151
|
Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 2014; 144:268-82. [PMID: 24945828 PMCID: PMC4591072 DOI: 10.1016/j.pharmthera.2014.06.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Several neurodegenerative diseases involve loss of catecholamine neurons-Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of "autotoxicity"-inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the "catecholaldehyde hypothesis" for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
152
|
Couceiro JR, Gallardo R, De Smet F, De Baets G, Baatsen P, Annaert W, Roose K, Saelens X, Schymkowitz J, Rousseau F. Sequence-dependent internalization of aggregating peptides. J Biol Chem 2014; 290:242-58. [PMID: 25391649 DOI: 10.1074/jbc.m114.586636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, a number of aggregation disease polypeptides have been shown to spread from cell to cell, thereby displaying prionoid behavior. Studying aggregate internalization, however, is often hampered by the complex kinetics of the aggregation process, resulting in the concomitant uptake of aggregates of different sizes by competing mechanisms, which makes it difficult to isolate pathway-specific responses to aggregates. We designed synthetic aggregating peptides bearing different aggregation propensities with the aim of producing modes of uptake that are sufficiently distinct to differentially analyze the cellular response to internalization. We found that small acidic aggregates (≤500 nm in diameter) were taken up by nonspecific endocytosis as part of the fluid phase and traveled through the endosomal compartment to lysosomes. By contrast, bigger basic aggregates (>1 μm) were taken up through a mechanism dependent on cytoskeletal reorganization and membrane remodeling with the morphological hallmarks of phagocytosis. Importantly, the properties of these aggregates determined not only the mechanism of internalization but also the involvement of the proteostatic machinery (the assembly of interconnected networks that control the biogenesis, folding, trafficking, and degradation of proteins) in the process; whereas the internalization of small acidic aggregates is HSF1-independent, the uptake of larger basic aggregates was HSF1-dependent, requiring Hsp70. Our results show that the biophysical properties of aggregates determine both their mechanism of internalization and proteostatic response. It remains to be seen whether these differences in cellular response contribute to the particular role of specific aggregated proteins in disease.
Collapse
Affiliation(s)
- José R Couceiro
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Rodrigo Gallardo
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Frederik De Smet
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Greet De Baets
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Pieter Baatsen
- the Electron Microscopy Facility (EMoNe), KU Leuven Centre for Human Genetics, B-3000 Leuven, Belgium, the VIB BIO Imaging Core, VIB, B-3000 Leuven, Belgium
| | - Wim Annaert
- the Laboratory for Membrane Trafficking, KU Leuven and VIB-Centre for the Biology of Disease, B-3000 Leuven, Belgium
| | - Kenny Roose
- the VIB Inflammation Research Center, 9052 Ghent, Belgium, and the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Xavier Saelens
- the VIB Inflammation Research Center, 9052 Ghent, Belgium, and the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Joost Schymkowitz
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Frederic Rousseau
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium,
| |
Collapse
|
153
|
Marreiros R, Müller-Schiffmann A, Bader V, Selvarajah S, Dey D, Lingappa VR, Korth C. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets. Virus Res 2014; 207:155-64. [PMID: 25451064 DOI: 10.1016/j.virusres.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022]
Abstract
Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation therapeutics. A key basis for the commonality between viral and neurodegenerative disease aggregation is a broader definition of assembly as more than just simple aggregation, particularly suited for the crowded cytoplasm. The assembly machines are collections of proteins that catalytically accelerate an assembly reaction that would occur spontaneously but too slowly to be relevant in vivo. Being an enzyme complex with a functional allosteric site, appropriated for a non-physiological purpose (e.g. viral infection or conformational disease), these assembly machines present a superior pharmacological target because inhibition of their active site will amplify an effect on their substrate reaction. Here, we present this hypothesis based on recent proof-of-principle studies against Aβ assembly relevant in Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Marreiros
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Andreas Müller-Schiffmann
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verian Bader
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | - Carsten Korth
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
154
|
Koob AO, Shaked GM, Bender A, Bisquertt A, Rockenstein E, Masliah E. Neurogranin binds α-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson's disease. Brain Res 2014; 1591:102-10. [PMID: 25446004 DOI: 10.1016/j.brainres.2014.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/26/2022]
Abstract
Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson's disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson's disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson's disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson's disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory.
Collapse
Affiliation(s)
- Andrew O Koob
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States; Departments of Psychiatry, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States.
| | - Gideon M Shaked
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Andreas Bender
- Department of Neurology, University of Munich, Klinikum der Universität München-Großhadern, 81377 München, Germany
| | - Alejandro Bisquertt
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Edward Rockenstein
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Eliezer Masliah
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States; Departments of Pathology, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States.
| |
Collapse
|
155
|
De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: From structural research tools to therapeutic strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1907-1919. [PMID: 25194824 DOI: 10.1016/j.bbapap.2014.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
156
|
Intracellular processing of disease-associated α-synuclein in the human brain suggests prion-like cell-to-cell spread. Neurobiol Dis 2014; 69:76-92. [DOI: 10.1016/j.nbd.2014.05.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/29/2014] [Accepted: 05/17/2014] [Indexed: 01/13/2023] Open
|
157
|
Eleuteri S, Di Giovanni S, Rockenstein E, Mante M, Adame A, Trejo M, Wrasidlo W, Wu F, Fraering PC, Masliah E, Lashuel HA. Novel therapeutic strategy for neurodegeneration by blocking Aβ seeding mediated aggregation in models of Alzheimer's disease. Neurobiol Dis 2014; 74:144-57. [PMID: 25173807 DOI: 10.1016/j.nbd.2014.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 07/14/2014] [Accepted: 08/10/2014] [Indexed: 11/24/2022] Open
Abstract
Aβ accumulation plays a central role in the pathogenesis of Alzheimer's disease (AD). Recent studies suggest that the process of Aβ nucleated polymerization is essential for Aβ fibril formation, pathology spreading and toxicity. Therefore, targeting this process represents an effective therapeutic strategy to slow or block disease progression. To discover compounds that might interfere with the Aβ seeding capacity, toxicity and pathology spreading, we screened a focused library of FDA-approved drugs in vitro using a seeding polymerization assay and identified small molecule inhibitors that specifically interfered with Aβ seeding-mediated fibril growth and toxicity. Mitoxantrone, bithionol and hexachlorophene were found to be the strongest inhibitors of fibril growth and protected primary cortical neuronal cultures against Aβ-induced toxicity. Next, we assessed the effects of these three inhibitors in vivo in the mThy1-APPtg mouse model of AD (8-month-old mice). We found that mitoxantrone and bithionol, but not hexachlorophene, stabilized diffuse amyloid plaques, reduced the levels of Aβ42 oligomers and ameliorated synapse loss, neuronal damage and astrogliosis. Together, our findings suggest that targeting fibril growth and Aβ seeding capacity constitutes a viable and effective strategy for protecting against neurodegeneration and disease progression in AD.
