and assembly mechanism. Most importantly, the central part of the cartwheel, from which the ninefold symmetry originates, is shown to form by self-association of nine dimers of the protein SAS-6. This finding, together with emerging data on other components of the cartwheel, has opened new avenues in centrosome biology.
Collapse
Affiliation(s)
- Masafumi Hirono
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
173
|
Abstract
Polo-like kinase 4 (Plk4) is a master regulator of centriole duplication and targets to centrioles through the association of its cryptic polo box domain with centriole receptors. In this issue of Structure, Shimanovskaya and colleagues unveil a new dimeric architecture of Plk4's cryptic polo box that reveals a conserved mechanism for centriole targeting of the kinase.
Collapse
Affiliation(s)
- Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
174
|
Azimzadeh J. Exploring the evolutionary history of centrosomes. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0453. [PMID: 25047607 DOI: 10.1098/rstb.2013.0453] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The centrosome is the main organizer of the microtubule cytoskeleton in animals, higher fungi and several other eukaryotic lineages. Centrosomes are usually located at the centre of cell in tight association with the nuclear envelope and duplicate at each cell cycle. Despite a great structural diversity between the different types of centrosomes, they are functionally equivalent and share at least some of their molecular components. In this paper, we explore the evolutionary origin of the different centrosomes, in an attempt to understand whether they are derived from an ancestral centrosome or evolved independently from the motile apparatus of distinct flagellated ancestors. We then discuss the evolution of centrosome structure and function within the animal lineage.
Collapse
Affiliation(s)
- Juliette Azimzadeh
- CNRS/Université Paris-Diderot, Institut Jacques Monod, 15 rue Hélène Brion, 75209 Paris cedex 13, France
| |
Collapse
|
175
|
Čajánek L, Glatter T, Nigg EA. The E3 ubiquitin ligase Mib1 regulates Plk4 and centriole biogenesis. J Cell Sci 2015; 128:1674-82. [PMID: 25795303 DOI: 10.1242/jcs.166496] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/18/2015] [Indexed: 02/02/2023] Open
Abstract
Centrioles function as core components of centrosomes and as basal bodies for the formation of cilia and flagella. Thus, effective control of centriole numbers is essential for embryogenesis, tissue homeostasis and genome stability. In mammalian cells, the centriole duplication cycle is governed by Polo-like kinase 4 (Plk4). Here, we identify the E3 ubiquitin ligase Mind bomb (Mib1) as a new interaction partner of Plk4. We show that Mib1 localizes to centriolar satellites but redistributes to centrioles in response to conditions that induce centriole amplification. The E3 ligase activity of Mib1 triggers ubiquitylation of Plk4 on multiple sites, causing the formation of Lys11-, Lys29- and Lys48-ubiquitin linkages. These modifications control the abundance of Plk4 and its ability to interact with centrosomal proteins, thus counteracting centriole amplification induced by excess Plk4. Collectively, these results identify the interaction between Mib1 and Plk4 as a new and important element in the control of centriole homeostasis.
Collapse
Affiliation(s)
- Lukas Čajánek
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Timo Glatter
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| |
Collapse
|
176
|
Venghateri JB, Jindal B, Panda D. The centrosome: a prospective entrant in cancer therapy. Expert Opin Ther Targets 2015; 19:957-72. [PMID: 25787715 DOI: 10.1517/14728222.2015.1018823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The centrosome plays an essential role in the cell cycle. The centrosome and its associated proteins assist in nucleating and organizing microtubules. A structural or a functional aberration in the centrosome is known to cause abnormal cell proliferation leading to tumors. Therefore, the centrosome is considered as a promising anti-cancer target. AREAS COVERED This review begins with a brief introduction to the centrosome and its role in the cell cycle. We elaborate on the centrosome-associated proteins that regulate microtubule dynamics. In addition, we discuss the centrosomal protein kinase targets such as cyclin-dependent, polo-like and aurora kinases. Inhibitors targeting these kinases are undergoing clinical trials for cancer chemotherapy. Further, we shed light on new approaches to target the centrosomal proteins for cancer therapy. EXPERT OPINION Insights into the functioning of the centrosomal proteins will be extremely beneficial in validating the centrosome as a target in cancer therapy. New strategies either as a single entity or in combination with current chemotherapeutic agents should be researched or exploited to reveal the promises that the centrosome holds for future cancer therapy.