Collapse
Affiliation(s)
- Simona Eleuteri
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Saviana Di Giovanni
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Edward Rockenstein
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mike Mante
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Antony Adame
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Margarita Trejo
- Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Wolf Wrasidlo
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Fang Wu
- Laboratory of Molecular and Cellular Biology of Alzheimer's Disease, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Patrick C Fraering
- Laboratory of Molecular and Cellular Biology of Alzheimer's Disease, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Laboratory of Molecular and Cellular Biology of Alzheimer's Disease, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland.
| |
Collapse
|
158
|
Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein. Nat Commun 2014; 5:4755. [PMID: 25156829 DOI: 10.1038/ncomms5755] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Deposition of α-synuclein aggregates occurs widely in the central and peripheral nervous systems in Parkinson's disease (PD). Although recent evidence has suggested that cell-to-cell transmission of α-synuclein aggregates is associated with the progression of PD, the mechanism by which α-synuclein aggregates spread remains undefined. Here, we show that α-synuclein aggregates are transmitted from cell to cell through a cycle involving uptake of external aggregates, co-aggregation with endogenous α-synuclein and exocytosis of the co-aggregates. Moreover, we find that glucocerebrosidase depletion, which has previously been strongly associated with PD and increased cognitive impairment, promotes propagation of α-synuclein aggregates. These studies define how α-synuclein aggregates spread among neuronal cells and may provide an explanation for how glucocerebrosidase mutations increase the risk of developing PD and other synucleinopathies.
Collapse
|
159
|
Sekiyama K, Waragai M, Akatsu H, Sugama S, Takenouchi T, Takamatsu Y, Fujita M, Sekigawa A, Rockenstein E, Inoue S, La Spada AR, Masliah E, Hashimoto M. Disease-Modifying Effect of Adiponectin in Model of α-Synucleinopathies. Ann Clin Transl Neurol 2014; 1:479-489. [PMID: 25126588 PMCID: PMC4128281 DOI: 10.1002/acn3.77] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective Growing evidence suggests that neurodegenerative diseases are associated with metabolic disorders, but the mechanisms are still unclear. Better comprehension of this issue might provide a new strategy for treatment of neurodegenerative diseases. We investigated possible roles of adiponectin (APN), the antidiabetes protein, in the pathogenesis of α-synucleinopathies. Methods Using biochemical and histological methods, we investigated autopsy brain of α-synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and analyzed the effects of APN in cellular and in mouse models of α-synucleinopathies. Results We observed that APN is localized in Lewy bodies derived from α-synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies. In neuronal cells expressing α-synuclein (αS), aggregation of αS was suppressed by treatment with recombinant APN in an AdipoRI-AMP kinase pathway-dependent manner. Concomitantly, phosphorylation and release of αS were significantly decreased by APN, suggesting that APN may be antineurodegenerative. In transgenic mice expressing αS, both histopathology and movement disorder were significantly improved by intranasal treatment with globular APN when the treatment was initiated in the early stage of the disease. In a mouse model, reduced levels of guanosine and inosine monophosphates, both of which are potential stimulators of aggregation of αS, might partly contribute to suppression of aggregation of αS by APN. Interpretation Taken together, APN may suppress neurodegeneration through modification of the metabolic pathway, and could possess a therapeutic potential against α-synucleinopathies.
Collapse
Affiliation(s)
- Kazunari Sekiyama
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, Aichi 441-8124, Japan
| | - Shuei Sugama
- Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo 113-8602, Japan
| | - Takato Takenouchi
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Masayo Fujita
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Akio Sekigawa
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
| | - Satoshi Inoue
- Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 156-0057, Japan
| | - Albert R La Spada
- Division of Genetics, Department of Pediatrics, Department of Cellular and Molecular Medicine, the Institute for Genomic Medicine, and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA ; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| |
Collapse
|
160
|
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014; 15:384-96. [PMID: 24854788 DOI: 10.1038/nrm3810] [Citation(s) in RCA: 1648] [Impact Index Per Article: 164.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phenomenon of protein aggregation and amyloid formation has become the subject of rapidly increasing research activities across a wide range of scientific disciplines. Such activities have been stimulated by the association of amyloid deposition with a range of debilitating medical disorders, from Alzheimer's disease to type II diabetes, many of which are major threats to human health and welfare in the modern world. It has become clear, however, that the ability to form the amyloid state is more general than previously imagined, and that its study can provide unique insights into the nature of the functional forms of peptides and proteins, as well as understanding the means by which protein homeostasis can be maintained and protein metastasis avoided.
Collapse
Affiliation(s)
- Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
161
|
Sugeno N, Hasegawa T, Tanaka N, Fukuda M, Wakabayashi K, Oshima R, Konno M, Miura E, Kikuchi A, Baba T, Anan T, Nakao M, Geisler S, Aoki M, Takeda A. Lys-63-linked ubiquitination by E3 ubiquitin ligase Nedd4-1 facilitates endosomal sequestration of internalized α-synuclein. J Biol Chem 2014; 289:18137-51. [PMID: 24831002 DOI: 10.1074/jbc.m113.529461] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
α-Synuclein (aS) is a major constituent of Lewy bodies, which are not only a pathological marker for Parkinson disease but also a trigger for neurodegeneration. Cumulative evidence suggests that aS spreads from cell to cell and thereby propagates neurodegeneration to neighboring cells. Recently, Nedd4-1 (neural precursor cell expressed developmentally down-regulated protein 4-1), an E3 ubiquitin ligase, was shown to catalyze the Lys-63-linked polyubiquitination of intracellular aS and thereby facilitate aS degradation by the endolysosomal pathway. Because Nedd4-1 exerts its activity in close proximity to the inner leaflet of the plasma membrane, we speculate that after the internalization of aS the membrane resident aS is preferentially ubiquitinated by Nedd4-1. To clarify the role of Nedd4-1 in aS internalization and endolysosomal sequestration, we generated aS mutants, including ΔPR1(1-119 and 129-140), ΔC(1-119), and ΔPR2(1-119 and 134-140), that lack the proline-rich sequence, a putative Nedd4-1 recognition site. We show that wild type aS, but not ΔPR1, ΔPR2, or ΔC aS, is modified by Nedd4-1 in vitro, acquiring a Lys-63-linked ubiquitin chain. Compared with the mutants lacking the proline-rich sequence, wild type-aS is preferentially internalized and translocated to endosomes. The overexpression of Nedd4-1 increased aS in endosomes, whereas RNAi-mediated silencing of Nedd4-1 decreased endosomal aS. Although aS freely passes through plasma membranes within minutes, a pulse-chase experiment revealed that the overexpression of Nedd4-1 markedly decreased the re-secretion of internalized aS. Together, these findings demonstrate that Nedd4-1-linked Lys-63 ubiquitination specifies the fate of extrinsic and de novo synthesized aS by facilitating their targeting to endosomes.
Collapse
Affiliation(s)
- Naoto Sugeno
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takafumi Hasegawa
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan,
| | - Nobuyuki Tanaka
- the Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
| | - Mitsunori Fukuda
- the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Koichi Wakabayashi
- the Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
| | - Ryuji Oshima
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan, the Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
| | - Masashi Konno
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Emiko Miura
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akio Kikuchi
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Baba
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tadashi Anan
- the Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- the Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan, and
| | - Sven Geisler
- the Laboratory of Functional Neurogenetics, Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, German Centre for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Masashi Aoki
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Takeda
- From the Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
162
|
Abstract
The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid.