Collapse
Affiliation(s)
- Jubina B Venghateri
- Indian Institute of Technology Bombay, IITB-Monash Research Academy , Powai, Mumbai 400076 , India
| | | | | |
Collapse
|
177
|
Brekhman V, Malik A, Haas B, Sher N, Lotan T. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC Genomics 2015; 16:74. [PMID: 25757467 PMCID: PMC4334923 DOI: 10.1186/s12864-015-1320-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/04/2015] [Indexed: 11/11/2022] Open
Abstract
Background The moon jellyfish Aurelia aurita is a widespread scyphozoan species that forms large seasonal blooms. Here we provide the first comprehensive view of the entire complex life of the Aurelia Red Sea strain by employing transcriptomic profiling of each stage from planula to mature medusa. Results A de novo transcriptome was assembled from Illumina RNA-Seq data generated from six stages throughout the Aurelia life cycle. Transcript expression profiling yielded clusters of annotated transcripts with functions related to each specific life-cycle stage. Free-swimming planulae were found highly enriched for functions related to cilia and microtubules, and the drastic morphogenetic process undergone by the planula while establishing the future body of the polyp may be mediated by specifically expressed Wnt ligands. Specific transcripts related to sensory functions were found in the strobila and the ephyra, whereas extracellular matrix functions were enriched in the medusa due to high expression of transcripts such as collagen, fibrillin and laminin, presumably involved in mesoglea development. The CL390-like gene, suggested to act as a strobilation hormone, was also highly expressed in the advanced strobila of the Red Sea species, and in the medusa stage we identified betaine-homocysteine methyltransferase, an enzyme that may play an important part in maintaining equilibrium of the medusa’s bell. Finally, we identified the transcription factors participating in the Aurelia life-cycle and found that 70% of these 487 identified transcription factors were expressed in a developmental-stage-specific manner. Conclusions This study provides the first scyphozoan transcriptome covering the entire developmental trajectory of the life cycle of Aurelia. It highlights the importance of numerous stage-specific transcription factors in driving morphological and functional changes throughout this complex metamorphosis, and is expected to be a valuable resource to the community. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1320-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, 31905, Haifa, Israel.
| | - Brian Haas
- Broad Institute of Massachusetts, Institute of Technology and Harvard, Cambridge, Massachusetts, USA.
| | - Noa Sher
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel. .,Bioinformatics Service Unit, University of Haifa, 31905, Haifa, Israel.
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| |
Collapse
|
178
|
Abstract
Centrosomes comprise two cylindrical centrioles embedded in the pericentriolar material (PCM). The PCM is an ordered assembly of large scaffolding molecules, providing an interaction platform for proteins involved in signalling, trafficking and most importantly microtubule nucleation and organization. In mitotic cells, centrosomes are located at the spindle poles, sites where spindle microtubules converge. However, certain cell types and organisms lack centrosomes, yet contain focused spindle poles, highlighting that despite their juxtaposition in cells, centrosomes and mitotic spindle poles are distinct physical entities. In the present paper, we discuss the origin of centrosomes and summarize their contribution to mitotic spindle assembly and cell division. We then describe the key molecular players that mediate centrosome attachment to mitotic spindle poles and explore why co-segregation of centrosomes and spindle poles into daughter cells is of potential benefit to organisms.
Collapse
Affiliation(s)
- Pavithra L Chavali
- *Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Isabel Peset
- *Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Fanni Gergely
- *Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| |
Collapse
|
179
|
Gaume X, Tassin AM, Ugrinova I, Mongelard F, Monier K, Bouvet P. Centrosomal nucleolin is required for microtubule network organization. Cell Cycle 2015; 14:902-19. [PMID: 25590348 PMCID: PMC4614815 DOI: 10.1080/15384101.2014.1000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022] Open
Abstract
Nucleolin is a pleiotropic protein involved in a variety of cellular processes. Although multipolar spindle formation has been observed after nucleolin depletion, the roles of nucleolin in centrosome regulation and functions have not been addressed. Here we report using immunofluorescence and biochemically purified centrosomes that nucleolin co-localized only with one of the centrioles during interphase which was further identified as the mature centriole. Upon nucleolin depletion, cells exhibited an amplification of immature centriole markers surrounded by irregular pericentrin staining; these structures were exempt from maturation markers and unable to nucleate microtubules. Furthermore, the microtubule network was disorganized in these cells, exhibiting frequent non-centrosomal microtubules. At the mature centriole a reduced kinetics in the centrosomal microtubule nucleation phase was observed in live silenced cells, as well as a perturbation of microtubule anchoring. Immunoprecipitation experiments showed that nucleolin belongs to protein complexes containing 2 key centrosomal proteins, γ-tubulin and ninein, involved in microtubule nucleation and anchoring steps. Altogether, our study uncovered a new role for nucleolin in restricting microtubule nucleation and anchoring at centrosomes in interphase cells.