Collapse
Affiliation(s)
- Raimon Sabate
- Conformational Diseases Group; Department of Physical Chemistry; Faculty of Pharmacy; University of Barcelona (UB); Barcelona, Spain; Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB); Barcelona, Spain
| |
Collapse
|
163
|
|
164
|
Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 2014; 20:130-8. [PMID: 24504409 DOI: 10.1038/nm.3457] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
A common feature of many neurodegenerative diseases is the deposition of β-sheet-rich amyloid aggregates formed by proteins specific to these diseases. These protein aggregates are thought to cause neuronal dysfunction, directly or indirectly. Recent studies have strongly implicated cell-to-cell transmission of misfolded proteins as a common mechanism for the onset and progression of various neurodegenerative disorders. Emerging evidence also suggests the presence of conformationally diverse 'strains' of each type of disease protein, which may be another shared feature of amyloid aggregates, accounting for the tremendous heterogeneity within each type of neurodegenerative disease. Although there are many more questions to be answered, these studies have opened up new avenues for therapeutic interventions in neurodegenerative disorders.
Collapse
|
165
|
Abstract
Common cellular and molecular mechanisms including protein aggregation and inclusion body formation are involved in many neurodegenerative diseases. α-Synuclein is a major component of Lewy bodies in Parkinson's disease (PD) as well as in glial cytoplasmic inclusions in multiple system atrophy (MSA). Tau is a principal component of neurofibrillary and glial tangles in tauopathies. Recently, TDP-43 was identified as a component of ubiquitinated inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PD is traditionally considered a movement disorder with hallmark lesions in the brainstem pigmented nuclei. However, pathological changes occur in widespread regions of the central and peripheral nervous systems in this disease. Furthermore, primary glial involvement ("gliodegeneration") can be observed in PD and MSA as well as in tauopathy. The present article reviews abnormal protein accumulation and inclusion body formation inside and outside the central nervous system.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Japan
| |
Collapse
|
166
|
Could Intracrine Biology Play a Role in the Pathogenesis of Transmissable Spongiform Encephalopathies Alzheimer’s Disease and Other Neurodegenerative Diseases? Am J Med Sci 2014; 347:312-20. [DOI: 10.1097/maj.0b013e3182a28af3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
167
|
Cohen SIA, Rajah L, Yoon CH, Buell AK, White DA, Sperling RA, Vendruscolo M, Terentjev EM, Dobson CM, Weitz DA, Knowles TPJ. Spatial propagation of protein polymerization. PHYSICAL REVIEW LETTERS 2014; 112:098101. [PMID: 24655282 DOI: 10.1103/physrevlett.112.098101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 06/03/2023]
Abstract
We consider the spatial dependence of filamentous protein self-assembly. Through studying the cases where the spreading of aggregated material is dominated either by diffusion or by growth, we derive analytical results for the spatial evolution of filamentous protein aggregation, which we validate against Monte Carlo simulations. Moreover, we compare the predictions of our theory with experimental measurements of two systems for which we identify the propagation as either growth or diffusion controlled. Our results connect the macroscopic observables that characterize the spatial propagation of protein self-assembly with the underlying microscopic processes and provide physical limits on spatial propagation and prionlike behavior associated with protein aggregation.
Collapse
Affiliation(s)
- S I A Cohen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - L Rajah
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - C H Yoon
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - A K Buell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D A White
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - R A Sperling
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - E M Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - C M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - T P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
168
|
May VEL, Ettle B, Poehler AM, Nuber S, Ubhi K, Rockenstein E, Winner B, Wegner M, Masliah E, Winkler J. α-Synuclein impairs oligodendrocyte progenitor maturation in multiple system atrophy. Neurobiol Aging 2014; 35:2357-68. [PMID: 24698767 DOI: 10.1016/j.neurobiolaging.2014.02.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/21/2014] [Accepted: 02/05/2014] [Indexed: 11/30/2022]
Abstract
Multiple system atrophy (MSA), an atypical parkinsonian disorder, is characterized by α-synuclein (α-syn(+)) cytoplasmatic inclusions in mature oligodendrocytes. Oligodendrocyte progenitor cells (OPCs) represent a distinct cell population with the potential to replace dysfunctional oligodendrocytes. However, the role of OPCs in MSA and their potential to replace mature oligodendrocytes is still unclear. A postmortem analysis in MSA patients revealed α-syn within OPCs and an increased number of striatal OPCs. In an MSA mouse model, an age-dependent increase of dividing OPCs within the striatum and the cortex was detected. Despite of myelin loss, there was no reduction of mature oligodendrocytes in the corpus callosum or the striatum. Dissecting the underlying molecular mechanisms an oligodendroglial cell line expressing human α-syn revealed that α-syn delays OPC maturation by severely downregulating myelin-gene regulatory factor and myelin basic protein. Brain-derived neurotrophic factor was reduced in MSA models and its in vitro supplementation partially restored the phenotype. Taken together, efficacious induction of OPC maturation may open the window to restore glial and neuronal function in MSA.
Collapse
Affiliation(s)
- Verena E L May
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Ettle
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anne-Maria Poehler
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Nuber
- Department of Neurosciences and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kiren Ubhi
- Department of Neurosciences and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Beate Winner
- Junior Research Group III, Interdisciplinary Centre of Clinical Research, Nikolaus Fiebiger Centre for Molecular Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Michael Wegner
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Eliezer Masliah
- Department of Neurosciences and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Neurosciences and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
169
|
Kuzdas-Wood D, Stefanova N, Jellinger KA, Seppi K, Schlossmacher MG, Poewe W, Wenning GK. Towards translational therapies for multiple system atrophy. Prog Neurobiol 2014; 118:19-35. [PMID: 24598411 PMCID: PMC4068324 DOI: 10.1016/j.pneurobio.2014.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022]
Abstract
Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disorder of uncertain etiopathogenesis manifesting with autonomic failure, parkinsonism, and ataxia in any combination. The underlying neuropathology affects central autonomic, striatonigral and olivopontocerebellar pathways and it is associated with distinctive glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) that contain aggregates of α-synuclein. Current treatment options are very limited and mainly focused on symptomatic relief, whereas disease modifying options are lacking. Despite extensive testing, no neuroprotective drug treatment has been identified up to now; however, a neurorestorative approach utilizing autologous mesenchymal stem cells has shown remarkable beneficial effects in the cerebellar variant of MSA. Here, we review the progress made over the last decade in defining pathogenic targets in MSA and summarize insights gained from candidate disease-modifying interventions that have utilized a variety of well-established preclinical MSA models. We also discuss the current limitations that our field faces and suggest solutions for possible approaches in cause-directed therapies of MSA.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Nadia Stefanova
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | | | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Michael G Schlossmacher
- Divisions of Neuroscience and Neurology, The Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, RGH #1412, Ottawa, ON, K1H 8M5, Canada
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria.
| |
Collapse
|
170
|
Song HL, Shim S, Kim DH, Won SH, Joo S, Kim S, Jeon NL, Yoon SY. β-Amyloid is transmitted via neuronal connections along axonal membranes. Ann Neurol 2014; 75:88-97. [DOI: 10.1002/ana.24029] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 08/14/2013] [Accepted: 09/17/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Ha-Lim Song
- Alzheimer's Disease Experts Laboratory, Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
- Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul Korea
- Bio-Medical Institute of Technology; University of Ulsan College of Medicine; Seoul Korea
- Cell Dysfunction Research Center; University of Ulsan College of Medicine; Seoul Korea
| | - Sungbo Shim
- Bio-Medical Institute of Technology; University of Ulsan College of Medicine; Seoul Korea
- Cell Dysfunction Research Center; University of Ulsan College of Medicine; Seoul Korea
| | - Dong-Hou Kim
- Alzheimer's Disease Experts Laboratory, Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
- Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul Korea
- Bio-Medical Institute of Technology; University of Ulsan College of Medicine; Seoul Korea
- Cell Dysfunction Research Center; University of Ulsan College of Medicine; Seoul Korea
| | - Se-Hoon Won
- Alzheimer's Disease Experts Laboratory, Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
- Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul Korea
- Bio-Medical Institute of Technology; University of Ulsan College of Medicine; Seoul Korea
- Cell Dysfunction Research Center; University of Ulsan College of Medicine; Seoul Korea
| | - Segyeong Joo
- Department of Biomedical Engineering, Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Sudong Kim
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering; Seoul National University; Seoul Korea
| | - Noo Li Jeon
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering; Seoul National University; Seoul Korea
| | - Seung-Yong Yoon
- Alzheimer's Disease Experts Laboratory, Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
- Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul Korea
- Bio-Medical Institute of Technology; University of Ulsan College of Medicine; Seoul Korea
- Cell Dysfunction Research Center; University of Ulsan College of Medicine; Seoul Korea
| |
Collapse
|
171
|
Abstract
Misfolding and intracellular aggregation of α-synuclein are thought to be crucial factors in the pathogenesis of Lewy body diseases (LBDs), such as Parkinson disease. However, the pathogenic modifications of this protein and the mechanisms underlying its activity have not been fully characterized. Recent studies suggest that small amounts of α-synuclein are released from neuronal cells by unconventional exocytosis, and that this extracellular α-synuclein contributes to the major pathological features of LBD, such as neurodegeneration, progressive spreading of α-synuclein pathology, and neuroinflammation. In this article, we review a rapidly growing body of literature on possible mechanisms by which extracellular α-synuclein contributes to LBD pathology, and discuss therapeutic approaches to target this form of α-synuclein to halt disease progression.
Collapse
|
172
|
Domert J, Rao SB, Agholme L, Brorsson AC, Marcusson J, Hallbeck M, Nath S. Spreading of amyloid-β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiol Dis 2014; 65:82-92. [PMID: 24412310 DOI: 10.1016/j.nbd.2013.12.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 12/24/2022] Open
Abstract
The spreading of pathology through neuronal pathways is likely to be the cause of the progressive cognitive loss observed in Alzheimer's disease (AD) and other neurodegenerative diseases. We have recently shown the propagation of AD pathology via cell-to-cell transfer of oligomeric amyloid beta (Aβ) residues 1-42 (oAβ1-42) using our donor-acceptor 3-D co-culture model. We now show that different Aβ-isoforms (fluorescently labeled 1-42, 3(pE)-40, 1-40 and 11-42 oligomers) can transfer from one cell to another. Thus, transfer is not restricted to a specific Aβ-isoform. Although different Aβ isoforms can transfer, differences in the capacity to clear and/or degrade these aggregated isoforms result in vast differences in the net amounts ending up in the receiving cells and the net remaining Aβ can cause seeding and pathology in the receiving cells. This insufficient clearance and/or degradation by cells creates sizable intracellular accumulations of the aggregation-prone Aβ1-42 isoform, which further promotes cell-to-cell transfer; thus, oAβ1-42 is a potentially toxic isoform. Furthermore, cell-to-cell transfer is shown to be an early event that is seemingly independent of later appearances of cellular toxicity. This phenomenon could explain how seeds for the AD pathology could pass on to new brain areas and gradually induce AD pathology, even before the first cell starts to deteriorate, and how cell-to-cell transfer can act together with the factors that influence cellular clearance and/or degradation in the development of AD.
Collapse
Affiliation(s)
- Jakob Domert
- Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping, Sweden
| | - Sahana Bhima Rao
- Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping, Sweden
| | - Lotta Agholme
- Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping, Sweden
| | - Ann-Christin Brorsson
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, Sweden
| | - Jan Marcusson
- Division of Geriatric Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping, Sweden; Department of Clinical Pathology, County Council of Östergötland, Linköping, Sweden
| | - Sangeeta Nath
- Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping, Sweden.
| |
Collapse
|
173
|
Halliday G, McCann H, Shepherd C. Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinson's disease? Expert Rev Neurother 2014; 12:673-86. [DOI: 10.1586/ern.12.47] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
174
|
Valera E, Ubhi K, Mante M, Rockenstein E, Masliah E. Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy. Glia 2013; 62:317-37. [PMID: 24310907 DOI: 10.1002/glia.22610] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/01/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the pathological accumulation of alpha-synuclein (α-syn) within oligodendroglial cells. This accumulation is accompanied by neuroinflammation with astrogliosis and microgliosis, that leads to neuronal death and subsequent parkinsonism and dysautonomia. Antidepressants have been explored as neuroprotective agents as they normalize neurotrophic factor levels, increase neurogenesis and reduce neurodegeneration, but their anti-inflammatory properties have not been fully characterized. We analyzed the anti-inflammatory profiles of three different antidepressants (fluoxetine, olanzapine and amitriptyline) in the MBP1-hα-syn transgenic (tg) mouse model of MSA. We observed that antidepressant treatment decreased the number of α-syn-positive cells in the basal ganglia of 11-month-old tg animals. This reduction was accompanied with a similar decrease in the colocalization of α-syn with astrocyte markers in this brain structure. Consistent with these results, antidepressants reduced astrogliosis in the hippocampus and basal ganglia of the MBP1-hα-syn tg mice, and modulated the expression levels of key cytokines that were dysregulated in the tg mouse model, such as IL-1β. In vitro experiments in the astroglial cell line C6 confirmed that antidepressants inhibited NF-κB translocation to the nucleus and reduced IL-1β protein levels. We conclude that the anti-inflammatory properties of antidepressants in the MBP1-hα-syn tg mouse model of MSA might be related to their ability to inhibit α-syn propagation from oligodendrocytes to astroglia and to regulate transcription factors involved in cytokine expression. Our results suggest that antidepressants might be of interest as anti-inflammatory and α-syn-reducing agents for MSA and other α-synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
175
|
Hasegawa T, Kikuchi A, Takeda A. Pathogenesis of multiple system atrophy. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/ncn3.57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology; Department of Neuroscience & Sensory Organs; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Akio Kikuchi
- Division of Neurology; Department of Neuroscience & Sensory Organs; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Atsushi Takeda
- Division of Neurology; Department of Neuroscience & Sensory Organs; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| |
Collapse
|
176
|
Michel CH, Kumar S, Pinotsi D, Tunnacliffe A, St George-Hyslop P, Mandelkow E, Mandelkow EM, Kaminski CF, Kaminski Schierle GS. Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology. J Biol Chem 2013; 289:956-67. [PMID: 24235150 PMCID: PMC3887218 DOI: 10.1074/jbc.m113.515445] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Understanding the formation and propagation of aggregates of the Alzheimer disease-associated Tau protein in vivo is vital for the development of therapeutics for this devastating disorder. Using our recently developed live-cell aggregation sensor in neuron-like cells, we demonstrate that different variants of exogenous monomeric Tau, namely full-length Tau (hTau40) and the Tau-derived construct K18 comprising the repeat domain, initially accumulate in endosomal compartments, where they form fibrillar seeds that subsequently induce the aggregation of endogenous Tau. Using superresolution imaging, we confirm that fibrils consisting of endogenous and exogenous Tau are released from cells and demonstrate their potential to spread Tau pathology. Our data indicate a greater pathological risk and potential toxicity than hitherto suspected for extracellular soluble Tau.