Collapse
Affiliation(s)
- Xavier Gaume
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS, Université Paris Sud; Gif sur Yvette, France
| | - Iva Ugrinova
- Institute of Molecular Biology “Acad. Roumen Tsanev”; Bulgarian Academy of Sciences; Sofia, Bulgaria
| | - Fabien Mongelard
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Karine Monier
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Philippe Bouvet
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| |
Collapse
|
180
|
Molecular and cellular basis of autosomal recessive primary microcephaly. BIOMED RESEARCH INTERNATIONAL 2014; 2014:547986. [PMID: 25548773 PMCID: PMC4274849 DOI: 10.1155/2014/547986] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023]
Abstract
Autosomal recessive primary microcephaly (MCPH) is a rare hereditary neurodevelopmental disorder characterized by a marked reduction in brain size and intellectual disability. MCPH is genetically heterogeneous and can exhibit additional clinical features that overlap with related disorders including Seckel syndrome, Meier-Gorlin syndrome, and microcephalic osteodysplastic dwarfism. In this review, we discuss the key proteins mutated in MCPH. To date, MCPH-causing mutations have been identified in twelve different genes, many of which encode proteins that are involved in cell cycle regulation or are present at the centrosome, an organelle crucial for mitotic spindle assembly and cell division. We highlight recent findings on MCPH proteins with regard to their role in cell cycle progression, centrosome function, and early brain development.
Collapse
|
181
|
von Tobel L, Mikeladze-Dvali T, Delattre M, Balestra FR, Blanchoud S, Finger S, Knott G, Müller-Reichert T, Gönczy P. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans. PLoS Genet 2014; 10:e1004777. [PMID: 25412110 PMCID: PMC4238951 DOI: 10.1371/journal.pgen.1004777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023] Open
Abstract
Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. Centrioles are microtubule-based organelles critical for forming cilia, flagella and centrosomes. Centrioles are very stable, but how such stability is ensured is poorly understood. We identified sas-1 as a component that contributes to centriole stability in C. elegans. Centrioles that lack sas-1 function loose their integrity, and our analysis reveals that sas-1 is particularly important for sperm-derived centrioles. Moreover, we show that SAS-1 binds and stabilizes microtubules in human cells, together leading us to propose that SAS-1 acts by stabilizing centriolar microtubules. We identify C2CD3 as a human homolog of SAS-1. C2CD3 is needed for the presence of the distal part of centrioles in human cells, and we thus propose that this protein family is broadly needed to maintain centriole structure.
Collapse
Affiliation(s)
- Lukas von Tobel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Tamara Mikeladze-Dvali
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Marie Delattre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Fernando R. Balestra
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Simon Blanchoud
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Susanne Finger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Graham Knott
- BioEM Facility, School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Thomas Müller-Reichert
- Structural Cell Biology Group, Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
182
|
Shiratsuchi G, Takaoka K, Ashikawa T, Hamada H, Kitagawa D. RBM14 prevents assembly of centriolar protein complexes and maintains mitotic spindle integrity. EMBO J 2014; 34:97-114. [PMID: 25385835 PMCID: PMC4291483 DOI: 10.15252/embj.201488979] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Formation of a new centriole adjacent to a pre-existing centriole occurs only once per cell cycle. Despite being crucial for genome integrity, the mechanisms controlling centriole biogenesis remain elusive. Here, we identify RBM14 as a novel suppressor of assembly of centriolar protein complexes. Depletion of RBM14 in human cells induces ectopic formation of centriolar protein complexes through function of the STIL/CPAP complex. Intriguingly, the formation of such structures seems not to require the cartwheel structure that normally acts as a scaffold for centriole formation, whereas they can retain pericentriolar material and microtubule nucleation activity. Moreover, we find that, upon RBM14 depletion, a part of the ectopic centriolar protein complexes in turn assemble into structures more akin to centrioles, presumably by incorporating HsSAS-6, a cartwheel component, and cause multipolar spindle formation. We further demonstrate that such structures assemble in the cytoplasm even in the presence of pre-existing centrioles. This study sheds light on the possibility that ectopic formation of aberrant structures related to centrioles may contribute to genome instability and tumorigenesis.