Collapse
Affiliation(s)
- Claire H Michel
- From the Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Human genetics has indicated a causal role for the protein α-synuclein in the pathogenesis of familial Parkinson's disease (PD), and the aggregation of synuclein in essentially all patients with PD suggests a central role for this protein in the sporadic disorder. Indeed, the accumulation of misfolded α-synuclein now defines multiple forms of neural degeneration. Like many of the proteins that accumulate in other neurodegenerative disorders, however, the normal function of synuclein remains poorly understood. In this article, we review the role of synuclein at the nerve terminal and in membrane remodeling. We also consider the prion-like propagation of misfolded synuclein as a mechanism for the spread of degeneration through the neuraxis.
Collapse
|
178
|
Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K. Amyotrophic lateral sclerosis--a model of corticofugal axonal spread. Nat Rev Neurol 2013; 9:708-14. [PMID: 24217521 DOI: 10.1038/nrneurol.2013.221] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathological process underlying amyotrophic lateral sclerosis (ALS) is associated with the formation of cytoplasmic inclusions consisting mainly of phosphorylated 43-kDa transactive response DNA-binding protein (pTDP-43), which plays an essential part in the pathogenesis of ALS. Preliminary evidence indicates that neuronal involvement progresses at different rates, but in a similar sequence, in different patients with ALS. This observation supports the emerging concept of prion-like propagation of abnormal proteins in noninfectious neurodegenerative diseases. Although the distance between involved regions is often considerable, the affected neurons are connected by axonal projections, indicating that physical contacts between nerve cells along axons are important for dissemination of ALS pathology. This article posits that the trajectory of the spreading pattern is consistent with the induction and dissemination of pTDP-43 pathology chiefly from cortical neuronal projections, via axonal transport, through synaptic contacts to the spinal cord and other regions of the brain.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Centre for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
179
|
Ramaswami M, Taylor JP, Parker R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 2013; 154:727-36. [PMID: 23953108 DOI: 10.1016/j.cell.2013.07.038] [Citation(s) in RCA: 475] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Indexed: 12/12/2022]
Abstract
The molecular processes that contribute to degenerative diseases are not well understood. Recent observations suggest that some degenerative diseases are promoted by the accumulation of nuclear or cytoplasmic RNA-protein (RNP) aggregates, which can be related to endogenous RNP granules. RNP aggregates arise commonly in degenerative diseases because RNA-binding proteins commonly self-assemble, in part through prion-like domains, which can form self-propagating amyloids. RNP aggregates may be toxic due to multiple perturbations of posttranscriptional control, thereby disrupting the normal "ribostasis" of the cell. This suggests that understanding and modulating RNP assembly or clearance may be effective approaches to developing therapies for these diseases.
Collapse
Affiliation(s)
- Mani Ramaswami
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
180
|
Yuan Z, Zhao D, Yang L. Decipher the mechanisms of rabbit's low susceptibility to prion infection. Acta Biochim Biophys Sin (Shanghai) 2013; 45:899-903. [PMID: 24041958 DOI: 10.1093/abbs/gmt093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rabbits have low susceptibility to prion infection. Studies on prion protein (PrP) from animal species of different susceptibility to prion diseases identified key amino acid residues, specific motif, and special features in rabbit prion protein (RaPrP(C)) that contribute to the stability of rabbit PrP(C) and low susceptibility to prion infection. However, there is no evidence showing that rabbits are completely resistant to prion diseases. It has been reported that the rabbit prion could be generated in vitro through protein misfolding cyclic amplification and proved to be infectious and transmissible. Here, we reviewed studies on rabbit-specific PrP structures and features in relation to rabbit's low susceptibility to prion infection.
Collapse
Affiliation(s)
- Zhen Yuan
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
181
|
Ma Q, Hu JY, Chen J, Liang Y. The role of crowded physiological environments in prion and prion-like protein aggregation. Int J Mol Sci 2013; 14:21339-52. [PMID: 24284393 PMCID: PMC3856008 DOI: 10.3390/ijms141121339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 01/07/2023] Open
Abstract
Prion diseases and prion- like protein misfolding diseases are related to the accumulation of abnormal aggregates of the normal host proteins including prion proteins and Tau protein. These proteins possess self-templating and transmissible characteristics. The crowded physiological environments where the aggregation of these amyloidogenic proteins takes place can be imitated in vitro by the addition of macromolecular crowding agents such as inert polysaccharides. In this review, we summarize the aggregation of prion proteins in crowded physiological environments and discuss the role of macromolecular crowding in prion protein aggregation. We also summarize the aggregation of prion- like proteins including human Tau protein, human α-synuclein, and human copper, zinc superoxide dismutase under macromolecular crowding environments and discuss the role of macromolecular crowding in prion- like protein aggregation. The excluded-volume effects caused by macromolecular crowding could accelerate the aggregation of neurodegenerative disease-associated proteins while inhibiting the aggregation of the proteins that are not neurodegenerative disease-associated.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | |
Collapse
|
182
|
Xu LR, Liu XL, Chen J, Liang Y. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization. PLoS One 2013; 8:e76657. [PMID: 24098548 PMCID: PMC3788760 DOI: 10.1371/journal.pone.0076657] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/30/2013] [Indexed: 01/20/2023] Open
Abstract
Background Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI) is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization. Methodology/Principal Findings As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244–372) monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244–372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244–372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244–372 fibrillization more strongly than full-length human PDI. Conclusions/Significance We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau fibrillization, and have applications for developing novel strategies for treatment and early diagnosis of Alzheimer disease.
Collapse
Affiliation(s)
- Li-Rong Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Ling Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
183
|
Milto K, Botyriute A, Smirnovas V. Amyloid-like fibril elongation follows michaelis-menten kinetics. PLoS One 2013; 8:e68684. [PMID: 23874721 PMCID: PMC3707827 DOI: 10.1371/journal.pone.0068684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/03/2013] [Indexed: 11/18/2022] Open
Abstract
A number of proteins can aggregate into amyloid-like fibrils. It was noted that fibril elongation has similarities to an enzymatic reaction, where monomers or oligomers would play a role of substrate and nuclei/fibrils would play a role of enzyme. The question is how similar these processes really are. We obtained experimental data on insulin amyloid-like fibril elongation at the conditions where other processes which may impact kinetics of fibril formation are minor and fitted it using Michaelis-Menten equation. The correlation of the fit is very good and repeatable. It speaks in favour of enzyme-like model of fibril elongation. In addition, obtained and values at different conditions may help in better understanding influence of environmental factors on the process of fibril elongation.
Collapse
Affiliation(s)
- Katazyna Milto
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, Lithuania
| | - Akvile Botyriute
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, Lithuania
- * E-mail:
| |
Collapse
|
184
|
Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM, Wood EM, Baek Y, Kwong L, Lee EB, Elman L, McCluskey L, Fang L, Feldengut S, Ludolph AC, Lee VMY, Braak H, Trojanowski JQ. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 2013; 74:20-38. [PMID: 23686809 DOI: 10.1002/ana.23937] [Citation(s) in RCA: 730] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/15/2013] [Accepted: 05/10/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To see whether the distribution patterns of phosphorylated 43kDa TAR DNA-binding protein (pTDP-43) intraneuronal inclusions in amyotrophic lateral sclerosis (ALS) permit recognition of neuropathological stages. METHODS pTDP-43 immunohistochemistry was performed on 70 μm sections from ALS autopsy cases (N = 76) classified by clinical phenotype and genetic background. RESULTS ALS cases with the lowest burden of pTDP-43 pathology were characterized by lesions in the agranular motor cortex, brainstem motor nuclei of cranial nerves V, VII, and X-XII, and spinal cord α-motoneurons (stage 1). Increasing burdens of pathology showed involvement of the prefrontal neocortex (middle frontal gyrus), brainstem reticular formation, precerebellar nuclei, and the red nucleus (stage 2). In stage 3, pTDP-43 pathology involved the prefrontal (gyrus rectus and orbital gyri) and then postcentral neocortex and striatum. Cases with the greatest burden of pTDP-43 lesions showed pTDP-43 inclusions in anteromedial portions of the temporal lobe, including the hippocampus (stage 4). At all stages, these lesions were accompanied by pTDP-43 oligodendroglial aggregates. Ten cases with C9orf72 repeat expansion displayed the same sequential spreading pattern as nonexpansion cases but a greater regional burden of lesions, indicating a more fulminant dissemination of pTDP-43 pathology. INTERPRETATION pTDP-43 pathology in ALS possibly disseminates in a sequential pattern that permits recognition of 4 neuropathological stages consistent with the hypothesis that pTDP-43 pathology is propagated along axonal pathways. Moreover, the finding that pTDP-43 pathology develops in the prefrontal cortex as part of an ongoing disease process could account for the development of executive cognitive deficits in ALS.
Collapse
Affiliation(s)
- Johannes Brettschneider
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA.,Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Jon B Toledo
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - John L Robinson
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - David J Irwin
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania School of Medicine, 3 W Gates, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania School of Medicine, 3 W Gates, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Elisabeth M Wood
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Young Baek
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Linda Kwong
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Lauren Elman
- Department of Neurology, University of Pennsylvania School of Medicine, 3 W Gates, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Leo McCluskey
- Department of Neurology, University of Pennsylvania School of Medicine, 3 W Gates, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Lubin Fang
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
185
|
Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z, Roux P, Zurzolo C. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 2013; 126:3678-85. [PMID: 23781027 DOI: 10.1242/jcs.126086] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by CAG expansion in the huntingtin gene, which adds a homopolymeric tract of polyglutamine (polyQ) to the encoded protein leading to the formation of toxic aggregates. Despite rapidly accumulating evidences supporting a role for intercellular transmission of protein aggregates, little is known about whether and how huntingtin (Htt) misfolding progresses through the brain. It has been recently reported that synthetic polyQ peptides and recombinant fragments of mutant Htt are readily internalized in cell cultures and able to seed polymerization of a reporter wild-type Htt. However, there is no direct evidence of aggregate transfer between cells and the mechanism has not been explored. By expressing recombinant fragments of mutant Htt in neuronal cells and in primary neurons, we found that aggregated fragments formed within one cell spontaneously transfer to neighbors in cell culture. We demonstrate that the intercellular spreading of the aggregates requires cell-cell contact and does not occur upon aggregate secretion. Interestingly, we found that the expression of mutant, but not wild-type Htt fragments, increases the number of tunneling nanotubes, which in turn provide an efficient mechanism of transfer.
Collapse
Affiliation(s)
- Maddalena Costanzo
- Institut Pasteur, Unité de traffic membranaire et pathogenèse, 28 rue du Docteur Roux 75724 Paris, Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
186
|
Chorfa A, Bétemps D, Morignat E, Lazizzera C, Hogeveen K, Andrieu T, Baron T. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines. Toxicol Sci 2013; 133:289-97. [PMID: 23535362 DOI: 10.1093/toxsci/kft076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease.
Collapse
Affiliation(s)
- Areski Chorfa
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Unité Maladies Neuro-Dégénératives, 69394 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
187
|
The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 2013; 452:1-17. [DOI: 10.1042/bj20121898] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The misfolding and aggregation of specific proteins is a common hallmark of many neurodegenerative disorders, including highly prevalent illnesses such as Alzheimer's and Parkinson's diseases, as well as rarer disorders such as Huntington's and prion diseases. Among these, only prion diseases are ‘infectious’. By seeding misfolding of the PrPC (normal conformer prion protein) into PrPSc (abnormal disease-specific conformation of prion protein), prions spread from the periphery of the body to the central nervous system and can also be transmitted between individuals of the same or different species. However, recent exciting data suggest that the transmissibility of misfolded proteins within the brain is a property that goes way beyond the rare prion diseases. Evidence indicates that non-prion aggregates [tau, α-syn (α-synuclein), Aβ (amyloid-β) and Htt (huntingtin) aggregates] can also move between cells and seed the misfolding of their normal conformers. These findings have enormous implications. On the one hand they question the therapeutical use of transplants, and on the other they indicate that it may be possible to bring these diseases to an early arrest by preventing cell-to-cell transmission. To better understand the prion-like spread of these protein aggregates it is essential to identify the underlying cellular and molecular factors. In the present review we analyse and discuss the evidence supporting prion-like spreading of amyloidogenic proteins, especially focusing on the cellular and molecular mechanisms and their significance.
Collapse
|
188
|
Amyloid PET in clinical practice: Its place in the multidimensional space of Alzheimer's disease. NEUROIMAGE-CLINICAL 2013; 2:497-511. [PMID: 24179802 PMCID: PMC3777773 DOI: 10.1016/j.nicl.2013.03.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 01/18/2023]
Abstract
Amyloid imaging is currently introduced to the market for clinical use. We will review the evidence demonstrating that the different amyloid PET ligands that are currently available are valid biomarkers for Alzheimer-related β amyloidosis. Based on recent findings from cross-sectional and longitudinal imaging studies using different modalities, we will incorporate amyloid imaging into a multidimensional model of Alzheimer's disease. Aside from the critical role in improving clinical trial design for amyloid-lowering drugs, we will also propose a tentative algorithm for when it may be useful in a memory clinic environment. Gaps in our evidence-based knowledge of the added value of amyloid imaging in a clinical context will be identified and will need to be addressed by dedicated studies of clinical utility.
Collapse
|
189
|
Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-synuclein's prion-like behavior in Parkinson's disease--is there a link? Mol Neurobiol 2013; 47:561-74. [PMID: 22544647 PMCID: PMC3589652 DOI: 10.1007/s12035-012-8267-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 01/24/2023]
Abstract
Parkinson's disease patients exhibit progressive spreading of aggregated α-synuclein in the nervous system. This slow process follows a specific pattern in an inflamed tissue environment. Recent research suggests that prion-like mechanisms contribute to the propagation of α-synuclein pathology. Little is known about factors that might affect the prion-like behavior of misfolded α-synuclein. In this review, we suggest that neuroinflammation plays an important role. We discuss causes of inflammation in the olfactory bulb and gastrointestinal tract and how this may promote the initial misfolding and aggregation of α-synuclein, which might set in motion events that lead to Parkinson's disease neuropathology. We propose that neuroinflammation promotes the prion-like behavior of α-synuclein and that novel anti-inflammatory therapies targeting this mechanism could slow disease progression.