Collapse
Affiliation(s)
- Gen Shiratsuchi
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima Shizuoka, Japan
| | - Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| | - Tomoko Ashikawa
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima Shizuoka, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| | - Daiju Kitagawa
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima Shizuoka, Japan
| |
Collapse
|
183
|
Nam HJ, Naylor RM, van Deursen JM. Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 2014; 25:65-73. [PMID: 25455111 DOI: 10.1016/j.tcb.2014.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/03/2023]
Abstract
Accurate segregation of duplicated chromosomes between two daughter cells depends on bipolar spindle formation, a metaphase state in which sister kinetochores are attached to microtubules emanating from opposite spindle poles. To ensure bi-orientation, cells possess surveillance systems that safeguard against microtubule-kinetochore attachment defects, including the spindle assembly checkpoint and the error correction machinery. However, recent developments have identified centrosome dynamics--that is, centrosome disjunction and poleward movement of duplicated centrosomes--as a central target for deregulation of bi-orientation in cancer cells. In this review, we discuss novel insights into the mechanisms that underlie centrosome dynamics and discuss how these mechanisms are perturbed in cancer cells to drive chromosome mis-segregation and advance neoplastic transformation.
Collapse
Affiliation(s)
- Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Naylor
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
184
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|
185
|
Zheng Y, Guo J, Li X, Xie Y, Hou M, Fu X, Dai S, Diao R, Miao Y, Ren J. An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes. Front Microbiol 2014; 5:573. [PMID: 25400627 PMCID: PMC4212687 DOI: 10.3389/fmicb.2014.00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases. However, the organelles are highly dynamic structures, making it difficult to identify the entire components. Here, we review the current knowledge of the identified protein components governing the organization and functioning of organelles, especially in human and yeast cells, and discuss the multi-localized protein components mediating the communication between organelles during cell division.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Junjie Guo
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xu Li
- Orthopaedic Department of Anhui Medical University Affiliated Provincial Hospital Hefei, China
| | - Yubin Xie
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Mingming Hou
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xuyang Fu
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Shengkun Dai
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Rucheng Diao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Yanyan Miao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Jian Ren
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| |
Collapse
|
186
|
Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat Genet 2014; 46:1283-1292. [PMID: 25344692 PMCID: PMC4676084 DOI: 10.1038/ng.3122] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Centrioles are essential for ciliogenesis. However, mutations in centriole biogenesis genes have been reported in primary microcephaly and Seckel syndrome, disorders without the hallmark clinical features of ciliopathies. Here we identify mutations in the master regulator of centriole duplication, the PLK4 kinase, and its substrate TUBGCP6 in patients with microcephalic primordial dwarfism and additional congenital anomalies including retinopathy, extending the human phenotype spectrum associated with centriole dysfunction. Furthermore, we establish that different levels of impaired PLK4 activity result in growth and cilia phenoptyes, providing a mechanism by which microcephaly disorders can occur with or without ciliopathic features.
Collapse
|
187
|
Ohta M, Ashikawa T, Nozaki Y, Kozuka-Hata H, Goto H, Inagaki M, Oyama M, Kitagawa D. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat Commun 2014; 5:5267. [PMID: 25342035 PMCID: PMC4220463 DOI: 10.1038/ncomms6267] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023] Open
Abstract
Formation of one procentriole next to each pre-existing centriole is essential for centrosome duplication, robust bipolar spindle assembly and maintenance of genome integrity. However, the mechanisms maintaining strict control over centriole copy number are incompletely understood. Here we show that Plk4 and STIL, the key regulators of centriole formation, form a protein complex that provides a scaffold for recruiting HsSAS-6, a major component of the centriolar cartwheel, at the onset of procentriole formation. Furthermore, we demonstrate that phosphorylation of STIL by Plk4 facilitates the STIL/HsSAS-6 interaction and centriolar loading of HsSAS-6. We also provide evidence that negative feedback by centriolar STIL regulates bimodal centriolar distribution of Plk4 and seemingly restricts occurrence of procentriole formation to one site on each parental centriole. Overall, these findings suggest a mechanism whereby coordinated action of three critical factors ensures formation of a single procentriole per parental centriole. Centrosome duplication requires a cartwheel-shaped protein complex containing the protein HsSAS-6, which acts as a template for centriole assembly. Ohta et al. show that HsSAS-6 is recruited to this structure by STIL and Plk4, and reveal that Plk4 phosphorylates STIL, stabilizing its interaction with HsSAS-6.