Collapse
Affiliation(s)
- Carla M. Lema Tomé
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Trevor Tyson
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Nolwen L. Rey
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Stefan Grathwohl
- F. Hoffmann-La Roche Ltd, pRED, Pharma Research & Early Development, DTA CNS, Grenzacherstrasse 124, Basel, 4070 Switzerland
| | - Markus Britschgi
- F. Hoffmann-La Roche Ltd, pRED, Pharma Research & Early Development, DTA CNS, Grenzacherstrasse 124, Basel, 4070 Switzerland
| | - Patrik Brundin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503 USA
| |
Collapse
|
190
|
Bae EJ, Ho DH, Park E, Jung JW, Cho K, Hong JH, Lee HJ, Kim KP, Lee SJ. Lipid peroxidation product 4-hydroxy-2-nonenal promotes seeding-capable oligomer formation and cell-to-cell transfer of α-synuclein. Antioxid Redox Signal 2013; 18:770-83. [PMID: 22867050 PMCID: PMC3555112 DOI: 10.1089/ars.2011.4429] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 11/13/2022]
Abstract
AIMS Abnormal accumulation of α-synuclein aggregates is one of the key pathological features of many neurodegenerative movement disorders and dementias. These pathological aggregates propagate into larger brain regions as the disease progresses, with the associated clinical symptoms becoming increasingly severe and complex. However, the factors that induce α-synuclein aggregation and spreading of the aggregates remain elusive. Herein, we have evaluated the effects of the major lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) on α-synuclein oligomerization and cell-to-cell transmission of this protein. RESULTS Incubation with HNE promoted the oligomerization of recombinant human α-synuclein via adduct formation at the lysine and histidine residues. HNE-induced α-synuclein oligomers evidence a little β-sheet structure and are distinct from amyloid fibrils at both conformation and ultrastructure levels. Nevertheless, the HNE-induced oligomers are capable of seeding the amyloidogenesis of monomeric α-synuclein under in vitro conditions. When neuronal cells were treated with HNE, both the translocation of α-synuclein into vesicles and the release of this protein from cells were increased. Neuronal cells can internalize HNE-modified α-synuclein oligomers, and HNE treatment increased the cell-to-cell transfer of α-synuclein proteins. INNOVATION AND CONCLUSION These results indicate that HNE induces the oligomerization of α-synuclein through covalent modification and promotes the cell-to-cell transfer of seeding-capable oligomers, thereby contributing to both the initiation and spread of α-synuclein aggregates.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
- SMART-IABS, Konkuk University, Seoul, Republic of Korea
| | - Dong-Hwan Ho
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
- SMART-IABS, Konkuk University, Seoul, Republic of Korea
| | - Eunbi Park
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
- SMART-IABS, Konkuk University, Seoul, Republic of Korea
| | - Jin Woo Jung
- Department of Molecular Biotechnology, WCU, Konkuk University, Seoul, Republic of Korea
| | - Kyungcho Cho
- Department of Molecular Biotechnology, WCU, Konkuk University, Seoul, Republic of Korea
| | - Ji Hye Hong
- Department of Molecular Biotechnology, WCU, Konkuk University, Seoul, Republic of Korea
| | - He-Jin Lee
- SMART-IABS, Konkuk University, Seoul, Republic of Korea
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- SMART-IABS, Konkuk University, Seoul, Republic of Korea
- Department of Molecular Biotechnology, WCU, Konkuk University, Seoul, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
- SMART-IABS, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
191
|
Valera E, Masliah E. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol Ther 2013; 138:311-22. [PMID: 23384597 DOI: 10.1016/j.pharmthera.2013.01.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer's disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson's disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in the blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
192
|
Chai YJ, Kim D, Park J, Zhao H, Lee SJ, Chang S. The secreted oligomeric form of α-synuclein affects multiple steps of membrane trafficking. FEBS Lett 2013; 587:452-9. [PMID: 23333298 DOI: 10.1016/j.febslet.2013.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/10/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023]
Abstract
α-Synuclein (α-syn) can be secreted from neurons into the extracellular space, affecting the homeostasis of neighboring cells, but the pathophysiology of secreted α-syn remains largely unknown. We found that when exogenously applied to COS-7 cells, α-syn secreted from differentiated SH-SY5Y cells was taken up by dynamin-dependent endocytosis. Upon internalization, α-syn significantly increased the rate of transferrin receptor (TfR) internalization and recycling, and subsequently the surface levels of TfR. The effects are attributable to the oligomeric form, but not monomeric or fibrillar form, of extracellular α-syn. Together, multiple alterations in membrane trafficking by secreted oligomeric α-syn may contribute to the early stages of pathogenesis in Parkinson's disease.
Collapse
Affiliation(s)
- Ye-Jin Chai
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
193
|
Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 2012; 32:13454-69. [PMID: 23015436 DOI: 10.1523/jneurosci.1292-12.2012] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abnormal deposition and intercellular propagation of α-synuclein plays a central role in the pathogenesis of disorders such as Parkinson's Disease (PD) and dementia with Lewy bodies (DLB). Previous studies demonstrated that immunization against α-synuclein resulted in reduced α-synuclein accumulation and synaptic loss in a transgenic (tg) mouse model, highlighting the potential for immunotherapy. However, the mechanism by which immunization prevents synucleinopathy-associated deficits remains unknown. Here, we show that antibodies against α-synuclein specifically target and aid in clearance of extracellular α-synuclein proteins by microglia, thereby preventing their actions on neighboring cells. Antibody-assisted clearance occurs mainly in microglia through the Fcγ receptor, and not in neuronal cells or astrocytes. Stereotaxic administration of antibody into the brains of α-synuclein tg mice prevented neuron-to-astroglia transmission of α-synuclein and led to increased localization of α-synuclein and the antibody in microglia. Furthermore, passive immunization with α-synuclein antibody reduced neuronal and glial accumulation of α-synuclein and ameliorated neurodegeneration and behavioral deficits associated with α-synuclein overexpression. These findings provide an underlying mechanistic basis for immunotherapy for PD/DLB and suggest extracellular forms of α-synuclein as potential therapeutic targets.
Collapse
|
194
|
Reconciling Braak’s model of Parkinson’s disease with a prion-like spread of alpha synuclein pathology. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
195
|
Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism. PLoS One 2012; 7:e51069. [PMID: 23226463 PMCID: PMC3511362 DOI: 10.1371/journal.pone.0051069] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/29/2012] [Indexed: 11/23/2022] Open
Abstract
The polyglutamine (polyQ) diseases such as Huntington’s disease (HD), are neurodegenerative diseases caused by proteins with an expanded polyQ stretch, which misfold and aggregate, and eventually accumulate as inclusion bodies within neurons. Molecules that inhibit polyQ protein misfolding/aggregation, such as Polyglutamine Binding Peptide 1 (QBP1) and molecular chaperones, have been shown to exert therapeutic effects in vivo by crossing of transgenic animals. Towards developing a therapy using these aggregation inhibitors, we here investigated the effect of viral vector-mediated gene therapy using QBP1 and molecular chaperones on polyQ disease model mice. We found that injection of adeno-associated virus type 5 (AAV5) expressing QBP1 or Hsp40 into the striatum both dramatically suppresses inclusion body formation in the HD mouse R6/2. AAV5-Hsp40 injection also ameliorated the motor impairment and extended the lifespan of R6/2 mice. Unexpectedly, we found even in virus non-infected cells that AAV5-Hsp40 appreciably suppresses inclusion body formation, suggesting a non-cell autonomous therapeutic effect. We further show that Hsp40 inhibits secretion of the polyQ protein from cultured cells, implying that it inhibits the recently suggested cell-cell transmission of the polyQ protein. Our results demonstrate for the first time the therapeutic effect of Hsp40 gene therapy on the neurological phenotypes of polyQ disease mice.
Collapse
|
196
|
Park SM, Kim KS. Proteolytic clearance of extracellular α-synuclein as a new therapeutic approach against Parkinson disease. Prion 2012; 7:121-6. [PMID: 23154633 DOI: 10.4161/pri.22850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many neurodegenerative diseases such as Alzheimer disease and Parkinson disease show similar characteristics. They typically show deposits of protein aggregates, the formation of which is considered important in their pathogenesis. Recently, aggregation-prone proteins have been shown to spread between cells and so may contribute to the pathogenesis of diseases like prion disease. Such a pathogenesis pathway is possibly common to many neurodegenerative diseases. If confirmed, it could allow the development of therapeutic interventions against many such diseases. In Parkinson disease, α-synuclein, a major component of cytosolic protein inclusions named Lewy body, has been shown to be released and taken up by cells, which may facilitate its progressive pathological spreading between cells. Accordingly, inhibition of spreading by targeting extracellular α-synuclein may represent a new therapy against Parkinson disease. Research into the intercellular spreading of extracellular protein aggregations of α-synuclein and its clearance pathway are reviewed here with a focus on the proteolytic clearance pathway as a therapeutic target for the treatment of Parkinson disease. Considering the similar characteristics of aggregation-prone proteins, these clearance systems might allow treatment of other neurodegenerative diseases beyond Parkinson disease.
Collapse
Affiliation(s)
- Sang Myun Park
- Department of Pharmacology, Neuroscience Graduate Program, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, South Korea.
| | | |
Collapse
|
197
|
Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson's disease. Acta Neuropathol 2012; 124:643-64. [PMID: 22926675 DOI: 10.1007/s00401-012-1028-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 12/14/2022]
Abstract
In this autopsy-based study, α-synuclein immunohistochemistry and lipofuscin pigment-Nissl architectonics in serial sections of 100 μm thickness were used to investigate the spinal cords and brains of 46 individuals: 28 patients with clinically and neuropathologically confirmed Parkinson's disease, 6 cases with incidental Lewy body disease, and 12 age-matched controls. α-Synuclein inclusions (particulate aggregations, Lewy neurites/bodies) in the spinal cord were present between neuropathological stages 2-6 in all cases whose brains were staged for Parkinson's disease-related synucleinopathy. The only individuals who did not have Lewy pathology in the spinal cord were a single stage 1 case (incidental Lewy body disease) and all controls. Because the Parkinson's disease-related lesions were observable in the spinal cord only after Lewy pathology was seen in the brain, it could be concluded that, within the central nervous system, sporadic Parkinson's disease does not begin in the spinal cord. In addition: (1) α-Synuclein-immunoreactive axons clearly predominated over Lewy bodies throughout the spinal cord and were visible in medial and anterior portions of the anterolateral funiculus. Their terminal axons formed dense α-synuclein-immunoreactive networks in the gray matter and were most conspicuous in the lateral portions of layers 1, 7, and in the cellular islands of layer 9. (2) Notably, this axonopathy increased remarkably in density from cervicothoracic segments to lumbosacral segments of the cord. (3) Topographically, it is likely that the spinal cord α-synuclein immunoreactive axonal networks represent descending projections from the supraspinal level setting nuclei (locus coeruleus, lower raphe nuclei, magnocellular portions of the reticular formation). (4) Following the appearance of the spinal cord axonal networks, select types of projection neurons in the spinal cord gray matter displayed α-synuclein-immunoreactive inclusions: chiefly, nociceptive neurons of the dorsal horn in layer 1, sympathetic and parasympathetic preganglionic neurons in layer 7, the cellular pools of α-motoneurons in layer 9, and the smaller motoneurons in Onuf's nucleus in layer 9 (ventral horn). The spinal cord lesions may contribute to clinical symptoms (e.g., pain, constipation, poor balance, lower urinary tract complaints, and sexual dysfunction) that occur during the premotor and motor phases of sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Germany.
| | | |
Collapse
|
198
|
Neuronal to oligodendroglial α-synuclein redistribution in a double transgenic model of multiple system atrophy. Neuroreport 2012; 23:259-64. [PMID: 22314685 DOI: 10.1097/wnr.0b013e3283509842] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multiple system atrophy is a sporadic, progressive, neurodegenerative disease characterized by an oligodendroglial accumulation of alpha-synuclein (α-syn). The mechanisms underlying the oligodendroglial accumulation of α-syn in the brains of patients with multiple system atrophy have attracted a great deal of interest, given the primarily neuronal role reported for this protein. We examined the interactions between neuronal and oligodendroglial α-syn in the progeny of crosses between parental transgenic (tg) mouse lines that express α-syn either under the oligodendroglial-specific myelin-basic protein promoter (MBP1-hα-syn tg) or under the neuronal platelet-derived growth factor promoter (PDGF-hα-syn tg). Our results demonstrate that progeny from the cross [hα-syn double (dbl) tg mice] displayed a robust redistribution of α-syn accumulation, with a relocalization from a neuronal or a mixed neuronal/oligodendroglial α-syn expression to a more oligodendroglial pattern in both the neocortex and the basal ganglia that closely resembled the parental MBP-hα-syn tg line. The hα-syn dbl tg mice also displayed motor deficits, concomitant with reduced levels of tyrosine hydroxylase and augmented neuropathological alterations in the basal ganglia. These results suggest that the central nervous system milieu in the hα-syn dbl tg mice favors an oligodendroglial accumulation of α-syn. This model represents an important tool to examine the interactions between neuronal and oligodendrocytic α-syn in diseases such as multiple system atrophy.
Collapse
|
199
|
Abstract
With advancing age, the brain becomes increasingly susceptible to neurodegenerative diseases, most of which are characterized by the misfolding and errant aggregation of certain proteins. The induction of aggregation involves a crystallization-like seeding mechanism by which a specific protein is structurally corrupted by its misfolded conformer. The latest research indicates that, once formed, proteopathic seeds can spread from one locale to another via cellular uptake, transport, and release. Impeding this process could represent a unified therapeutic strategy for slowing the progression of a wide range of currently intractable disorders.
Collapse
Affiliation(s)
- Lary C. Walker
- From the Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia 30329 and
| | - Harry LeVine
- the Center on Aging, Center for Structural Biology, and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
200
|
Abstract
The assembly of proteins into amyloid fibrils can be an element of both protein aggregation diseases and a functional unit in healthy biological pathways. In both cases, it must be kept under tight control to prevent undesired aggregation. In normophysiology, proteins can self-chaperone amyloidogenic segments by restricting their conformational flexibility in an overall stabilizing protein fold. However, some aggregation-prone segments cannot be controlled in this manner and require additional regulatory elements to limit fibrillation. The present review summarizes different molecular mechanisms that proteins use to control their own assembly into fibrils, such as the inclusion of a chaperoning domain or a blocking segment in the proform, the controlled release of an amyloidogenic region from the folded protein, or the adjustment of fibrillation propensity according to pH. Autoregulatory elements can control disease-related as well as functional fibrillar protein assemblies and distinguish a group of self-regulating amyloids across a wide range of biological functions and organisms.
Collapse
|