Collapse
Affiliation(s)
- Midori Ohta
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tomoko Ashikawa
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yuka Nozaki
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Daiju Kitagawa
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
188
|
Hamel V, Guichard P, Fournier M, Guiet R, Flückiger I, Seitz A, Gönczy P. Correlative multicolor 3D SIM and STORM microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:3326-36. [PMID: 25360353 PMCID: PMC4206305 DOI: 10.1364/boe.5.003326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 05/25/2023]
Abstract
Within the last decade, super-resolution methods that surpass the diffraction limit of light microscopy have provided invaluable insight into a variety of biological questions. Each of these approaches has inherent advantages and limitations, such that their combination is a powerful means to transform them into versatile tools for the life sciences. Here, we report the development of a combined SIM and STORM setup that maintains the optimal resolution of both methods and which is coupled to image registration to localize biological structures in 3D using multicolor labeling. We utilized this workflow to determine the localization of Bld12p/CrSAS-6 in purified basal bodies of Chlamydomonas reinhardtii with utmost precision, demonstrating its usefulness for accurate molecular mapping in 3D.
Collapse
Affiliation(s)
- Virginie Hamel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- These authors contributed equally to this work
| | - Paul Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- These authors contributed equally to this work
| | - Mathias Fournier
- Bioimaging and Optics platform (BIOP), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- These authors contributed equally to this work
| | - Romain Guiet
- Bioimaging and Optics platform (BIOP), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Isabelle Flückiger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arne Seitz
- Bioimaging and Optics platform (BIOP), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
189
|
Chavali PL, Pütz M, Gergely F. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130468. [PMID: 25047622 PMCID: PMC4113112 DOI: 10.1098/rstb.2013.0468] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The centrosome, a key microtubule organizing centre, is composed of centrioles, embedded in a protein-rich matrix. Centrosomes control the internal spatial organization of somatic cells, and as such contribute to cell division, cell polarity and migration. Upon exiting the cell cycle, most cell types in the human body convert their centrioles into basal bodies, which drive the assembly of primary cilia, involved in sensing and signal transduction at the cell surface. Centrosomal genes are targeted by mutations in numerous human developmental disorders, ranging from diseases exclusively affecting brain development, through global growth failure syndromes to diverse pathologies associated with ciliary malfunction. Despite our much-improved understanding of centrosome function in cellular processes, we know remarkably little of its role in the organismal context, especially in mammals. In this review, we examine how centrosome dysfunction impacts on complex physiological processes and speculate on the challenges we face when applying knowledge generated from in vitro and in vivo model systems to human development.
Collapse
Affiliation(s)
- Pavithra L Chavali
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Monika Pütz
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
190
|
Shimanovskaya E, Viscardi V, Lesigang J, Lettman MM, Qiao R, Svergun DI, Round A, Oegema K, Dong G. Structure of the C. elegans ZYG-1 cryptic polo box suggests a conserved mechanism for centriolar docking of Plk4 kinases. Structure 2014; 22:1090-1104. [PMID: 24980795 PMCID: PMC4126857 DOI: 10.1016/j.str.2014.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 01/10/2023]
Abstract
Plk4 family kinases control centriole assembly. Plk4s target mother centrioles through an interaction between their cryptic polo box (CPB) and acidic regions in the centriolar receptors SPD-2/Cep192 and/or Asterless/Cep152. Here, we report a crystal structure for the CPB of C. elegans ZYG-1, which forms a Z-shaped dimer containing an intermolecular β sheet with an extended basic surface patch. Biochemical and in vivo analysis revealed that electrostatic interactions dock the ZYG-1 CPB basic patch onto the SPD-2-derived acidic region to promote ZYG-1 targeting and new centriole assembly. Analysis of a different crystal form of the Drosophila Plk4 (DmPlk4) CPB suggests that it also forms a Z-shaped dimer. Comparison of the ZYG-1 and DmPlk4 CPBs revealed structural changes in the ZYG-1 CPB that confer selectivity for binding SPD-2 over Asterless-derived acidic regions. Overall, our findings suggest a conserved mechanism for centriolar docking of Plk4 homologs that initiate daughter centriole assembly.
Collapse
Affiliation(s)
| | - Valeria Viscardi
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Johannes Lesigang
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Molly M Lettman
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renping Qiao
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France; Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
191
|
Balestra F, Gönczy P. Multiciliogenesis: Multicilin Directs Transcriptional Activation of Centriole Formation. Curr Biol 2014; 24:R746-9. [DOI: 10.1016/j.cub.2014.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
192
|
Firat-Karalar EN, Sante J, Elliott S, Stearns T. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J Cell Sci 2014; 127:4128-33. [PMID: 25074808 DOI: 10.1242/jcs.157008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Centrioles are evolutionarily conserved microtubule-based structures at the core of the animal centrosome that are essential for nucleating the axoneme of cilia. We hypothesized that centriole proteins have been under-represented in proteomic studies of the centrosome, because of the larger amount of pericentriolar material making up the centrosome. In this study, we have overcome this problem by determining the centriolar proteome of mammalian sperm cells, which have a pair of centrioles but little pericentriolar material. Mass spectrometry of sperm centrioles identifies known components of centrioles and many previously uncharacterized candidate centriole proteins. Assessment of localization of a subset of these candidates in cultured cells identified CCDC113, CCDC96, C4orf47, CCDC38, C7orf31, CCDC146, CCDC81 and CCDC116 as centrosome-associated proteins. We examined the highly conserved protein CCDC113 further and found that it is a component of centriolar satellites, is in a complex with the satellite proteins HAP1 and PCM1, and functions in primary cilium formation.
Collapse
Affiliation(s)
| | - Joshua Sante
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Sarah Elliott
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Department of Genetics, Stanford School of Medicine, Stanford, CA 94305-5120, USA
| |
Collapse
|
193
|
Elserafy M, Šarić M, Neuner A, Lin TC, Zhang W, Seybold C, Sivashanmugam L, Schiebel E. Molecular Mechanisms that Restrict Yeast Centrosome Duplication to One Event per Cell Cycle. Curr Biol 2014; 24:1456-66. [DOI: 10.1016/j.cub.2014.05.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 12/29/2022]
|
194
|
Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat Struct Mol Biol 2014; 21:696-703. [PMID: 24997597 PMCID: PMC4125498 DOI: 10.1038/nsmb.2846] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/29/2014] [Indexed: 01/07/2023]
Abstract
Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, an event critical for the maintenance of genomic integrity. Here we showed that Plk4 relocalizes from the inner Cep192 ring to the outer Cep152 ring as newly recruited Cep152 assembles around the Cep192-encircled daughter centriole. Crystal structure analyses revealed that Cep192 - and Cep152-derived peptides bind the cryptic polo box (CPB) of Plk4 in opposite orientations and in a mutually exclusive manner. The Cep152-peptide bound to the CPB markedly better than the Cep192-peptide and effectively snatched the CPB away from a preformed CPB–Cep192-peptide complex. A cancer-associated Cep152 mutation impairing the Plk4 interaction induced defects in procentriole assembly and chromosome segregation. Thus, Plk4 is intricately regulated in time and space through ordered interactions with two distinct scaffolds, Cep192 and Cep152, and a failure in this process may lead to human cancer.
Collapse
|
195
|
Khan MA, Rupp VM, Orpinell M, Hussain MS, Altmüller J, Steinmetz MO, Enzinger C, Thiele H, Höhne W, Nürnberg G, Baig SM, Ansar M, Nürnberg P, Vincent JB, Speicher MR, Gönczy P, Windpassinger C. A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family. Hum Mol Genet 2014; 23:5940-9. [DOI: 10.1093/hmg/ddu318] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
196
|
The centrosome duplication cycle in health and disease. FEBS Lett 2014; 588:2366-72. [DOI: 10.1016/j.febslet.2014.06.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/25/2022]
|
197
|
Gottardo M, Callaini G, Riparbelli MG. Procentriole assembly without centriole disengagement - a paradox of male gametogenesis. J Cell Sci 2014; 127:3434-9. [PMID: 24938597 DOI: 10.1242/jcs.152843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Disengagement of parent centrioles represents the licensing process to restrict centriole duplication exactly once during the cell cycle. However, we provide compelling evidence that this general rule is overridden in insect gametogenesis, when distinct procentrioles are generated during prophase of the first meiosis while parent centrioles are still engaged. Moreover, the number of procentrioles increases during the following meiotic divisions, and up to four procentrioles were found at the base of each mother centriole. However, procentrioles fail to organize a complete set of A-tubules and are thus unable to function as a template for centriole formation. Such a system, in which procentrioles form but halt growth, represents a unique model to analyze the process of cartwheel assembly and procentriole formation.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | | |
Collapse
|
198
|
Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc Natl Acad Sci U S A 2014; 111:E2636-45. [PMID: 24979791 DOI: 10.1073/pnas.1404855111] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosomes are highly dynamic, spherical organelles without a membrane. Their physical nature and their assembly are not understood. Using the concept of phase separation, we propose a theoretical description of centrosomes as liquid droplets. In our model, centrosome material occurs in a form soluble in the cytosol and a form that tends to undergo phase separation from the cytosol. We show that an autocatalytic chemical transition between these forms accounts for the temporal evolution observed in experiments. Interestingly, the nucleation of centrosomes can be controlled by an enzymatic activity of the centrioles, which are present at the core of all centrosomes. This nonequilibrium feature also allows for multiple stable centrosomes, a situation that is unstable in equilibrium phase separation. Our theory explains the growth dynamics of centrosomes for all cell sizes down to the eight-cell stage of the Caenorhabditis elegans embryo, and it also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, the model can describe unequal centrosome sizes observed in cells with perturbed centrioles. We also propose an interpretation of the molecular details of the involved proteins in the case of C. elegans. Our example suggests a general picture of the organization of membraneless organelles.
Collapse
|
199
|
Slevin LK, Romes EM, Dandulakis MG, Slep KC. The mechanism of dynein light chain LC8-mediated oligomerization of the Ana2 centriole duplication factor. J Biol Chem 2014; 289:20727-39. [PMID: 24920673 DOI: 10.1074/jbc.m114.576041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Centrioles play a key role in nucleating polarized microtubule networks. In actively dividing cells, centrioles establish the bipolar mitotic spindle and are essential for genomic stability. Drosophila anastral spindle-2 (Ana2) is a conserved centriole duplication factor. Although recent work has demonstrated that an Ana2-dynein light chain (LC8) centriolar complex is critical for proper spindle positioning in neuroblasts, how Ana2 and LC8 interact is yet to be established. Here we examine the Ana2-LC8 interaction and map two LC8-binding sites within the central region of Ana2, Ana2M (residues 156-251). Ana2 LC8-binding site 1 contains a signature TQT motif and robustly binds LC8 (KD of 1.1 μm), whereas site 2 contains a TQC motif and binds LC8 with lower affinity (KD of 13 μm). Both LC8-binding sites flank a predicted ~34-residue α-helix. We present two independent atomic structures of LC8 dimers in complex with Ana2 LC8-binding site 1 and site 2 peptides. The Ana2 peptides form β-strands that extend a central composite LC8 β-sandwich. LC8 recognizes the signature TQT motif in the first LC8 binding site of Ana2, forming extensive van der Waals contacts and hydrogen bonding with the peptide, whereas the Ana2 site 2 TQC motif forms a uniquely extended β-strand, not observed in other dynein light chain-target complexes. Size exclusion chromatography coupled with multiangle static light scattering demonstrates that LC8 dimers bind Ana2M sites and induce Ana2 tetramerization, yielding an Ana2M4-LC88 complex. LC8-mediated Ana2 oligomerization probably enhances Ana2 avidity for centriole-binding factors and may bridge multiple factors as required during spindle positioning and centriole biogenesis.
Collapse
Affiliation(s)
| | - Erin M Romes
- Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | | |
Collapse
|
200
|
Abstract
Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly.
Collapse
Affiliation(s)
- Chad G Pearson
- University of Colorado, Anschutz Medical Campus, Department of Cell and Developmental Biology, 12801 E. 17th Avenue, Room 12104, Aurora, CO 80045, USA
| |
Collapse
|